. . Z
micromachines ﬂw\p\py
a

Article
Liquid Crystal Elastomer-Based Microelectrode Array
for In Vitro Neuronal Recordings

Rashed T. Rihani ¥, Hyun Kim *, Bryan J. Black, Rahul Atmaramani, Mohand O. Saed,
Joseph J. Pancrazio and Taylor H. Ware *

Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA;
Rashed.Rihani@utdallas.edu (R.T.R.); kimhyun@utdallas.edu (H.K.); bjb140530@utdallas.edu (B.].B.);
rxal62330@utdallas.edu (R.A.); Mohand.Saed@utdallas.edu (M.O.S.); Joseph.Pancrazio@utdallas.edu (J.].P.)
* Correspondence: taylor.ware@utdallas.edu; Tel.: +1-972-883-4937

t These authors contributed equally to this work.

check for
Received: 31 July 2018; Accepted: 16 August 2018; Published: 20 August 2018 updates

Abstract: Polymer-based biomedical electronics provide a tunable platform to interact with nervous
tissue both in vitro and in vivo. Ultimately, the ability to control functional properties of neural
interfaces may provide important advantages to study the nervous system or to restore function in
patients with neurodegenerative disorders. Liquid crystal elastomers (LCEs) are a class of smart
materials that reversibly change shape when exposed to a variety of stimuli. Our interest in LCEs is
based on leveraging this shape change to deploy electrode sites beyond the tissue regions exhibiting
inflammation associated with chronic implantation. As a first step, we demonstrate that LCEs are
cellular compatible materials that can be used as substrates for fabricating microelectrode arrays
(MEAs) capable of recording single unit activity in vitro. Extracts from LCEs are non-cytotoxic
(>70% normalized percent viability), as determined in accordance to ISO protocol 10993-5 using
fibroblasts and primary murine cortical neurons. LCEs are also not functionally neurotoxic as
determined by exposing cortical neurons cultured on conventional microelectrode arrays to LCE
extract for 48 h. Microelectrode arrays fabricated on LCEs are stable, as determined by electrochemical
impedance spectroscopy. Examination of the impedance and phase at 1 kHz, a frequency associated
with single unit recording, showed results well within range of electrophysiological recordings over
30 days of monitoring in phosphate-buffered saline (PBS). Moreover, the LCE arrays are shown to
support viable cortical neuronal cultures over 27 days in vitro and to enable recording of prominent
extracellular biopotentials comparable to those achieved with conventional commercially-available
microelectrode arrays.

Keywords: microelectrode array; liquid crystal elastomer; neuronal recordings

1. Introduction

Neural interfaces allow for communication with nervous tissue both in vitro and in vivo.
In vitro neural interfaces, such as planar microelectrode arrays (MEAs), allow for characterization
of cultured neural networks, which is effective in a variety of in vitro model applications such as
neuropharmacological applications and cell compartmentalization [1-3]. The use of polymers for
in vitro neural interfaces has proven advantageous and gained traction over the past years [3-6].
This includes the fabrication of mechanically flexible planar MEAs to reduce the tissue-interface
mechanical mismatch [7] or using polymer actuators to allow for advanced interface control in the
case of cell compartmentalization [8]. In vivo neural interfaces, such as implantable microelectrode
arrays, offer a means of functional restoration in patients who suffer paralysis, strokes, limb loss,
or neurodegenerative disease [9]. However, the reliability of such neural interfaces is compromised,
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in part, by the body’s own foreign body response (FBR), leading to localized astrogliosis and fibrotic
encapsulation of the device [10]. These factors may lead to accelerated mechanical/electrical device
failure and/or loss of neurons at the site of implantation [11,12]. While conventional implantable
microelectrode arrays are comprised of inherently stiff materials, flexible polymer substrates have
gained interest for their potential in mitigating the mechanical mismatch at the tissue-device interface
and reduce FBR-induced encapsulation [13,14].

Biostable and biocompatible polymer packaging may provide important advantages over traditional
ceramic devices including mechanical flexibility and compatibility with tissue. These polymer-based
hybrid devices consist of a metallic electrode array and a polymeric package [15]. It is critical that the
chosen polymer also form a sufficient barrier to insulate the electronics from the moist physiological
environment [16]. Various types of polymers—such as polyimide [17], Parylene [18], shape memory
polymers [19], and liquid crystal polymer (LCP) [15,20]—have been tested as compliant, insulating
materials in neural interfaces. Particularly, LCPs have gained significant attention as a promising substrate
material for long-term implantable neural interfaces due to its low moisture absorption, which is equivalent
to that of polytetrafluoroethylene (PTFE) and glass (<0.04%) [21,22]. This absorption is significantly lower
than those of other polymers such as polyimide (~2.8%), Parylene-C (0.06-0.6%) and silicone elastomers
(~1%) [20]. Certain classes of LCPs may offer additional functionality beyond serving as a robust barrier,
including by enabling deployable neural interfaces.

Most polymer-based bioelectronic devices are planar in nature, as photolithography is used to
fabricate the devices. Three-dimensional and reconfigurable bioelectronic systems may enable devices
that dynamically adapt to external physiological environments [23]. To go beyond the capability of
current static devices, we aim to integrate shape-changing materials and microelectronic devices into a
single dynamic reconfigurable system. LCEs [24-26], a subclass of LCPs, contain light crosslinking
density and tunable transition temperatures which allows for a reversible shape change in response to
a stimulus such as heat [27,28], light [29,30], or solvent [31,32]. This approach potentially enables the
controlled deployment of small recording or stimulation electrode sites to regions beyond that of the
FBR-induced tissue encapsulation zone surrounding an implanted shank (50-100 um) [33-37]. Recently
several publications have suggested that some compositions of LCEs may be cytocompatible [38—-40].
However, there have been no prior studies evaluating cytotoxicity, neurotoxicity, or manufacturability
of LCE as a functional electrode array package. Notably, the performance of LCEs as barriers to the
physiological environment has not been evaluated. Here, we apply International Organization for
Standards (ISO) protocol 10993-5 to evaluate the cytotoxicity of LCEs using both NCTC clone 929
fibroblasts and primary murine cortical neurons. Additionally, we evaluate the functional neurotoxicity
of LCE materials in vitro using primary neuronal networks cultured on commercially available planar
microelectrode arrays. Finally, we report the fabrication and characterization of functional planar
MEAs using LCEs as an insulating package material.

2. Materials and Methods

2.1. Fabrication of LCE MEAs

Figure 1a,b depict the fabrication of the MEA and a schematic of the layers that comprise the
MEA. To fabricate MEAs, microscope glass slides (75 mm x 51 mm X 1.2 mm, Electron Microscopy
Sciences, Hatfield, PA, USA) were serially cleaned with acetone, isopropanol, and deionized water and
subsequently dried with nitrogen (Figure 1). Then, 5 nm of chromium and 400 nm of gold were serially
deposited via e-beam evaporation (Temescal BJD-1800, Ferrotec Corporation, Livermore, CA, USA).
The deposition rate in this process was set to 2-3 A /s. After coating of the Cr/Au to the glass slides,
a positive photoresist (Shipley 51805, Dow Chemical, Midland, MI, USA) was spun at 2000 rpm with
an acceleration of 3000 rpm/s for 60 s and soft baked at 85 °C for 12 min. The photoresist was exposed
to 75 mJ/cm? of UV light using a Karl Suss MA6 Mask Aligner (SUSS MicroTec, Garching, Germany).
Photoresist development was performed in Microposit MF-319 (Dow Chemical, Midland, MI, USA)
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the top-side glass slide was removed yielding an electrode array covered with a layer of LCE. The optical
images of LCE MEA devices were observed by a polarized optical microscope (POM) (Olympus BX51,
Olympus Corporation, Tokyo, Japan).

To finalize fabrication of LCE MEA devices, the fully insulated MEAs were coated by 800 nm
silicon nitride at 150 °C using Plasma Enhanced Chemical Vapor Deposition Unaxis 790 PECVD
(Mykrolis Corporation, Billerica, MA, USA). Then hexamethyldisilazane (HMDS, Sigma Aldrich,
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St. Louis, MO, USA) was vapor-deposited onto the silicon nitride to serve as an adhesion layer for
photoresist. A positive photoresist (Shipley 51813, Dow Chemical, Midland, MI, USA) was spun at
500 rpm for 10 s with an acceleration of 100 rpm/s and 2000 rpm for 60 s with an acceleration of
3000 rpm/s and soft baked at 85 °C for 12 min. The photoresist was exposed to 150 mJ/cm? of UV
light using a Karl Suss MA6 Mask Aligner. The silicon nitride was patterned using dry etching by
120 mTorr pressure and 100 mW power with SFg (Sirius T2, Trion Technology, Tempe, AZ, USA). Next,
the encapsulated LCE layer was patterned via dry etching by 220 mTorr pressure and 200 mW power
with oxygen plasma. The remaining hard mask was removed with a 60 s rinse of hydrofluoric acid (1:10)
(HF) treatment. Lastly, a polycarbonate ring (0.6 cm height, 2.0 cm inner diameter, and 2.2 cm outer
diameter) was attached to the surface of the LCE MEA devices with a silicone adhesive (MED1-4213,
Nu-Sil, USA) as described in a previous study [5].

2.2. Electrochemical Characterization of LCE MEAs

All devices were sterilized by exposure to ethylene oxide prior to testing. Electrochemical
impedance spectroscopy (EIS) measurements were carried out on eight randomly selected electrodes
from LCE microelectrode arrays for 30 consecutive days in PBS at 37 °C. For impedance measurements,
the experimental setup consisted of a three-electrode configuration (working, ground, reference),
wherein the external MEA pads were used to deliver a sinusoidal 20 mV signal, and impedance
was measured by a CH 604E potentiostat (CH Instruments, Austin, TX, USA) between 10 Hz and
100 kHz. Between measurements, MEAs were housed in a cell culture incubator at 37 °C and 95%
humidity between measurements. Fresh PBS was replaced prior to each measurement to account for
any evaporation and subsequent osmolarity changes. The sample size of four MEAs decreased to three
MEAs starting on day 24 due to inadvertent manual damage to one of the MEAs.

2.3. In Vitro Cytotoxicity Testing

All handling, housing, and surgical procedures of the mice were approved by the University
of Texas Institutional Animal Care and Use Committee. Cytotoxicity assays were carried out as
previously described [42] and in accordance with the ISO protocol “10993-5: Biological evaluation
of medical devices” using both NTC 929 fibroblasts (ATCC, Manassas, VA, USA) and embryonic
day 15 (E15) mouse-derived cortical neurons. Briefly, 50 and 100% concentration LCE extract was
evaluated against Tygon-F-4040-lubricant tubing extract (positive control) and cell medium (negative
control) [42]. In accordance with the ISO protocol, materials were said to ‘pass’ if normalized cell
viability percentages exceeded 70% following 24-h incubation with material extracts.

Cortices were surgically dissected from E18 mouse embryos, dissociated, and cultured as
previously described [4,5]. Prior to seeding, 24 well polystyrene plates (Greiner Bio-One, Kremsminster,
Austria) were treated with 50 ug/mL poly-d-lysine (PDL) (Sigma-Aldrich, Saint Louis, MO, USA)
and 20 pg/mL laminin to facilitate cell adhesion. Cells were seeded at a density of 100,000 cells/well
and incubated at 37 °C, 10% CO,, and 95% humidity in proliferation medium (Dulbecco’s Modified
Eagle Medium, GlutaMAX, B-27, ascorbic acid, and 10% horse serum). Serum was reduced to 0%
over the span of 5 days to avoid over-proliferation and ganglionation of supporting cells. Fibroblasts
were sub-cultured prior to seeding in a 24 well polystyrene plate. Cells were incubated at 37 °C,
10% COy, and 95% humidity in complete medium (Dulbecco’s Modified Eagle Medium and 10%
horse serum). Material extracts were made by soaking strips of LCE (3 cm?/mL) in normal cell
medium (Dulbecco’s Modified Eagle Medium) at 37 °C, 10% CO,, and 95% humidity for 24 h. When
cells formed a semi-confluent layer, cell medium was exchanged for 50% or 100% material extract
concentrations. Cells were incubated in extract for 24 h prior to using a LIVE/DEAD cytotoxicity kit
for mammalian cells according to manufacturer’s protocol (Thermo Fisher, L3324, Waltham, MA, USA).
Briefly, cells were stained with 2 uM Calcein-AM and 4 uM Ethidium homodimer for live and dead
cells, respectively. Images were collected using a 10x objective on an inverted microscope (Nikon Ti
eclipse, Nikon, Tokyo, Japan). Cell counts were carried out using a boutique Image] (NIH, Bethesda,
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MD, USA) macro, which applied a 2.0 Gaussian blur before locating local intensity maxima. Cells that
were stained with both dyes were marked as “dual-stained” and were regarded as part of the dead cell
count based on a MATLAB code.

2.4. In Vitro Functional Neurotoxicity Testing

Functional neurotoxicity assays were carried out as previously described [42]. Briefly, primary
cortical neurons were seeded on 48 well Axion well plates (Axion Biosystems, Atlanta, GA, USA)
after treating wells with 50 pg/mL PDL and 20 pg/mL laminin. On DIV 23, baseline spontaneous
extracellular activity was recorded using Axion’s Maestro recording system (Axion, Atlanta, GA,
USA). Immediately following baseline recordings, cell medium was exchanged for LCE extract at
concentrations of 50% or 100%. Spontaneous extracellular activity was recorded again on DIV 25. Spike
and burst rates were determined using a custom MATLAB script. An active electrode was defined as
an electrode exhibiting more than five spikes per minute. Inactive electrode sites recorded on DIV 23
were excluded from any further analysis. A burst was defined as at least five consecutive spikes with
interspike intervals less than 100 ms [43].

2.5. In Vitro Neuronal Recordings and Pharmacology

Three polydomain and planar-aligned LCE MEAs were sterilized by ethylene oxide for 12 h,
and then de-gassed at 37 °C for 48 h. LCE MEAs were treated as described in Section 2.3. Every other
day, wide band extracellular potentials generated by cultured neurons were recorded for 5 min from
59 channels simultaneously at a 40 kHz sampling rate using an Omniplex data acquisition system
(Plexon Inc., Dallas, TX, USA). Wideband data were band pass filtered (250-7000 Hz) and spikes
were detected by voltage excursions exceeding a threshold set to 5.50 based on RMS noise on a per
electrode basis. Spikes were manually sorted using Plexon’s offline sorter (Plexon Inc., Dallas, TX,
USA). Additional data and statistical analyses were carried out using OriginPro software (Origin Labs,
Farmington, ME, USA). Average spike rates were calculated using Neuroexplorer (NEX technologies,
Reston, VA, USA). SNR was calculated as

Signal )
SNR = | ——— |, 1
(RMSNoise ( )

where Signal and RMSy,is. are the mean peak-to-peak amplitude of the sorted unit and the RMS
noise, respectively [43]. Active electrode yield percentage was calculated excluding electrodes with
impedances over 5 M() that would not be capable of recording single units [5]. As a result, 8.2% of
total electrodes were excluded.

2.6. Statistical and Data Analysis

All experiments were carried out in parallel using both polydomain and planar-aligned LCEs.
This was done to determine if the alignment procedure itself affected any changes on the stability of
the substrate. However, these groups are, in fact, chemically identical, and we observed no apparent
differences between the groups in any of the results reported here. Therefore, these results derived
from both polydomain and planar aligned have been pooled in the following sections.

All statistical analyses were carried out using OriginPro software (Origin Labs, Farmington,
ME, USA). In the case of functional neurotoxicity tests, treatment groups were compared using a
two-sample {-test. In the case of TTX treatments on LCE MEAs and electrochemical stability, a paired
two-tailed t-test was applied. p < 0.05 was considered statistically significant in all cases.

3. Results

To investigate the use of LCEs as substrate materials for neural interfaces, we examine the
cytotoxicity, functional neurotoxicity, and manufacturability of microelectrodes on LCEs. Here, we use
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ISO protocol 10993-5 to evaluate the cytotoxicity of LCEs using both fibroblasts and primary murine
cortical neurons. Additionally, we evaluate the functional neurotoxicity of LCE materials in vitro using
primary murine cortical neurons cultured on commercially available planar MEAs. Finally, we report

the fabricatign.and: shavacterigatierygfifunctional planar MEAs using LCEs as an insulatjng layer.
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cortical networks on DIV 23 exhibited a mean spiking rate of 2.7 + 0.9 (mean + SEM, n = 5), and mean
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