
Minimizing Trust in Hardware Wallets with Two Factor Signatures

Antonio Marcedone1, Rafael Pass∗1, and abhi shelat†2

1Cornell Tech, {marcedone,rafael}@cs.cornell.edu
2Northeastern University, abhi@neu.edu

January 2, 2019

Abstract

We introduce the notion of two-factor signatures (2FS), a generalization of a two-out-of-two threshold
signature scheme in which one of the parties is a hardware token which can store a high-entropy secret, and
the other party is a human who knows a low-entropy password. The security (unforgeability) property of
2FS requires that an external adversary corrupting either party (the token or the computer the human
is using) cannot forge a signature.

This primitive is useful in contexts like hardware cryptocurrency wallets in which a signature conveys
the authorization of a transaction. By the above security property, a hardware wallet implementing
a two-factor signature scheme is secure against attacks mounted by a malicious hardware vendor; in
contrast, all currently used wallet systems break under such an attack (and as such are not secure under
our definition).

We construct efficient provably-secure 2FS schemes which produce either Schnorr signature (assuming
the DLOG assumption), or EC-DSA signatures (assuming security of EC-DSA and the CDH assumption)
in the Random Oracle Model, and evaluate the performance of implementations of them. Our EC-DSA
based 2FS scheme can directly replace currently used hardware wallets for Bitcoin and other major
cryptocurrencies to enable security against malicious hardware vendors.

1 Introduction

Cryptocurrency hardware wallets are increasingly popular among Bitcoin and Ethereum users as they offer
seemingly stronger security guarantees over their software counterparts. A hardware wallet is typically a
small electronic device (such as a USB device with an input button) that holds the secret key(s) to one or
more cryptocurrency “accounts”. It provides a simple interface that can be used by client software on a
computer or smartphone to request a signature on a particular transaction; the wallet returns a signature to
the client if the user has authorized it by pressing the physical button1. Typically, the user also has to enter
a pin or password, either on the device itself or through the client. Some hardware wallets like the Trezor
include a screen that can be used by the user to confirm the details of the transaction before authorizing it.

Ideally, a hardware wallet runs a firmware that is smaller and simpler than the software running on a
common laptop (and thus may be less vulnerable to bugs and exploits), is built using tamper proof hardware
that makes it difficult to directly read its memory, and is designed to prevent the private keys it holds from
ever leaving the device. Thus, stealing funds from an address controlled by a hardware wallet is considered
to be harder than stealing from a software wallet installed on the user’s laptop.

∗Supported in part by NSF Award CNS-1561209, NSF Award CNS-1217821, NSF Award CNS-1704788, AFOSR Award
FA9550-15-1-0262, AFOSR Award FA9550-18-1-0267, a Microsoft Faculty Fellowship, and a Google Faculty Research Award.
†Supported in part by NSF grants 1664445 and 1646671.
1The physical button prevents malware from abusing the wallet without cooperation from the user.

1

Can we trust the hardware manufacturer? However, most hardware wallets suffer from a serious issue:
since the wallet generates and holds the secret keys for the user’s account, a compromised wallet might be
used to steal the entirety of the coins it controls. Consider, for instance, a malicious wallet manufacturer
who introduces a backdoored pseudorandom generator (to be used, for example, to generate the signing
keys) into a hardware wallet. Because of the tamperproof properties of the hardware, such a backdoor might
be extremely hard to detect and go unnoticed even to a scrupulous user, especially if it only affects a small
portion of the company’s devices (perhaps those shipped to customers who hold large coin balances). Yet,
without the need of ever communicating with the devices again, the manufacturer might suddenly steal all
the money controlled by those addresses before anyone has time to react! This is also true in the case where
the user picks a password to supplement the entropy generated by the backdoored PRG, since passwords
have limited entropy which can be bruteforced and, as we detail later, the wallet can bias the randomness
in the signatures to leak information about such password.

Even if the company producing the wallet is reputable and trusted, supply chain attacks by single
employees or powerful adversaries are still hard to rule out for customers. For example, the NSA reportedly
intercepts shipments of laptops purchased online in transit to install malware/backdoors [18]. Indeed, trust
in a wallet manufacturer, its supply chain, and the delivery chain are a serious concern.

One possible solution is to store the funds in a multi-signature account controlled by a combination of
hardware (and possibly software) wallets from different manufacturers. However, the above is inconvenient
and limiting. It may also be possible for a single supplier to corrupt multiple manufacturers of hardware
wallets.

A Formal Treatment of Hardware Wallets In this paper, we initiate a formal study of the security of
hardware wallets. As discussed above, completely relying on the token to perform key generation and signing
operations requires a strong trust assumption on the hardware manufacturer. To avoid this, we focus on a
scenario in which the user has both a single hardware token and a (low-entropy) password, and formally define
appropriate an appropriate cryptographic primitive, which we name two factor signature scheme (2FS).

Roughly speaking, a 2FS scheme can be thought of a special type of two-out-of-two threshold signature
scheme [4] but where one of the parties (the user) only has a (potentially low-entropy) password, whereas the
other party (the hardware token) can generate and store high-entropy secrets. Even defining unforgeability
properties of such 2FS schemes turns out to be a non-trivial task; we provide the first such definitions.
Our notions of unforgeability consider both malicious clients, malicious tokens, and attackers that may have
selective access to honestly implemented tokens.

As already mentioned, as far as we know, in all currently known/used schemes, unforgeability does not
hold when the hardware token can be maliciously designed, and thus no currently known schemes satisfies
even a subset of our unforgeability definitions. Our main contribution is next the design of 2FS that satisfy
them. In fact, we present a general transformation from any two-out-of-two threshold signature scheme which
satisfies some additional technical property—which we refer to as statistical Non-Signalling—into a 2FS in
the random oracle model, which produces public keys and signatures of the same form as the underlying
threshold signature scheme.

We note that it may be possible to generically modify any TS to become Non-Signalling by having
the parties perform coin-tossing to generate the randomness, and then prove in zero knowledge that they
executed the signing protocol consistently with the pre-determined (and uniform) randomness. Using such a
method, however, would result in a (polynomial-time but) practically inefficient scheme. In contrast, in the
full version of this work [13], we show how to adapt two existing threshold signature schemes to satisfy this
new technical property with very little overhead. Using our transformation, this gives secure 2FS schemes
which efficiently generate Schnorr and ECDSA signatures.

Theorem (Informal). Assuming the discrete logarithm assumption, there exists a secure 2FS scheme in the
Random Oracle model which generates Schnorr Signatures.

Theorem (Informal). Assuming the DDH assumption holds and that EC-DSA is unforgeable, there exists a
secure 2FS scheme in the Random Oracle model that generates EC-DSA signatures.

The first construction is based on the Schnorr TS signature scheme of Nicolosi et al [15], while the second
one is a slight modification of an EC-DSA threshold scheme of Lee et al. [5]. As EC-DSA signature are

2

currently used in Bitcoin, Ethereum and most other major crypto currencies, our 2FS for EC-DSA can be
directly used for hardware wallets supporting those crypto currencies. To demonstrate its practicality, we
evaluate such scheme and estimate its performance on hardware tokens that are much less powerful than the
CPUs on which we can benchmark the protocol. We confirm that running the protocol on two server-class
CPUs (Intel) requires roughly 3ms to sign a message. When one of the parties is run on a weak computer
(e.g., a Raspberry Pi 3b) and the other is run on a server, the protocol requires roughly 50ms. Our estimates
confirm that the bottleneck in our scheme will be the processing capacity of the hardware token. Using a very
secure, but weak 8-bit 1Mhz ATECC family processor [14], we estimate that ECDSA keys can be produced
in under a minute and signatures can be completed in 3s. The entire signing process requires human input
to complete (button press), and thus is likely to take seconds overall anyway.

1.1 Technical overview

The Definition. At a high level, in a Two Factor Signature scheme the signatures are generated by two
parties: a client C who receives a (typically low entropy) password as input from a user, and a token T ,
which can store and generate secrets of arbitrary length, can produce signatures for multiple public keys and
as such keeps a state which can be modified to add the ability to sign for new public keys. It consists of
a tuple of algorithms (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver), where KeyGenT(1κ, sT)
and KeyGenC(pwd) are an interactive protocol used by the token and client respectively to produce a
public key and to accordingly update the token state sT by “adding a share of the corresponding secret key”;
PKC(pwd) and PKT(sT) are two algorithms used by the client and the token (on input the password and
the current token state sT respectively) interacting with each other to retrieve a public key pk which was
previously generated using the first two algorithms; SignC(pwd,m) and SignT(sT ,m) are similarly used to
produce signatures; Ver(pk,m, σ) is used to verify the signatures.

We proceed to outline the unforgeability properties we require from such Two Factor Signature scheme.
We consider 4 different attack scenarios, and define “best-possible” unforgeability properties for each of them.
The first two are simply analogs of the standard unforgeability (for “party 1” and “party 2”) properties of
two-out-of-two threshold signatures.

1. For the Client : The simplest and most natural attack scenario is when the user’s laptop is compromised
(i.e. by malware), even before the key generation phase. We require that, except with negligible probability,
such an adversary cannot forge signatures on a message m with respect to a public key which the token
outputs (and would typically show to the user on its local screen) unless it asked the token to sign m.
This notion mirrors the classic one of unforgeability (for party 1) of threshold signature schemes.

2. For the Token: We next consider an attack scenario in which the adversary can fully control the token T .
We let it interact arbitrarily with an honest client, and receive the signatures and public keys output by
such client during these interactions. We require that the probability that such an adversary can produce
a forgery on a message m that would verify with respect to one of the public keys output by the client
(during a KeyGen execution) without asking the client to sign m, is bounded by the min-entropy of the
user’s password. Again, this notion mirrors the classic notion of unforgeability of threshold signatures (for
party 2), except that since the user only has a low-entropy password, we cannot require the probability
of forging to be negligible; instead, we bound it by q/2m where q is the number of random oracle queries
performed by the adversary, and m is the min-entropy of the password distribution.

Note that the unforgeability for the token security bound is rather weak (when the password has low entropy),
but is necessarily so because the only secret held by the client is the password, and thus an attacker that
“fully controls the token” (i.e., controls its input/outputs while at the same time participating in other
outside interaction) and gets to see public keys, can simply emulate the client algorithm with a guessed
password and attempt to create a forgery. Yet, note that to carry out this type of attack (which leads to
the “unavoidable” security loss) and profit from it is quite non-trivial in practice as it requires the token to
be able to somehow communicate with an attacker in the outside world (which is challenging given that a
hardware wallet is a physically separate entity without a direct network connection).

3

Consequently, we consider two alternative attack scenarios that leverage the fact that often the token
cannot communicate with the adversary and capture more plausible (i.e weaker) attack models. Yet, in these
weaker attack models, we can now require the forging probability bounds to be significantly stronger.

3. For the Token Manufacturer : We consider an adversary who cannot fully control the T party, but can
specify ahead of time a program Π which the T party runs. For example, this models the case of a
malicious token manufacturer who embeds a PRG with a backdoor. Program Π can behave arbitrarily,
but its answers to the interactions with any client have to satisfy the correctness properties of the scheme
with overwhelming probability (if the token aborted or caused the client to return signatures which do
not verify w.r.t. the expected public keys, the user could easily identify such token as faulty or malicious).
The adversary can then have an honest client interact arbitrarily with Π (A is given the resulting public
keys and signatures), and should not be able to produce a forgery on a message m that would verify with
respect to one of the public keys output by the client (during a KeyGen execution) unless it received a
signature on m as a result of such an interaction. We require the forging probability to be negligible (as
opposed to bounded by q/2m).

4. With Access to the Token: An alternative scenario is one where the token is not corrupted, but the attacker
can get access to it (for example, in the case of a lost/stolen token, or a token shared between multiple
users). More precisely, the adversary can interact with an honest T and may also interact with an honest
client C (which itself interacts with T) and has to produce forgeries on a message m (which C did not
sign, but on which T can be queried) w.r.t. a public key which C output during an interaction with T .
Whereas unforgeability for the token implies that the above-mentioned adversary’s forging probability is
bounded by q/2m where q is the number of random oracle queries, we here sharpen the bound to q′/2m

where q′ is the number of invocations of T . (As T could rate-limit its answers by e.g., 1 sec, q′ will be
significantly smaller than q in practice.)

As far as we know, no previously known scheme satisfies all of the the above properties; in fact, none satisfy
even just (1) and (2), or (1) and (3).2

The Construction The high-level idea behind our construction is natural (although the approach is very
different from Trezor and other currently used hardware wallets). We would like to employ a two-out-of-two
threshold signature (TS) scheme where the token is one of the parties and the client is the other. The
problem is that the client only has a low-entropy password and cannot keep any persistent state. In fact,
even if it had a high-entropy password, it wouldn’t be clear how to directly use the threshold schemes as in
general (and in particular for EC-DSA), secret key shares for threshold schemes are generated in a correlated
way.

To overcome this issue, the key generation algorithm begins by running the key generation procedure for
the TS: the token and the client each get a secret key share (which we denote skT and skC respectively),
as well as the public key pk. Next, since the client cannot remember pk, skC , it encrypts pk, skC using a
key that is derived—by using a random oracle (RO)—from its password; additionally, the client generates
(deterministically) a random “handle” as a function of its password, again by applying the RO to the
password. It then sends both the handle and the (password-encrypted) ciphertext to the token for storage.

Later on, when a client wants to get a signature on a message m, it first asks the token to retrieve its
password-encrypted ciphertext: the token will only provide it if the client provides the correct handle (which
the honest client having the actual password can provide). Next, the client decrypts the ciphertext (again
using the password), and can recover its public and secret key. Finally, using its secret key, and interacting
with the token the client can engage in the threshold signing process to obtain the desired signature on m.

The Analysis: Exploiting Non-Signalling and Exponential-time Simulation While we can show
that the above construction satisfies properties 1,2 and 4 assuming the underlying threshold scheme is secure,
demonstrating property 3—that is, security against malicious token manufacturers, which in our opinion is
the most cruicial property—turns out to be non-trivial.

2Although we are not aware of any formal analysis of Trezor, it would seem that it satisfies (1) and (4), but there are concrete
attacks against the other properties.

4

The issue is the following: as already mentioned, if the token is fully controlled by the attacker (which
participates in outside interactions), then we can never hope to show that unforgeability happens with
negligible probability as the attacker can always perform a brute-force attack on the password. In particular,
in our scheme, the attacker can simply brute-force password guesses against the ciphertext c to recover the
client’s threshold secret key share. However, a malicious manufacturer which generates a malicious token but
cannot directly communicate with it, would have more trouble doing so. Even if the malicious token program
can perform a brute-force attack, it cannot directly communicate the correct password (or the client key
share) to the manufacturer! If the token could somehow signal these information to the manufacturer, then
the manufacturer could again break the scheme. And in principle, with general threshold signatures, there is
nothing that prevents such signalling. For example, if the token could cause the threshold signing algorithm
to output signatures whose low-order bits leak different bits of c, after sufficiently many transactions that
are posted on a blockchain, the adversary could recover c and brute force the password himself.

Towards addressing this issue, we define a notion of Non-Signalling for TS: roughly speaking, this notion
says that even if one of the parties (the token) is malicious, as long as they produce accepting signatures (with
overwhelming probability), they cannot bias the distribution of the signatures generated—i.e., such signatures
will be indistinguishable from honestly generated ones. In fact, to enable our proof of security—which
proceeds using a rather complex sequence of hybrid arguments relying on exponential-time simulation—we
will require the TS scheme to satisfy a statistical notion of Non-Signalling which requires that the distribution
of signatures generated interacting with the malicious party is statistically close to the honest distribution.

We next show that if the underlying TS indeed satisfies statistical Non-Signalling, then our 2FS also
satisfies property 3. Towards doing this, we actually first show that our 2FS satisfies an analogous notion
of Non-Signalling, and then show how to leverage this property to prove unforgeability for the token manu-
facturer. We mention that the notion of Non-Signalling for 2FS is interesting in its own right: it guarantees
that a maliciously implemented token Π (whose answers are restricted to satisfy the correctness properties
of the scheme with overwhelming probability) cannot leak (through the public keys and the signatures which
it helps computing) to an attacker any information which an honestly implemented token would not leak.
In particular, if the honest token algorithm generates independent public keys and uses stateless signing (as
the ones we consider do), even a malicious token cannot leak correlations between which public keys it has
been used to create, or what messages it has signed.

1.2 Additional Properties

Unlinkability Other than the Non-Signalling property, our scheme satisfies an additional desirable privacy
property, Unlinkability, which roughly speaking guarantees that multiple public keys (and signatures with
respect to different public keys) generated with the help of the same honest token (or with different tokens
on input the same password) look independent from each other as if they were generated by both different
tokens and passwords. This property holds even an adversary who can interact arbitrarily with such tokens,
as long as it cannot guess the passwords. This allows a user to have different public keys using the same
hardware token with the guarantee that such public keys will look unrelated to each other to any external
observer. Further, even if a token is lost or such user has to go through customs and her hardware wallet is
inspected, a public key cannot be linked to such token unless the corresponding password is known.

Backing up the token state If the token is lost, stolen or otherwise malfunctioning (due to hardware
failures, or even “ransom attacks” where the manufacturer might set up the token to stop working unless a
ransom is paid), the user might not be able to produce signatures any more, which would result in a loss
of money. Most current hardware wallet solutions derive all the secret keys for the addresses they sign for
from a single short seed (say 256 bits), and offer the possibility to backup the seed at initialization time, by
encoding it as a list of a few words that are displayed directly on the token’s secure display for the user to
write down [16]. This ensures that the seed is never stored on the user’s laptop and thus is out of reach from
malware.

In our case, the token’s state is much larger (as it includes randomness generated from the client and
a ciphertext encrypted under the user’s password), and therefore this method cannot be applied directly.

5

As an alternative solution, the token might encrypt its whole state at initialization time with a fresh key,
transfer the ciphertext to the client’s computer (so that it can be backed up), and give the key to the user
directly (again, in the form of a few words shown on the token’s screen for the user to write down). In
this case, extra care should be taken to ensure that a malicious token cannot leak information through the
ciphertext in the case where such ciphertext is later compromised (for example by choosing a key known
to the manufacturer or using biased randomness in the encryption). For this reason, the client should also
re-encrypt the ciphertext under a fresh key of its own choice (which the user should again write down and
store securely). We stress that both in this case and in existing hardware wallet solutions, correctness of the
backup is not guaranteed. As such, these backups should be verified using independent devices.

Handling multiple addresses efficiently Another important feature for hardware wallet users is to be
able to control multiple independent looking key pairs (addresses). Briefly, using several addresses rather
than a single one to store one’s currency makes tracking multiple transactions made by the same user more
difficult. For example in Bitcoin, when a transaction is performed, the “change” generated by the transaction
is often moved to a fresh address (controlled by the sender) rather than being sent back to the address which
is funding the transaction. While it is feasible to use more than one public key with the same hardware
wallet with our proposed Two Factor Signature scheme, by just running the KeyGen algorithm every time
a new address is needed, this is inconvenient because each such new “change” address generation requires a
separate backup step. Indeed, most commercial hardware wallets offer the possibility to derive more than
one signing key pair from the same seed.

One first approach to overcome this limitation would be to extend the scheme by generating more than
one independent key pair for the underlying threshold signature scheme every time the key generation
algorithm of the Two Factor Signature scheme is run. These different addresses could be distinguished by
a counter (which the user would provide as an additional parameter to the Sign and PK algorithms to
identify which of the key pairs to use). Moreover, they would all be encrypted and backed up together with
a single encryption key (using the mechanism of the previous paragraph) so that the number of words the
user has to write down doesn’t increase. As an additional optimization, in our EC-DSA based instantiation,
the most computationally expensive output of the key generation algorithm (namely the precomputed OT
extensions) could be reused accross multiple key pairs for increased efficiency.

Another possibility is to pick a threshold signature scheme that allows to efficiently sign w.r.t. multiple
independent looking public keys given a single pair of secret key shares (whose size does not depend on
the number of public keys). The EC-DSA based threshold scheme we describe can be modified in this
sense by applying a technique detailed in section 4.4 of [8] (this idea can be adapted to the Schnorr case
as well). Briefly speaking, in the original scheme, at the end of the KeyGen algorithm each party holds a
multiplicative share of the secret signing key. It is therefore easy to modify such algorithm so that the client
and the token can agree on an additional random string c (which is stored by the token and included by
the client in the ciphertext it sends to the token). Then, as an additional input to the Sign algorithm, the
client can pick any identifier i to distinguish each of the many public keys required (for example, a simple
counter): the public key associated with identifier i would be computed by both parties as pki = pkH(c,pk,i)

(where pk is the original public key and H is a hash function), and signatures could be computed by having
the client use skC,i = skC ·H(c, pk, i) instead of skC as the secret key in the threshold signature algorithm
(the token would keep using the same secret key). See [8] for more details. Note that these modifications
to the signature scheme would require adapting the security definitions to fit this scenario, which we leave
to future work. For example, the Non-Signalling definition would also have to require that the many public
keys generated by different values of i look independent to an outside observer or to the token manufacturer.
Similarly, the unforgeability definitions and proofs would need to be adapted to ensure that a corrupted
client cannot use an execution of the signature algorithm where the token intends to produce a signature for
the key associated with counter i to produce a signature for a different identifier i′ (we conjecture that this
is the case for the EC-DSA signature scheme we propose).

6

1.3 Related Work

Threshold Signatures Threshold signatures [4, 7, 17, 2, 1] are signature schemes distributing the ability
to generate a signature among a set of parties, so that cooperation among at least a threshold of them is
required to produce a signature. Nicolosi et al. [15] present a threshold signature scheme for the Schnorr
signature scheme. Particularly relevant to the cryptocurrency application are the works of Goldfeder et
al. [8, 6], Lindell [9, 10], and Lee et al. [5] which propose a threshold signature scheme to produce ECDSA
signatures, which is already compatible with Bitcoin and Ethereum.

Passwords + Threshold signatures MacKenzie and Reiter [11, 12] and Camenish et al. [3] consider
notions somewhat similar to the one of a password-based threshold signature scheme: as in our setting,
signing requires knowledge of a password and access to an external party (in their case a server rather than
a hardware token), but in contrast to our setting the signer may additionally hold some high-entropy secret
state (and indeed, the schemes considered in those papers require such secret state). This rules out the usage
of such schemes in our scenario, as we want the user to be able to operate his wallet from any client without
relying on any external state beyond its password.

1.4 Organization of the paper

Section 2 introduces some notations, recalls the security definitions for encryption schemes and presents
some auxiliary lemmas. In Section 3 we recall the definition of Threshold Signature scheme and introduce
the Non-Signalling property. Section 4 defines Two Factor Signature schemes and Section 5 presents our
main construction and proofs of security. Section 6 presents the two modified TS schemes (based on Schnorr
and EC-DSA) which can be used to instantiate our construction, and Section 7 discusses the Unlinkability
property.

2 Preliminaries and Notation

If X is a probability distribution, we denote with x← X the process of sampling x according to X. When, in
a probabilistic experiment, we say that an adversary outputs a probability distribution, we mean that such a
distribution is given as a poly-time randomized program such that running the program with no input (and
uniform randomness) samples from such distribution. For two party (randomized) algorithms we denote
with 〈α;β〉 ← 〈A(a);B(b)〉 the process of running the algorithm A on input a (and uniform randomness as
needed) interacting with algorithm B on input b (and uniform randomness), where α is the local output of A
and β is the local output of B. Whenever an algorithm has more than one output, but we are interested in
only a subset of such outputs, we will use · as a placeholder for the other outputs (for example we could write
(·, pk) ← KeyGen(1κ) to denote that pk is a public key output by the KeyGen algorithm of a signature
scheme in a context where we are not interested in the corresponding secret key).

Token Oracles. In our definitions, we will often model a party/program implementing party T . We say
that a Token Oracle is a stateful oracle which can answer KeyGen, PK, Sign queries. Initially, its state
is set to ⊥. To answer such queries, the oracle interacts with its caller by running the KeyGenT, PKT,
SignT algorithms respectively using its own inner state (and a message m supplied by the caller for Sign
queries). As a result of KeyGenT queries, its state is also updated. Moreover, when explicitly specified, the
oracle could also return to the caller the public keys pk which are part of its local output during KeyGenT

and SignT queries.

2.1 Symmetric encryption

Our construction requires indistinguishability under a chosen ciphertext attack: no adversary, given an
encryption oracle that, each time it is queried, takes as input two messages and always encrypts the first
or the second one, and a decryption oracle which cannot be queried on outputs of the first oracle, should

7

be able to tell which of the two messages the encryption oracle is encrypting. We also require integrity
of ciphertexts: no adversary, given an encryption oracle, should be able to create a new ciphertext which
successfully decrypts.

Definition 1 (Symmetric Encryption). A Symmetric Encryption scheme is a triple of PPT algorithms
SE = (SE.G,SE.E,SE.D) such that:

• SE.G(1κ) → ek is the “Key Generation algorithm”, which on input the security parameter κ outputs a
secret key ek. In this work, we assume without loss of generality that SE.G simply samples3 ek ←R {0, 1}κ.

• SE.E(ek,m)→ c is the “Encryption algorithm”, which on input a secret key ek and a message m outputs
a ciphertext c.

• SE.D(ek, c)→ m is the “Decryption algorithm”, which on input a secret key ek and a ciphertext c outputs
a message m, or a special error symbol ⊥ if the ciphertext is invalid.

We require that any Symmetric Encryption scheme satisfies the following correctness property for all κ and
all messages m:

Pr[ek ← SE.G(1κ) : SE.D(ek,SE.E(ek,m)) = m] = 1.

Definition 2 (Indistinguishability of plaintexts). Let SE = (SE.G,SE.E,SE.D) be a Symmetric Encryp-
tion scheme. Consider the following the following experiment between an adversary A and a challenger,
parameterized by a bit b:
SE.ExpIND-CCASE

A,b(1
κ):

1. The challenger computes ek ← SE.G(1κ).

2. It runs A(1κ). A can ask SE.E and SE.D queries. For any SE.E query, A submits two messages m0,m1

of the same size and receives SE.E(ek,mb). For any SE.D query on input c, A receives SE.D(ek, c) if c
is not the output of a previous SE.E query, and ⊥ otherwise.

3. The adversary outputs a bit b′, which defines the output of the experiment.

A Symmetric Encryption scheme SE is said to be IND-CCA secure if for all PPT A there exists a
negligible function µ such that

|Pr[SE.ExpIND-CCASE
A,0(1κ) = 1]− Pr[SE.ExpIND-CCASE

A,1(1κ) = 1]| < µ(κ)

Definition 3 (Integrity of ciphertexts). Let SE = (SE.G,SE.E,SE.D) be a Symmetric Encryption scheme.
Consider the following the following experiment between an adversary A and a challenger, parameterized by
a bit b:
SE.ExpINT-CTXTSE

A,b(1
κ):

1. The challenger computes ek ← SE.G(1κ).

2. It runs A(1κ). A can ask SE.E and SE.D queries. For any SE.E query, A submits a message m and
receives SE.E(ek,m). For any SE.D query on input c, A receives SE.D(ek, c) if c is not the output of a
previous SE.E query, and ⊥ otherwise.

3. When A halts, the output of the experiment is defined to be 1 if A received an output m 6=⊥ from at least
one SE.D query, and 0 otherwise.

A Symmetric Encryption scheme SE is said to be INT-CTXT secure if for all PPT A there exists a
negligible function µ such that

Pr[SE.ExpINT-CTXTSE
A (1κ) = 1] < µ(κ)

For our case, a Symmetric Encryption scheme which is both IND-CCA and INT-CTXT secure can be
constructed in the random oracle model.

3One can turn any encryption scheme into one which satisfies this convention by considering as a secret key the randomness
used in the key generation algorithm. When using an encryption scheme based on a block cipher such as AES, this requirement
is already fulfilled.

8

2.2 Min Entropy

Definition 4 (Min Entropy). Let X be a discrete random variable. The min entropy of X is

H∞(X) = max
x∈X
− log2 Pr[X = x]

The following are two useful lemmas which bound the probability of guessing a password with the min
entropy of the distribution it is sampled from.

Lemma 5. Consider the following experiment involving an adversary S:
ExpGuessS(1κ) :

1. S(1κ) outputs a distribution PWD over {0, 1}κ.

2. The challenger samples pwd ← PWD and continues running the adversary SGuess(·), which now has
access to an oracle which takes as input a guess pwd′ and returns 0 or 1 depending on whether pwd =
pwd′.

3. When S halts, the output of the experiment is set to be 1 if one of the guesses from S was correct, and
0 otherwise.

For all integer functions q(κ),m(κ), all (even computationally unbounded) adversaries S which output
distributions whose min entropy is lower bounded by m(κ) and which make at most q(κ) queries, it holds
that

Pr[ExpGuessS(1κ) = 1] ≤ q(κ)

2m(κ)

Proof. For any fixed number of guesses q(κ), the adversary with the best success probability is the one which
guesses the q(κ) passwords which have the greatest probability of being sampled by the distribution PWD.
By the definition of min entropy, each of these guesses will be correct with probability at most 2−m(κ), from
which the claim follows by a union bound.

Lemma 6. Consider the following game involving an adversary S:
ExpGuessTwoS(1κ) :

1. S(1κ) outputs a distribution PWDS over {0, 1}κ × {0, 1}κ.

2. The challenger samples (pwd0, pwd1)← PWDS and continues running the adversary SGuess(·), which now
has access to an oracle which takes as input a guess pwd′ and returns 1 if pwd = pwd0 or pwd = pwd1

and 0 otherwise.

3. When S halts, the output of the experiment is set to be 1 if one of the guesses from S was correct, and
0 otherwise.

For each distribution PWDS over {0, 1}κ ×{0, 1}κ, we can consider the two “truncated” distributions over
{0, 1}κ obtained by sampling an element from PWDS and truncating the first or the last κ bits.

For all integer functions q(κ),m(κ), all (even computationally unbounded) adversaries S which output
distributions where each of the truncations has entropy lower bounded by m(κ) and make at most q(κ) guesses,
it holds that

Pr[ExpGuessTwoS(1κ) = 1] ≤ 2q(κ)

2m(κ)

Proof. The proof is similar to the previous one. For any fixed number of guesses q(κ), the adversary with the
best success probability is the one which guesses the q(κ) passwords which have the greatest probability of
being sampled as the first or second element by the distribution PWDS. By the definition of min entropy, each
password can be sampled with probability at most 2 ·2−m(κ), as it can be sampled with the same probability
of at most 2−m(κ) both as the first and as the second component of the couple. The claim follows by a union
bound.

9

3 Threshold Signature scheme

This section recalls the definition of a Threshold Signature scheme. In addition to the standard Unforgeability
properties, we also introduce a new Non-Signalling property which is required by our construction. The
formalization presented here is for a 2-party setting (C and T) and the key shares are computed by the
parties using a distributed key generation algorithm (as opposed to being provided by a trusted dealer).

Definition 7. A (2-out-of-2) Threshold Signature scheme consists of a tuple of distributed PPT algorithms
defined as follows:

• 〈TS.GC(1κ); TS.GT(1κ)〉 → 〈skC , pk; skT , pk〉 are two randomized algorithms which take as input the
security parameter and, after interacting with each other, produce as output a public key pk (output by
both parties) and a secret key share for each of them. We use TS.Gen(1κ)→ (skC , skT , pk) as a compact
expression for the above computation.

• 〈TS.SC(skC ,m); TS.ST(skT ,m)〉 → 〈σ;⊥〉 are two randomized algorithms interacting to produce as out-
put a signature4 σ. We use TS.Sign(skC ,m, skT)→ σ as as a compact expression for the above compu-
tation.

• TS.Ver(pk,m, σ) → 0 ∨ 1 is a deterministic algorithm. It takes as input a public key, a message and a
signature and outputs 1 (accept) or 0 (reject).

These algorithms have to satisfy the following correctness property: for all messages m

Pr

[
(skC , skT , pk)← TS.Gen(1κ) :

TS.Ver(pk,m,TS.Sign(skC ,m, skT)) = 1

]
= 1

Definition 8. Let TS be a Threshold Signature scheme. Define the following experiment between an adver-
sary A and a challenger:
TS.ForgeCTS

A :

1. The challenger executes TS.GT(1κ) interacting with A (who plays the role of C) and obtains a public key
pk and a secret key share skT . It gives pk to A.

2. The adversary can adaptively ask signing queries for an arbitrarily chosen message m. For each such
query, the challenger runs TS.ST(skT ,m) interacting with A in the role of C.

3. The adversary outputs (m,σ). The output of the experiment is 1 if TS.Ver(pk,m, σ) = 1 but the adversary
never asked a signing query for m.

An analogous experiment TS.ForgeT can be defined, where the adversary plays the role of C and the
challenger plays the role of T . In this case, for each signing query the adversary also gets the signature
locally output by the SignC algorithm which the challenger runs.

A TS is said to be existentially Unforgeable for C (resp. Unforgeable for T) under a chosen message
attack if for all PPT A the probability that TS.ForgeC (resp. TS.ForgeT) outputs 1 is negligible. A TS
which satisfies both properties is simply said Unforgeable.

The Non-Signalling definition consists of two properties. First, we require that a malicious token cannot
bias the distribution of the public keys output by TS.Gen when interacting with an honest client (as long as
such token does not make the TS.Gen execution abort). More in detail, we require that for any polynomial
sized circuit Π (which does not make the execution of TS.Gen abort with more than negligible probability),
the distribution of public keys output by an execution of the TS.GC interacting with Π in the role of
T is statistically indistinguishable from the distribution obtained by running TS.Gen with both parties
implemented honestly. This is formalized as an experiment where an adversary A (not necessarily running

4This definition states that party T does not output the signature. However, in our construction we do not rely on σ being
“hidden” from T , so threshold schemes where both parties learn the signature can also be used in our construction.

10

in polynomial time) outputs a PPT program Π and then has to distinguish whether it is given a public key
generated by an honest client interacting with Π or by an honest client interacting with an honest token.

Analogously, the second property requires that a malicious token cannot bias the distribution of signatures
output by the TS.Sign algorithm. An adversary A outputs a public key pk, a message m, a secret key for
the client skC and a polynomial sized circuit Π which can interact with a client running TS.SC(skC ,m),
such that (with all but negligible probability) the output for the client interacting with Π is a valid signature
on m w.r.t. pk. We require that A cannot distinguish between the output of such an interaction and a valid
signature on m w.r.t. pk sampled uniformly at random.

Definition 9. Let TS = (TS.GC,TS.GT,TS.SC,TS.ST,TS.Ver) be a Threshold Signature scheme. Con-
sider the following two experiments between an adversary A and a challenger, each parameterized by a bit
b:
TS.NS12FS,b

A (1κ) :

1. A(1κ) outputs a polynomial size (in κ) circuit Π, such that Pr[〈·, pk; ·〉 ← 〈TS.GC(1κ); Π〉 : pk 6=⊥] >
1 − µ(κ) (i.e. running the circuit interacting with an honest TS.GC implementation results in such
honest implementation outputting ⊥ with at most negligible probability).

2. If b = 0, the challenger computes 〈·, pk; ·〉 ← 〈TS.GC(1κ); Π〉; otherwise it computes 〈·, pk; ·〉 ←
〈TS.GC(1κ); TS.GT(1κ)〉. Then it returns pk to A.

3. A outputs a bit b′, which defines the output of the experiment.

TS.NS22FS,b
A (1κ) :

1. A(1κ) outputs a polynomial size (in κ) circuit Π, a secret key share skC , a message m and a public
key pk, such that Pr[〈σ; ·〉 ← 〈TS.SC(skC ,m); Π〉 : TS.Ver(pk,m, σ) = 1] > 1 − µ(κ) (i.e. running
the circuit interacting with an honest TS.SC implementation on input skC ,m results in such honest
implementation outputting a valid signature for m under pk with overwhelming probability).

2. If b = 0, the challenger computes 〈σ; ·〉 ← 〈TS.SC(1κ); Π〉; otherwise it samples a valid signature at
random, i.e. it samples σ ←R {σ : Ver(pk,m, σ) = 1}. Then it returns σ to A.

3. A outputs a bit b′, which defines the output of the experiment.

TS is said to be Non-Signalling if for all PPT adversaries A there exist a negligible function µ such
that

|Pr[TS.NS12FS,0
A (1κ) = 1]− Pr[TS.NS12FS,1

A (1κ) = 1]| < µ(κ)

|Pr[TS.NS22FS,0
A (1κ) = 1]− Pr[TS.NS22FS,1

A (1κ) = 1]| < µ(κ)

If the above equations hold even for adversaries A which are not bounded to be PPT (but that output circuits
Π which still have to be polynomially sized), the TS is said to be Statistically Non-Signalling.

4 Two Factor Signature Schemes

A Two Factor Signature scheme is similar to a 2-out-of-2 threshold signature scheme, where signatures are
generated by two parties: a client C whose only long term state is a (typically low entropy and independently
generated) password, and a token T , who can store and generate secrets of arbitrary length. We envision the
token party T to be implemented on a hardware token (which a user would carry around) with a dedicated
screen and button which would ask the user for confirmation before producing signatures.

The semantics of the scheme are designed to capture the fact that a token party T has a single state sT
which can be used as input to produce signatures according to different public keys (for which an initialization
phase was previously performed). This is useful, as typically a hardware wallet would offer support for

11

multiple cryptocurrency accounts, and therefore such semantics allow us to design a scheme which natively
supports multiple such accounts and reason about the security of the whole system.

More specifically, one can think of each public key that the scheme can produce signatures for as being
associated with both a password and a (not necessarily private) mnemonic key identifier (or account identifier
in the hardware wallets application) chosen by the user (i.e.“savings” or “vacation fund”). In order to
generate a new public key the client executes the KeyGen algorithm with a token T . The client’s inputs
are the key identifier and its password pwd, while the token updates its state sT as a result of running this
algorithm. Later, the client can produce signatures for that public key on a message m by running the
Sign algorithm (interacting with the same token) on input m and the same password and key identifier.
Additionally, the PK algorithm can be used to reconstruct a previously generated public key (both the
password and the key identifier are required in this case as well). In our formal description, for the sake of
simplicity and w.l.o.g., we consider such key identifier to be part of the password itself.

Definition 10. A Two Factor Signature scheme (2FS) consists of a tuple of PPT algorithms:

• 〈KeyGenC(pwd); KeyGenT(sT)〉 → 〈pk; pk, s′T 〉 are two randomized algorithms interacting with each
other to produce as output a public key pk (output by both parties). sT represents the state of party T
before running the algorithm (which would be ⊥ on the first invocation), and s′T represents its new updated
state. We use KeyGen(pwd, sT)→ (pk, s′T) as a compact expression for the above computation.

• 〈PKC(pwd); PKT(sT)〉 → 〈pk; pk〉 are two algorithms interacting with each other to produce as output a
public key. We use PK(pwd, sid, sT)→ pk as a compact expression for the above computation.

• 〈SignC(pwd,m); SignT(sT ,m)〉 → 〈σ;⊥〉 are two randomized algorithms interacting with each other to
produce as output a signature σ, output by the first party only. We use Sign(pwd,m, sT) → σ as as a
compact expression for the above computation.

• Ver(pk,m, σ) → 0 ∨ 1 is a deterministic algorithm. It takes as input a public key, a message and a
signature and outputs 1 (accept) or 0 (reject).

These algorithms have to satisfy the following correctness properties. Let sT be any valid token state (i.e.
any state obtained by starting with ⊥ as the initial state and then updating it through several executions of
KeyGen on input arbitrary passwords), pwd be any password which was used in at least one such execution
of KeyGen, pk be the output of the KeyGenC algorithm in the most recent of the executions of KeyGen
on input pwd. We require that both

Pr[PK(pwd, sT) = pk] = 1, Pr[Ver(pk,m,Sign(pwd,m, sT)) = 1] = 1

As discussed in the introduction, in order to give precise security guarantees depending on the capabilities
of the adversary, we formalize several unforgeability notions for a 2FS.

Unforgeability for the Client The first property, Unforgeability for the Client, is framed as an experiment
where the adversary plays the role of a client interacting with an oracle simulating an honestly implemented
token. The adversary is allowed to interact with the token by adaptively asking multiple KeyGen, PK,
Sign queries on arbitrary inputs. The definition requires that (except with negligible probability) after
interacting n times with the token oracle on Sign queries for a specific message m, the adversary cannot
produce signatures on m for more than n of the public keys that the token had output during KeyGen
queries. Moreover, it requires that the adversary cannot make the token output (as the result of a PK query)
a public key which the token did not help generating (and thus did not output during a previous KeyGen
query).

In order to check the conditions described above, the challenger keeps a list g of all the public keys
returned to A by a KeyGen query, a list p of the public keys returned by a PK query, and for any message
m it records how many Sign queries for m were asked by A.

12

Definition 11. Let 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver) be a Two Factor Sig-
nature scheme. Consider the following experiment between an adversary A and a challenger:
ExpForgeC2FS

A (1κ) :

1. The challenger runs the adversary A, giving it access to a token oracle T (A is given the pk values output
by such oracle during KeyGen and PK queries). A can interact with the oracle arbitrarily. In addition,
the challenger records the pk values locally output by the token oracle for KeyGen queries on an (initially
empty) list g, and for PK queries on an (initially empty) list p.

2. A halts and outputs a message m and a list of forgeries (pk1, σ1), . . . , (pkn, σn). We define the output of
the experiment as 1 if either there exists a pk that belongs to p but not to g, or if for all i ∈ {1, . . . , n},
Ver(pki,m, σi) = 1, all the pki are distinct and are in g, and A made at most n− 1 Sign queries to the
oracle T on input m.

2FS is said to be Unforgeable for the Client if for all PPT adversaries A there exist a negligible
function µ such that for all κ

Pr[ExpForgeC2FS
A (1κ) = 1] ≤ µ(κ).

Unforgeability for the Token The second property, Unforgeability for the Token, is analogous to the
previous one. It is formalized as an experiment where A plays the role of a token who can interact in
arbitrary KeyGenC,PKC,SignC queries with an honest client simulated by the challenger. The definition
requires that (except as specified below) after interacting n times with the client oracle on Sign queries for
a specific message m, the adversary cannot produce signatures on m for more than n of the public keys that
the client had output during KeyGen queries. Moreover, it requires that the adversary cannot make the
client output (as a result of a PKC query) a public key which the client did not help generating (during a
KeyGenC query).

In this case, since we want the honest client not to keep any long term state between different executions
besides the password (so that having physical access to the hardware token and remembering the password is
enough to produce signatures), the definition must allow the adversary to succeed with the same probability
with which it can guess such password. This is formalized by presenting the definition in the random oracle
model. Initially, the adversary outputs a password distribution PWD from which the challenger samples the
password which the honest client will use. The scheme is unforgeable for the token if no adversary can forge
with probability better than the one of guessing such password (given a number of guesses equal to the
number of random oracle queries asked by A). We quantify this probability in terms of the min entropy of
the password distribution PWD.

Definition 12. Let 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver) be a Two Factor Sig-
nature scheme. Consider the following experiment between an adversary A and a challenger:
ExpForgeT2FS

A (1κ) :

1. The challenger runs the (stateful) adversary A(1κ) on input the security parameter. A outputs a distribu-
tion PWD over {0, 1}κ.

2. The challenger samples pwd←R PWD.

3. The adversary can adaptively query the following oracles:

• KeyGenC: It takes no input from A, and executes KeyGenC(pwd) interacting with A (who plays the
role of T) and gives A its local output pk. In addition, the challenger appends pk to an (initially empty)
list g.

• PKC: This oracle takes no input from A, and executes PKC(pwd) interacting with A and also gives it
its local output pk. In addition, the challenger appends pk to an (initially empty) list p.

• SignC : It takes as input m from A, and runs SignC(pwd) interacting with A, and also gives it its local
output σ.

13

• ROκ(·). This oracle implements a random oracle which might be required by the scheme.

4. A halts, and possibly outputs a message m and a tuple of forgeries (pk1, σ1), . . . , (pkn, σn). We define
the output of the experiment as 1 if either there exists a pk that belongs to p but not to g, or if for all
i ∈ {1, . . . , n}, Ver(pki,m, σi) = 1, all the pki are distinct and are in g, and the SignC oracle was queried
at most n− 1 times on m.

2FS is said to be Unforgeable for the Token if for all PPT adversaries A such that A(1κ) makes at
most q(κ) queries to the random oracle and outputs distributions PWD with min entropy lower bounded by
m(κ), there exist a negligible function µ such that for all κ

Pr[ExpForgeT2FS
A (1κ) = 1] ≤ q(κ)

2m(κ)
+ µ(κ).

Unforgeability With Access to the Token In the next definition, Unforgeability With Access to the
Token, we consider an adversary which can arbitrarily interact with a token oracle, and in addition has
access to a client oracle. This client oracle models a client who uses a password sampled from a distribution
chosen by the adversary and answers the adversary’s queries by interacting with the token oracle. Unlike in
previous definitions, here the adversary is allowed to interact with the token on input the message on which
it will forge, but its success probability in forging is bound by the probability of guessing the password (given
one “guess” per interaction with the token oracle). As before, this limitation is expressed in terms of the
min entropy of the distribution from which the password is sampled.

Definition 13. Let 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver) be a Two Factor Sig-
nature scheme. Consider the following experiment between an adversary A and a challenger:
ExpForgePwdGuess2FSA (1κ) :

1. The challenger runs the adversary A, giving it access to a token oracle T (A is also given the pk values
output by such oracle during KeyGen and PK queries). A can interact with the oracle arbitrarily.

2. During the execution, A outputs a distribution PWD. The challenger samples pwd← PWD. From this point
on (in addition to T), the adversary is allowed to make queries to a new client oracle C which supports
KeyGenC, PKC, SignC queries. For each query, this oracle will execute the respective client algorithm
on input pwd, interact with the token oracle T (by asking an appropriate query) and return C’s local output
to A (for SignC queries, A can also specify the message m that the oracles will use in their interaction).

In addition, for each KeyGenC query where the C’s output given to the adversary is pk, the challenger
creates a record (pk, s) where s is an initially empty set of messages and adds it to an (initially empty)
list g. For each SignC query on input pwd and m, the challenger adds m to the set s of the most recent
record in g.

3. A halts and outputs a triple (pk′,m′, σ′). The output of the experiment is 1 if Ver(pk′,m′, σ′) = 1, there
is a record (pk, s) in g where pk = pk′ and5 m′ 6∈ s . Otherwise, the output is 0.

2FS is said to be Unforgeable With Access to the Token if for all adversaries A such that A(1κ)
makes at most q(κ) queries to the T oracle after it outputs PWD, and outputs distributions PWD with min
entropy lower bounded by m(κ), there exist a negligible function µ such that for all κ

Pr[ExpForgePwdGuess2FSA (1κ) = 1] ≤ q(κ)

2m(κ)
+ µ(κ)

Unforgeability for the Token Manufacturer The next definition, Unforgeability for the Token Manu-
facturer, is formalized as an experiment where the adversary first outputs a stateful program Π, and then

5Note that this restriction allows A to ask T a Sign query on input m′, as those queries do not modify the list g or any of
the sets s.

14

can ask an honest client (simulated by the challenger) to interact with such program in arbitrary KeyGen,
PK and Sign queries (where the adversary can pick the pwd and m inputs for such client and receives its
outputs). The definition requires that (except with negligible probability) the adversary cannot produce
a forgery on a message m valid w.r.t. one of the public keys pk output by the client, unless it previously
received a valid signature on m w.r.t. pk as the output of a Sign query.

We restrict such definition to adversaries which satisfy a compliance property. Informally, an adversary is
compliant if during any execution of the unforgeability experiment, with overwhelming probability, it outputs
programs Π such that the outputs of the honest client (simulated by the challenger) on the adversary’s
queries respect the same correctness conditions as if the simulated client was interacting with an honestly
implemented token. In particular, running a PK query on input some password pwd, the client should obtain
the same pk which it output during the most recent KeyGen query on input the same pwd; similarly, the
output of a Sign query on input m and pwd should be a valid signature w.r.t. the public key pk which was
output during the most recent KeyGen query for pwd.

Remark 14. Restricting to compliant adversaries is a reasonable limitation: if a user notices that her hardware
token is not producing signatures or public keys correctly, for example by selectively aborting during signature
generation or by returning invalid signatures or inconsistent public keys, such abnormal behavior would be
easy to detect or even impossible to go unnoticed. For example, if a 2FS was used to sign a cryptocurrency
transaction, but the client output an invalid signature for the user’s expected public key/source address of
the transaction, then even if the client side software did not check the signature and it got broadcasted to
the network, the receiver of the funds would eventually complain that the funds were never transferred.

Definition 15. Let 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver) be a Two Factor Signa-
ture scheme. Consider the following experiment between a PPT adversary A and a challenger, parameterized
by a bit b:
ExpForgeTokMan2FS

A (1κ) :

1. A(1κ) outputs a polynomial size circuit Π, which implements the same interface as a Token Oracle. We
stress that this program is not bound to implement the honest algorithms, but may deviate in arbitrary
ways (subject to A being compliant as specified below).

2. A can now ask an arbitrary number of KeyGen, PK and Sign queries to the challenger. In each query,
the challenger simulates an honest client C interacting with Π in the role of T on input a pwd and possibly
a message m both arbitrarily chosen by the adversary (in the case of a Sign query, Π is also given as input
m), and gives A such client’s output.

In addition, for each KeyGen query, the challenger records the simulated client’s output pk in an (initially
empty) list g, and for each Sign query on input some message m where the client’s output is σ, the
challenger adds a record (pk,m) to an (initially empty) list s for any pk ∈ g such that Ver(pk,m, σ) = 1
(if such a pk exists).

3. A halts and outputs a triple (pk′,m′, σ′). The output of the experiment is 1 if Ver(pk′,m′, σ′) = 1, pk′ ∈ g
and (pk′,m′) 6∈ s. Otherwise, the output is 0.

During an execution of ExpForgeTokMan2FS, we say that a query asked by A (i.e. an execution of
either KeyGen,PK or Sign where the challenger executes the algorithm for C interacting with Π in the role
of T) is compliant if the output of the challenger in this interaction satisfies the same correctness conditions
that interacting with an honest token implementation would. In more detail, the query is compliant (with
respect to a specific execution of ExpForgeTokMan) if:

• in the case of a KeyGen query, the output of the client (simulated by the challenger) is a pk 6=⊥ (which
implies that Π did not abort or send an otherwise invalid message)

• in the case of a PK query on input some password pwd, the simulated client output the same pk which it
output the most recent time it executed a KeyGen query on input the same pwd (or ⊥ if the adversary
never asked any KeyGen query on input pwd)

15

• in the case of a Sign query on input m and pwd, the simulated client outputs a valid signature w.r.t. the
pk which was output during the most recently executed KeyGen query on input pwd (or ⊥ if the adversary
never asked any KeyGen query on input pwd).

We say that an execution of ExpForgeTokMan2FS is compliant if all the queries in that execution are
compliant. We say that an adversary A is compliant if, with all but negligible probability, any execution of
ExpForgeTokMan2FS

A (1κ) is compliant.
2FS is said to be Unforgeable for the Token Manufacturer if for all PPT compliant adversaries A

there exist a negligible function µ such that for all κ

Pr[ExpForgeTokMan2FS
A (1κ) = 1] < µ(κ)

For simplicity, we say that a 2FS is unforgeable if it satisfies all the notions of unforgeability.

Definition 16. We say that a Two Factor Signature scheme is Unforgeable if it is Unforgeable for the
Client, Unforgeable for the Token, Unforgeable for the Token Manufacturer and Unforgeable with Access to
the Token.

Non-Signalling Towards proving unforgeability for the token manufacturer, it will be useful to first show
that our scheme satisfies a notion of Non-Signalling, which is of independent interest. This property is for-
malized as an indistinguishability definition: the adversary outputs a circuit Π, and then asks the challenger
to interact with such circuit on arbitrary KeyGen, PK and Sign queries. The challenger either uses Π to
answer all such queries, or an honest implementation of the token algorithms; we require that no adversary
can notice this difference with better than negligible probability. As in the previous definition, we restrict
our attention to compliant adversaries.

Definition 17. Let 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver) be a Two Factor Signa-
ture scheme. Consider the following experiment between an adversary A and a challenger, parameterized by
a bit b:
ExpNonSignal2FS,bA (1κ) :

1. A(1κ) outputs a polynomial sized circuit Π, which implements the same interface as a Token Oracle. We
stress that this program is not bound to implement the honest algorithms, but may deviate in arbitrary
ways (subject to A being compliant as specified below).

2. A can now ask an arbitrary number of KeyGen, PK and Sign queries to the challenger. In each query,
the adversary provides the inputs for C (i.e. pwd and possibly m). If b = 0, the challenger interacts with
program Π using the appropriate algorithms for C and the inputs given by A (note that in the case of a
Sign query, Π is also given the message m supplied by the adversary as an input), and gives A the local
output of the C algorithm in such computation. If b = 1, instead, the challenger answers the queries by
interacting with an honestly implemented Token Oracle.

3. A halts and outputs a bit b′, which defines the output of the experiment.

Note that in an execution of ExpNonSignal2FS,0, A’s view has exactly the same distribution as in an exe-
cution of ExpForgeTokMan. Thus, we can define a compliant query asked by A w.r.t. an ExpNonSignal2FS,0

execution, a compliant execution of ExpNonSignal2FS,0 and a compliant adversary as in Definition 15.
2FS is said to be Non-Signalling if for all compliant PPT adversaries A there exist a negligible function

µ such that for all κ

|Pr[ExpNonSignal2FS,0A (1κ) = 1]− Pr[ExpNonSignal2FS,1A (1κ) = 1]| < µ(κ)

16

5 Constructing a Two Factor Signature Scheme

In this section, we show how to construct a secure Two Factor Signature scheme (in the random oracle
model), by combining any IND-CPA and INT-CTXT secure Symmetric Encryption scheme, a hash function
(modelled as a random oracle) and any Unforgeable and Statistically Non-Signalling Threshold Signature
scheme.

Let TS = (TS.GC,TS.GT,TS.SC,TS.ST,TS.Ver) be a Threshold Signature scheme, SE = (SE.G,
SE.E,SE.D) be a Symmetric Encryption scheme, and ROκ be hash function which maps strings of arbitrary
length to {0, 1}κ×{0, 1}κ. Our proposed construction depends on a security parameter κ, which is given as
implicit input to all algorithms.

The token state sT is structured as a key-value store (map), where the keys are strings in {0, 1}κ called
handles and the values are tuples of strings. Initially, the KeyGenT algorithm can be supplied ⊥, which is
treated as an empty store. We define sT .Add(handle, y) as the map obtained from sT by adding the key-
value pair (handle, y) (which overwrites any previous value associated with handle), and sT .Find(handle)
as the value associated to handle by sT , or ⊥ if no such pair exists.

All algorithms will abort (i.e. return ⊥) if any of their sub-algorithms abort (for example if decrypting
a ciphertext fails or the store sT does not contain the expected value) or the other party aborts or sends a
malformed message. Using these conventions, we can define a Two Factor Signature scheme as follows (the
scheme is also illustrated in Fig. 1):

• KeyGenC(pwd) → pk: Run TS.GC(1κ) interacting with KeyGenT and obtain (skC , pk) as the local
output. Then, compute (ek, handle) ← ROκ(pwd), c ← SE.E(ek, (skC , pk)) and send (handle, c) to T .
Output pk.

• KeyGenT(sT) → s′T : Run TS.GT(1κ) interacting with KeyGenC and obtain skT , pk as the local
output. Then, receive (handle, c) from KeyGenC, set s′T ← sT .Add(handle, (c, skT , pk)) and output
(s′T , pk).

• PKC(pwd): Compute (ek, handle) ← ROκ(pwd), send handle to PKT. Upon receiving c in response,
compute (skC , pk)← SE.D(ek, c) and output pk.

• PKT(sT): Upon receiving handle from PKC, retrieve from the state (c, skC , pk) ← sT .Find(handle),
send c to PKC and output pk.

• SignC(pwd,m): Compute (ek, handle) ← ROκ(pwd) and send handle to SignT. Upon receiving c in
response, compute (skC , pk) ← SE.D(ek, c), then execute TS.SC(skC ,m) (interacting with SignT) and
output the resulting σ.

• SignT(sT ,m): Upon receiving handle from PKC, compute (c, skC , pk) ← sT .Find(handle), send c to
SignC and run TS.ST(skT ,m).

• Ver(pk,m, σ): Output TS.Ver(pk,m, σ).

The security of the scheme is established by the following theorems. We provide proof sketches here, and
defer the full proofs to Appendix A.

Theorem 18. If the underlying Threshold Signature scheme is Unforgeable for the Client, the Two Factor
Signature scheme described above is Unforgeable for the Client.

Proof Sketch. This is essentially a reduction to the unforgeability for C of the Threshold Signature
scheme. The adversary B (against the TS) simulates for any adversary A (against the 2FS) an execution
of ExpForgeC; B guesses which of the KeyGen queries by A will produce a public key pk such that A
outputs a forgery on m w.r.t. pk but A does not ask any Sign queries “with respect to pk” (in a sense
explained in the full proof). B makes A interact with its challenger for such KeyGen query (and the related
Sign queries), so that if its guess is correct then the forgery produced by A can directly be used as a forgery
to win TS.ForgeC.

17

KeyGenC(pwd) : KeyGenT(sT) :

(skC , pk)← TS.GC(1κ) ↔ TS.GT(1κ)→ (skT , pk)

(ek, handle)← ROκ(pwd)

c← SE.E(ek, (skC , pk))
handle,c−−−−−→ s′T ← sT .Add(handle, (c, skT , pk))

Output pk Output (s′T , pk)

PKC(pwd) : PKT(sT) :

(ek, handle)← ROκ(pwd)
handle−−−−→ (c, skT , pk)← sT .Find(handle)

(skC , pk)← SE.D(ek, c)
c←−

Output pk Output pk

SignC(pwd,m) : SignT(sT ,m) :

(ek, handle)← ROκ(pwd)
handle−−−−→ (c, skT , pk)← sT .Find(handle)

(skC , pk)← SE.D(ek, c)
c←−

σ ← TS.SC(skC ,m) ↔ TS.ST(skT ,m)

Output σ

Figure 1: The Two Factor Signature scheme construction. The verification algorithm is the one of the
underlyihg TS.

Theorem 19. If TS is Unforgeable for the Token, and SE is both IND-CCA and INT-CTXT secure, the Two
Factor Signature scheme described above is Unforgeable for the Token.

Proof Sketch. The proof is structured as an hybrid argument. In the first hybrid, we abort if the adversary
makes a random oracle query for the password picked by the challenger. If this does not happen, then the
secret encryption key used by the simulated client when interacting with the adversary is hidden from its
view, and therefore in the following hybrids we can abort if the adversary tries to manipulate such ciphertexts
(thanks to the INT-CTXT security of the encryption scheme) and moreover substitute all the ciphertexts
with encryptions of 0 (thanks to the IND-CCA security). At this point, the threshold signing key shares used
by the client are hidden from the adversary and therefore, as in the proof of unforgeability for the client, the
challenger can reduce forgeries for the Two Factor Signature scheme to forgeries for the Threshold Signature
scheme.

Theorem 20. If the underlying Threshold Signature scheme is Unforgeable for the Client, the Two Factor
Signature scheme described above is Unforgeable with Access to the Token.

Proof Sketch The proof is structured as an hybrid argument. First, we abort if the adversary interacts
with the token using a handle derived as a hash of the password sampled by the challenger (which probability

can be bounded by q(κ)
2m(κ)). Then, since the adversary cannot query the token using the correct password, we

can reduce to the Unforgeability for the Client property of the Threshold Signature scheme similarly to the
proof of Thereom 18.

Theorem 21. Assuming the underlying Threshold Signature scheme is Statistically Non-Signalling, the Two
Factor Signature scheme described above is Non-Signalling.

Proof Sketch. The proof is structured as an hybrid argument on the number of queries made by the
adversary. Starting from the experiment where the challenger always uses the circuit Π output by the
adversary to answer all queries, we progressively substitute such answers one at a time, starting from the
last query. Signing queries on a message m which should be produced w.r.t. a public key that the adversary
has already seen are substituted with a randomly sampled signature on m with respect to the same public

18

key, while queries for new public keys are answered by running (skC , skT , pk) ← TS.Gen(1κ) (i.e. by
running the threshold key generation algorithm honestly and without interacting with Π) and returning
the resulting pk to A. We prove that an adversary who can distinguish between two adjacent hybrids can
contradict one of the two Non-Signalling property of the Threshold Signature scheme. Moreover, in the last
hybrid the view of the adversary does not depend on the circuit Π, and so we can switch in an analogous way
to an experiment where the challenger always uses an honest token oracle. Note that sampling signatures at
random without knowing the corresponding secret key shares makes the reduction require exponential time,
but this is not a problem because the Non-Signalling properties of the Threshold Signature scheme hold even
against an exponential time adversary.

Theorem 22. Assuming the underlying Threshold Signature scheme is Statistically Non-Signalling and Un-
forgeable for the Client, the TFS described above is also Unforgeable for the Token Manufacturer.

Proof Sketch. The proof is structured as an hybrid argument. First, instead of using the circuit Π output
by the adversary, all queries by A are answered using an honestly implemented token oracle. Due to the
Non-Signalling property of the 2FS, this cannot affect A’s view and therefore its success probability. Given
that A is now interacting with an honest token, we can prove that A cannot forge using a similar argument
as in the proof of Unforgeability for the Client.

6 Constructions of Non-Signalling TS

6.1 A Schnorr-based TFS

In this section, we show that a simple variation of the Schnorr-based threshold scheme presented by Nicolosi
et al. [15] satisfies definitions 8 and 9, and can thus be used in our construction to obtain a secure Two
Factor Signature scheme. With respect to the original scheme, the only difference is that we require the
client to send a nonce to the token (in their paper, the second party is called the “server”), which the
token will use in all the “random oracle based” commitments which it produces. This is required because
in our Non-Signalling proof, the exponential time adversary A might otherwise “suggest” to the circuit Π
two openings for the same commitment, which would allow Π to bias the distribution of the outputs of the
protocol.

We summarize the modified protocol in figure 2 and refer the reader to [15] for more discussion.
This scheme (as well as the ECDSA based one presented in the next section) is parameterized by a

group G of order q with generator g, where q > 2κ, and two hash functions H,G whose range is {0, 1}κ
(treated as random oracles). More formally, to define an asymptotically secure scheme, where the scheme
only depends on the security parameter κ, we assume the existence of a deterministic group generator G
such that G(1k) samples G, q, g as above. Picking primes and generators typically requires random coins.
We here require these random coins are given non-uniformly to make the group generation algorithm de-
terministic (in practice, we simply rely on groups picked by e.g., NIST). Technically, this makes all of our
cryptographic primitives non-uniform constructions (since G is now possibly non-uniform), but we ignore
this slight mismatch as it has no impact.

Theorem 23. Assuming the discrete logarithm assumption holds in G, the protocol of Figure 2 is Unforgeable
per Def. 8 and Non-Signalling per Def. 9 (in the random oracle model).

Proof. First, the proof that the protocol satisfies Definition 8 can be adapted with minor modifications
from [15, Theorem 1, Theorem 2]. To satisfy Def. 9, we consider the two experiments TS.NS1 and TS.NS2.

For the first one, intuitively, the TS.Gen algorithm can be seen as a coin flipping protocol to sample the
public key pk uniformly at random, and therefore Π cannot bias the distribution of such output (because it
has to commit to its own randomness before seeing the client’s one).

More formally, consider the probability Pr[TS.NS12FS,0
A (1κ) = 1]. Expanding the experiment and sub-

stituting the steps of TS.GC, where for notational convenience we consider A = (A1,A2) and Π = (Π1,Π2)

19

TS.GC(1κ) : TS.GT(1κ) :

n←R {0, 1}κ
n−→ skT ←R Zq
c←− c← G(n, gskT)

skC ←R Zq
gskC−−−→

Check c = G(n, gskT)
gskT←−−−

pk ← gskT · gskC pk ← gskT · gskC
Output skC , pk Output skT , pk

TS.SC(skC ,m) : TS.ST(skT ,m) :

n←R {0, 1}κ
n−→ rT ←R Zq
c←− c← G(n, grT)

rC ←R Zq
grC−−→ e← H(m, grC · grT)

Check c = G(n, grT)
grT ,σT←−−−−− σT ← rT + e · skT

R← grC · grT
e← H(m,R)
σ ← rC + e · skC + σT
Output (σ,R)

Figure 2: 2-out-of-2 Threshold Schnorr, adapted from [15].

as each consisting of two separate “stateless” programs which can explicitly pass some state tA, tΠ between
each other, we obtain the following experiment:
Exp0(A, 1κ)

1. (Π, tA)← A1(1κ)

2. n←R {0, 1}κ

3. (c, tΠ)← Π1(1κ, n)

4. skC ←R G

5. gskT ← Π2(gskC ; tΠ)

6. Output ⊥ if c 6= G(n, gskT)

7. pk ← gskC · gskT

8. Output A2(pk; tA)

Now consider the following hybrid experiment (changes are in blue):
Exp1(A, 1κ)

1. (Π, tA)← A1(1κ)

2. n←R {0, 1}κ

3. (c, tΠ)← Π1(1κ, n)

4. skC ←R G

5. gskT ← Π2(gskC ; tΠ); pk′ ←R G; rewind and run gsk
′
T ← Π2(pk′/gskT ; tΠ)

20

6. Output ⊥ if c 6= G(n, gskT) or if c 6= G(n, gsk
′
T)

7. pk ← gskC · gskT

8. Output A2(pk; tA)

At an high level, in this experiment we are rewinding Π and running a second time on a different input
value for gskC . Since, by assumption, the probability that Π aborts (or outputs an invalid commitment
opening which would cause TS.SC to abort) is bounded by µ(κ), and in Exp1 the distributions of gskC is
identical to the one of pk′/gskT (both are uniformly distributed in G), the probabilities associated with these
two experiments differ by at most a negligible function in κ.

Next consider another hybrid Exp2, defined as Exp1 but where in step 6 we also output ⊥ if gskT 6= gsk
′
T .

We have that even in this case |Pr[Exp1(A, 1κ) = 1] − Pr[Exp2(A, 1κ) = 1]| < µ(κ). This is because the
difference between the two probabilities can be bounded by the probability that Π finds a collision in the
random oracle G while making only a polynomial number of queries. Note that, while A runs in exponential
time and can thus find collisions in G, it can only embed a useful collision into Π with negligible probability:
since the collision needs to contain the nonce n which is sampled by the experiment after Π was output, and
Π is described in polynomial space, it can only contain collisions for a polynomial number of values of n.

Next consider hybrid Exp3, defined as Exp2 except that in the last step the output is determined by
A2(pk′; tA) instead of A2(pk; tA). This change has no effect because the distributions of pk and pk′ are
identical; steps (4) in the previous experiment and step (5) in this one can be interchanged. However, notice
that at this point, the output of Π is no longer in the view of A2 (as pk′ is uniformly distributed in G); in
particular, the value of the experiment is identical to Pr[TS.NS12FS,1

A (1κ) = 1]. Thus, overall, we have

|Pr[TS.NS12FS,0
A (1κ) = 1]− Pr[TS.NS12FS,1

A (1κ) = 1]| < µ(κ)

For the second Non-Signalling experiment, consider again any A that produces a circuit Π and skC ,m, pk
subject to the constraint that Pr[〈σ; ·〉 ← 〈TS.SC(skC ,m); Π〉 : TS.Ver(pk,m, σ) = 1] > 1− µ(κ).

A very similar argument to the one used in the first property applies. In particular, an analogous sequence
of hybrids (with just some variable renaming and an extra output from Π2 in step 5) can be used to prove
that R’s distribution is statistically close to uniform. From there, we then argue that the Schnorr signature
verification is such that for each public key pk, message m, and group element R, there is exactly one value
σ such that (R, σ) verifies under pk for message m. This implies that the overall distribution over signatures
is statistically close to a uniform pair that verifies.

Using the scheme of figure 2 in our generic construction immediately gives the following result.

Theorem 24. Assuming the discrete logarithm assumption holds in the family of groups G, there exists an
unforgeable and Non-Signalling 2FS in the random oracle model that outputs Schnorr signatures.

6.2 An ECDSA-based TFS

In this section, we present a simple modification of the 2-out-of-2 threshold ECDSA protocol from [5].
This protocol is substantially more complex than the Schnorr case and relies upon the FMul and FSF-OT

functionalities which are defined and implemented in [5]. For our purposes, we can treat them as subroutines.
With respect to the original scheme from from [5] and as in the Schnorr case, the only difference here is that
we instantiate the commitments using a random oracle and require the client to send a nonce to the token (in
their paper, the second party is called the “server”), which the token will use as part of these commitments.
This modification is requiredto prove the Non-Signalling property.

6.2.1 Setup

We begin with the setup protocol in Fig. 3.

21

TS.GC(1κ) : TS.GT(1κ) :

n←R {0, 1}κ
n−→ skT ←R Zq

pkT ← gskT
c←− c← G(n, pkT)

skC ←R Zq
pkC ← gskC

πC ← PoK{skC : pkC}
pkC ,π−−−−→ πT ← PoK{skT : pkT}

Check c = G(n, pkT)
pkT,πT←−−−−

pk ← pkskCT pk ← pkskTC

oC
OText(1κ)←−−−−−→ oT

Output (skC , oC), pk Output (skT , oT), pk

Figure 3: Threshold ECDSA setup protocol. This protocol is parameterized by a group G of order q with
generator g, where q > 2κ, and two hash functions H,G whose range is {0, 1}κ (treated as random oracles).

6.2.2 ECDSA Signing protocol

The signing protocol requires more steps, and we thus express it in longer form. As before, the protocol is
parameterized by the Elliptic curve (G, G, q) and the hash function H.

1. TS.ST(skT ,m) : sample instance key, kT ← Zq, compute DT
..= gkT and send to client.

2. TS.SC(skC ,m) : sample instance key seed, k′C ← Zq and compute

R′ ..= k′C ·DT

kC ..= H(R′) + k′C

R ..= kC ·DT

choose a pad φ← Zq

3. TS.SC and TS.ST invoke the FMul functionality with inputs φ + 1/kC and 1/kT respectively, and
receive shares t1C and t1T of their padded joint inverse instance key

t1C + t1T =
φ

kT
+

1

kC · kT

and then invoke FMul with inputs skC/kC and skT/kT. They receive shares t2C and t2T of their joint
secret key over their joint instance key

t2C + t2T =
skC · skT
kC · kT

The protocol instances that instantiate FMul are interleaved such that the messages from TS.ST to
TS.SC are transmitted first, followed by replies.

4. TS.SC transmits R′ to TS.ST, who computes

R ..= H(R′) ·DT +R′

For both Alice and Bob let (rx, ry) = R.

5. TS.SC sends a proof of knowledge of kC w.r.t. R and base DT . TS.ST aborts if the proof does not
verify.

22

6. TS.SC and TS.ST both compute m′ = H(m).

7. TS.SC computes the first check value Γ 1, encrypts pad φ with Γ 1, and transmits the encryption ηφ

to TS.ST.

Γ 1 ..= G+ φ · kC ·G− t1C ·R
ηφ ..= H(Γ 1) + φ

8. TS.SC computes signature share σC and the second check value Γ 2, encrypts σC with Γ 2 and then
transmits the encryption ησ to TS.ST

σC ..= (m′ · t1C) + (rx · t2C)

Γ 2 ..= (t1C · pk)− (t2C ·G)

ησ ..= H(Γ 2) + σC

9. TS.ST computes the check values and reconstructs the signature

Γ 1 ..= t1T ·R
φ ..= ηφ −H(Γ 1)

θ ..= t1T − φ/kT
σT ..= (m′ · θ) + (rx · t2T)

Γ 2 ..= (t2T ·G)− (θ · pk)

σ ..= σT + ησ −H(Γ 2)

10. TS.ST uses the public key pk to verify that (rx, σ) is a valid signature on message m. If the verification
fails, TS.ST aborts. If it succeeds, output the pair (rx, σ

′) where σ′ is the value in {σ,−σ} that is less
than q/2.

11. TS.SC verifies the pair (rx, σ) on message m and pk and verifies that σ < q/2.

Theorem 25. Assuming the CDH Assumption for the family of group parameters G and that the ECDSA
signature is a secure signature scheme for the family G in the random oracle model, the threshold signature
scheme (TS.GC,TS.GT,TS.SC,TS.ST) described above satisfies Definition 8 and Definition 9.

Proof Sketch. The unforgeability property (Definition 8) follows from [5, Theorem E.1] under the same
assumptions. For the first Non-Signalling property, the key observation is that the first three messages are
the same as the Schnorr setup protocol in Fig. 2 with the extra requirement here that a proof of knowledge
is given for the secret shares. The additional OT extension step in setup does not change the public key pk,
but merely add elements to skC . It therefore follows for essentially the same argument as for Theorem 23
that

|Pr[TS.NS12FS,0
A (1κ) = 1]− Pr[TS.NS12FS,1

A (1κ) = 1]| < µ(κ)

For the second Non-Signalling property, observe that TS.ST no longer commits to its instance key in
the first message; rather, the value is sent in the clear to TS.SC in the first message. As discussed in [5],
the 2-round protocol for threshold ECDSA allows TS.SC to bias the signature, but does not enable TS.ST
to do so. This is not a problem for our application because Non-Signalling is only required of the token.

Specifically, it follows by inspection that TS.SC chooses a random R′ in step (2), and therefore by the
random oracle, kC is also uniformly distributed in Zq, and thus R is also uniformly distributed in G. The rest
of the steps in the protocol ensure that σ is computed correctly and that no information about shares of the
secret key is leaked; however, these steps do not change the distribution of the signature itself. The signature

23

output consists of a pair (rx, σ) ∈ Zq2 that passes the verification equality where rx is the x-coordinate of
group element R. The verification for the message m and public key pk is performed by ensuring that both
rx, σ are in the appropriate range (i.e., that rx ∈ [1, q] and that σ ∈ [0, q/2]), and then calculating

(r′x, r
′
y) = R′ ..= gH(m)/σpkrx/σ

and checking if (r′x mod q) = (rx mod q). For each rx there are exactly two values s,−s that satisfy this
relationship. In the penultimate step, TS.ST picks the value among those two that is less than q/2 which
TS.SC verifies; thus for each rx, there is only 1 value σ such that (rx, σ) verifies and TS.SC does not abort
the protocol. Thus for the same reason as for Theorem 23, it also follows that

|Pr[TS.NS22FS,0
A (1κ) = 1]− Pr[TS.NS22FS,1

A (1κ) = 1]| < µ(κ)

which establishes that this protocol satisfies Def. 9.

7 The Unlinkability property

In this section, we define an additional privacy property for a Two Factor Signature scheme, which we
call Unlinkability. As anticipated in the introduction, this property mandates that an adversary cannot
distinguish different public keys generated by the same honest token or the same passwords from public keys
generated using different tokens and independently sampled passwords. The same holds even if the adversary
is given signatures on arbitrary messages (according to such public keys) and even when the adversary can
query such tokens arbitrarily (as long as he does not guess the passwords). This property guarantees that a
token, if lost, does not reveal which public keys it can sign for, and that an outside adversary cannot link to
each other different cryptocurrency addresses controlled with the same token.

The Unlinkability property is formalized as an experiment parameterized by two bits bP , bT (not both
0), where an adversary A can interact with two token oracles T0, T1. A can first interact with both oracles
arbitrarily, and then outputs a distribution on pairs of distinct strings from which the challenger samples
a pair of passwords pwd0, pwd1. Then, the challengers runs the KeyGen algorithm once interacting with
T0 on input pwd0, and once with TbT on input pwdbP to obtain two public keys pkα, pkβ . A is given the
two public keys and can keep interacting with the two T oracles arbitrarily, as well as ask the challenger for
signatures on arbitrary messages w.r.t. the two public keys (which the challenger computes by interacting
with the appropriate oracle on input the appropriate password). The definition requires that A should not
be able to distinguish between any two different pairs of bits with probability better than the one of guessing
one of the two passwords (given one guess per interaction with a token oracle).

For example, in an execution of the experiment where bP = 1, bT = 0, the two public keys the adversary
is given are generated using the same token oracle (T0), while if bP = 1, bT = 1 the two public keys would
be generated using different tokens: if an adversary cannot distinguish this two cases then the public keys
must be “independent” from the token who generated them. Note that if the adversary could guess one of
the passwords, it could simply interact with one of the tokens in a PK query on input such password and
check whether the resulting public key matched pkα or pkβ , and this attack is unavoidable.

Also, we exclude the case where bP = 0, bT = 0 as in this case the two public keys given to the adversary
would be generated by the same token using the same password, and in our formalization an honest token
only associates a single public key to each password at a time (calling KeyGen a second time on the first
password would associate a new public key with that password and the token will not sign with respect to
the old public key any more).

Definition 26. Let 2FS = (KeyGenC,KeyGenT,PKC,PKT,SignC,SignT,Ver) be a Two Factor Signa-
ture scheme. Consider the following experiment between a stateful adversary A and a challenger, parame-
terized by two bits bP , bT :
ExpUnlink2FS,bP ,bT

A (1κ) :

1. The challenger runs A with access to two token oracles T0,T1 (A is also given the pk values output by
such oracles during KeyGen and PK queries).

24

2. During the execution, A can output a distribution PWDS over distinct pairs of passwords (i.e. over {0,
1}κ×{0, 1}κ such that for all x ∈ {0, 1}κ, the probability of sampling (x, x) is 0). The challenger samples
(pwd0, pwd1) ← PWDS. It first computes pkα by interacting in a KeyGen query with T0 on input pwd0,
and then computes pkβ by interacting with TbT on input pwdbP . It gives both public keys to A (we stress
that A is not involved at all in those interactions, besides receiving the challenger’s output).

3. From this point on, in addition to T0 and T1, A has access to two new oracles Oα and Oβ. These
oracles accept only Sign queries, where the adversary provides a message m: for the first oracle, the
challenger computes the output σ by executing SignC(pwd0,m) interacting with T0; for the second oracle,
the challenger computes σ by executing SignC(pwdbP ,m) interacting with TbT . In both cases σ is returned
to A.

4. A halts and outputs a bit, which defines the output of the experiment.

For each distribution PWDS over {0, 1}κ ×{0, 1}κ, we can consider the two “truncated” distributions over
{0, 1}κ obtained by sampling an element from PWDS and truncating the first or the last κ bits.

Π is said to be Unlinkable if for all PPT A such that A(1κ) makes at most q(κ) queries to the T0

and T1 oracles after step 2, and outputs distributions PWDS where each of the truncations has entropy lower
bounded by m(κ), and for all bP , bT , b

′
P , b
′
T ∈ {0, 1}4 such that (bP , bT) 6= (0, 0), (b′P , b

′
T) 6= (0, 0), there exist

a negligible function µ such that for all κ

|Pr[ExpUnlink2FS,b0,b1
A (1κ) = 1]− Pr[ExpUnlink2FS,b2,b3

A (1κ) = 1]| ≤ 4q(κ)

2m(κ)
+ µ(κ)

The following theorem proves that the Two Factor Signature scheme construction presented in section 5
satisfies the Unlinkability definition.

Theorem 27. Assuming ROκ is a random oracle, the Two Factor Signature scheme presented in section 5
is Unlinkable according to Definition 26.

Proof Sketch. The proof is structured as an hybrid argument. Starting from an execution of ExpUnlinkΠ,bP ,bT ,
we can introduce a first hybrid where the experiment is aborted if the adversary sends to any of the tokens
a handle derived as a hash of one of the two passwords sampled by the challenger. The probability of A
noticing this difference can be bounded by 2q(κ)

2m(κ) (which bounds the probability that A can guess one of the
passwords) through a reduction to Lemma 6. Then, we notice that in this hybrid the view of the adversary
does not depend on any of the two bits bP , bT , and so we can switch to an hybrid where we use b′P , b

′
T instead,

and finally to an hybrid where we remove the abort condition (the adversary also has at most an at most
2q(κ)
2m(κ) chance of distinguishing here). The last hybrid is a standard execution of ExpUnlinkΠ,b′P ,b

′
T , so the

advantage of the adversary can be bounded by 2 · 2q(κ)
2m(κ) (plus a negligible amount due to possible collisions

in the random oracle). Appendix A contains a more detailed proof.

References

[1] Jesús F Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold RSA with adaptive
and proactive security. In Eurocrypt, volume 4004, pages 593–611. Springer, 2006.

[2] Dan Boneh, Xuhua Ding, Gene Tsudik, and Chi-Ming Wong. A method for fast revocation of public
key certificates and security capabilities. In USENIX Security Symposium, pages 22–22, 2001.

[3] Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. Virtual smart cards: how to sign
with a password and a server, 2016.

[4] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in Cryptology – CRYPTO 1989,
pages 307–315. Springer, 1990.

25

[5] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold ECDSA from ECDSA assump-
tions. In 2018 IEEE Symposium on Security and Privacy (SP), pages 595–612, 2018.

[6] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with fast trustless setup. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages
1179–1194. ACM, 2018.

[7] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and efficient sharing of
RSA functions. In Advances in Cryptology – CRYPTO 1996, pages 157–172. Springer, 1996.

[8] Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau, Joshua A Kroll, Edward W
Felten, and Arvind Narayanan. Securing bitcoin wallets via a new DSA/ECDSA threshold signature
scheme, 2015.

[9] Yehuda Lindell. Fast secure two-party ECDSA signing. In Advances in Cryptology – CRYPTO 2017,
pages 613–644. Springer, 2017.

[10] Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with practical distributed key generation
and applications to cryptocurrency custody. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1837–1854. ACM, 2018.

[11] Philip MacKenzie and Michael K Reiter. Delegation of cryptographic servers for capture-resilient de-
vices. Distributed Computing, 16(4):307–327, 2003.

[12] Philip MacKenzie and Michael K Reiter. Networked cryptographic devices resilient to capture. Inter-
national Journal of Information Security, 2(1):1–20, 2003.

[13] Antonio Marcedone, Rafael Pass, and abhi shelat. Minimizing trust in hardware wallets with two factor
signatures. Cryptology ePrint Archive, Report 2018/???, 2018.

[14] Microchip. Atecc608a datasheet, 2018.

[15] Antonio Nicolosi, Maxwell N Krohn, Yevgeniy Dodis, and David Mazieres. Proactive two-party signa-
tures for user authentication. In NDSS, 2003.

[16] Marek Palatinus, Pavol Rusnak, Aaron Voisine, and Sean Bowe. Mnemonic code for generating deter-
ministic keys (bip39). https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki.

[17] Tal Rabin. A simplified approach to threshold and proactive RSA. In Advances in Cryptology – CRYPTO
1998, pages 89–104. Springer, 1998.

[18] T.C. Sottek. Nsa reportedly intercepting laptops purchased online to install spy malware, Decem-
ber 2013. [Online; posted 29-December-2013; https://www.theverge.com/2013/12/29/5253226/nsa-
cia-fbi-laptop-usb-plant-spy].

A Deferred proofs

A.1 Proof of Theorem 18

Proof. First, notice that by construction in the proposed 2FS scheme it is not possible that p contains a
public key which is not in g. This is because a token oracle T will output a pk during a PK query (and
thus such pk is part of p) only if such a public key is already part of its internal state, and the only way in
which pk could be added to such state is through a KeyGenT query, which implies that pk is also part of
g. Therefore, A must be winning the experiment by outputting a message m and more valid forgeries on m
than the number of signing queries with T on input m.

26

https://www.theverge.com/2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy
https://www.theverge.com/2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy

During an execution of the ExpForgeT experiment, we say that a forgery (pkj , σj) (produced by the
adversary at the end of the experiment) is associated with the i-th KeyGen query if pkj is the public key
output by the token in the KeyGen query. Moreover, we say that a Sign query is associated with the i-th
KeyGen query if the handle that the adversary sends to the challenger as its first message for the Sign
query is the same which was used in the last message of the i-th KeyGen query, and the i-th KeyGen
query is the most recent query before the Sign query with such property. Intuitively, we only consider the
most recent KeyGen query because a handle is used by the token to retrieve the secret key share it will
use on a specific Sign query. Asking multiple KeyGen queries where the same handle is used results in a
new secret key share overwriting the old one.

Given all the above, for any adversary A, if the output of an execution of ExpForgeC2FS
A (1κ) is 1, then in

that execution there must be at least one index i such that the adversary output a forgery (on a message m)
associated with the i-th KeyGen query, but there is no Sign query for m associated with the i-th KeyGen
query. This is because no two forgeries can be associated with the same KeyGen query (as all the public
keys in the forgeries must be distinct), each Sign query can be associated with at most one KeyGen query,
and the number of Sign queries for m must be smaller than the number of forgeries. We will call an index
i which satisfies this property important.

Assume by contradiction that there exists an adversary A which has non negligible probability of winning
the ExpForgeC2FS

A experiment. We can use A to build an adversary B which contradicts the unforgeability
for C of the underlying Threshold Signature scheme. Let d(κ) be an upper bound on the number of KeyGen
queries asked by A to the T oracle. B works as follows:
B(1κ) :

• B runs A, simulating for it an execution of ExpForgeC. First, it samples i ←R {1, . . . , d(κ)}, and its
success probability will depend on such index i being important for the ExpForgeC execution. Then it
simulates the T oracle for A as follows.

• All queries (of any kind) before the i-th KeyGen query are simulated as the honest challenger would.
In particular, B picks ⊥ as initial state sT for the token oracle and handles the queries by executing the
honest algorithms on input sT (which is also updated as a result of KeyGen queries).

• The i-th KeyGen query by the adversary is handled differently. First, B makes A interact with its own
challenger in an execution of TS.Gen, where the challenger runs TS.GT and A plays the role of C. At
the end, B is given by its challenger the public key pk∗ which is part of its local output (note that B does
not learn the challenger’s secret key share). Then, when A sends to the simulated oracle T, as the last
message of the KeyGen query, a message (handle∗, c∗), B records such message together with pk∗. It
completes the query by giving A the public key pk∗.

• After the i-th KeyGen query, when A asks a Sign query to T on input m, where A’s first message is equal
to handle∗, then B first sends the recorded c∗ to A as a response from T. Then, it continues simulating
the query by having A interact with its own challenger in an execution of TS.Sign. Analogously, PK
queries where the first message from A is equal to handle∗ are handled by returning to A the recorded
c∗. All other Sign and PK queries (where handle 6= handle∗) are simulated honestly. KeyGen queries
are also simulated honestly. In addition, if at the end of one such KeyGen query the adversary uses as
a handle handle∗, then B continues by simulating all subsequent queries (of any kind) honestly, including
the ones for handle∗ (in particular, B does not make any more queries to its own challenger).

• When A outputs a message m and a list of forgeries (pk1, σ1), . . . , (pkn, σn), then if there exists an index
j such that pkj = pk∗ and Ver(pk∗,m, σj) = 1, then B outputs (m,σj) as a forgery to its challenger;
otherwise B halts without producing any forgery.

First of all, notice that A’s view in this experiment has the same distribution as its view in the
ExpForgeC2FS

A one. This is because the only difference between the two is that in some of the queries
by the adversary where handle = handle∗, B provides answers to A through its challenger (which imple-
ments the algorithms honestly with a state consistent with what A would expect), and thus this difference
does not affect A’s view.

27

Moreover, we have that if the simulated ExpForgeC outputs 1 and B guessed the important index i
correctly (which happens with probability 1

d(κ) conditioned on the former event), then B’s output will also

be a valid forgery for TS.ForgeC.
Thus we have that Pr[ExpForgeC2FS

A (1κ) = 1] ≤ d(κ) · Pr[TS.ForgeCTS
B (1κ) = 1], which contradicts

the unforgeability against the client of the Threshold Signature scheme.

A.2 Proof of Theorem 19

Proof. Let d(κ) be an upper bound on the number of KeyGen queries asked by A. We define the following
hybrids:

• H0: Defined as ExpForgeT2FS
A (1κ)

• H1: Defined from H0, where in addition the experiment is aborted (with a special output GUESSED) if the
adversary makes a random oracle query for the password pwd sampled by the challenger in step 2.

• H2: Defined from H1, where in addition the experiment is aborted (with a special output FAKE CTXT)
if A asks a SignC or PKC query where it sends to the challenger a ciphertext c such that i) c was not
initially given to A by the challenger as part of a previous KeyGenC query and ii) SE.D(ek, c) 6=⊥ where
(ek, ·)← ROκ(pwd) and pwd is the password chosen by the challenger in step 2.

• H3: Defined from H2, where for each ciphertext computed by the challenger as SE.E(ek, (skC , pk)) and
sent to the adversary in a KeyGenC query, the challenger instead computes c ← SE.E(ek, 02k) and
stores a record (c, (skC , pk)). Analogously, during any PKC and SignC query, instead of decrypting
the ciphertext c sent by the adversary as SE.D(ek, c) the challenger uses (skC , pk) if it has a record
(c, (skC , pk)), and behaves as if the decryption algorithm returned ⊥ otherwise.

To prove the theorem, it is sufficient to show that for any PPT A there exists a negligible function µ
such that:

|Pr[H0(A, 1κ) = 1]− Pr[H1(A, 1κ) = 1]| < 2q(κ)

2m(κ)
(1)

|Pr[H1(A, 1κ) = 1]− Pr[H2(A, 1κ) = 1]| < µ(κ) (2)

|Pr[H2(A, 1κ) = 1]− Pr[H3(A, 1κ) = 1]| < µ(κ) (3)

|Pr[H3(A, 1κ) = 1]| < µ(κ) (4)

We will prove that each condition holds separately.
1. Let E be the event “A makes a random oracle query for the password pwd sampled by the challenger in

step 2”. Note that E has the same probability of happening in both hybrids (Pr[H0(A, 1κ) : E] = Pr[H1(A,
1κ) : E]), that conditioned on E not happening the view of A has exactly the same distribution in both
hybrids (in particular, Pr[H0(A, 1κ) = 1|¬E] = Pr[H1(A, 1κ) = 1|¬E]) and that Pr[H1(A, 1κ) = GUESSED] =
Pr[H1(A, 1κ) : E]. Therefore, the probability that A can distinguish can be upper bounded by the probability
that A causes H1 to output GUESSED:∣∣Pr[H0(A, 1κ) = 1]− Pr[H1(A, 1κ) = 1]

∣∣ ≤
|Pr[H0(A, 1κ) = 1|¬E]− Pr[H1(A, 1κ) = 1|¬E]| · Pr[H1(A, 1κ) : ¬E]+

|Pr[H0(A, 1κ) = 1|E]− Pr[H1(A, 1κ) = 1|E]| · Pr[H1(A, 1κ) : E] ≤
0 + Pr[H1(A, 1κ) : E] = Pr[H1(A, 1κ) = GUESSED]

(5)

Therefore to prove that equation 1 holds it is enough to show that Pr[H1(A, 1κ) = GUESSED] < q(κ)
2m(κ) .

We will prove that this is the case by leveraging Lemma 5. For any PPT adversary A for H1, let’s define an
adversary B for ExpGuess as follows:
BGuess(·)(1κ) :

28

• B runs A by simulating for it an execution of H1. When A outputs a distribution PWDS, B forwards such
distribution to its challenger. Moreover, the challenger samples (ek, handle) ← {0, 1}k × {0, 1}κ, which
will be used as the output of the random oracle on input the pwd picked by B’s challenger.

• Whenever A asks a KeyGenC, PKC or SignC query, such queries are handled honestly, except that
instead of computing (ek, handle)← ROκ(pwd), B uses the values sampled in the previous step.

• B simulates the random oracle ROκ by sampling answers to A’s queries uniformly at random and storing
them in a table so that the same query always receives the same answer. In addition, for each such queries
for a string pwd, B submits pwd as a guess to its Guess oracle: if the response is 1, then B can halt (and
ExpGuess outputs 1); otherwise the simulation continues.

• If A halts (with or without outputting a bit), then B halts as well (and ExpGuess outputs 0).

Notice that until B halts, the view of A has the same distribution as in H1. The only change in A’s
view is that, instead of computing (ek, handle) ← ROκ(pwd), B samples such values uniformly at random
and independently from pwd. The only way that A can notice such difference, is if it asks a random
oracle query for pwd. But, in this case, B will halt and win the experiment. This proves that Pr[H0(A,
1κ) = GUESSED] < Pr[ExpGuessB(1κ) = 1]. Moreover, the number of guess that B makes to its oracle is
upper bounded by the number of random oracle queries asked by A, from which by Lemma 5 we have that

Pr[H0(A, 1κ) = GUESSED] < q(κ)
2m(κ) , which is what we wanted to prove.

2. Analogously as in the previous case, one can show that∣∣Pr[H1(A, 1κ) = 1]− Pr[H2(A, 1κ) = 1]
∣∣ ≤

Pr[H2(A, 1κ) = FAKE CTXT]

We will prove that Pr[H2(A, 1κ) = FAKE CTXT] < µ(κ) by reducing this property to the INT-CTXT security
of the Symmetric Encryption scheme. For any PPT adversary A that distinguishes H1 from H2, let’s define
an adversary B for SE.ExpINT-CTXT as follows:
B(1κ) :

• B runs A by simulating for it an execution of H2.

• Whenever A asks a KeyGenC, PKC or SignC query, such queries are handled as in H2, with the
following differences.

In any KeyGenC query, instead of directly computing c ← SE.E(ek, (skC , pk)) on its own, B computes
c by asking an encryption query to its own SE.E oracle on input (skC , pk); moreover, it stores a record
(c, (skC , pk)).

In any PKC or SignC queries, instead of directly computing (skC , pk)← SE.D(ek, c) on its own, B first
checks if it has a record (c, (sk′C , pk

′)) (for some (sk′C , pk
′)). If so, it uses (sk′C , pk

′) as the output of such
decryption; otherwise, it submits c to its own decryption oracle to compute such output. If the decryption
oracle returns a message m 6=⊥, B halts with output FAKE CTXT (and SE.ExpINT-CTXT outputs 1),
otherwise the simulation continues (and the PKC or SignC queries are aborted as if decryption failed).

Random oracle queries are handled exactly as in H1. In particular, if a random oracle query would cause
H1 to output GUESSED, then B also halts with the same output.

• When A halts (possibly with some forgeries as output), B also halts.

Notice that until B halts, the view of A has the same distribution as in H2. This is because the only
difference in the two experiments is that in one of them the secret key ek used to produce the ciphertexts given
by the challenger during any KeyGen query is computed as (ek, ·)← ROκ(pwd) in H2 and independently
sampled by B’s challenger in SE.ExpINT-CTXTSE

B ; however, since both experiments are aborted if A asks
for ROκ(pwd), such change cannot affect its view. Moreover, by construction if during a PKC or SignC

query A outputs a ciphertext which causes H3 to output FAKE CTXT then B would also output FAKE CTXT,

29

and the execution of SE.ExpINT-CTXT would output 1. This proves that Pr[H3(A, 1κ) = FAKE CTXT] ≤
Pr[SE.ExpINT-CTXTB(1κ) = 1]. Since SE is INT-CTXT secure, such quantity must be negligible, which
is what we wanted to prove.

3. Assume by contradiction that there exists an adversary A such that |Pr[H2(A, 1κ) = 1] − Pr[H3(A,
1κ) = 1]| is non negligible.

We will use A to build an adversary B that contradicts the IND-CCA security of SE. B works as follows:
B(1κ) :

• B runs A by simulating for it an execution of H2.

• Whenever A asks a KeyGenC, PKC or SignC query, such queries are handled as in H2, with the
following differences.

In any KeyGenC query, instead of directly computing c ← SE.E(ek, (skC , pk)) on its own, B computes
c by asking an encryption query to its own SE.E oracle on input ((skC , pk), 02k); moreover, it stores a
record (c, (skC , pk)).

In any PKC or SignC, instead of directly computing (skC , pk)← SE.D(ek, c) on its own, B first checks
if it has a record (c, (sk′C , pk

′)) (for some (sk′C , pk
′)) and, if so, uses (sk′C , pk

′) as the output of such
decryption. Otherwise, it submits c to its own decryption oracle: if such oracle outputs ⊥, then the
simulation continues (even though this specific PKC or SignC query is aborted as A submitted an invalid
ciphertext); otherwise, B aborts with output FAKE CTXT.

Random oracle queries are handled exactly as in H1. In particular, if a random oracle query would cause
H1 to output GUESSED, then B also halts and outputs GUESSED.

• When A halts (possibly with some forgeries as output), B outputs a bit b′ computed as in step 4 of
ExpForgeT.

Notice that, if B is running in SE.ExpIND-CCASE
B,0 (resp. SE.ExpIND-CCASE

B,1), then A’s view
has the same distribution as in H2 (resp. H3). This is because the only difference in the two ex-
periments is that in one of them the secret key ek used to produce the ciphertexts given by the chal-
lenger during any KeyGen query is computed as (ek, ·) ← ROκ(pwd) in H1 and independently sam-
pled by B’s challenger in SE.ExpIND-CCASE

B,0; however, since both experiments are aborted if A asks
for ROκ(pwd), such change cannot affect its view. This proves that |Pr[H2(A, 1κ) = 1] − Pr[H3(A,
1κ) = 1]| ≤ |Pr[SE.ExpIND-CCASE

A,0(1κ) = 1] − Pr[SE.ExpIND-CCASE
A,1(1κ) = 1]|, which contradicts

the IND-CCA security of SE.
4. First, notice that by construction in an execution of H3 it is not possible that p contains a public key

which is not in g. This is because the PKC algorithm will output pk during a PK query (and thus such
pk would be part of p) only after successfully decrypting (skC , pk)← SE.D(ek, c), where c is the ciphertext
sent by A as the first message. If such a ciphertext was originally given to A by the challenger during a
KeyGenC query, then during such query KeyGenC must have output pk, which therefore must be part
of g. Instead, if such a ciphertext was not given to A by the challenger (and still decrypts correctly), then
the experiment would be halted with output FAKE CTXT. Therefore, whenever H3(A, 1κ) = 1, A must have
output a message m and more valid forgeries on m than the number of SignC queries on input m.

During an execution of H3, we say that a forgery (pkj , σj) (produced by the adversary at the end of the
experiment) is associated with the i-th KeyGenC query if the output of this query is pkj ; moreover, we say
that a Sign query is associated with the i-th KeyGenC query if the ciphertext c that the adversary sends
to the challenger as its first message for the SignC query is the same which A received as the last message of
the i-th KeyGenC query. Note that, since with overwhelming probability any two independently generated
ciphertexts must be different (regardless of whether they encrypt the same message or not), each SignC

query can be associated with at most one KeyGenC query6.
Given all the above, for any adversary A, if the output of an execution of H3(A, 1κ) is 1, then in that

execution there must be at least one index i such that the adversary output a forgery (on a message m)

6Formally, we are conditioning over this event which happens with overwhelming probability.

30

associated with the i-th KeyGenC query, but there is no SignC query for m associated with the i-th
KeyGenC query. This is because each forgery must be associated with a different KeyGenC query (as all
the public keys in the forgeries must be distinct), and the number of SignC queries for m must be smaller
than the number of forgeries. We will call an index i which satisfies this property important.

Assume by contradiction that there exists an adversary A such that Pr[H3(A, 1κ) = 1] is non negligible.
We can use A to build an adversary B which contradicts the unforgeability for T of the underlying Threshold
Signature scheme. Let d(κ) be an upper bound on the number of KeyGen queries asked by A. B works as
follows:
B(1κ) :

• B runs A, simulating for it an execution of ExpForgeC. First, it samples i ←R {1, . . . , d(κ)}, and its
success probability will depend on such index i being important for this H3 execution. When A outputs
a distribution PWD, B samples pwd ← PWD and (ek, handle) ← ROκ(pwd). Then it handles queries asked
by A as follows.

• All queries (of any kind) before the i-th KeyGen query are simulated as the honest challenger would in
an execution of H3.

• The i-th KeyGen query by the adversary is handled differently. First, B makes A interact with its own
challenger in an execution of TS.Gen, where the challenger runs TS.GC and A plays the role of T . At
the end, B is given by its challenger the public key pk∗ which is part of its local output (note that B does
not learn the challenger’s secret key share). B computes c∗ ← SE.E(ek, 02k),sends A the couple handle, c∗

and creates a record (c, pk∗).

• After the i-th KeyGenC query, when A asks a SignC query on input m, where A’s first message is c∗,
then B makes A interact with its own challenger in an execution of TS.Sign, at the end of which it returns
to A the challenger’s local output σ. Analogously, PK queries where the first message from A is c∗ are
handled by returning to A the recorded pk∗. All other Sign and PK queries (where c 6= c∗) are simulated
as in H3.

• When A outputs a message m and a list of forgeries (pk1, σ1), . . . , (pkn, σn), then if there exists an index
j such that pkj = pk∗ and Ver(pk∗,m, σj) = 1, then B outputs (m,σj) as a forgery to its challenger;
otherwise B halts without producing any forgery.

Notice that A’s view in this experiment has the same distribution as its view in H3. This is because the
only difference between the two is that in some of the queries by the adversary where c = c∗, B provides
answers to A through its challenger (which implements the algorithms honestly with a state consistent with
what A would expect), and thus this difference does not affect A’s view. Moreover, we have that if the
simulates H3 execution outputs 1 and B guessed the important index i correctly, then B’s output will also
be a valid forgery for TS.ForgeC. Thus we have that Pr[H3(A, 1κ) = 1] ≤ Pr[TS.ForgeCTS

B (1κ) = 1],
which contradicts the unforgeability against the client of the Threshold Signature scheme.

A.3 Proof of Theorem 20

Proof. Let d(κ) be an upper bound on the number of KeyGen queries asked by A. We define the following
hybrids:

• H0: Defined as ExpForgePwdGuess2FSA (1κ)

• H1: Defined from H0, where in addition the experiment is aborted (with a special output GUESSED) if
after step 2 the adversary makes a KeyGen PK or Sign query to T where it sends handle← ROκ(pwd)
to the challenger (either as part of its last message in KeyGen queries or as the first message in PKC

and SignC queries) and pwd is the password sampled by the challenger in step 2.

31

To prove the theorem, it is sufficient to show that for any PPT A there exists a negligible function µ
such that:

|Pr[H0(A, 1κ) = 1]− Pr[H1(A, 1κ) = 1]| < q(κ)

2m(κ)
+ µ(κ) (6)

|Pr[H1(A, 1κ) = 1]| < µ(κ) (7)

We will prove that each condition holds separately.
1. Analogously to the first case of the proof of theorem 19, one can show that (here the security parameter

argument is elided): ∣∣Pr[H0(A) = 1]− Pr[H1(A) = 1]
∣∣ ≤ Pr[H1(A) = GUESSED]

Therefore to prove that equation 1 holds it is enough to show that Pr[H1(A, 1κ) = GUESSED] < q(κ)
2m(κ) +

µ(κ). We will prove that this is the case by leveraging Lemma 5. For any PPT adversary A for H1, let’s
define an adversary B for ExpGuess as follows:
BGuess(·)(1κ) :

• B runs A by simulating for it an execution of H1. When A outputs a distribution PWDS, B forwards such
distribution to its challenger. Moreover, the challenger samples (ek∗, handle∗)← {0, 1}k × {0, 1}κ, which
will be used as the output of the random oracle on input the pwd picked by B’s challenger.

• B simulates the random oracle ROκ by sampling answers to A’s queries uniformly at random and storing
them in a table so that the same query always receives the same answer.

• Whenever A asks a KeyGenC, PKC or SignC query to C, such queries are handled honestly, except
that in order to handle each query, instead of computing (ek, handle) ← ROκ(pwd), B uses the values
sampled in the previous step (as it does not know pwd).

• All queries asked by A to T are handled honestly, except that after step 2 of H0, whenever A submits a
handle to T (either as part of its last message in KeyGen queries or as the first message in PKC and
SignC queries) and there exists a previously asked random oracle query for a password pwd such that
(·, handle) = ROκ(pwd), then B submits pwd as a guess to its Guess oracle: if the response is 1, then B
can halt (and ExpGuess outputs 1); otherwise the simulation continues honestly.

• If A halts (with or without outputting a forgery), then B halts as well (and ExpGuess outputs 0).

Notice that until B halts, the view of A has the same distribution as in H1. The only change in A’s
view is that, instead of computing (ek∗, handle∗) ← ROκ(pwd) (where pwd is the password chosen by the
challenger), B samples such values uniformly at random and independently from pwd. The only way that A
can notice such difference is if it either guesses handle∗ and asks a query to T where it uses such value (which
can happen with at most negligible probability, and we implicitly condition over this event not happening)
or if, after having output PWD (i.e. after step 2 of the original ExpForgePwdGuess experiment), A asks a
random oracle query for pwd and sends the resulting output handle to T as part of a query. However, in this
case, B will halt and win the experiment. Moreover, if the simulated H1 execution outputs GUESSED, then
B will cause ExpGuess to output 1. This proves that Pr[H1(A, 1κ) = GUESSED] < Pr[ExpGuessB(1κ) =
1] + µ(κ) (the µ function accounts for the probability that A guesses handle∗). Moreover, the number of
guesses that B makes to its oracle is upper bounded by the number of interactions with T made by A after

step 2, from which by Lemma 5 we have that Pr[H0(A, 1κ) = GUESSED] < q(κ)
2m(κ) + µ(κ), which is what we

wanted to prove.
2. For any adversary A, if the output of an execution of H1(A, 1κ) is 1, then the forgery (pk′,m′, σ′)

output by the adversary must be such that there is a record (pk, s) in g where pk = pk′ and m 6∈ s. We call
the index i of any such record (i.e. its position in the list g) important for the execution.

32

Assume by contradiction that there exists an adversary A such that Pr[H1(A, 1κ) = 1] is non negligible.
We can use A to build an adversary B which contradicts the unforgeability for C of the underlying Threshold
Signature scheme. Let d(κ) be an upper bound on the number of KeyGen queries asked by A. B works as
follows:
B(1κ) :

• B runs A, simulating for it an execution of H1. First, it samples i ←R {1, . . . , d(κ)}, and its success
probability will depend on such index i being important as defined above. Then it handles queries asked
by A as follows.

• When A outputs a distribution PWD, B samples pwd← PWD and (ek∗, handle∗)← ROκ(pwd).

• All queries to the T and C oracles (of any kind) asked before the i-th KeyGenC query to the C oracle
are simulated as the honest challenger would in an execution of H1.

• The i-th KeyGenC query by the adversary to C is handled differently. First, B interacts with its own
challenger in an execution of TS.Gen where the challenger runs TS.GT and B runs the TS.GC algorithm
honestly. From this interaction, B obtains sk∗C , pk

∗; it returns pk∗ to A and stores the secret key share
sk∗C (note that B does not learn the challenger’s secret key share).

• After the i-th KeyGenC query, all subsequent queries to the T oracle are simulated as in an execution
of H1. In particular, if the adversary interacts with the oracle T and sends it handle∗ (either as part of
the last message in a KeyGenC query or as the first message of a PKC or SignC query), then B halts
and outputs GUESSED.

• SignC and PKC queries to the C oracle asked after the i-th KeyGenC query but before the (i + 1)-th
KeyGenC query are handled as follows. When A asks a SignC query on input m, then B interacts
with its challenger in an execution of TS.Sign on input m (where B runs TS.SC(sk∗C ,m)). From this
interaction, B obtains a signature σ, which it returns to A. Analogously, PKC queries from A are handled
by simply returning pk∗ to A.

All other queries to the C oracle (from the (i+ 1)-th KeyGenC query onwards) are simulated as in H1.

• When A halts and outputs a forgery (pk′,m′, σ′), then if Ver(pk′,m′, σ′) = 1, pk′ = pk∗ and m 6∈ s (where
the i-th record in g is (pk∗, s)), then B outputs m′, σ′ as a forgery and halts; otherwise B halts without
producing any forgery.

Notice that A’s view in this experiment has the same distribution as its view in H1. This is because
the only difference between the two is that in some of the queries to the C oracle, B provides answers to A
through its challenger instead that through an interaction with T. However, since B’s challenger implements
the signature scheme honestly, and A cannot query T on input handle∗, this difference does not affect A’s
view.

Moreover, we have that if the simulated H1 execution outputs 1 and B guessed the index i correctly
(which happens with probability at least 1

d(κ) conditioned on the former event), then B’s output will also be

a valid forgery for TS.ForgeC.
Thus we have that Pr[H3(A, 1κ) = 1] ≤ d(κ) ·Pr[TS.ForgeCTS

B (1κ) = 1], which contradicts the unforge-
ability for the client of the Threshold Signature scheme.

A.4 Proof of Theorem 21

Proof. We prove the theorem through an hybrid argument. Assume by contradiction that there exists a
compliant adversary A that distinguishes between ExpNonSignal2FS,0 and ExpNonSignal2FS,1. Let d(κ)
be a polynomial upper bound on the number of queries asked by A. We define the following hybrids:

• H0: This is the same as ExpNonSignal2FS,0A .

33

• H1,i: For each i = 0, . . . , d(κ), H1,i is similar to H0, with the following modifications. The first d(κ) − i
queries (either KeyGen, PK or Sign) from the adversary are answered by interacting with the circuit
Π as in H0. In addition, for each such KeyGen query by the adversary on input pwd, where A receives
from the challenger as an answer pk, the challenger creates a record (pwd, pk).

All other queries are handled as follows: KeyGen queries for pwd are handled by running (·, ·, pk) ←
TS.Gen(1κ) and returning pk to A (the challenger also creates a record (pwd, pk)). PK queries for pwd
are answered by returning to A the pk from the last (pwd, pk) record created, or ⊥ if no such record exists.
Sign queries for pwd and m are answered by looking up the pk from the last (pwd, pk) record created and
sampling a signature uniformly at random from the set {σ : Ver(pk,m, σ) = 1} (or returning ⊥ if no such
record exists). Note that such sampling requires exponential time. The random oracle is implemented
honestly (by sampling values uniformly and storing them for consistency).

• H2,i: For each i = 0, . . . , d(κ), H2,i is built from H3, with the analogous modifications of H1,d(κ)−i. In
particular, the first i queries (either KeyGen, PK or Sign) from the adversary are answered by interacting
with an honest Token Oracle as in H3 (the challenger keeps the same (pwd, pk) records described in the
previous hybrids). The rest of the queries are simulated either by running the TS.Gen algorithm or by
sampling signatures uniformly at random as in the previous hybrids.

• H3: This is the same as ExpNonSignal2FS,1A .

Since the number of hybrids is polynomial, and A by assumption A distinguishes betweenH0 andH3 with
non negligible probability, then there must exists two consecutive hybrids such that A can distinguish between
them with non negligible probability. First, note that by construction the couples of hybrids H0 = H1,0,
H1,d(κ) = H2,0, H2,d(κ) = H3 are identical. Therefore A must be able to distinguish between H1,i and
H1,i+1 or H2,i and H2,i+1 for some specific i ∈ {1, . . . , d(κ)− 1}. We will show that the first case leads to a
contradiction; the second case is analogous (just substitute Π with an honest token oracle in the reasoning
below, and note that such an honest token implementation never aborts and always returns signatures w.r.t.
the expected public keys, and as such satisfies the restrictions of the Non-Signalling definition).

Note that the view of the adversary, the internal state of the challenger and of the circuit Π have exactly
the same distribution in H1,i, H1,i+1 and ExpNonSignal2FS,1A up to the point where the (d(κ)−i)-th query is
asked by the adversary (but not answered). Consider such a prefix of an execution, we say that such a prefix
is compliant if all the d(κ)− i− 1 interactions (originated from queries by A) between the challenger and Π
that are part of the prefix are compliant (as described in Definition 15) and, moreover, with overwhelming
probability (over the randomness used by the client and any extra randomness which Π might use) given
such prefix the (d(κ)− i)-th interaction will also be compliant

Let us now fix, for each κ, the compliant prefix of the execution pκ which maximizes the distinguishing
probability of the adversary conditioned on such prefix. Since A is compliant, with overwhelming probability
an execution of H1,i+1 will produce a compliant prefix, and so if A distinguishes H1,i from H1,i+1 with non
negligible probability, its success probability must be non negligible even conditioned on such maximizing
prefix. More formally, there must exist a polynomial q such that for infinitely many κ,

|Pr[H1,i(A, 1κ) = 1 | pκ]− Pr[H1,i+1(A, 1κ) = 1 | pκ]| > 1

q(κ)
(8)

Consider the last (i.e. the (d(κ)− i)-th) query in each prefix pκ (note again that such query is asked in
the prefix, but not answered). We will consider different three different cases, depending on the type of such
query. Since the above equation holds for infinitely many κ, there must exist at least one case such that for
infinitely many κ, equation 8 holds and the last query of pκ belongs to such case. We will show that each
case leads to a contradiction.

1. If for infinitely many κ the last query in pκ is a KeyGen query (and equation 8 holds), we will build an
adversary that contradicts the first of the Non-Signalling properties for the Threshold Signature scheme.

34

2. If for infinitely many κ the last query in pκ is a PK queries, or a Sign query on input a password pwd
such that the challenger does not have a (pwd, pk) record, we will contradict the assumption that A is
compliant.

3. If for infinitely many κ the last query in pκ is a Sign query on input a password pwd such that the
challenger does have a (pwd, pk) record, we will build an adversary that contradicts the second of the
Non-Signalling properties for the Threshold Signature scheme.

1. We will first assume that, for infinitely many κ, the (d(κ) − i)-th query the adversary asks in the
prefix considered is a KeyGen query.

To answer such query, in H1,i the challenger will run TS.GT interacting with Π to obtain pk, while in
H1,i+1 it will compute pk by itself through an honest execution of TS.Gen(1κ). In both cases it would
return pk to A. Given this adversary and the maximizing prefix of the execution fixed above, we can build
an adversary B that contradicts the first Non-Signalling property of Threshold Signature scheme. B works
as follows:
B(1κ):

• B outputs Π (in the state it had in the fixed execution prefix pκ), and receives in response a public key
pk.

• It continues running A from the prefix above by answering its (d(κ)− i)-th query with pk.

• All subsequent queries are answered as in hybrid H1,i (or, equivalently, H1,i+1).

• When A halts and outputs a bit b, B outputs the same.

First of all, note that since the prefix of the execution we are considering is compliant, then B’s program
satisfies the condition that Pr[〈·, pk; ·〉 ← 〈TS.GC(1κ); Π〉 : pk 6=⊥] > 1−µ(κ) (i.e., Π’s next interaction with
the challenger will not be compliant with at most negligible probability) and so it will be a valid adversary
for TS.NS1. Moreover, when B is running in TS.NS1TS,0, then A’s view has the same distribution as in
an execution of H1,i (conditioned on pκ), while if the public key B receives is sampled uniformly (as in
TS.NS1TS,1), then A’s view is consistent with H1,i+1. So, if A can distinguish between the two hybrids
(conditioned on pκ) then B can also distinguish between the two distributions with the same advantage: for
infinitely many κ,

1

q(κ)
< |Pr[H1,i(A) = 1 | pκ]− Pr[H1,i+1(A) = 1 | pκ]|

< |Pr[TS.NS12FS,0
B (1κ) = 1]− Pr[TS.NS12FS,1

B (1κ) = 1]|

which contradicts the first of the first Non-Signalling property of the Threshold Signature scheme. Note
that B’s running time is exponential, as it has to sample signatures uniformly at random to answer some
of A’s queries, but this does not affect the validity of our reduction as the Non-Signalling definition for
Threshold Signature schemes holds even against exponential time adversaries.

2. Consider now the case where, for infinitely many κ, the (d(κ)− i)-th query the adversary asks in the
fixed prefix pκ is a PK query, or a Sign query on input a password pwd such that the challenger does not
have a (pwd, pk) record.

For queries (PK and Sign) where the input is a password such that no record exists, A will receive ⊥
as an answer in H1,i+1, so the only way that its view can be different in H1,i is if Π causes the result of
the query to be different from ⊥. Similarly, for PK queries on input pwd where a record (pwd, pk) exists,
in H1,i+1 the adversary will receive as an answer pk (more specifically, the one from the latest such record
created), so the only way that A’s view can be different in H1,i is if Π causes the result of the query to be a
pk different from pk (or ⊥). However, in this were to happen with more than negligible probability, it would
imply that pκ is not compliant, which is a contradiction.

35

3. Finally, consider the case where the (d(κ) − i)-th query the adversary asks in the fixed prefix is a
signature query for pwd, and let (pwd, pk) be the most recent record for pwd that the challenger created.

To answer such query, inH1,i+1 the challenger will sample a signature at random from the set {σ : Ver(pk,
m, σ) = 1}. Instead, in H1,i the challenger will compute ek, handle ← ROκ(pwd), send handle to Π (as
part of a Sign query), decrypt the ciphertext received in return to obtain a key share skC , and (assuming Π
does send a ciphertext and decryption succeeds) run TS.SC(skC ,m) interacting with Π to obtain σ, which
is returned to A as an answer to the query.

With a reasoning analogous to case 2, we can conclude that Π will abort before sending a ciphertext or
decryption will fail with at most negligible probability (otherwise pκ would not be compliant). Therefore,
with a reasoning analogous to the one at the beginning of the proof, we can consider all the possible extensions
p′κ of the prefix pκ up to the point where Π returns a ciphertext c to the challenger, and pick the compliant
one which again maximizes the success probability of the adversary. It has to be that:

1

q(κ)
< |Pr[H1,i(A) = 1 | pκ]− Pr[H1,i+1(A) = 1 | pκ]| <

|Pr[H1,i(A, 1κ) = 1 | p′k]− Pr[H1,i+1(A, 1κ) = 1 | p′k]|

Since this new extended prefix is compliant, it must be that in such prefix the challenger successfully
decrypts c and recovers a secret key skC .

Given A and p′κ, analogously as in case 1, we can build an adversary B that contradicts the second
Non-Signalling property of Threshold Signature scheme. B works as follows:
B(1κ):

• B outputs skC ,m and Π (in the state it had in p′κ), and receives in response a signature σ.

• It continues running A from the prefix above by answering its (d(κ)− i)-th query with σ.

• All subsequent queries are answered as in hybrid H1,i (or, equivalently, H1,i+1).

• When A halts and outputs a bit b, B outputs the same.

Note that since the prefix p′κ is compliant, then B’s program satisfies Pr[〈σ; ·〉 ← 〈TS.SC(1κ); Π〉 :
Ver(pk,m, σ) = 1] > 1− µ(κ) (i.e., it satisfies the restrictions of TS.NS2). Moreover, when B is running in
TS.NS22FS,0, then A’s view has the same distribution as in an execution of H1,i (conditioned on p′κ), while
if B receives a signature sampled at random (as in TS.NS22FS,1), then A’s view is consistent with H2,i+1.
So, if A can distinguish between the two hybrids then B can also distinguish between the two distributions
with the same advantage, which is a contradiction. Again, B’s running time might be exponential, but the
definition of Non-Signalling holds even against exponential time adversaries.

A.5 Proof of Theorem 22

Proof. We prove the theorem through an hybrid argument. We define the following hybrids:

• H0: Defined as ExpForgeTokMan2FS
A (1κ)

• H1: Defined from H0 but where to answer A’s queries, instead of interacting with Π, the challenger
interacts with an honestly implemented token oracle T .

To prove the theorem, it is sufficient to show that for any PPT A there exists a negligible function µ
such that:

|Pr[H0(A, 1κ) = 1]− Pr[H1(A, 1κ) = 1]| < µ(κ) (9)

|Pr[H1(A, 1κ) = 1]| < µ(κ) (10)

36

We will prove that each condition holds separately.
1. Since Threshold Signature scheme is Non-Signalling, by Theorem 21 we have that the Two Factor

Signature scheme construction is also Non-Signalling. Assume by contradiction that there exists an adversary
A such that Pr[H0(A, 1κ) = 1] − Pr[H1(A, 1κ) = 1]| is non negligible. We can use A to build an adversary
B which contradicts the Non-Signalling property of the Two Factor Signature scheme. B works as follows:
B(1κ) :

• B runs A by simulating for it an execution of H0. When A outputs a circuit Π, B forwards such program
to its own challenger. Then, all queries by A are handled by forwarding such queries to its own challenger
and returning to A the challenger’s response.

• When A halts, B computes and outputs the output that H0 would have in the simulated execution.
In other words, B outputs 1 if the adversary outputs a forgery which would make H0 output 1, and 0
otherwise.

Note that if A is compliant for ExpForgeTokMan, then B is also compliant for ExpNonSignal as both
A and B output programs with the same distribution and make the same queries. Moreover, if B is running
in an execution ExpNonSignal2FS,0 (resp. ExpNonSignal2FS,1), then A’s view has the same distribution
as in H0 (resp. H1).

Therefore Pr[H0(A, 1κ) = 1]−Pr[H1(A, 1κ) = 1]| < |Pr[ExpNonSignal2FS,0B (1κ) = 1]−Pr[ExpNonSignal2FS,1A (1κ) =
1]| which contradicts the Non-Signalling property of 2FS.

2. This reduction is similar to the proof of Theorem 18.
During an execution of the H1, we say that the forgery (pk′,m′, σ′) (produced by the adversary at the

end of the experiment) is associated with the i-th KeyGen query if pk′ is equal to the public key returned
to the adversary during such KeyGen query.

Assume by contradiction that there exists an adversary A such that Pr[H1(A, 1κ) = 1] is non negligible.
We can use A to build an adversary B which contradicts the unforgeability for C of the underlying Threshold
Signature scheme. Let d(κ) be an upper bound on the number of KeyGen queries asked by A. B works as
follows:
B(1κ) :

• B runs A, simulating for it an execution of H1. First, it samples i ←R {1, . . . , d(κ)}, and its success
probability will depend on the forgery output by A being associated with the i-th KeyGen query in the
simulated execution. Then it handles queries by A as follows.

• All queries (of any kind) before the i-th KeyGen query are simulated as in H1, i.e. by using ⊥ as
the initial state for a token oracle T and responding to A’s queries by executing the honest algorithms
interacting with T (and updating T’s state as a result of KeyGen queries).

• The i-th KeyGen query by the adversary is handled differently. Let pwd∗ be the password which A
supplies as input for this query. First, B interacts with its own challenger in an execution of TS.Gen,
where the challenger runs TS.GT and B plays the role of C, and obtains sk∗C , pk

∗ as output. B stores
pwd∗, sk∗C , pk

∗ and returns pk∗ to A.

• After the i-th KeyGen query, when A asks a Sign query on input the same password pwd∗ from the
previous step and any message m, then B asks its challenger for a Sign query for m, where B executes
TS.SC(sk∗C ,m) and the challenger plays the role of T . As a result, B obtains a signature which is returned
to A. Analogously, PK queries on input pwd∗ are handled by returning to A the recorded pk∗. All other
Sign and PK queries (where pwd 6= pwd∗) are simulated honestly. KeyGen queries are also simulated
honestly. In addition, if after the i-th KeyGen query A asks another KeyGen query using the recorded
pwd∗ as input, then B continues by simulating all subsequent queries honestly (using the token oracle T
instead of its challenger), including the ones for pwd∗.

• When A outputs a forgery (pk′,m′, σ′), then if pk′ = pk∗, B outputs (m′, σ′) as a forgery to its challenger;
otherwise B halts without producing any forgery.

37

Notice that A’s view in this experiment has the same distribution as its view in H1. This is because
the only difference between the two is that in some of the queries by the adversary where pwd = pwd∗, B
provides answers to A by interacting with its challenger instead of with the T oracle; since both implement
the algorithms honestly and using uniform randomness, this difference does not affect A’s view.

Moreover, we have that if the simulated H1 execution outputs 1 and B guessed the index i correctly
(which happens with probability 1

d(κ) conditioned on the former event), then B’s output will also be a valid

forgery for TS.ForgeC (since (pk′,m′) 6∈ s for H1, then B must have never queried his challenger on input
m′).

Thus we have that Pr[ExpForgeC2FS
A (1κ) = 1] ≤ d(κ) · Pr[TS.ForgeCTS

B (1κ) = 1], which contradicts
the unforgeability against the client of the Threshold Signature scheme.

A.6 Proof of Theorem 27

The proof is structured as an hybrid argument. Starting from an execution of ExpUnlinkΠ,bP ,bT , we can
introduce a first hybrid where the experiment is aborted if the adversary sends to any of the tokens a handle
derived as a hash of one of the two passwords sampled by the challenger. The probability of A noticing this

difference can be bounded by 2q(κ)
2m(κ) (which bounds the probability that A can guess one of the passwords)

through a reduction to Lemma 6. Then, we notice that in this hybrid the view of the adversary does not
depend on any of the two bits bP , bT , and so we can switch to an hybrid where we use b′P , b

′
T instead,

and finally to an hybrid where we remove the abort condition (the adversary also has at most an at most
2q(κ)
2m(κ) chance of distinguishing here). The last hybrid is a standard execution of ExpUnlinkΠ,b′P ,b

′
T , so the

advantage of the adversary can be bounded by 2 · 2q(κ)
2m(κ) (plus a negligible amount due to possible collisions

in the random oracle).

Proof. We prove the theorem through an hybrid argument. Let bP , bT , b
′
P , b
′
T be any 4 bits, with both

(bP , bT) 6= (0, 0) and (b′P , b
′
T) 6= (0, 0). We define the following hybrids:

• H0: Defined as ExpUnlinkΠ,bP ,bT
A (1κ)

• H1: Defined from H0, where in addition the experiment is aborted (with a special output GUESSED) if
the adversary, during any interaction with any of the two tokens, sends them a handle which is equal to
the second half of the answer A received from querying the random oracle on either pwd0 or pwd1 (i.e.
(·, handle) = ROκ(pwd0) or (·, handle) = ROκ(pwd1)), where pwd0, pwd1 are the two passwords sampled
by the challenger in step 2.

• H2: Defined from H3, where we add the same abort condition of H1.

• H3: Defined as ExpUnlink
Π,b′P ,b

′
T

A (1κ)

To prove the theorem, it is sufficient to show that for any PPT A there exists a negligible function µ
such that:

|Pr[H0(A, 1κ) = 1]− Pr[H1(A, 1κ) = 1]| < 2q(κ)

2m(κ)
+ µ(κ) (11)

|Pr[H1(A, 1κ) = 1]− Pr[H2(A, 1κ) = 1]| < µ(κ) (12)

|Pr[H2(A, 1κ) = 1]− Pr[H3(A, 1κ) = 1]| < 2q(κ)

2m(κ)
+ µ(κ) (13)

We will prove the first and second conditions separately; the proof of the third one is analogous to the first
one (it is enough to substitute b′P , b

′
T for bP , bT) and thus is omitted.

38

1. Analogously to the first case of the proof of theorem 19, one can show that∣∣Pr[H0(A, 1κ) = 1]− Pr[H1(A, 1κ) = 1]
∣∣ ≤ Pr[H1(A, 1κ) = GUESSED] (14)

Therefore to prove that equation 1 holds it is enough to show that Pr[H1(A, 1κ) = GUESSED] < 2q(κ)
2m(κ) +

µ(κ). We will prove that this is the case by leveraging Lemma 6. For any PPT adversary A for H1, let’s
define an adversary B for ExpGuessTwo as follows:
BGuess(·)(1κ) :

• B runs A by simulating for it an execution of H1. All initial queries from step 1 are answered as the
honest challenger would. B also simulates for A the random oracle ROκ by sampling answers to A’s
queries uniformly at random and storing them in a table so that the same query always receives the same
answer.

• When A outputs a distribution PWDS, B forwards such distribution to its challenger. It then samples
(skαC , sk

α
T , pk

α) ← TS.Gen(1κ) and (skβC , sk
β
T , pk

β) ← TS.Gen(1κ) and returns pkα, pkβ to A. From
this point on, signing queries for Oα and Oβ are computed by using the corresponding secret keys. All
subsequent queries to T0, T1 are still simulated as the honest challenger would, but with the following
modification: whenever A sends to one of the token oracles a handle (as part of any KeyGen, PK or
Sign query), the challenger checks if the adversary has made a random oracle query for some pwd such
that ROκ(pwd) = (·, handle). If so, it submits such pwd as a query to its Guess oracle: if the response
is 1, then B can halt (and ExpGuessTwo outputs 1); otherwise the simulation continues.

• If A halts (with or without outputting a bit), then B halts as well (and ExpGuessTwo outputs 0).

Notice that until B halts, the distribution of the view of A is statistically close to the distribution of its
view in H1. Indeed, the only difference between the two distributions is that in this experiment, instead
of computing pkα by interacting with T0 and pkβ by interacting with TbT as in H1, B samples them at
random on its own. Moreover, signatures returned by Oα and Oβ are also computed by the challenger
without using the oracles T0,TbT . However, since in any execution of H1, since (bP , bT) 6= (0, 0) and PWDS

is such that pwd0 6= pwd1, we have that (pwd0, b0) 6= (pwdbP , bT). This means that, unless ROκ(pwd0)
and ROκ(pwd1) output the same handle, which happens with negligible probability, then pkα and pkβ
are also independently generated and similarly Oα and Oβ will return valid signatures7 w.r.t. pkα, pkβ in
any execution of H1. Since public keys and oracle answers in the two cases have distributions which are
statistically close (identical except for the probability of a random oracle collision), then the only way that
A could notice that the state of such T oracles is inconsistent with pkα, pkβ is by interacting with one
such T oracle on input pwd0 or pwd1 and sending them a handle computed as (·, handle) ← ROκ(pwd0)
or (·, handle) ← ROκ(pwd1). In this case, though, B would halt and ExpGuessTwo would output 1.
This proves that Pr[H1(A, 1κ) = GUESSED] < Pr[ExpGuessTwoB(1κ) = 1] + µ(κ) (where the negligible
factor accounts for possible random oracle collisions). Moreover, the number of guesses that B makes to
its oracle is upper bounded by the number of interactions between A and the two T oracles after step 2
(A can only send one handle per interaction with such oracles), from which by Lemma 6 we have that

Pr[H0(A, 1κ) = GUESSED] < 2q(κ)
2m(κ) + µ(κ), which is what we wanted to prove.

2. A similar reasoning as in the end of the previous case shows that, if we condition on the absence of
random oracle collisions, then the view of the adversary in the two hybrids is actually identical. pkα and
pkβ are sampled independently in both experiments, and if there are no collisions in the random oracle then
the answers of Oα and Oβ will be consistent with such public keys respectively. So the only way in which
A’s view might differ is if he was able to query one of the T oracles on one of the two passwords picked
by the challenger, but in this case both experiments would be aborted. This proves that H1 and H2 are
statistically close.

7Otherwise, if for example (bP , bT) = (0, 0), in H0 the challenger would be interacting twice with T0 on input the same
password (which would mean that the information related to pkα would be overwritten and never used to produce any signatures,
so all subsequent Signing queries produced by both Oα and Oβ would verify with respect to pkβ . A similar situation could
happen even in the case where (bP , bT) = (1, 0) if ROκ(pwd0) = ROκ(pwd1), but since we enforce that pwd0 6= pwd1 the
above collision can happen with at most negligible probability.

39

	Introduction
	Technical overview
	Additional Properties
	Related Work
	Organization of the paper

	Preliminaries and Notation
	Symmetric encryption
	Min Entropy

	Threshold Signature scheme
	Two Factor Signature Schemes
	Constructing a Two Factor Signature Scheme
	Constructions of Non-Signalling TS
	A Schnorr-based TFS
	An ECDSA-based TFS
	Setup
	ECDSA Signing protocol

	The Unlinkability property
	Deferred proofs
	Proof of Theorem 18
	Proof of Theorem 19
	Proof of Theorem 20
	Proof of Theorem 21
	Proof of Theorem 22
	Proof of Theorem 27

