
IEEE TRANSACTIONS ON COMPUTERS 1

Efficient Implementations of Reduced
Precision Redundancy (RPR) Multiply and

Accumulate (MAC)
Ke Chen, Linbin Chen, Pedro Reviriego, and Fabrizio Lombardi

Abstract— Multiply and Accumulate (MAC) is one of the most common operations in modern computing systems. It is for example
used in matrix multiplication and in new computational environments such as those executed on neural networks for deep machine
learning. MAC is also used in critical systems that must operate reliably such as object recognition for vehicles. Therefore, MAC
implementations must be able to cope with errors that may be caused for example by radiation. A common scheme to deal with
soft errors in arithmetic circuits is the use of Reduced Precision Redundancy (RPR). RPR instead of replicating the entire circuit,
uses reduced precision copies which significantly reduce the overhead while still being able to correct the largest errors. This
paper considers the implementation of RPR Multiply and Accumulate circuits. First, it is shown that the properties of signed integer
multiplication (two´s complement format) can be used to make RPR more efficient. Then its principles are extended to the MAC
operation by proposing RPR implementations that improve the error correction capabilities with a limited impact on circuit
overhead. The proposed schemes have been implemented and tested. The results show that they can significantly reduce the
Mean Square Error (MSE) at the output when the circuit is affected by a soft error and the implementation overhead of the
proposed schemes is extremely low.

Index Terms— Soft errors, Multiply and Accumulate, Reduced Precision Redundancy

——————————  ——————————

1 INTRODUCTION
ULTIPLY and Accumulate (MAC, also known as
multiply and add) is one of the most commonly used

operations in computing systems. It is for example, the key
element of matrix multiplication [1] [2] and it is also used
in new algorithms like Deep Learning Neural Networks
(DNNs) [3]. In [4] stochastic computation has been pro-
posed for implementing artificial neural networks with re-
duced hardware and power consumption, while retaining
in most cases the required accuracy and still improving the
processing speed. MAC is extensively used in digital sig-
nal processing [5],[6] and its fused implementation has
been extensively analyzed as part of the floating point
IEEE 754 Standard [7].

Matrix multiplication (MM) has a high complexity due
to the large number of required multiplication and addi-
tion operations; however, its computational regularity can
be exploited using a systolic array. Different approximate
schemes have been presented in [8]. Inexact full adder cells
are utilized in a MAC-based processing element (PE) for
the Baugh-Wooley multiplier and/or the final adder as cir-
cuits implementing the two computational steps required
for matrix multiplication using an integer format. In [9], an
approximate design has been proposed for the Discrete
Cosine Transform (DCT) using signed integers in the trans-
formation matrix. The DCT processing is used for image
convolution on a pixel basis of an image by employing

multiple approximate circuit and algorithm-level tech-
niques such as truncation and voltage scaling. The integer
version of MAC is widely used for example, in image pro-
cessing.

In many applications, MAC operations are part of a sys-
tem that needs to operate reliably, like for example cloud
computing infrastructure or vehicle security systems [3]. In
those cases, the implementations must be able to detect and
correct errors to ensure that they do not cause any major fail-
ure. There are many types of error that can affect electronic
circuits including manufacturing defects, ageing, electro-
magnetic disturbances and radiation induced soft errors
[10]. In particular, soft errors caused by radiation are chal-
lenging because they cannot be avoided or detected in ad-
vance as it is the case with manufacturing defects or ageing
[11]. A soft error typically changes the value of a circuit node
and thus can produce an incorrect result for the MAC oper-
ation.

There are many techniques to protect a design against
soft errors. Probably, the most common one is the use of rep-
lication in the form of Dual Modular Redundancy (DMR) to
detect errors or Triple Modular Redundancy (TMR) to cor-
rect them [11]. A major issue of modular redundancy is its
implementation cost. For example, TMR requires circuit
area and power of more than three times that of the unpro-
tected design. TMR has also been utilized in a stochastic
computational multi-layer perceptron design for neural net-
works by relying on backward propagation. In [4], a TMR-
based probability estimator and divider are employed. By
utilizing a TMR voting structure in the processing element
and divider, the error due to stochastic fluctuations in the
binary search process for training purposes is significantly

xxxx-xxxx/0x/$xx.00 © 2018 IEEE Published by the IEEE Computer Society

————————————————
• K. Chen, L. Chen and F. Lombardi are with Northeastern University, Dept.

of ECE, Boston Ma 02115, USA (email: chen.ke1@husky.neu.edu,
linbin.c@gmail.com, lombardi@ece.neu.edu).

• P. Reviriego was with Universidad Antonio de Nebrija at the time of writ-
ing this paper. He is currently with Universidad Carlos III de Madrid, Av.
Universidad 30, Leganes, Madrid, Spain (email: revirieg@it.uc3m.es).

M

2 IEEE TRANSACTIONS ON COMPUTERS

reduced. As a result, the latency and energy consumption
are also reduced. The analysis in [4] has confirmed that TMR
will be required also for machine learning and the new com-
putational systems required for its execution.

For some arithmetic circuits, their properties can be used
to reduce the protection cost. In the case of multipliers, for
example residue codes [12] and parity prediction [13] have
been used to provide an efficient protection. In both cases,
the protection targets error detection, by checking the mod-
ulo of the output in the first case or its parity in the second
case. To implement correction, two copies of the multiplier
would be needed using the residue or parity checking to
identify the correct one when they are different. This means
that a cost that is still larger than twice the unprotected mul-
tiplier is needed.

 An alternative to complete redundancy such as triplica-
tion or duplication is to use Reduced Precision Redundancy
(RPR) [14],[15]. RPR uses a full precision version of the cir-
cuit and two reduced precision ones with an implementa-
tion of a voting logic to correct errors. This significantly low-
ers the overhead because the reduced precision copies are
significantly smaller than the full precision implementation.
The price to pay is that small errors cannot be corrected be-
cause the reduced precision may induce small differences in
output values that are difficult to discriminate. This how-
ever is not a problem for many applications in which most
failures are due to large errors. In fact, it has been recently
shown that the same reasoning can also apply to new cir-
cuits like for example Deep Learning Neural Networks
(DNNs) [3] for training purposes.

Another issue when RPR is used for simple structures is
that the voting logic is significantly more complex than for
TMR [16]. This occurs because the difference between the
full precision and reduced precision copies needs to be com-
puted and compared to a threshold. Therefore, a subtraction
and comparison are needed. This logic may be as complex
as some operations, for example addition. The optimization
of RPR for addition has been explored in [17] in which it was
shown that the voting logic could be simplified for adders.

In this work, we consider different RPR implementations
of integer Multiply and Accumulate/Add (MAC) in two´s
complement (signed) format. We first analyze signed mul-
tiplication to show that it is possible to optimize the RPR im-
plementation. This is done by exploiting the dependence of
the truncation error on the sign of the operands. In a second
part, this technique is extended to the MAC operation using
different schemes. To evaluate the benefits of the proposed
schemes, both multipliers and MAC operations have been
implemented and tested. The results show that the pro-
posed schemes can improve the error correction capabilities
of RPR for a given truncation, while requiring a low over-
head in terms of implementation. Alternatively, the schemes
could be used to increase the truncation and thus reduce the
implementation cost while preserving the error detection ca-
pability.

The rest of the paper is organized as follows: section 2
provides a brief overview of RPR. The proposed schemes for
multiplication and MAC are presented in section 3 and eval-
uated in section 4. The application of the proposed schemes
to DCT processing is presented in section 5. The paper ends

with the conclusion and future work in section 6.

2 REDUCED PRECISION REDUNDANCY
This section gives a brief overview of reduced precision re-
dundancy in multipliers and multiply accumulate opera-
tions. For more details on this topic, the reader is referred
to [15],[16].

2.1 Multiplication
A traditional Implementation of a Reduced Precision Re-
dundant (RPR) multiplier is shown in Figure 1. It can be
seen, that in addition to the original full precision multi-
plier, two redundant copies with reduced precision are
used [15]. The simplest way to reduce the precision is to
truncate the inputs by removing the least significant bits.
The logic to detect and correct errors computes the differ-
ence between the full precision output and one of the re-
duced precision copies. If that difference is larger than a
given threshold, it is assumed that an error has occurred.

To locate the error, the outputs of the two reduced pre-
cision copies are compared. If they are different, an error
has occurred in the redundant copies. However, if they are
equal, the error has affected the full precision multiplier.

Let us consider a signed integer multiplier with N-bit in-
puts and reduced precision ones with N-K bit inputs. Then,
the output of the main multiplier can take values in the
range between -2(2N-1) and 2(2N-1)-1. If the operands are a and
b, the output of the reduced precision multipliers can be ex-
pressed as:

𝑎𝑎𝑟𝑟 ∙ 𝑏𝑏𝑟𝑟 = (𝑎𝑎 + 𝑎𝑎𝑡𝑡) ∙ (𝑏𝑏 + 𝑏𝑏𝑡𝑡) = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑎𝑎𝑡𝑡 ∙ 𝑏𝑏 + 𝑏𝑏𝑡𝑡 ∙ 𝑎𝑎 + 𝑎𝑎𝑡𝑡 ∙ 𝑏𝑏𝑡𝑡

where at and bt are the errors introduced when K bits are
truncated that can take values in the range -2K+1 to 0. An
interesting observation is that in two´s complement format,
truncation can only produce negative errors.

The difference between the outputs of the full and re-
duced precision multipliers is given by:

𝑎𝑎 ∙ 𝑏𝑏 − 𝑎𝑎𝑟𝑟 ∙ 𝑏𝑏𝑟𝑟 = −(𝑎𝑎𝑡𝑡 ∙ 𝑏𝑏 + 𝑏𝑏𝑡𝑡 ∙ 𝑎𝑎 + 𝑎𝑎𝑡𝑡 ∙ 𝑏𝑏𝑡𝑡)

Since both at and bt are negative, the largest errors (in
magnitude) occur when a and b have the same sign and are
large (the maximum values in magnitude are -2N-1 and 2N-1-
1). For negative values, the largest error occurs when a = b =
-2N-1+2K -1, and its magnitude can be computed to be:

2𝑁𝑁+𝐾𝐾 − 2𝑁𝑁−22𝐾𝐾 + 2𝐾𝐾+1 − 1

which can be approximated by 2N+K that it is also an upper
bound.

Similarly, for positive values of a and b the largest error
in magnitude would be:

2𝑁𝑁+𝐾𝐾 − 2𝑁𝑁−22𝐾𝐾 + 1

which can also be approximated also by 2N+K that is also an
upper bound. Therefore, 2N+K can be used as the threshold
to determine if a soft error has affected the full precision
multiplier for practical truncation levels.

An alternative approach to determine the threshold to
use is to simulate the RPR multiplier in an error free condi-

tion and measure for different threshold values the percent-
age of times that the RP output is selected. This is typically
known as the inexact ratio. Then the lowest value that
achieves an inexact ratio of zero can be selected. This will be
further discussed in the evaluation section.

The implementation of the RPR multiplier just discussed,
does not take into account the dependence of the difference
between the full and reduced precision multipliers on the
input values. However, this feature could be exploited to
implement a more efficient RPR scheme as done for adders
in [17]. In the next sections, some novel schemes that exploit
this feature, are presented.

Full Precision
Multiplier

Reduced
Precision
Multiplier

Trun

Substract
Com

parea

b

Reduced
Precision
Multiplier

Trun

a

b

a

b

Threshold

AND
0 M

U
X 1

equal

Result

Com
pare

For the MAC operation, the reduced precision redundancy
can be implemented in different ways. One option could
be to use a RPR multiplier followed by a RPR adder. This
two-stage configuration is shown in Figure 2. An alterna-
tive is to perform a full precision MAC and two reduced
precision ones and then implement the voting logic for the
MAC operation. This one stage approach is illustrated in
Figure 3. This second option reduces the voting logic and
thus seems more attractive to reduce the implementation
cost and also increase the speed of the MAC operation. In
the remaining part of the paper, we focus on the one stage
RPR implementation.

In the single stage implementation, the difference be-

tween the full precision and the reduced precision imple-
mentations can be larger because errors in the multiplication
and addition may accumulate. In more detail, in our imple-
mentation, the output of the reduced precision multiplier

has 2 (N-K)-1 bits and the full precision one has 2 N-1 bits.
Therefore, 2 K bits are truncated in s before the addition and
introducing an error in the range -22 K+1 to 0. It can be seen
that the truncation error in the addition is smaller than in the
multiplication where it could reach values close to 2N+K as
discussed before. In particular, if the worst case error in the
addition is added to the worst case error in multiplication,
we get the largest error in magnitude for the MAC that is: (2 1) + 2 2 2 + 2 1 = 2 2 + 2 2
which is still upper bounded by 2N+K.

Full Precision
Multiplier

Reduced
Precision
Multiplier

Trun

a

b

Reduced
Precision
Multiplier

Trun
a

b

a

b

Voting Logic

F

R1

equal

a*b+s

Full Precision
Adder

Reduced
Precision

Adder

s

Reduced
Precision

Adder

s

s

Trun
Trun

Next, the proposed reduced precision redundant multipli-
cations and multiply and accumulate implementations are
presented. In both cases, the relationship between the signs
of the operands and the difference between the full and re-
duced precision operations are exploited to improve the
accuracy of the voting logic.

The proposed scheme is based on the observation that for
signed integers in two’s complement format, the trunca-
tion error in a multiplication depends on the sign of the
operands. This is clearly seen by remembering that trunca-
tion errors in two´s complement can only be negative and
looking at the expression of the truncation error:

 = (+ +)

When the two operands (a and b) have the same sign,
the errors introduced by truncation add. However, when
the operands have different signs, errors will compensate.
Therefore, the difference between the full precision and the
reduced precision copies will be larger in the first case.
This can be exploited by using different thresholds de-
pending on the sign of the operands.

In more detail, the magnitude of the largest error when
operands have different signs occurs when one operand
takes the maximum (in magnitude) value and its trunca-
tion error is zero, while the truncation error for the other
operand is maximum (to minimize the compensation). For
a negative value, this would be: (2 + 1) (2) 2
and a similar error is obtained for a positive value. This is
half the worst case error seen for the general case in the

4 IEEE TRANSACTIONS ON COMPUTERS

previous section. Therefore, when the signs are different,
one option would be to use a threshold that is half the
value of the general threshold.

A second improvement can be made when both oper-
ands have the same sign, as then, the difference between
the full precision results and the reduced precision results
can only have one sign. For example, if both are positive,
the difference can only be positive. This means that we can
check the sign to detect errors. For example, a negative dif-
ference when the operands are both positive is not possible
in an error free situation and means that an error has af-
fected the circuit. This enables the detection of errors that
would go undetected in the traditional implementation.

The proposed RPR multiplier that incorporates both im-
provements is shown in Figure 4. It can be seen that the
threshold is divided by two when the signs of the operands
are different (the output of the XOR is one). In that case, the
maximum error due to truncation is also smaller. Addition-
ally, when the signs of the operands are the same and the
difference between the full and reduced precision multipli-
ers has also the opposite sign, an error is detected. This is
because truncation should produce a difference of the same
sign. Therefore, a difference of the opposite sign can only be
due to an error. In those cases, if the two reduced precision
copies generate the same result, then the error has occurred
in the full precision multiplier and the output from the re-
duced precision ones should be used.

Full Precision
Multiplier

Reduced
Precision
Multiplier

Trun

Substract
Com

parea

b

Reduced
Precision
Multiplier

Trun

a

b

a

b
0 M

U
X 1

Com
pare

Threshold

Threshold/2

diff
XO

R

Sign a
Sign b

N
OR

Sign a
Sign b

Sign diff

AND

Sign a
Sign b

Sign diff

O
R

AND

0 M
U

X 1

equal

Result

Final
Threshold

Figure 4. Proposed Reduced Precision Redundancy for a Multiplier

3.2 Multiplication and Accumulate
In the case of MAC, the design can be further improved by
compensating the truncation error of the multiplication
with the adder. The flowchart of the proposed optimiza-
tions for the MAC operation is shown in Figure 5. It can be
seen that the sign of the operands is exploited to reduce the
error both in the multiplication (left) and addition (right).
This new scheme is illustrated in Figure 6; the carry-in sig-
nal of the adder is set based on the sign of the multiplica-
tion operands. So, when the operands are positive, trunca-
tion in the multiplication will introduce a positive error;

thus setting the carry-in of the adder to one will introduce
an error of opposite sign such that both errors will tend to
compensate. This means that the worst case error for posi-
tive operands will be slightly smaller.

Set threshold
carry in to zero

Sign a = Sign b

Yes

No

1) Set threshold to default value
2) Detect as error differences of
the opposite sign as operands

 Both a,b
positive

Yes

No

Set carry in to one

Multiplication Addition

Set threshold to
½ of the default

value

Figure 5. Flow chart of the proposed optimizations for MAC. Multiplication
(left), Addition (right)

4 EVALUATION
To evaluate the proposed schemes, first the thresholds
used for detecting errors have been verified by simulation.
Then both the soft error tolerance and the implementation
cost have been analyzed. To that end, the proposed
schemes have been implemented in HDL and mapped to
the FreePDK 45nm library.

4.1 Threshold Configuration
The thresholds used for error detection are those obtained
in the analysis presented in section 2 and section 3 for the
traditional and proposed implementations respectively.
More precisely, 2N+K in the first case and 2N+K-1 in the second
case when operands have different signs and 2N+K with
sign checking when they have the same sign.

To check that those values are indeed correct, simula-
tions have been done with different thresholds for voting
and a variable referred to as the inexact ratio is measured.
The inexact ratio is defined as the fraction of cases for
which the output is taken from the reduced precision ver-
sion in an error free condition. As an example, the inexact
ratio versus the threshold value for N=16 is illustrated in
Figure 7. It can be seen that there is one threshold value
(referred to as critical) from which the inexact ratio be-
comes zero both for a traditional RPR multiplier and for
the proposed scheme. In this case, this value is 220. The
same simulations have been done for other word widths
(N) and truncation levels (K) and the results are shown in
Table 1. It can be seen that in all cases, the values obtained
are given by 2N+K which was the value obtained in the pre-
vious sections by analyzing the worst case error due to
truncation (in the proposed scheme, that threshold is di-
vided by two when operands have different signs). In the
rest of the simulations, the threshold values given in Table
1 are used. The values obtained for the MAC operation
were the same.

 5

Full Precision
Multiplier

Reduced
Precision
Multiplier

Trun

Substract
Com

pare
a

b

Reduced
Precision
Multiplier

Trun

a

b

a

b

0 M
U

X 1

Com
pare

Threshold

Threshold/2

diff

XO
R

Sign a
Sign b

N
OR

Sign a
Sign b

Sign diff

AND

Sign a
Sign b

Sign diff

O
R

AND

0 M
U

X 1

equal

a*b +s

Final
Threshold

Reduced
Precision

Adder

s

cin

Reduced
Precision

Adder

s

cin

Full Precision
Adder

s

N
OR

Sign a
Sign b

cin

Trun
Trun

Figure 6. Proposed Reduced Precision Redundancy for Multiply and Accumulate

TABLE 1CRITICAL THRESHOLD FOR DIFFERENT WORD WIDTHS AND
TRUNCATION LEVELS

 K=2 K=4 K=8 K=12 K=16
N=16 218 220 224 - -
N=24 226 228 232 236 -
N=32 234 236 240 244 248

4.2 Soft Error Tolerance
To evaluate the impact of soft errors on the traditional and
the proposed RPR schemes, random errors that are uni-
formly distributed have been injected in both implementa-
tions. Then, the square error has been measured. The Mean
Square Error (MSE) across all injections is used to compare
the implementations. The MSE ratios between the pro-
posed multiplier and the traditional RPR multiplier are
presented in Figure 8 when the number of bits is 16, 24 and

32. It can be seen that the ratio is in the 0.4 to 0.6 range.
Therefore, the proposed scheme can reduce the MSE by 40
to 60 per cent. The reductions are larger for smaller word
widths and they also improve as truncation increases. The
results for the MAC operation are shown in Figure 9. It can
be observed that they are very similar to those of the mul-
tiplier. One reason for this phenomenon is that the proba-
bility of the multiplier experiencing a soft error is signifi-
cantly larger than the probability of an adder experiencing
a soft error due to the complexity difference between these
two arithmetic circuits. Another reason is that the trunca-
tion in the multiplication tends to dominate the error.

Figure 7. Inexact ratio versus threshold for a 16-bit multiplier protected with two redundant ones of 12 bits

6 IEEE TRANSACTIONS ON COMPUTERS

Figure 8. Ratio of the Mean Square Error (MSE) with soft error of a RPR multiplier protected with the proposed scheme versus a traditional RPR multiplier

Figure 9. Ratio of the Mean Square Error (MSE) with soft error of a RPR MAC protected with the proposed scheme versus a traditional RPR MAC

4.3 Implementation cost
The area, delay, power and PDP of the RPR multipliers an-
alyzed in the previous subsection are plotted in Figure 10
through Figure 13. It can be observed that the delay does
not decrease significantly by increasing K. The proposed
RPR multiplier design is slightly slower than the tradi-
tional RPR multiplier design. However, the power and
area decrease rapidly with increasing K. The difference be-
tween the proposed and traditional RPR multiplier designs
is negligible as expected, because the proposed RPR mul-
tiplier design just has a few more gates than the traditional
RPR multiplier design. The PDP difference of the proposed
and traditional RPR multiplier designs is also marginal. In
summary, the overall delay and hardware cost of the pro-
posed and traditional design are nearly the same.

Figure 10. Area for RPR multipliers protected with different levels of trun-
cation

Figure 11. Delay for RPR multipliers protected with different levels of trun-
cation

Figure 12. Power for RPR multipliers protected with different levels of trun-
cation

 7

Figure 13. PDP for RPR multipliers protected with different levels of trunca-
tion

The costs of the proposed RPR MAC are shown in Fig-
ures 14 to 17. They follow similar trends as for the multipli-
ers. This is expected as the multiplier dominates the cost and
delay of the MAC operation. Therefore, it can be concluded
that the proposed scheme has almost the same cost and de-
lay as the traditional RPR implementation.

Figure 14. Area for a MAC protected with different levels of truncation

Figure 15. Delay for a MAC protected with different levels of truncation

Figure 16. Power for a MAC protected with different levels of truncation

Figure 17. PDP for a MAC protected with different levels of truncation

5 APPLICATION: DCT
The Discrete Cosine Transform (DCT) removes the corre-
lation of image elements in the transform domain [18] ; it
is considered a quasi-optimal transform and has been
widely applied in the fields of image and video cod-
ing/compression. In [19], instead of floating point num-
bers, DCT uses integers in the transform matrix; the trans-
formation core is a signed integer transform involving no
floating-point calculation and achieving a high accuracy.
The core transformation can be completed only with sim-
ple signed integer matrix multiplication which are multi-
ply and addition operations, therefore its computational
complexity is significantly reduced. In matrix notation, the
discrete two-dimensional radix-8 DCT is given by Y =
P∙X∙PT, where X is the 8x8 input image frame, P is the trans-
form matrix and Y is the transformed (output) matrix. The
DCT is implemented by two stages of matrix multiplica-
tion; these are given by:

P = �

P11 P12 … P1M
P21 P22 … P2M
⋮ ⋮ ⋱ ⋮

PM1 PM2 … PMM

� = A × B

= �

A11 A12 … A1M
A21 A22 … A2M
⋮ ⋮ ⋱ ⋮

AM1 AM2 … AMM

� × �

B11 B12 … B1M
B21 B22 … B2M
⋮ ⋮ ⋱ ⋮

BM1 BM2 … BMM

�

where

Pij = �Aik ∙ Bkj

M

k=1

8 IEEE TRANSACTIONS ON COMPUTERS

Thus, MAC is used as the basic processing step for ma-
trix multiplication to calculate Aik × Bkj+S, where S is the
accumulated sum. As described in [20], one of most com-
mon transform matrix (as also utilized in this paper) is

P1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
64 64 64 64 64 64 64 64
89 75 50 18 −18 −50 −75 −89
83 36 −36 −83 −83 −36 36 83
75 −18 −89 −50 50 89 18 −75
64 −64 −64 64 64 −64 −64 64
50 −89 18 75 −75 −18 89 −50
36 −83 83 −36 −36 83 −83 36
18 −50 75 −89 89 −75 50 −18⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

For evaluating the signed integer DCT, 20 8-bit and 16-
bit images are used; all images are from the publicly avail-
able database of [21]. Random (uniformly distributed) er-
rors are injected in both the traditional and the proposed
RPR schemes; then, the average Peak Signal Noise Ratio
(PSNR) is measured for all 20 images at different values of
K. The results are reported in Tables 2 and 3. As expected
the PSNR increases using the proposed RPR scheme; on
average for the two word-widths considered, the improve-
ment is at least 5 dB and increases with K.

TABLE 2 AVERAGE PSNRS FOR DCT WITH RPR VOTER FOR N=16

K Proposed RPR Traditional RPR

2 61.63dB 56.85dB
4 60.50dB 54.96dB
8 58.34dB 51.48dB

TABLE 3 AVERAGE PSNRS FOR DCT WITH RPR VOTER FOR N=8

K Proposed RPR Traditional RPR

2 58.11dB 52.16dB
4 53.92dB 47.91dB

6 CONCLUSION
This paper has presented novel schemes for Reduced Pre-
cision Redundancy (RPR) as applicable to the commonly
used operation of Multiply and Accumulate (MAC) in
signed integer format. The proposed schemes utilize com-
pensating error features in the multipliers and adders when
signed integer processing is executed. Novel designs for
MAC are proposed; initially the thresholds used for detect-
ing errors within the RPR schemes have been determined
analytically and checked by simulation. Then both the soft
error tolerance and the implementation cost have been ana-
lyzed. The results show that a reduction of 40 to 60 percent
on the Mean Square Error (MSE) can be achieved with only
a marginal impact on the implementation cost in terms of
delay and hardware overhead. As application, the compu-
tation of the DCT has been presented; the results confirm an
improvement of PSNR of at least 5 dB on average and in-
creasing with the reduced precision.

REFERENCES
[1]. Z. Luo and M. Martonosi “Accelerating pipelined integer and floating-
point accumulations in configurable hardware with delayed addition tech-
niques.” IEEE Transactions on Computers, Bol. 49, No. 3, pp. 208-218, 2000.
[2]. J. T. Kao; M. Miyazaki; A. R. Chandrakasan “A 175-MV multiply-
accumulate unit using an adaptive supply voltage and body bias
architecture,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 11, pp.
1545-1554, 2002.
[3]. G. Li, S. Kumar, S. Hari, M. Sullivan, T. Tsai, K., Pattabiraman, J.
Emer, and S.W. Keckle, “Understanding Error Propagation in Deep Learning
Neural Network (DNN) Accelerators and Applications”, In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 8:1–8:12, 2017.
[4]. Y. Liu, S. Liu, Y. Wang, F. Lombardi and J. Han, “A Stochastic Com-
putational Multi-Layer Perceptron Supporting a Backward Propagation Al-
gorithm,” IEEE Transactions on Computers (in press).
[5]. M. de la Guia Solaz and R. Conway “Razor Based Programmable Trun-
cated Multiply and Accumulate, Energy-Reduction for Efficient Digital Sig-
nal Processing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol 23, No. 1, pp. 189 – 193, 2015.
[6]. R. H. Brackert, M. D. Ercegovac, and A. N. Willson “Design of an on-
line multiply-add module for recursive digital filters”, In proceedings of 9th
IEEE Symposium on Computer Arithmetic, pp. 34-41, 1989.
[7]. C. Jeangoudoux and C. Lauter “A Correctly Rounded Mixed-Radix
Fused-Multiply-Add” In Proceedings of the 25th IEEE Symposium on Com-
puter Arithmetic, pp 17-24, Amherst, 2018.
[8]. K. Chen, J. Han and F. Lombardi, “Design and Analysis of an Approx-
imate 2D Convolver,” in Proceedings of the IEEE International Symposium
on DFT in VLSI and Nanotechnology Systems, pp. 31-34, Storrs, October
2016.
[9]. K. Chen, J. Han and F. Lombardi "Matrix Multiplication by an Inexact
Systolic Array" in Proceedings of the ACM/IEEE Symposium on Nano Ar-
chitectures, pp 151-156, Boston, July 2015.
[10]. N. Kanekawa, E. H. Ibe, T. Suga, and Y Uematsu, “Dependability in
Electronic Systems: Mitigation of Hardware Failures, Soft Errors, and Elec-
tro-Magnetic Disturbances”, New York, NY, USA: Springer-Verlag, 2010,
doi: 10.1007/978-1-4419-6715-2.
[11]. M. Nicolaidis, “Design for soft error mitigation”, IEEE Transactions on
Device and Materials Reliability, vol. 5, no. 3, pp. 405–418, Sep. 2005.
[12]. I. Alzaher-Noufal and M. Nicolaidis, “A CAD Framework for Gener-
ating Self-Checking Multipliers Based on Residue Codes”, in Proceedings of
the Conference on Design, Automation and Test in Europe (DATE), 1999.
[13]. M. Nicolaidis and R. O. Duarte, “Fault-Secure Parity Prediction Booth
Multipliers”, IEEE Design & Test of Computers, vol. 16, no. 3, pp. 90-101,
1999.
[14]. S. Byonghyo, S. R. Sridhara, and N. R. Shanbhag, "Reliable low-power
digital signal processing via reduced precision redundancy," IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 5, pp.
497-510, 2004.
[15]. B. Shim and N. R. Shanbhag, "Energy-efficient soft error-tolerant dig-
ital signal processing," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, no. 4, pp. 336-348, 2006.
[16]. M. A. Sullivan, "Reduced precision redundancy applied to arithmetic
operations in field programmable gate arrays for satellite control and sensor
systems," M.S. Thesis, Naval Postgraduate School, Monterey, California,
USA, 2008.
[17]. A. Ullah, P. Reviriego, S. Pontarelli, and J. A. Maestro, "Majority Vot-
ing-Based Reduced Precision Redundancy Adders," IEEE Transactions on
Device and Materials Reliability, vol. 18, no. 1, pp. 122-124, 2018.
[18]. N. Ahmed ,T. Natarajan and K.R. Rao, "Discrete Cosine Transform,"
IEEE Transactions on Computers, vol. 23, no.1, pp.90-93, Jan. 1974.
[19]. J. Wu and Y. Li, "A new type of integer DCT transform radix and its
rapid algorithm," in Proceedings of the International Conference on Electric
Information and Control Engineering (ICEICE), pp.1063-1066, 15-17 April
2011.
[20]. P.K. Meher, S. Y. Park, B.K. Mohanty, K. S. Lim and C. Yeo, "Effi-
cient Integer DCT Architectures for HEVC," IEEE Transactions on Circuits
and Systems for Video Technology, vol.24, no.1, pp.168-178, Jan. 2014.
[21]. TESTIMAGES - Testing images for scientific purposes https://source-
forge.net/projects/testimages/.

	1 Introduction
	2 REDUCED PRECISION REDUNDANCY
	2.1 Multiplication
	2.2 Multiply and Accumulate (MAC)

	3 PROPOSED SCHEMES
	3.1 Multiplication
	3.2 Multiplication and Accumulate

	4 Evaluation
	4.1 Threshold Configuration
	4.2 Soft Error Tolerance
	4.3 Implementation cost

	5 Application: DCT
	6 Conclusion
	References

