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Abstract—As one of the most promising energy-efficient
emerging paradigms for designing digital systems, approximate
computing has attracted a significant attention in recent years.
Applications utilizing approximate computing can tolerate
some loss of quality in the computed results for attaining
high performance. Approximate arithmetic circuits have been
extensively studied; however, their application at system
level has not been extensively pursued. Furthermore, when
approximate arithmetic circuits are applied at system level,
error-accumulation effects and a convergence problem may
occur in computation. Semi-supervised learning can improve
accuracy and performance by using unlabeled examples. In this
paper, a hardware/software co-design method for approximate
semi-supervised k-means clustering is proposed. It makes use
of feature constraints to guide the approximate computation at
various accuracy levels in each iteration of the learning process.
Compared with a baseline design, the proposed method reduces
the power-delay product by over 67% while only a small loss
of accuracy is introduced. A case study of image segmentation
validates the effectiveness of the proposed method.

Index Terms—Approximate computing, semi-supervised learn-
ing, approximate multiplier, K-means clustering

I. INTRODUCTION

Speed is improving due to technology advancement; howev-
er energy efficiency still remains an hurdle. Power and energy
consumption have become a major concern for chip design.
Solutions such as dark silicon are of only a limited viability
when considering extensive silicon resources [1].

For hand-held systems and emerging smart devices, energy
efficiency has become critical when dealing with computation
intensive tasks, such as machine learning and multimedia sig-
nal processing. Significant efforts have already been devoted
to improve energy efficiency at various levels, from software,
to architecture all the way down to circuit and device levels.
However, as computer systems become pervasive, computing
workloads have significantly increased due to new applicative
areas such as big data and IoT. So an improvement in the
energy efficiency for these emerging workloads is urgently
needed to keep pace with the growth of processed information.
Applications such as signal processing, machine learning and
pattern recognition are generally error-resilient in nature [2]
so this feature can be used to alleviate this problem.

Approximate computing [3], trades computing accuracy
for high performance and energy efficiency; it has attracted
research and development efforts from both academia and
industry. Approximate computing is based on the observation
that the inputs and outputs of some algorithms are robust to an
appropriate imprecision, so inexact operations in computation
may have little or no effect on the final quality. Approximate
computing techniques have been extensively studied at both
hardware (such as circuit designs and computing architectures)
and software levels [4]–[6]. As key components in arithmetic
circuits, a number of approximate adders [7], [8] and multi-
pliers [9] have been proposed; these circuits yield incorrect
results for some input combinations.

Multipliers require more hardware resources and incur in
a higher energy consumption than adders; moreover, they are
also slower than adders. Approximate multipliers are impor-
tant due to the extensive use in error-tolerant applications.
[10] considers a radix-8 Booth encoding of 3X by utilizing an
error reduction scheme in the approximate adders. [11] reports
power savings of up to 66% without affecting the accuracy
of programs (manipulating low resolution data) by utilizing
a bit width reduction in floating-point multipliers. In [12],
approximate adders are leveraged to design an approximate
multiplier with configurable accuracy. A novel design of an
approximate Booth multiplier is proposed in [13]. A power-
efficient multiplier designed using 2x2 approximate multiplier
blocks is presented in [14]. However, most of these works only
consider approximate designs at circuit level, so error effects
at system or algorithm level are not fully addressed.

The advantages of approximate computing cannot be fully
exploited by only considering hardware or software; therefore,
an hardware/software (HW/SW) co-design [5], [15], [16] must
be considered to change the abstractions and relationships
between hardware and software for a trade-off between ac-
curacy and efficiency [15] for approximate computing. [17]
proposes a processor for high performance on-demand approx-
imate computing with a complete open-source development
framework; it consists of a hardware processor and an asso-
ciated software tool set. Fine-grained [18] approximations are
explored for individual instructions and individual words of
memory. Coarse-grained approximations [19] can holistically
transform entire algorithms.

In this paper, we propose a hardware/software co-design
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Fig. 1: Gate-level circuit of: (a) exact MBE and (b) approxi-
mate MBE (with hardware evaluation).

method for approximate semi-supervised k-means clustering;
in the proposed method, we utilize a semi-supervised learning
method to smoothly calibrate the approximation level and
allowing an algorithm to tolerate errors from the approximate
hardware. During the computation process, approximation is
adaptively tuned and in some cases, it can be even completely
turned off if specific feature constraints are applicable.

The main contributions of this paper are summarized as
follows:
• A novel hardware/software co-design method is proposed

for semi-supervised k-means clustering.
• The proposed method explores error tolerance of semi-

supervised k-means clustering.
• Supervised information, which are the minority of the

data, improves not only the efficiency of clustering but
it also contributes to the optimization of the so-called
approximate factor as figure of merit.

• Adaptive approximate levels of hardware implementation
can be obtained according to the result of each multi-
plication or accumulated results at each iteration with
supervised information.

• The advantages of the proposed method are theoretically
analyzed and experimentally demonstrated.

The remaining part of this paper is organized as follows:
In Section 2, the preliminary of semi-supervised k-means
and approximate multiplier is briefly reviewed. Section 3
presents the proposed HW/SW co-design method for the

approximate semi-supervised k-means clustering algorithm.
Section 4 provides the error analysis and the simulation results.
The application of the proposed algorithm to image processing
is given in Section 5. Section 6 concludes the paper.

II. PRELIMINARY

A. Semi-supervised K-means

Semi-supervised learning is a class of supervised learning
tasks and techniques that make use of unlabeled data for
typically training a small amount of labeled data with a large
amount of unlabeled data; k-means clustering partitions n
observations into k clusters in which each observation belongs
to the cluster with the nearest mean.

Semi-supervised k-means leverages user-provided pairwise
constraints either to learn an appropriate distance metric
in the feature space, or to guide a clustering algorithm
towards the correct clusters. The objective function Jobj of
semi-supervised k-means utilizing feature constrains is as
follows:

minJobj = D( ~X, ~C) +WϕD( ~Xpw) (1)

where, D is the distortion function, ~X and ~C are the samples
and cluster centroids,W is the set of weights of the penalty for
violating the feature constraints, ϕD is an increasing function
of the distance between two samples and ~Xpw are samples
with pair-wise constraints. For convenience, W is chosen as
1.

In the k-means clustering algorithm, a 5% loss in
classification accuracy permits a 50 times energy saving
compared to the fully accurate classification [20]; therefore,
k-means is a typical application that trades accuracy for
performance.

B. Radix-4 Approximate Booth Multiplier

In this paper, an 8-bit approximate Booth multiplier
[13] is utilized. Booth encoding has been proposed for
improving performance of multiplication of two complement
binary numbers; this design has been further improved by
using a radix-4 Booth encoding. In [13], complexity of the
approximate Booth encoder has been reduced by at least
an order of magnitude compared with an exact design as
shown in Fig. 1. Furthermore, the so-called approximation
factor p (p = 1, 2, ..., 2N) is defined as the number of least
significant partial product columns that are generated by
the approximate Booth encoders as the approximate cir-
cuit (i.e., approximate radix-4 Booth encoding (R4ABM))
can be used in all or only part of the partial product generation
process. Fig. 2 presents a plot of the power-delay product
(PDP) and the normalized mean error distance (NMED)
under different approximation factors (p).

Fig. 2 shows that the NMED increases, while the PDP of
R4ABM decreases with an increase of p. Therefore, the impact
of p on the performance of an approximate multiplier is that
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Fig. 2: (a) The error characteristics and (b) hardware resources
consumption of the R4ABMs [13] at different approximate
factors.

an increase in computing accuracy can be traded off for a
higher energy efficiency by using an approximate multiplier
at a higher value of p. A larger p leads to a simpler logic; this
results in a lower hardware consumption but more error. For
a given data path in an implementation, p establishes a design
space in which every multiplication could utilize a better value
for p such that this approximate multiplier would ensure a
desirable computing accuracy while also achieving the highest
energy efficiency.

III. PROPOSED HW/SW CO-DESIGN METHOD OF
APPROXIMATE SEMI-SUPERVISED K-MEANS CLUSTERING

Recently, few approximate designs of arithmetic circuits
have been proposed to configure the approximation level
[12], [13]. Most of these works consider a configuration at
hardware level. [17] utilizes additional flags with instructions
in the approximate behavior ( for example enable/disable
the cache look-up table); however, a gradual approximate
computation is not allowed. To fully exploit the potential
of approximate computing, the HW/SW co-design utilizing
both R4ABM and an approximate semi-supervised k-means
algorithm is studied in this section.

A. Fixed-Point Quantization

When data has large values, a higher precision in
approximate computation usually incurs in a large penalty.
Recently, [21]–[23] has exploited error-tolerance at data level

Algorithm 1 Approximate Semi-supervised k-means Cluster-
ing

Require:
The dataset X ;
The number of clusters k;
A set of must and cannot links;
A distance function D;
A set of weights for violating the feature constrains;
A default value of approximate factor p;

Ensure:
A partition of X in k groups

1: Assign initial centroids C
2: repeat
3: Iteration i increase;
4: Re-assign the labels of the examples using the centroids

ci to minimize Jobj ;
5: Check the penalty ϕ of the violation of the feature

constraints;
6: if ϕi > ϕi−1 and p > pmin then
7: p−−
8: else
9: if p < pmax then

10: p++
11: end if
12: end if
13: until Convergent or Pre-defined Max number of iterations

reaches

by utilizing fixed-point quantization. Based on the assumption
that the dynamic range of the precision of the floating points
from a data set is bounded, an approach for fixed-point
quantization is constructed in terms of the width of the
arithmetic unit. Floating-point numbers can be extended or
compressed as fixed-point numbers according to the desired
function as follows:{

k ∗ xmax + b = ymax

k ∗ xmin + b = ymin

(2)

where, xmax and xmin are the max and min values of the
floating-point inputs, ymax and ymin are the max and min
of the available fixed-point values. Consider an 8-bit width
as example; ymax and ymin are given by 127(27 − 1) and
-128(−27). For sake of efficiency, k will be modulated as k′

commonly like the m− th power of 2:

k′ = 2m

s.t. 2m ≤ k < 2m+1 (3)

After the modulation of k, x can be easily mapped into the
range of (ymin, ymax) and get its fixed-point quantization
with shifting bits of the fraction based on m above and its
exponent part.



Fig. 3: Overview of proposed framework for semi-supervised
approximate computing co-design.

B. Proposed Method for Semi-Supervised k-means Clustering

Usually, the approximate factor is established a-priori and
its value is stored in the cache of the control circuit for p.
Feature constrains of the supervising information are not as
common as for the entire samples; so it is possible to control
error-tolerance using an approximate circuit. Therefore, a co-
design framework for semi-supervised approximate k-means
clustering is proposed by using feature constraints. Its objec-
tive function can be obtained as follows:

minJobj = D( ~X, ~C) +WϕD( ~Xpw)

s.t.

ϕDmp
( ~X) ≤ ϕ′Dm′

p

( ~X) && p < pmax, p++

ϕDmp
( ~X) > ϕ′Dm′

p

( ~X) && p > pmin, p−−
(4)

where, mp is the multiplier of the approximate factor p,
ϕDmp

( ~X) is the penalty value of the violations of the con-
straints at the current stage based on the multiplier mp and
ϕ′Dmp

( ~X) is at the previous stage based on the previous
multiplier m′p with approximate factor p′ . When the new
penalty value ϕDmp

( ~X) is higher than the previous one, the
approximate level should be reduced and the approximate
factor p is decreased if p is greater than pmin. By contrast,
the approximate factor p will increase if p is less than pmax.

Fig. 3 gives the overview of the proposed framework.
In general, this approach utilizes a small amount of data
with supervised information to adaptively find the optimized
approximate factor not only for the supervised data but also
the great majority of the unlabeled data. Meanwhile, the
approximate factor is optimized gradually to reduce the large
accuracy loss introduced by approximation operations. The
approximation level is controlled by the approximation factor
p and can be adjusted according to the violations of the
supervising information.

The procedures for semi-supervised approximate k-means
clustering are summarized in Algorithm 1. The entire ap-
proximate clustering process is supervised using the semi-
supervised feature constraints for different approximation lev-
els, so reducing the accumulated errors at algorithm level with
a small amount of supervised information.

From Fig. 4, after each iteration or each computation of
supervised data in every iteration, the approximate factor can

Fig. 4: The process of the proposed method with adaptive
approximate factors.

be adaptively tuned by decreasing (the red) or increasing
(the blue). The approximate factor can be updated through
the multiplication of the supervised data which are in the
minority. Then the unlabeled data which are in the majority
can also benefit from the better approximate multiplier for
the current phase. Moreover, the approximate factor can be
updated not only according to the penalty value after each
iteration but also at each multiplication of the supervised
process. In this work, we only update the approximate level
through the factor after each iteration in the next evaluations.

IV. EVALUATION AND ANALYSIS

To evaluate the effectiveness of the proposed method and
the energy reduction for the multiplication, the classical k-
means algorithm is selected as benchmark using the standard
UCI datasets [24].

The clustering results using 32-bit full-precision, 8-bit fixed-
point quantized, various (p=2,12) and adaptive p 8-bit approx-
imate multipliers are presented in Table I.

The metric of the F-value is used and is defined as follows:

F =
(1 + β2) ∗ p ∗ r
β2 ∗ p+ r

(5)

where, p is precision, r is recall and β is used to balance the
precision and the recall. It is usually set to be 1.

TABLE I
F-VALUE OF K-MEANS CLUSTERING

Data Sets 32b Float 8b Fixed 8b Fixed R4ABM
p=2 p=12 adaptive p

Iris 0.8067 0.8067 0.8201 0.7902 0.8103
Glass 0.4426 0.4426 0.4426 0.4021 0.4359

The results of Table I show that approximate computing
can produce results with a small loss of accuracy; k-means
clustering is sensitive to the initial centroids. Hence, an
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Fig. 5: (a) Energy reduction and (b) accuracy loss at different
values of approximate factor p.

adaptive approximate method can achieve a better accuracy
(for example for the Iris data set with an adaptive p) than the
accurate algorithm, because the error introduced by approxi-
mate computing avoids overfitting the initial centroids.

The energy consumption and the performance of an ap-
proximate multiplier have already been discussed in [13]
using as metric the power-delay product (PDP). The total
energy consumption can be estimated by adding all energies
consumed by each multiplication along the data path. The use
of an approximate multiplier is determined by the iterations
and the number of samples; so, we can count the frequencies
of occurrence of all 8-bit int weights in the entire path and
add the PDPs of the corresponding approximate multipliers to
find the total energy consumption. The results are presented
in Table II.

TABLE II
ENERGY CONSUMPTION OF APPROXIMATE

MULTIPLICATION.

Factor Type Value of Factor PDP (uJ) Reduction (%)

Stable factors
2 0.0143 35.00%
8 0.0073 66.82%
14 0.048 -118.18%

Adaptive factors
2 0.0127 42.27%
8 0.0085 61.36%
14 0.0072 67.27%

Compared with the 8-bit precise design baseline of 0.022uJ,
the proposed design reduces energy consumption by over 67%
. However, the PDP could be very large if an inappropriate

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: Image segmentation: (a) original image; (b) original
image with feature constrains; (c) accurate segmentation;
approximate segmentation for (d) p=2; (e) p=8; (f) p=14; and
approximate segmentation using the proposed method for (g)
p=2; (h) p=8; (i) p=14.

approximate factor (such as p=14) is utilized, thus contributing
to the loss of convergence in the algorithm. Moreover, the
proposed method achieves a small accuracy loss at the lowest
energy consumption.

From Fig. 5, the performance of the stable approximate
factor becomes worse when the factor is very large. However,
the adaptive approximate factor can achieve a good energy
reduction and a small accuracy loss in spite of the initial value
of the approximate factor even when the initial approximate
level is high.

V. CASE STUDY: IMAGE SEGMENTATION

In this section, the proposed method is applied to image seg-
mentation. The semi-supervised feature constraints are chosen
as more than 10 must-links and 10 cannot links. The semi-
supervised k-means not only uses this information efficiently
to segment the image, but it also dynamically calibrates
the approximate levels for energy reduction and acceptable
accuracy.

As shown in Fig. 6, the quality of the processed image
deteriorates with an increase of p as factor during the
segmentation process from (d) to (f). When this factor



is at the largest value of 14, the objective function loses
convergence and the worst segmentation result is generated.
The results from (g) to (h) are based on different initial
factors; all achieve an acceptable segmentation result.

TABLE III
CHANGE OF P IN EACH ITERATION BASED ON INITIAL
APPROXIMATE LEVEL DURING IMAGE SEGMENTATION

Initial Factors Change of p in Each Iteration
p=2 2, 2, 2, 2, 4, 6, 8, 10, 8, 6, 4, 2, 2, 4
p=4 4, 4, 4, 6, 8, 10, 8, 6, 4, 2, 2, 2, 2, 2
p=6 6, 6, 8, 10, 8, 6, 4, 2, 2, 4, 2, 2, 4, 2, 2
p=8 8, 10, 12, 14, 14, 12, 10, 8, 6, 4, 2, 2, 2
p=10 10, 8, 10, 12, 14, 12, 10, 8, 6, 4, 2, 2, 4
p=12 12, 12, 10, 10, 8, 8, 10, 8, 6, 4, 2, 2, 4
p=14 14, 12, 10, 8, 6, 4, 2, 2, 2

Table III shows the change of p at each iteration based on
different initial approximate levels during segmentation. The
best initial factor is 14; also it is assumed that the error at
the beginning is not as large as the errors accumulated along
the data path. For a fast convergence, larger steps are always
utilized and therefore, the early stage of computation of an
algorithm should be robust to errors.

VI. CONCLUSION

A HW/SW co-design method for approximate k-means
clustering has been investigated using multi-precision approx-
imate multipliers with various approximate factors. A fixed-
point quantization for floating-point data has been proposed
to extend or compress the number range, thus resulting in
resilience to the so-called approximate factor.

The energy consumed by the multiplier logic decreases
rapidly at larger values of the factor p, while introducing a
small loss in accuracy for the clustering results. Compared
with an 8-bit precise baseline, the proposed method reduces
by over 67% the energy consumption.

Adaptive approximate levels can contribute to both the
application and the hardware utilization with supervised
information that is a very small portion of the entire data
sets. Some additional operations for calibrating the optimized
approximate levels from only supervised information can be
ignored in comparison with the large amount of unsupervised
data that can too benefit from the optimized approximate
levels. The proposed HW/SW co-design method for semi-
supervised learning can be used for a number of machine
learning and pattern recognition applications as will be
investigated in future works.
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Not just a cliché,” in Proc. 1st Summit on Advances in Programming
Languages (SNAPL), 2015, pp. 262–273.

[16] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie, and H. Yang, “Software-
hardware codesign for efficient neural network acceleration,” IEEE
Micro, vol. 37, no. 2, pp. 18–25, 2017.

[17] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE European
Test Symposium (ETS), 2013, pp. 1–6.

[18] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” pp. 301–312, 2012.

[19] ——, “Neural acceleration for general-purpose approximate programs,”
Commun. ACM, vol. 58, no. 1, pp. 105–115, 2015.

[20] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[21] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental
network quantization: Towards lossless cnns with low-precision
weights,” CoRR, vol. abs/1702.03044, 2017. [Online]. Available:
http://arxiv.org/abs/1702.03044

[22] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net:
training low bitwidth convolutional neural networks with low bitwidth
gradients,” CoRR, vol. abs/1606.06160, 2016. [Online]. Available:
http://arxiv.org/abs/1606.06160

[23] P. Merolla, R. Appuswamy, J. V. Arthur, S. K. Esser, and D. S. Modha,
“Deep neural networks are robust to weight binarization and other
non-linear distortions,” CoRR, vol. abs/1606.01981, 2016. [Online].
Available: http://arxiv.org/abs/1606.01981

[24] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml


