A Probabilistic Error Model and Framework for Approximate
Booth Multipliers

Yuying Zhu, Weigiang Liu
College of EIE
Nanjing Uni. Aero. & Astro.
Nanjing, China
liuweigiang@nuaa.edu.cn

ABSTRACT

Approximate computing is a paradigm for high performance
and low power design by compromising computational accu-
racy. In this paper, the structure of an approximate mod-
ified radix-4 Booth multiplier is analyzed. A probabilistic
error model is proposed to facilitate the evaluation of the ap-
proximate multiplier for errors from the approximate radix-4
Booth encoding, the approximate regular partial product ar-
ray, and the approximate 4-2 compressor. The normalized
mean error distances (NMEDs) of 8-bit and 16-bit approxi-
mate designs are found by utilizing the proposed model. The
results from the error model and the corresponding analyt-
ical framework are close to those found by simulation, thus
confirming the validity of the proposed approach.
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1 INTRODUCTION

As the density of integrated circuits (ICs) continues to in-
crease, power consumption has become one of the main ob-
stacles to attain high performance in a chip. It is becoming
extremely difficult to further improve performance and re-
duce power consumption of digital IC under the requirement
of full accuracy. However, in error-tolerant applications relat-
ed to human perception, such as image processing, pattern
recognition and machine learning, it is possible to perfor-
m approximate calculations to further improve power and
performance [1]. In these cases, computation results do not
require absolutely accurate values, and thus, approximate
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results with appropriate errors are acceptable. Approximate
computing has been proposed as a promising paradigm [2],
[3] to achieve low power consumption and high performance
at the expense of reducing computational accuracy.

The common metrics for error analysis of arithmetic cir-
cuits include the error distance (ED), the mean error dis-
tance (MED) and the normalized mean error distance (N-
MED) [5]. However, in most cases the error analysis of ap-
proximate arithmetic circuits is based on Monte-Carlo sim-
ulation, which is very time-consuming, and unsuitable to
analyze large word size designs.

Recently, research has been conducted on error modeling
of approximate arithmetic circuits. For approximate adder-
s, [6] proposes qualitative error metrics and a model that
links the peak signal to noise ratio (PSNR) and the aver-
age error distance based on image processing using approx-
imate adders; [7] proposes a model for an uniform or inho-
mogeneous length adder. The design of multipliers largely
determines the performance of the entire circuit. Compared
with an adder, the circuit structure of a multiplier is more
complex [4]. [8] studies the error model for a low-power re-
cursive approximate multiplier and proposes a Probability
Mass Function (PMF) model to calculate the error which is
derived from the basic building blocks. However, the PMF
error model is not applicable to the approximate Booth mul-
tiplier. In this paper, a probabilistic error model of a state-
of-the-art approximate Booth multiplier [9] is proposed by
considering its circuit. By using the proposed model, the
error for the multiplication results can be obtained quick-
ly through analysis, which facilitates the evaluation of the
approximate Booth multiplier in error-tolerant applications.

The paper is organized as follows. Section 2 reviews the
structure of approximate Booth multipliers. The probabilis-
tic error model of the approximate Booth multipliers is p-
resented in Section 3. Simulated and analytical results are
provided and compared in Section 4. Section 5 concludes the

paper.

2 APPROXIMATE BOOTH
MULTIPLIER

The approximate Booth multiplier analyzed in this paper is
based on [9] and [10]; the approximate compressors are on-
ly used in [10]. As mentioned previously, the approximate
Booth multiplier consists of three parts: the Booth encoder,
the compressor and the final fast adder. Therefore, the Booth
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Figure 1: An 8-bit approximate Booth multiplier
with p=8.
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Figure 2: Gate level circuit of: (a) ABE-1, and (b)
ABE-2 [9].

encoding, the partial product (PP) array and the 4-2 com-
pression can be approximately designed. An 8-bit approx-
imate Booth multiplier with an approximation factor, i.e.
p=8 is shown in Fig.1, where <represents the exact partial
products, and B represents the inexact partial product.

2.1 Approximate Booth Encoding

Booth encoding plays an important role in the design of a
high-performance multiplier. It efficiently generates the PPs
by reducing the number of rows and PPs by half. The PP of
an accurate Booth encoding is given by:

ppij =(b2s 0 bai—1)(b2it1 0 aj)+ (1)

(b2i o b2i—1)(b2i+1 o b2i)(b2i+1 o aj—1)

Two designs of an approximate Booth encoder, namely
ABE-1 and ABE-2, are proposed in [9]. Fig. 2 shows the
gate level circuits of these approximate Booth encodings.

The functions of the approximate Booth encoding ABE-1
and ABE-2 are shown as Eq. (2) and (3), respectively.

appiji = (b2i 0 bai—1)(b2i—10 a;) (2)
appij2 = ajb2iy1 + a5b2i41 = bait1 0 a; (3)

2.2 Approximate Regular PP Array

After the Booth encoding, a PP array of N/2+1 rows is gen-
erated. There is a symbol for the compensation bit in the
last line denoted by Neg. The compensation bit is omitted
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Figure 3: A conventional 8 8 MBE PP array.
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Figure 4: Gate level circuit of an inexact
compressor [11].

to convert it into a regular PP array. Fig. 3 shows the conven-
tional 8¢ 8 modified Booth encoding (MBE) PP array, where
<denotes the pp;; term, e denotes the sign extension term,
© denotes the Neg term and { is the ignored Neg term.
The approximate PP array omits the compensation bit in
the last line to make the array regular, to reduce the number
of rows of the array and the delay of the PP accumulation.

2.3 Approximate Compressor

The 4-2 compressor proposed in [11] consists of two full
adders; the approximate compressor omits two parameter-
s: the input variable C;, and the output variable Cyyt. Ap-
proximate outputs are available as Sum’ and Carry’. The
gate-level circuit of an approximate compressor is shown in
Fig. 4 with four inputs: Py, Ps, P>, and P;. The logic expres-
sions of the approximate 4-2 compressor are as follows:

Sum' = (Pro Py)+ (Pso Py) (4)

Carry =P+ P+ Ps + P4 (5)

2.4 Error Metrics

The error characteristics of the entire approximate Booth
multiplier must be considered. For approximate designs, sev-
eral metrics have been proposed [5] to measure the error
of approximate adders and multipliers, including the error
distance (ED), the mean error distance (MED) and the nor-
malization of MED (NMED); these figures of merit are given
as follows:

ED= A A (6)

" ED

MED =Y =2
; - (7)
NMED — _MED (8)

MAXoutput
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circuit.

where, A is the exact value , A’ is the approximate value,
n is the number of product results, and M AXouipur is the
maximum value of error.

3 PROBABILISTIC ERROR MODEL
OF ABMS

The probabilistic error model for the approximate Booth
multipliers (ABMs) is proposed in this section. The error
model consists of few sub error-models in which each mul-
tiplication stage is modeled separately. A sub error-model
is based on the structure of the multiplier circuit. The rela-
tionship between the circuit structure and the error model is
shown in Fig. 5. The error of the entire ABMs (i.e., Eapnr)
is divided into three parts: the error from the approximate
Booth encoding (i.e., Fapg), the error from the approxi-
mate regular product array (i.e., Eapa) and the error from
the approximate 4-2 compressor (i.e., Eacnr).

3.1 Approximate Booth Encoding Error
Model

The error in the ABEs is generated when a ‘1’ is replaced
by a ‘0’ and a ‘0’ is replaced by a ‘1’ in the truth table.
The ABEs can produce both positive and negative errors.
T1_0=1 denotes the error when a ‘1’ is replaced by a ‘0’ and
To—1=1 denotes the error when a ‘0’ is replaced by a ‘1’. The
accurate PP is obtained by considering the error when using
the approximate encoding ABE-1, so

ppij1 = (b2; 0 bai—1)(b2i—1 0 aj)+ Ti—o 9)

Similarly, the probabilistic error model for the approximate
encoding ABE-2 is proposed as

ppij2 = bait10 a;j +T1i—0 4+ To—1 (10)

Changing a ‘0’ to a ‘1’ in the K-map of the ABE causes
the approximate result to be higher than its exact counter-
part. Therefore, the difference between the exact and the
approximate results is negative. However, changing a ‘1’ to
a ‘0’ makes the approximate result smaller and the differ-
ence between them is positive. Since the outcome of ED is

Table 1: ED and MED of Approximate Booth
Encoding

Encoding Error Pattern ED MED

ABE-1 Ti-o 4 0.125
ABE-2 Ti—o0, To-1 4 0.125

Table 2: Q and Fapgr of Approximate Encoding

Encoding Qo-1 Qi—o FEaBEk
ABE-1 0 4 0.03125
ABE-2 6 2 0.01563

Table 3: Error of PP Array

ED MED Eapa
3 0.375  0.125

an absolute value, the error of both approximate encoding
methods is the same.

By using the proposed probabilistic error model, the er-
rors resulting from the two approximate Booth encoders are
shown in Table 1. The ED in the approximate Booth en-
coding is the changed value in the truth table. For example,
for ABE-1, the change in the K-map is T1_o; therefore, the
changed value is positive and the number is 4. For ABE-2,
the change in the K-map is either 71 _o or Tp—1. The value of
Ti_o is positive and the number is 2, while the value of To_1
is negative and the number is 6, so the result is -4. However,
as the ED is an absolute value, the value is finally 4.

A new parameter is utilized for the error model: a value
for the approximate Booth encoding is used to represent the
number of T1_¢ and Tp—1 denoted as @; Qo—1 denotes the
number of Tp—1 and Q1—¢ denotes the number of T1_¢ as
shown in Table 2. @ is the general name of both Qo—1 and
Q1-0. In the equation, @ represents the sum value of Qo—_1
and Qlfo.

When considering the NMED, the new parameter @ is
added, and the error of the Booth encoding generated at
F Ak is modeled as:

NMED _ MED (11)
Q Q X]WAXoutput

Eapr =

3.2 Approximate PP Array Error Model

After encoding, a PP array is generated, whose last row is
only a compensation bit. The error arises from omitting the
sign bit; so, the error caused by omission is expressed as
follows:

Neg = baiy1(b2; + b2i—1) = baip1b2:b2i—1 (12)
As 2i41=N-1, i=N/2-1. Hence,
Neg = belefng73 (13)



Table 4: Partial Truth Table of Approximate
Compressor

P4 P3 P2 P1 E
0 0 0 -1
1
1
1

== O O

0 1
1 0
1 1

— O

Table 5: Error of Approximate Compressor

ED MED FEacwm
3 0.1875 0.046875

This value is utilized for the following objective: when its
value is 0, the encoding is consistent with the original code;
when its value is 1, the encoding is negative, so complement-
ed. Therefore, when the error is 1, the results appear to be
inaccurate and occur only at the three highest bits; as a re-
sult, the PP array error, Fapa, is given as in Table 3. The
ED of the approximate partial product array has a non-zero
value when Neg is equal to 1 and Fapa is the value that
the MED is divided by the number of occurrances when the
logic expression of the error is equal to 1.

3.3 Approximate Compressor Error
Model
The approximate 4-2 compressor omits two parameters: the

input Cy, and the output Cyy:. For an inexact output, the
error F is given by

E+ (Pio Po)+ (Pso Py)+ (Pi+ P>+ P+ Py)

(14)
= Sum + Cout 4+ Carry

Table 4 shows the partial truth table with an error value of
1; the error Eaca generated by the approximate compressor
is shown in Table 5. The ED in the approximate compression
is the sum of E. The error value is the MED divided by the
number of occurrances when the absolute value of E is equal
to 1.

Thus, the sub error-models based on the design have been
formulated and are used to establish the model for the ap-
proximate Booth multiplier. The error characteristics of the
Booth encoding, the PP array and the tree compression have
been presented and for each, the corresponding error param-
eter NMED can be found; next the error model of the ap-
proximate Booth multiplier is established by combining the
sub error-models.

3.4 Probabilistic Error Model of ABMs

Among the four designs, ABM1 and ABM2 use an approx-
imate Booth encoding and a regular partial product array.
They are referred to as single designs [9]. The error of an AB-
M increases exponentially, as related to the number of bits of

Table 6: Four Designs of Approximate Booth
Multiplier (¢ denotes a used unit, while @ denotes
an unused unit)

Multiplier ABE-1 ABE-2 Array Compressor

ABM1 ¢ P ¢ @
ABM2 @ ¢ ¢ ®
ABM3 ¢ ® ¢ ¢
ABM4 @ ¢ ¢ ¢

the multiplier operand, N. The error of the exponent is given
by loga N-1. The error model is generated by combining the
above presented sub error-models into a single (design) error
model (i.e., Eapa—s), which denotes the error of approxi-
mate Booth multipliers with approximate Booth encoders
and approximate PP array; this error is given by

[(N/2+1) X2 Q]Q)]logz N-—-1
(N/2+1) 2 b

+ (BEapa/N)82N "1 52|

1
Expyu-s = ki}[N(EABE

(15)
where, ki=p;/pi—1. I pi/pi—1 < 1.5, ki=k;—1+1. p is an ap-
proximation factor that denotes the number of approximate
radix-4 Booth encoding units used in the design of the ap-
proximate multiplier.

Compared with a single design (Eapm—s), the so-called
composite designs (i.e., ABM3 and ABM4) also utilize ap-
proximate 4-2 compressors [10]. The error model for a com-
posite design (i.e., Eapym—c) is given by

1 _
Eapyv-c = ki(Eapv—s + NEACMlogQ N D) (16)
The proposed approach to calculate the probabilistic error
model of the ABMs based on the sub error-models is shown
in Algorithm 1.

4 RESULTS

The difference between the values obtained by the error mod-
el and simulation is investigated for the four approximate
Booth encoded multipliers at different values of p. For simula-
tion results, all designs are described at gate-level in Verilog
HDL and verified by Synopsys VCS [9]. There are different
modules in the four approximate multipliers, and the anal-
ysis of the model must calculate the error for each module
(Table 6).

Table 7 provides the NMED comparison between the sim-
ulation and analytical results for the 8-bit ABMs; it lists four
different ABMs. Among them, p has a value in a range from
4 to 14. The error values grow very fast, almost exponential-
ly with an increase of p. The error of a single design (ABM1,
ABM?2) is smaller compared to a composite design (ABM3,
ABM4), because the single design only contains the approx-
imate Booth encoding module and the approximate partial



Table 7: NMED Comparison of 8-Bit ABMs between Simulated and Analytical Results using Error Model
(p is from 4 to 14 and the order of magnitude is 107?)

Multiplier | P 4 6 8 10 12 14
ABM1 simulated 0.082 0.137 0.427 1.269 3.369 7.022
analytic 0.08398 0.12598 0.37794 1.13382 3.40146 6.80292
ABM?2 simulated 0.076 0.104 0.409 1.4 4.089 10.138
analytic 0.06445 0.09668 0.29004 0.87012 2.61036 7.83108
ABMS3 simulated  0.082 0.137 0.607 2.447 9.827 20.871
analytic 0.11145 0.16715 0.50145 2.00581 8.02324 24.0697
ABMA4 simulated 0.076 0.162 0.598 2.377 9.778 17.24
analytic  0.09193 0.13789 0.41369 1.65474 8.2737 15.5474

Table 8: NMED Comparison of 16-Bit ABMs between Simulated and Analytical Results using Error Model
(p is from 8 to 20 and the order of magnitude is 107%)

Multiplier | P 8 10 12 14 16 18 20
ABM1 simulated 0.2547 0.2557 0.3082 0.9303 3.1026 12.295 46.134
analytic 1.2373  1.546625 1.85595 2.165275 2.574027 10.28611 51.48054
ABM2 simulated 0.2545 0.255 0.2671 0.6243 3.0173 11.241 40.973
analytic 1.1471 1.4333 1.71995 2.0071 2.2932 9.17306 45.8653
ABMS3 simulated 0.2616 0.2957 0.3423 1.4043 5.6545 24.106 98.903
analytic 1.88103 2.35129 2.82155 3.29181 3.76207 18.81032 112.86192
ABM4 simulate 0.2676 0.315 0.4632 1.6014 4.1534 22.402 91.853
analytic  1.79083 2.23854 2.68625 3.13395 3.58166 17.9083 107.4498
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Figure 6: Simulated and analytical NMED values for ABM: (a) 8-bit ABM by Eagu-s, (b) 8-bit ABM by
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Algorithm 1 Probabilistic Error Model.
Require:
Bits of the multiplier operand, N;
Approximate factor, p; Operands, b;, a;;
Modification of K-Map, T}
Number of the Error in K-Map, Q;
Ensure:
Probabilistic Error Model of ABMs, Fapau
1: Define: Probabilistic of the value “1” of logic expression
[P(x)]:
%Based on circuit structure to analyze sub-model
2: Fape AN P(T)/Q,1 A 0and 0 A 1 denoted as T}
%The error model of ABE, i.e. Eapg;
%The logical expression of T, i.e. Eq. (9) and (10);
3: Fapa AN P(G),
G': the last symbol compensation bit Neg;
%The error model of approximate partial product array,
i.e. Eapa;
%The logical expression of G, i.e. Eq. (12);
4: Eacm A P(E), E: the difference between exact com-
pressor and approximate compressor;
%The error model is approximate compressor, i.e.
Eacw;
%The logical expression of F, i.e. Eq. (14);
: Define: Function of error model [F(x)];
: for the sub-model do
Earv-s &N F(N, p, Q, Easg, Eapa);
Eapv—-c A F(N, p, Q, Eapg, Eapa, Eacu)
: end for
%The probabilistic error function expression of Eapgn—s
and Eapm—c, i.e. Eq. (15) and(16);
10: return Eapu;

product array module, while the composite design also uses
the approximate compressors.

Fig. 6(a) and Fig. 6(b) show plots of the NMED (the ana-
lytical value from the proposed model and the simulated val-
ue) versus p for 8-bit ABMs, respectively, which are denoted
as Eapvm—s and Fapam—c, respectively. The analytical val-
ues are very close to the simulated values and the model for
the ABM1 has the best estimate. Generally, the analytical
error value is smaller than the simulated value.

The NMED comparison for the 16-bit designs has similar
results as the 8-bit designs. The value of p is in a range from
8 to 20 as shown in Table 8. The difference between the simu-
lated and the analytical values is marginally larger when p is
less than 14, because the NEMD values grow faster by simu-
lation than the exponential model assumption. When p>14,
the analytical results are close to the simulated results.

As shown in Fig. 6(c) and Fig. 6(d), for the 16-bit ABMs,
when p becomes larger, the NEMD values increase exponen-
tially. The model of a simple design shows slightly better
results than the composite one for 16-bit designs.

5 CONCLUSION

This paper has presented a probabilistic error model for ap-
proximate Booth multipliers (ABMs). The error model of
the ABMs has been formulated by taking into account each
part of the overall multiplier structure and then combining
them to form a complete analytical framework. Each pro-
posed sub error-model has been established based on the
circuit structure in every approximate unit of the designed
multiplier, such as for the approximate Booth encoding, the
approximate PP array and the approximate compression; fi-
nally the model combines them analytically. This framework
has provided the results for one of the most important error
metrics (i.e., NMED). This analytical model can also be used
for a fast yet mostly accurate assessment of the ABMs. The
results have shown that, for 8-bit designs, the probabilistic
error model for ABM1 achieves the best results. The analyt-
ical NEMD values are generally smaller than the simulated
results; for 16-bit ABMs, the model for the simple design is
better than the composite design with approximate compres-
SOTS.

Future work will investigate the impact of the input distri-
bution for a more generalized analysis. The model will also
be applied to other approximate multipliers such as approx-
imate redundant multipliers and consider the relationship
between the NMED and different application metrics, such
as the PSNR in image processing.
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