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Radial similarity flow offers a rare instance where concrete inviscid, multi-dimensional,

compressible flows can be studied in detail. In particular, there are flows of this type

that exhibit imploding shocks and cavities. In such flows the primary flow variables

(density, velocity, pressure, temperature) become unbounded at time of collapse. In

both cases the solution can be propagated beyond collapse by having an expanding

shock wave reflect off the center of motion.

These types of flows are of relevance in bomb-making and inertial confinement fu-

sion, and also as benchmarks for computational codes; they have been investigated

extensively in the applied literature. However, despite their obvious theoretical inter-

est as examples of unbounded solutions to the multi-dimensional Euler system, the

existing literature does not address to what extent such solutions are bona fide weak

solutions.

In this work we review the construction of globally defined radial similarity shock

and cavity flows, and give a detailed description of their behavior following collapse.

We then prove that similarity shock solutions provide genuine weak solutions, of

unbounded amplitude, to the multi-dimensional Euler system. However, both types of

similarity flows involve regions of vanishing pressure prior to collapse (due to vanishing

temperature and vacuum, respectively) - raising the possibility that Euler flows may

remain bounded in the absence of such regions.
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I. INTRODUCTION

We consider two types of radial similarity flows for the compressible Euler system. These

are particular types of solutions with planar (slab), cylindrical, or spherical symmetry. While

all three types of flows are “one-dimensional” in the sense that they depend on a single spatial

variable r, we reserve this term for the case of slab symmetry (i.e., the case when there is a

fixed direction in physical space such that, at each fixed time, all flow quantities are constant

in planes normal to this direction). Under a similarity assumption the Euler system reduces

to a coupled, nonlinear system of ODEs with respect to a similarity variable x = t/rλ, where

t is time, r is distance to the origin, and λ is the similarity exponent. Similarity flows provide

a rare instance where exact solutions to the multi-dimensional compressible Euler system

can be constructed “by hand” and studied in considerable detail. Following Guderley’s

pioneering study11, they have attracted substantial attention from physicists, engineers, and

mathematicians. For a recent overview of the literature, see20 and references therein.

The existing literature provides examples of similarity flows where a single (spherical or

cylindrical) incoming shock wave propagates into a quiescent region about the origin (i.e.,

the fluid there is at rest and at constant density and pressure). The shock strengthens as it

approaches the origin and the shock speed becomes unbounded at the instance of collapse

at the origin. (For convenience, the time of collapse is chosen as t = 0.) One can construct

a complete (similarity) solution for all later times as well by having a diverging shock wave

reflect off the origin. A different type of similarity solution describes the situation where a

gas fills a spherical or cylindrical cavity (vacuum region) near the origin. Again, the speed of

the fluid-vacuum interface blows up at collapse. Also in this case a global-in-time similarity

solution can be constructed by inserting an outgoing shock after collapse. We refer to these

two types of solutions as similarity shock and similarity cavity flows, respectively.

In either case the profiles for the fluid velocity, pressure, sound speed, and temperature at

time of collapse are unbounded, with behavior given by negative powers of r (in the cavity

case, this applies also to the density profile). For this the similarity exponent must satisfy

λ > 1.

In Section II we record the multi-dimensional (multi-d) Euler equations for compressible
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flow of an ideal and polytropic gas with adiabatic exponent γ > 1, including its radial form.

We also posit the form of the radial similarity solutions under consideration. Section III

outlines the setup for each type of solutions and collects various properties (initial data,

jump relations, characteristics, etc.) of the similarity solutions under consideration.

For the actual construction of physically relevant similarity solutions with these properties,

we follow Lazarus15 who treats both shock and cavity flows. A complete breakdown of

the various possibilities, including the key determination of allowed values of the similarity

exponent λ, requires a detailed analysis and numerical calculations. Our main purpose of

verifying that the Euler system admits unbounded weak solutions, does not require a full

breakdown of all the cases. Instead, Section IV outlines enough of this analysis to obtain some

cases of Euler flows with unbounded amplitudes. In particular, we restrict attention to the

standard value of the similarity exponent λ. This is the so-called “analytic” value, denoted

λstd by Lazarus15. See Section IV for details, where we also describe how the solutions are

propagated past collapse to yield complete (i.e., global-in-time), radial similarity flows.

The resulting, well-known, solutions can be studied in detail. In particular, we deduce

their asymptotic behavior at x = +∞, which plays a key role in the analysis that follows. It

turns out that the behavior of the resulting flows after collapse is markedly different near the

center of motion in the shock case and in the cavity case; see Section IV C. We also include

a discussion to the effect that, at least among similarity flows, the continuation beyond

collapse appears to be uniquely determined for both types of flows. Note that all jump

discontinuities appearing in these similarity flows are, by construction, entropy admissible:

both the incoming and the reflected shocks are compressive.

We then turn to our main concern: to what extent these types of similarity flows represent

genuine weak solutions of the original, multi-d compressible Euler system. As the similarity

solutions are singular and suffer blowup of primary flow variables at the origin, it is not

immediately clear in what sense the weak form is satisfied. While some authors4,15 have

addressed the constraint of locally finite energy for the similarity flows under consideration,

we are not aware of a complete analysis. Concentrating on similarity shock solutions, we

demonstrate that the flows constructed in the literature are indeed bona fide weak solutions

whenever the similarity exponent λ satisfies the constraint λ ≤ n
2

+ 1, where n is 2 or 3 for
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cylindrical or spherical flow, respectively. The numerical values available in the literature

indicate that the solutions corresponding to the particular value λstd always satisfy this

constraint.

We shall show that the similarity shock solutions under consideration are bona fide weak

solutions in the following sense: all terms occurring in the weak formulation of the multi-

d Euler system are locally integrable in space-time; the amounts of mass, momentum, and

energy within any fixed, compact spatial region change continuously with time (in particular,

they are finite); and finally, the weak forms of the equations are satisfied. (Their total mass,

momentum and energy in all of space are not bounded; however, this could be arranged via

suitable modifications away from the origin without affecting the blowup behavior near the

origin.)

We emphasize that we verify the weak form of the original, multi-d Euler system. Since

the similarity solutions under consideration are radially symmetric, it is convenient to first

derive the corresponding weak formulation for general radial solutions. This requires some

care as the latter formulation involves different types of “test functions” for the different

conservation laws. For completeness we include the derivation of the radial weak form of

the equations (see Definition 2 and Proposition V.1; here we follow the analysis12 for radial

Navier-Stokes flow).

With these preparations, Section VI provides the details of the proof that genuine multi-d

weak solutions are obtained from the radial symmetry solutions.

Discsussion. The existence of singular flows suffering point-wise blowup of flow variables

is of obvious relevance in connection with the general Cauchy problem for the compressible

Euler system. With the notable exception of small-variation data near a strictly hyperbolic

state (Glimm9), there is currently no general, global-in-time existence result available for the

one-dimensional (1-d) Cauchy problem for hyperbolic systems. (See17,24 for extensions that

cover certain types of large variation data specifically for the Euler system.) In more than

one space dimension the situation is bleaker, and symmetric flows offer a natural case to

consider in isolation. For results on isothermal and isentropic radial flow with general data,

see5,6,18.

In view of the blowup exhibited by similarity shock and similarity cavity solutions, it
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would appear that any existence result, applying to “general” data, for the multi-d Euler

system would necessarily have to involve unbounded solutions. However, one should be

careful not to draw too general conclusions on the basis of the similarity flows we study here.

These are exceedingly special solutions, some aspects of which are borderline physical. In

particular, both types of flows involve regions of vanishing pressure prior to collapse. In the

case of a collapsing cavity this is due to the vacuum, and there is no reason why the Euler

model should provide an accurate description close to its collapse. For the converging shock

case, it turns out that the quiescent state into which the converging shock propagates, must

necessarily be at zero pressure (due to vanishing temperature there) in order to generate an

exact solution. In approximate treatments this amounts to a “strong shock” assumption.

For the case of an incoming shock, it is physically reasonable that a nonzero counter

pressure would slow it down and possibly prevent unbounded amplitudes. This would provide

a mechanism to “save” the Euler model from actual blowup. In particular, if indeed correct,

this would show that the strong shock approximation fails to capture a crucial aspect of exact

solutions near collapse of symmetric shock waves (blowup vs. no blowup of primary flow

variables). The situation for radial isentropic similarity flow (constant entropy throughout,

disregarding the energy equation8) does not contradict this picture. In that case a converging

similarity shock can propagate into quiescent region only if λ = 1; no blowup of primary flow

variables occurs, and the upstream pressure is strictly positive. The same applies to radial

isothermal similarity flow. We note that a number of works consider the effect of a positive

counter pressure, e.g.2,19,25,26 and references therein. However, while amplitude blowup is

still present in these works, none of them provide exact weak solutions to the Euler system.

The conventional point of view appears to be that the blowup exhibited by radial similarity

flows results from multi-d wave focusing, much like what occurs for radial solutions to the

linear 3-d wave equation. The remarks above raise the possibility that the unbounded

amplitudes could be due to the presence of regions of vanishing pressure. We are not aware

of a definite argument one way or the other - possibly both effects are required to generate

blowup in L∞. Unfortunately, 1-d (slab symmetry) similarity flows do not help in assessing

the situation: such solutions fail to generate physically acceptable flows; see Remark IV.1.
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II. EQUATIONS

The full, multi-d Euler system for compressible gas flow is given by

ρt + div (ρ~u) = 0 (2.1)

(ρ~u)t + div (ρ~u⊗ ~u) + grad p = 0 (2.2)[
ρe+

ρ|~u|2

2

]
t
+ div

[(
ρe+

ρ|~u|2

2
+ p
)
~u
]

= 0. (2.3)

The variables are ρ = density, ~u = fluid velocity, p = pressure, e = specific internal energy.

Under the assumption of radial symmetry (i.e., all unknowns depend only on time t and

radial distance r to the origin or an axis of symmetry, and ~u is purely radial), the system

takes the form: (u = |~u|)

(rmρ)t + (rmρu)r = 0 (2.4)

(rmρu)t +
(
rm(ρu2 + p)

)
r

= mrm−1p (2.5)(
rmρ

[
e+

u2

2

])
t
+
(
rmρu

[
e+

u2

2
+
p

ρ

])
r

= 0. (2.6)

Here r varies over R+, subscripts denote differentiation, and m = 1, 2 for flows with cylin-

drical or spherical symmetry, respectively. With m = 0 and r varying over R, we have the

one-dimensional Euler system. We consider an ideal, polytropic gas with equation of state

p = (γ − 1)ρe = (γ − 1)cvρθ, (2.7)

where γ > 1 and cv are positive constants, and θ = temperature. The specific entropy S is

related to p and ρ by

pρ−γ = Constant · exp
( S
cv

)
. (2.8)

It is a consequence of the conservation laws above that S remains constant along particle

trajectories in smooth regions of the flow:

St + uSr = 0. (2.9)

The sound speed c is given by

c2 :=
γp

ρ
≡ γ(γ − 1)e, (2.10)
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and with u, c, and ρ as primary unknowns, the system (2.4)-(2.6) takes the form:

ut + uur +
1

γρ
(ρc2)r = 0 (2.11)

ct + ucr +
(γ − 1)

2
c
(
ur +

mu

r

)
= 0 (2.12)

ρt + uρr + ρ
(
ur +

mu

r

)
= 0. (2.13)

Following the notation and setup of Lazarus15, we introduce the similarity coordinate

x =
t

rλ
, (2.14)

where λ is the similarity exponent (to be determined), and make the ansatz

u(t, r) = − r

λt
V (x) = −r

1−λ

λ

V (x)

x
(2.15)

c(t, r) = − r

λt
C(x) = −r

1−λ

λ

C(x)

x
(2.16)

ρ(t, r) = rκR(x), (2.17)

where κ is a constant. We refer to solutions with this particular structure as similarity flows.

Their relevance relies on the fact that they include physically meaningful flows where either

symmetric shocks or cavities implode (converge, focus, collapse) at the origin. Similarity

flows are determined via solutions to ODEs for V , C, and R. These are the similarity ODEs

which we record in Section III C below. We stress that, differently from many other cases of

similarity solutions, the similarity exponent λ is not given a priori, but must be determined

as part of the solution.

III. SIMILARITY SHOCK AND SIMILARITY CAVITY SOLUTIONS

A. Similarity shock solutions

We shall first consider similarity flows where a single (spherical, cylindrical, or planar)

shock moves toward the origin for negative times, and focuses at the origin at time t =

0. Taking the existence of such similarity flows for granted for now, in this section we

consider the Rankine-Hugoniot conditions, describe various constraints that should be met
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by physically relevant similarity flows, and describe a particular (critical) characteristic which

plays a central role in the construction of such flows.

First, the flows on both sides of the shock are assumed to be similarity flows with the

same values of λ, γ, and κ in (2.15)-(2.17). We assume that the converging shock path is

described by a constant value of the similarity variable x, say

x ≡ −1 so that rshock = (−t)
1
λ , t < 0. (3.1)

We shall only consider situations where the shock reaches the origin with infinite speed, so

that

λ > 1. (3.2)

We follow15 and let subscripts 0 and 1 denote evaluation immediately ahead of and behind

of the shock, respectively. The (exact) jump relations and entropy condition then take the

forms

1 + V1 =
γ − 1

γ + 1
(1 + V0) +

2C2
0

(γ + 1)(1 + V0)
(3.3)

C2
1 = C2

0 +
γ − 1

2
[(1 + V0)2 − (1 + V1)2] (3.4)

R1(1 + V1) = R0(1 + V0) (3.5)

C2
0 < (1 + V0)2. (3.6)

Here (3.6) expresses that the shock is supersonic relative to the state ahead; together these

imply C2
1 > (1 + V1)2, amounting to the admissibility of the similarity shocks. The fluid on

the inside (ahead) of the converging shock is assumed to be at rest and at constant density

and pressure (quiescent state). According to (2.17), the constant density there dictates that

κ = 0 and R(x) is constant; for concreteness let

R(x) ≡ 1 for −∞ < x < −1.

Next, for an ideal gas c2 ∝ p
ρ
, so that the sound speed is constant in the quiescent region.

As we assume λ 6= 1, (2.16) implies that C must vanishes identically there. As the fluid near

the origin is assumed to be at rest, we therefore have

V (x) = C(x) ≡ 0 for −∞ < x < −1.
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We are thus considering a single, converging shock which moves into a quiescent region at

zero pressure and unit density. For an ideal polytropic gas, this means that the temperature

vanishes identically in the region inside the converging shock.

With (V0, C0, R0) = (0, 0, 1), inequality (3.6) is satisfied, and the jump relations (3.3)-(3.5)

give the following initial conditions for the similarity variables V , C, R at x = −1+:

V (−1) = V1 = − 2

γ + 1
, C(−1) = C1 =

√
2γ(γ − 1)

γ + 1
, R(−1) = R1 =

γ + 1

γ − 1
. (3.7)

Along the immediate outside of the converging shock, the primary flow variables are therefore

given by (2.15)-(2.17) as (recall that κ = 0 in the present shock case):

u =
V1

λ
r1−λ c =

C1

λ
r1−λ ρ ≡ R1. (3.8)

As we assume λ > 1, it follows that the velocity u and the sound speed c become unbounded

along the outside of the shock as it collapses at the origin, while the density remains finite.

(The same applies along any curve given by x ≡ constant ∈ (−1, 0).)

Next, we are only interested in solutions where the flow variables u, c and ρ are “well

behaved” at any location r > 0 at time t = 0. In particular, for any fixed r > 0 we require

that u(t, r) and c(t, r) tend to finite limits as t→ 0, i.e., as x→ 0. According to (2.15) and

(2.16) we must therefore have that

` := lim
x→0

V (x)

x
and L := lim

x→0

C(x)

x
are finite, (3.9)

Thus, in particular, we have

V (0) = C(0) = 0. (3.10)

It then follows from (2.15)-(2.16) and (3.9) that, at time of collapse (t = 0), the radial flow

speed u and the sound speed c blow up according to

u(0, r) = − `
λ
r1−λ and c(0, r) = −L

λ
r1−λ, (3.11)

while the density is constant, ρ(0, r) ≡ R(0). As a consequence, the pressure and temperature

profiles at time of collapse blow up according to

p(0, r), θ(0, r) ∝ r2(1−λ). (3.12)
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We point out that the limits in (3.9) will turn out to be non-zero and finite for the

solutions constructed below. It follows that all three characteristic speeds (u± c and u) are

bounded at all points except at (t, r) = (0, 0). In particular, all fluid particles, except the one

at the origin, are located away from r = 0 at time t = 0; in other words, the solutions under

consideration are not of “cumulative” type where all (or a part of) the mass concentrates at

the origin at collapse (examples of such flows are given in1,14).

Next we note that, by (3.7),

C > 1 + V > 0 at x = −1, (3.13)

while (3.10) shows that the opposite inequality holds at x = 0. Thus, for some critical

xc ∈ (−1, 0) we must have

1 + V (xc) = C(xc).

(For the solutions considered below, there is a unique critical value xc.) Now, to determine

the full solution of the flow problem before collapse, we must integrate the similarity ODEs

for V (x), C(x), and R(x) for x ∈ (−1, 0), subject to the initial data in (3.7). It so happens

that these ODEs are singular at points where 1 + V = C (see (3.19)-(3.21)), and we have

just seen that this must occur at some point xc ∈ (−1, 0). The corresponding curve in

the (t, r)-plane turns out to be a 1-characteristic for the corresponding Euler flow. (More

generally, a calculation shows that the curve x ≡ x̄ = constant is a 1-characteristic if and

only if 1 + V (x̄) = C(x̄).) Passing through x = xc corresponds to crossing the critical

1-characteristic, i.e. the 1-characteristic that catches up with the converging shock as it

collapses at the origin. See Figure 1.

We point out that, in considering weak solutions, one should admit solutions with jumps

in the derivatives of the flow variables across characteristics. In particular, V and C could

enter and exit x = xc with different slopes. However, we shall not exploit this feature in the

present work.
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x=x

converging
shock

quiescent 
region

1−characteristics

critical 
1−characteristic

r

t

x=−1 c

FIG. 1. Converging similarity shock before collapse (schematic).

B. Similarity cavity solutions

For the case of a collapsing cavity we consider a spherical vacuum region centered at

the origin, surrounded by fluid moving radially inward. Assuming for now the existence of

similarity flows (2.15)-(2.17) with this structure, we assume that the vacuum-fluid interface

follows the path x = −1 for negative times. Again we consider the case where this curve

hits the origin with infinite speed at time t = 0, so that λ > 1. The interface is a particle

trajectory, giving the initial condition for V at x = −1+ as

V (−1) = −1. (3.14)

To select initial conditions for R and C at x = −1, we impose the further constraint that the

entropy takes a fixed, constant value S̄ throughout the fluid region for negative times (before

a shock is reflected off the origin). The fluid pressure is then given by Aργ, where A = A(S̄)

is a constant. As the fluid pressure must vanish along the vacuum interface, it follows that

the same holds for the density ρ, and also the sound speed c =
√
γAργ−1. Equations (2.16)

and (2.17) thus gives the initial conditions for C and R at x = −1+ as

C(−1) = R(−1) = 0. (3.15)
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For later reference we note that isentropic similarity flow requires

κ = −2(λ− 1)

γ − 1
; (3.16)

this is a consequence of the momentum equation (2.11) with ρc2 = γAργ, upon substituting

for u and ρ from (2.15) and (2.17), respectively.

It turns out that the similarity cavity flows constructed below immediately leaves the

starting point (V,C) = (−1, 0) by moving into the region C > 1 + V > 0. Just as for the

shock case discussed above, we insist on “well-behaved” solutions satisfying (3.9). It follows

that the cavity solution has to move back across the critical line {C = 1 + V }, for some

xc ∈ (−1, 0), before continuing on toward the origin.

We note that, in contrast to the case of a similarity shock, in similarity cavity flow only

the fluid velocity u blows up along the curve x ≡ −1, while c, ρ, p, and θ all vanish there.

On the other hand, (2.15)-(2.17) imply that all of u, c, ρ, p, and θ blow up along all other

curves x ≡ constant ∈ (−1, 0) as t ↑ 0. (This last assertion requires that V and C does not

vanish at any x ∈ (−1, 0); this will be the case for the similarity cavity flows constructed

below.) Furthermore, the profiles for u, c, p, and θ at time of collapse are again given

by (3.11)-(3.12) (provided the limits in (3.9) are non-zero, which holds for the cavity flows

constructed below). Finally, for similarity cavity flow, also the density is unbounded at time

t = 0:

ρ(0, r) = R(0)rκ,

where κ, given by (3.16), is strictly negative since λ > 1.

As the sound speed c vanishes along the vacuum interface, the characteristics degenerate

there and become tangent to the interface; a representative situation is recorded in Figure

2.

Remark III.1. It can be verified that the situation in Figure 2 is valid for the cavity flows

constructed below. In particular, (4.1) yields C ∼
√

1 + V near x = −1, and this implies

that any 1-characteristic between the interface x = −1 and the critical characteristic x = xc

will meet the interface at a time strictly before collapse. It does so tangentially; at the same

point a 3-characteristic starts off tangentially into the flow, as indicated.
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(characteristic)

converging

vacuum
region

t

r

interface

x=−1

1−characteristics

1−characteristic
critical 

3−characteristic

x=x c
FIG. 2. Similarity cavity flow before collapse (schematic).

C. Similarity ODEs

Substituting (2.15)-(2.17) into (2.11)-(2.13) we obtain a system of three similarity ODEs

for V , C, R. It is well-known that the constancy of specific entropy along particle trajectories

provides one exact integral for the similarity ODEs (see23). Specifically, in any region where

the flow is smooth, we have

R(x)q+1−γ
(
C(x)

x

)2

|1 + V (x)|q ≡ constant, (3.17)

where

q =
κ(γ − 1) + 2(λ− 1)

κ+ n
, (3.18)

where n = 1, 2, 3 is the spatial dimension. In the case of an incoming cavity, the flow is

isentropic for t < 0, and q vanishes according to (3.16), while the right-hand side of (3.17)

is determined once the constant value S̄ of the entropy is assigned.

One can therefore obtain a closed system for two of the unknowns, the standard choice
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being V and C. The resulting ODEs are (see7,15)

V ′(x) = − 1

λx

G(V (x), C(x), λ)

D(V (x), C(x))
(3.19)

C ′(x) = − 1

λx

F (V (x), C(x), λ)

D(V (x), C(x))
(3.20)

where ′ = d
dx

and the polynomial functions D and G, and the rational function F are given

by

D(V,C) = (1 + V )2 − C2 (3.21)

G(V,C, λ) = C2
[
nV + 2(λ−1)

γ+s−1

]
− V (1 + V )(λ+ V ) (3.22)

F (V,C, λ) = C
{
C2
[
1 + s(λ−1)

γ(1+V )

]
−
[
1 + (n−1)(γ−1)

2

]
(1 + V )2 (3.23)

+
[

(n−1)(γ−1)+(γ−3)(λ−1)
2

]
(1 + V )− (γ−1)(λ−1)

2

}
.

Here s is a logical variable: s = 1 for the shock case and s = 0 for the cavity case. Combining

(3.19) and (3.20) we obtain a single ODE

dC

dV
=
F (V,C, λ)

G(V,C, λ)
(3.24)

relating V and C along similarity solutions.

IV. CONSTRUCTION OF COMPLETE SIMILARITY FLOWS

In this section we discuss the existence of solutions to the similarity ODEs, and how these

are used to build physically meaningful similarity shock and similarity cavity flows. We seek

complete solutions defined for all times.

The overall approach is, in principle, to solve (3.24) for C = C(V ) with the appropriate

initial data, and substitute the result into (3.19)-(3.20) to obtain x-parametrizations for

V = V (x) and C = C(x) via quadrature. From these R = R(x) can be determined from the

exact integral in (3.17). For the discontinuous solutions under consideration, the Rankine-

Hugoniot relations (3.3)-(3.5) are used. These will uniquely determine the value of the

constant on the right-hand side of (3.17) in each region where the solution is smooth. The
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original flow variables ρ, u, and c are then given via (2.14)-(2.17). Finally one needs to verify

that the solution so obtained is physically acceptable.

The analysis is complicated by the fact that the ODE (3.24) possesses a number of critical

points (common zeros of F and G), whose location varies with γ, λ, and s. Furthermore,

these may or may not be located on the critical lines

C± := {C = ±(1 + V )},

along which the denominator D in (3.19) and (3.20) vanishes. As discussed below, this is

a key issue. Among the many treatments in the literature we find the work15 by Lazarus

to be the most useful for our needs. (Lazarus also studies solutions with several converging

similarity shocks, a scenario we do not consider in the present work.)

The location of the initial data for (V,C) at x = −1 implies that the solutions of (3.24)

need to cross the critical line C+, before continuing on to the origin in the (V,C)-plane. Let

F := {(V,C) |F (V,C, λ) = 0}, F± := F ∩ {C ≷ 0},

and define G, G± similarly by replacing F (V,C, λ) by G(V,C, λ). As shown in15, the set

F ∩ G of critical points for (3.24) can contain up to nine distinct points. One of these is

(V,C) = (−1, 0), which is the initial point for similarity cavity flow. In addition there may

be up to two more critical points located on C+; we follow Lazarus’ terminology and refer to

these as points 6 and 8. Now, a similarity flow must solve the full ODE system (3.19) and

(3.20). It follows from the form of these equations that any solution reaching the critical line

C+, in order to continue on to the origin in the (V,C)-plane, must cross at a common zero

of both F and G. (Note that F and G are proportional along C±.) It is this restriction that

is used to determine what the relevant values of λ can be, for given values of γ, n, and s.

Lazarus15 provides a detailed analysis of the subtle issue of which λ-values give complete

flows. In particular, Lazarus defines a function λstd = λstd(γ, n, s) by the property that

the solution of (3.24), with λ = λstd and starting at the appropriate initial point, passes

analytically through point 6 or point 8. As pointed out in15, most other authors have

considered λstd to be the only physically relevant value of the similarity exponent. Lazarus

argues against this and shows that by removing the analyticity constraint one can, for fixed
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γ, n, and s, obtain whole families of complete similarity flows as λ varies over certain non-

trivial intervals. To obtain a complete breakdown of the possible cases requires numerical

integration of the similarity ODEs. Most of the details of this analysis are included in15.

In particular, the numerical values of λstd for n = 2, 3 and s = 0, 1 have been determined

to several decimal places for a large number of γ-values (cf. Tables 6.2-6.5 in15). According

to Lazarus, “Numerically, it has been determined beyond question that it [i.e., the function

λstd] exists for the shock problem for all γ > 1, and for the cavity problem for γ > γstd.”

Here γstd depends on the spatial dimension and is approximately given by 2.9780 for n = 2,

and 2.4058 for n = 3. In what follows we take these statements for granted. Differently from

many other cases of similarity solutions to PDEs, the similarity exponent λ is not apriori

given; no analytic expression for λstd is known.

Having determined those λ-values which gives relevant solutions to the similarity ODEs

(3.19) and (3.20) for x ∈ (−1, 0), it remains to continue the solution through the origin and

extend it to all x > 0. As commented earlier, this is accomplished by inserting an expanding

similarity shock following a path of the form r(t) = ( t
B

)
1
λ for t > 0 (i.e., x ≡ B, where B > 0

is a constant). The determination of B and the construction of the solution for x ∈ (B,∞)

are outlined in Section IV C below; again, it appears necessary to do so through numerical

integration of the equations.

Having constructed a complete similarity shock or cavity solution in this manner, it still

remains to verify that the resulting flow is physically meaningful. This includes describing

the solution behavior at the origin r = 0+ for t > 0 (e.g., the velocity there should vanish), as

well as checking that the mass, momentum, and total energy are locally bounded quantities.

As we show in Section VI (where we verify in detail that the similarity solutions are genuine

weak solutions to the Euler system), the latter integral constraints require that the similarity

exponent satisfies λ < 1 + n
2
. It turns out that this is satisfied for all known values of λstd

(cf. Tables 6.2-6.5 in15).

While we agree with15 on the relevance of non-analytic similarity flows, the more impor-

tant point, for our purposes, is that we obtain some examples of shock and cavity flows that

exhibit blowup. We therefore restrict attention to solutions corresponding to the “analytic”

similarity exponent λstd.
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A. Existence of similarity shock solutions prior to collapse

For the shock problem we first observe that, by construction, the converging shock along

x = −1 is compressive. The same holds for the diverging shock following collapse. For the

present case of an ideal gas, this implies that a fluid particle crossing the shock will suffer

an increase in its physical entropy10; i.e., all discontinuities under consideration involving

jumps of primary (undifferentiated) flow variables, are genuine, “entropy-satisfying” shocks.

Next, there is no issue near the initial point (V1, C1) given by the two first expressions in

(3.7): the ODE (3.24) is well behaved there and has a local solution for any values of λ > 1

and γ > 1. As outlined earlier, the solution must cross the critical line C+ = {C = 1 + V }

before reaching (V,C) = (0, 0). As explained above we restrict attention to the particular

value λ = λstd for which the solution crosses the critical line C+ in an analytic manner.

Remark IV.1. The similarity ODEs (3.19)-(3.20) remain valid for n = 1. However, an

analysis reveals that the solution starting out from (V1, C1) does not reach the critical line in

this case, instead ending at a critical point (V̄ , C̄) lying strictly above C+ (this corresponds to

“point 4” in Lazarus’ terminology15). The same applies to the case of 1-d similarity cavity

flow. At (V̄ , C̄), F (V,C) and G(V,C) vanish and are Lipschitz continuous, while D(V,C)

does not vanish; therefore, the critical point is reached for x = 0. However, (2.15) and (2.16)

then imply that the resulting flow is physically meaningless at time of collapse in this case.

One could still attempt to build a 1-d flow exhibiting blowup by using only a part of the

similarity flow just described, say the part corresponding to x ∈ (−∞, x0), for an x0 < 0.

The idea would be to complete the flow to all negative x, say, by a non-similarity flow (e.g.,

a simple wave). However, any change made in the original similarity flow for x > x0 will

necessarily influence the flow along the interface at x = −1, strictly before t = 0, and thus

possibly prevent blowup. This is a consequence of the fact that the original similarity solution

does not reach the critical line C+: there is no critical 1-characteristic in this case (cf. Figure

2).

After crossing the critical line the λstd-solution approaches the origin (V,C) = (0, 0), which

is a star point for (3.24). F (V,C) and G(V,C) both vanish and are Lipschitz continuous at
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the origin, while D(V,C) does not vanish there. It follows that the solution (V (x), C(x))

reaches the origin at x = 0. This critical point is again crossed in an analytic manner and

the solution continues into the lower half of the (V,C)-plane; see Section IV C.

Remark IV.2. According to (3.9) the solution (V (x), C(x)) approaches the origin with a

slope L/`. For all cases we are aware of it is evident from numerical integration of the

equations that the limits in (3.9) are non-zero and finite. It follows from (3.11) that the flow

in these cases is “well-behaved” and physically meaningful at time of collapse.

B. Existence of cavity similarity solutions prior to collapse

For the cavity problem the initial point (V,C) = (−1, 0) for the ODE (3.24) lies on the

critical line C+ = {C = 1+V }. This is a saddle point; a linearization about it in the variables

(V, Z = C2) shows that there is a solution leaving along the direction

dZ

dV
=

γ(γ − 1)(λ− 1)

n(γ − 1)− 2(λ− 1)
. (4.1)

The solution C(V ) to (3.24) therefore enters immediately the region {C > 1 + V > 0},

provided λ < 1 + n
2
(γ − 1), which we assume in what follows (for s = 0).

Remark IV.3. The corresponding solution (V (x), C(x)) of (3.19)-(3.20) has C(x) → 0 as

x ↓ −1. Note that (3.17) (with q = 0) also gives R(x) → 0 as x ↓ −1. It follows that the

density ρ vanishes as the interface {x = −1} is approached from within the fluid. Therefore,

the constructed solution satisfies the physical boundary condition that p ∝ ργ−1 vanishes

along the vacuum interface.

Further along the solution, the situation is similar to that for the shock case: the similarity

exponent λ must be chosen so that the solution of (3.24) crosses the critical line C+ at a

common zero of F and G, i.e., through one of the critical points labeled 6 or 8 in15. Differently

form the shock case, this will not occur for all values of γ > 1. As noted earlier, for the

cavity case, there is a minimal γstd(n) below which no value of λ yields a solution with the

required behavior.
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After crossing the critical line C+, the situation is as in the shock case. The solution

proceeds toward the origin in the (V,C)-plane, and passes through it in an analytical manner

for x = 0.

C. Existence of similarity solutions beyond collapse; the reflected shock

The works3,13,15,21,22 consider the continuation of similarity shock and cavity solutions

beyond collapse, to complete flows defined for all times. We are not aware of a general

result addressing the unique continuation of solutions to (2.1)-(2.3), symmetric or not, for

unbounded initial data. On the other hand, it is reasonable to assume that no symmetry

breaking occurs at time of collapse, and restrict attention to radial similarity flows with the

same values of λ and κ also for t > 0. Furthermore, the unbounded pressure distribution at

time of collapse (cf. (3.12)) suggests searching for a solution in which an expanding shock

wave is generated at the origin at time zero.

Following15,22, we outline the construction of a reflected similarity shock propagating

along a path x = B = constant > 0. This shock will decay as it moves outward through

the originally converging flow, leaving a non-isentropic flow region in its wake. Providing a

complete solution requires the continuation of the similarity solution (V (x), C(x)) of (3.19)-

(3.20) found earlier beyond x = 0, the determination of the reflected shock path (i.e., the

value of B), and the solution of (3.19)-(3.20) for all x > B. The latter part of the solution

provides the flow in the wake of the reflected shock; in particular, the asymptotic behaviors

of V (x) and C(x) as x ↑ ∞ yield the behavior of the flow variables at the center of motion

(r = 0).

Continuing the solution (V (x), C(x)) through the star point (proper node) at the origin

in the (V,C)-plane does not present any problem. This can be done in a unique analytic

manner, and the solution (V (x), C(x)) is continued into the lower half-plane until it meets

the critical line C− = {C = −1− V }. Following15 we call this first part of the solution curve

(in the lower half of the (V,C)-plane) “arc (a).”

For each point (Ṽ0, C̃0) on arc (a), we then apply the Rankine-Hugoniot relations (3.3) and

(3.4) to determine the unique point (Ṽ1, C̃1), with C̃1 < 0, to which the system can potentially
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jump. (Recall that the form (3.3)-(3.5) of the Rankine-Hugoniot relations assumes the

discontinuity follows a “similarity path” x = constant, with the same values of λ, γ, and

κ on both sides of the discontinuity.) As was noted in connection with (3.3)-(3.5), since

C̃2
0 < (1 + Ṽ0)2 along arc (a), the corresponding points (Ṽ1, C̃1) necessarily lie below the

critical line C−.

As x increases from 0, the point (Ṽ0, C̃0) ≡ (V (x), C(x)) moves away from the origin along

arc (a). At the same time the corresponding point (Ṽ1, C̃1) traces out a certain simple curve;

we follow15 and refer to it as the jump locus (of arc (a)). (This jump locus is the smiley,

dotted curve in the lower half plane indicated in Figure 3 below.) According to (3.3)-(3.4)

its left endpoint is (V1,−C1) (corresponding to the point (Ṽ0, C̃0) = (0, 0)), where V1 and C1

are given by (3.7). Its right end point lies on the critical line C− and coincides with the end

point of arc (a).

At this stage, each point on the jump locus (except its endpoints) provides possible initial

data for (3.19)-(3.20), from which a solution trajectory should be continued for all x > B.

The issue now is to argue that there is a unique point (V̂1, Ĉ1) on the jump locus from which

the solution can be continued to provide a physically meaningful solution to (2.1)-(2.3).

A computation shows that the ODE (3.24) has a critical point at (V,C) = (V0,−∞),

where

V0 = − 2(λ− 1)

n(γ + s− 1)
(4.2)

gives the vertical asymptote for the zero-level of G(V,C, λ) in the (V,C)-plane. This point

corresponds to a saddle point at the origin in the variables (v, ζ) = (V − V0, C
−2). There

is therefore exactly one solution of (3.24) which approaches the vertical asymptote V =

V0. Furthermore, it appears that this solution, when integrated in from infinity, always

lies entirely below the critical line C−, before intersecting the formerly determined jump

locus at a single point (V̂1, Ĉ1). This solution trajectory is referred to as “arc (b).” We

then apply (3.3) and (3.4) to find the corresponding point (V̂0, Ĉ0) on arc (a). The x-

value B at which the expanding shock is located is then determined by the condition that

(V (x), C(x))|x=B = (V̂0, Ĉ0), where (V (x), C(x)) denotes the x-parametrization of arc (a).

Modulo the x-parametrization of arc (b), this procedure determines the solution for all x > 0,
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and provides a complete solution for both types of radial similarity flows.

Remark IV.4. As is evident from Figure 8.30 in15, and explicitly pointed out in3, for γ & 3

and n = 3, the similarity shock solution suffers stagnation (u = 0) ahead of the reflected

shock. In the phase plane this corresponds to the situation where the solution (V (x), C(x))

moves along arc (a) into the left half plane {V < 0} before jumping to arc (b).

Before addressing the uniqueness of this solution, we record how Lazarus15 obtains the

x-parametrization of arc (b). First V and C are expanded in powers of the new independent

variable w = kx−σ, where k and σ > 0 are constants to be determined. With the ansatz

V (w) =
∞∑
i=0

Viw
i and C(w) = − 1

w
+
∞∑
i=0

Ciw
i, (4.3)

substitution into (3.19) and (3.20) yields the value in (4.2) for V0, and

σ =
1

λ

[
1 +

s(n− 1)z

1 + V0

]
where z =

λ− 1

(n− 1)(γ + s− 1)
. (4.4)

To integrate the ODE system in from the critical point (V0,−∞) at infinity, Lazarus instead

integrates the system for V (w) and C(w) from w = 0, and thus obtains the w-parametrization

of arc (b). This provides the value w1 for which (V (w), C(w))w=w1 = (V̂1, Ĉ1), the point

where arc (b) intersects the jump locus of arc (a). As explained above, this determines,

via the Rankine-Hugoniot relations (3.3)-(3.4) and the x-parametrization of arc (a), the

location x = B of the reflected shock. Finally, the x-parametrization of arc (b) requires the

determination of the constant k, which is now given by k = Bσw1.

Example IV.1. In Figure 3 we have used Maple to display the complete similarity shock

solution (s = 1) in the (V,C)-plane for the case n = γ = 3. We have used the values

λ = λstd(3, 3, 1) ≈ 1.5713126233 and B ≈ 0.693970 given by Table 6.5 in15 (see erratum

in16). The solution starts at the starred point above the critical line {C = 1 + V }, moves

downward, crosses {C = 1 + V } and the origin smoothly, and then crosses the critical line

{C = −1 − V } by jumping, before continuing along arc (b) toward the critical point at

(V0,−∞). Note that, in accordance with Remark IV.4, the first jump point, corresponding

to the state ahead of the reflected shock, is close to {V = 0}.
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FIG. 3. Complete trajectory of similarity shock solution (n = γ = 3) in the (V,C)-plane. Thick

dash = solution for −1 < x < 0, thick solid = arc (a), dotted = jump locus, solid = arc (b), thin

dash = zero-level of G(V,C), dash-dot = critical lines, star = starting point, circles = jump points.

We note that, according to (2.15), the physical requirement that the particle velocity

u(t, r) vanishes at the center of motion r = 0 for all t > 0, imposes the condition V (x)/x
1
λ →

0 as x ↑ ∞. Of course, this is satisfied for the solution determined above since V (x) in that

case tends to the finite limit V0 as x ↑ ∞.

By combining the asymptotic behavior of V (x) and C(x) with the exact integral (3.17) we

obtain that of R(x), and thus a complete description of the flow near the center of motion.

A calculation shows that the result depends on the value of s; at any fixed time t > 0 and

as r ↓ 0, we have:

(O1) for similarity cavity flow (s = 0): ρ(t, r), p(t, r), and θ(t, r) ∝ c(t, r)2 all tend to

nonzero constants (cf. Figures 8.19-8.22 in15);

(O2) for similarity shock flow (s = 1): ρ(t, r)→ 0, p(t, r) tends to a strictly positive constant,

while c(t, r) and θ(t, r) both tend to +∞ (cf. Figures 8.25-8.28 in15).
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(For a representative calculation, see the proof of Lemma VI.1 below.) It is noteworthy

that, in the case of similarity shock flow, the density vanishes at the center of motion after

collapse, without the pressure tending to zero there. For the ideal gas under consideration,

this yields unbounded temperature and sound speed at r = 0 for t > 0. (This contradicts

Lazarus’ statement on p. 330 in15 when s = 1.) In our view, this is another manifestation of

the borderline physicality of the radial similarity solutions under consideration.

It remains to discuss the uniqueness of the solution determined above, which was obtained

by exploiting the critical (saddle) point (V0,−∞) at infinity for the ODE (3.24). Consider

first similarity cavity flow (s = 0), in which case (3.24) has critical points also at (−∞,−∞)

and at (∞,−∞). However, neither of these appear to be reachable from the jump locus of

arc (a). Indeed, from the phase portraits it appears that all solution trajectories (V (x), C(x))

starting from points on the jump locus lying to the left of (V̂1, Ĉ1) end up (for a finite value

of x) on the critical line C+, while all trajectories starting from points on the jump locus

lying to the right of (V̂1, Ĉ1) end up on C−. There is no way to continue these solutions to

all x > 0 and obtain complete, physically meaningful flows.

For the case of similarity shock flow (s = 1), the ODE (3.24) has an additional critical

point at (V,C) = (−1,−∞) (due to the (1+V )−1-term in F (V,C, λ) in this case, cf. (3.23)).

From the phase portraits it appears that all solution trajectories (V (x), C(x)) starting from

points on the jump locus lying to the left of (V̂1, Ĉ1) approaches this point. (All trajectories

starting from points on the jump locus lying to the right of (V̂1, Ĉ1) appear again to end

up on C− for finite x-values). Changing to the variables (V, 1
C

) and linearizing, reveals that

the point (V,C) = (−1,−∞) is necessarily reached for a finite x-value, say x̌ (depending

on where along the jump locus the solution started). According to22, this shows that the

critical point (−1,−∞) cannot describe the physical state at r = 0+ for t > 0 (since this

corresponds to x = +∞), and is therefore irrelevant. However, this does not resolve the issue

completely. A calculation shows that if (V (x), C(x)) of (3.19)-(3.20) tends to (−1,−∞) as

x ↑ x̌, then the density ρ(t, r) at a fixed time t > 0 will satisfy

ρ(t, r) ↓ 0 as r ↓
(
t
x̌

) 1
λ ;

that is, a vacuum is reached. This solution structure is not unreasonable: one might well
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imagine an expanding vacuum region opening up in the wake of a strong, expanding shock

(a possibility considered by Hunter13 for the particular case of similarity cavity flow with

γ = 7). However, a further calculation reveals that the pressure p(t, r) does not tend to zero

as r ↓ (t/x̌)1/λ (for t > 0 fixed). This type of solutions is therefore rejected as unphysical.

While these observations do not provide rigorous proof, they support the view that the

only way to obtain a complete and physically admissible solution, is by having (V (x), C(x))

approach the saddle point at (V0,−∞) as x ↑ ∞. It therefore appears that both similarity

shock and similarity cavity solutions are uniquely determined beyond collapse - at least

among similarity flows.

V. WEAK AND RADIAL WEAK EULER SOLUTIONS

We next consider whether the radial similarity solutions constructed above, considered

as function of time and space, provide weak solutions to the original multi-d Euler system

(2.1)-(2.3).

For concreteness, in what follows, we focus on the case of similarity shock solutions, in

which case the radial velocity, sound speed, pressure and temperature are unbounded at

time of collapse, cf. (3.11)-(3.12). The formulation and verification of the weak form of the

equations therefore requires attention. Somewhat surprisingly this does not appear to have

been addressed in the existing literature.

In this section we formulate the weak form of the Euler system (in the absence of vacuum

regions), first for general, multi-d solutions, and then specialize it to the case of radial

solutions.

A. General, multi-d weak solutions

We write ρ(t) for ρ(t, ·) etc., ~u = (u1, . . . , un), u := |~u|, and let z = (z1, . . . , zn) denote

the spatial variable in Rn. We restrict attention to non-vacuum solutions.

Definition 1. Consider the compressible Euler system (2.1)-(2.3) in n space dimen-

sions, with a given pressure function p = p(ρ, e) ≥ 0, and let the measurable functions
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ρ, u1, . . . , un, e : Rt × Rn
z → R be given. We say that these constitute a (non-vacuum) weak

solution to (2.1)-(2.3) provided that:

(i) the functions ρ and e satisfy ρ(t, z) > 0 and e(t, z) ≥ 0 for a.a. (t, z) ∈ R× Rn;

(ii) the maps t 7→ ρ(t), t 7→ ρ(t)u(t), and t 7→ ρ(t)(e(t) + u(t)2

2
) belong to C(Rt;L

1
loc(Rn

z ));

(iii) the functions ρu2, p, and
[
ρ
(
e+ u2

2

)
+ p
]
u belong to L1

loc(Rt × Rn
z );

(iv) the conservation laws for mass, momentum, and energy are satisfied weakly in sense

that ∫
R

∫
Rn
ρϕt + ρ~u · ∇zϕdzdt = 0 (5.1)∫

R

∫
Rn
ρuiϕt + ρui~u · ∇zϕ+ pϕzi dzdt = 0 for i = 1, . . . , n (5.2)∫

R

∫
Rn
ρ
(
e+ u2

2

)
ϕt +

[
ρ
(
e+ u2

2

)
+ p
]
~u · ∇zϕdzdt = 0 (5.3)

whenever ϕ ∈ C1
c (Rt × Rn

z ) (the space of C1-smooth functions with compact support).

Remark V.1. Note that we allow for the possibility that the density vanishes on sets of

measure zero. This is relevant since, as noted above, the similarity shock solutions constructed

earlier include a vacuum state at the center of motion after collapse.

Also, we do not address admissibility of weak solutions. While not the only possible

approach, we consider the similarity shock solutions under consideration to be admissible

since their discontinuities are, by construction, compressive shocks in ideal gases.

B. Radial weak Euler solutions

Next, for completeness we detail the relationship between weak solutions of the multi-d

Euler system (2.1)-(2.3) and “radial weak solutions” of the radial version (2.4)-(2.6). This

analysis has been provided earlier by Hoff12 for radial solution of the compressible, isentropic

Navier-Stokes system.

Setting m := n− 1 we let

R+ = (0,∞), R+
0 = [0,∞), L1

(loc)(dt× rmdr) = L1
(loc)(R× R+

0 , dt× rmdr),
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and C1
c (R×R+

0 ) denotes the set of real-valued functions ψ(t, r) defined on R×R+
0 and with

the property that ψ is C1 smooth on R × R+
0 and vanishes outside [−t̄, t̄] × [0, r̄] for some

t̄, r̄ ∈ R+. In particular, for any ψ in C1
c (R× R+

0 ) the derivatives ∂lt∂
k
rψ with 0 ≤ l + k ≤ 1

have well-defined (finite), continuous, and possibly non-vanishing, traces along the t-axis.

Finally, we let C1
0(R×R+

0 ) denote the set of functions ψ ∈ C1
c (R×R+

0 ) with the additional

property that ψ(t, 0) ≡ 0.

Remark V.2. It follows from this that for any ψ ∈ C1
0(R × R+

0 ), and any compact time

interval [−T, T ], there is a constant A = Aψ,T so that

|ψ(t, r)| ≤ Ar for all t ∈ [−T, T ].

The relevance of these function classes is the following: when the weak formulation of the

full multi-d Euler system (2.1)-(2.3) is applied to radial solutions, then the relevant “test

functions” for the radial continuity and energy equations will belong to C1
c (R × R+

0 ), while

the relevant “test functions” for the radial momentum equation will belong to C1
0(R×R+

0 ).

Before verifying this we define “radial weak solutions.”

Definition 2. Consider the radial version (2.4)-(2.6) of the compressible Euler system (2.1)-

(2.3), where (t, r) ranges over R× R+ and p = p(ρ, e) ≥ 0 is a given pressure function.

Let the measurable functions ρ, u, e : Rt×R+
r → R be given. We say that these constitute

a (non-vacuum) radial weak solution to (2.4)-(2.6) provided that:

(i) the functions ρ and e satisfy ρ(t, r) > 0 and e(t, r) ≥ 0 for a.a. (t, r) ∈ R× R+;

(ii) the maps t 7→ ρ(t), t 7→ ρ(t)u(t), and t 7→ ρ(t)(e(t)+ u(t)2

2
) belong to C(Rt;L

1
loc(r

mdr));

(iii) the functions ρu2, p, and
[
ρ
(
e+ u2

2

)
+ p
]
u belong to L1

loc(dt× rmdr);

(iv) the conservation laws for mass, momentum, and energy are satisfied in the distribu-
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tional sense that ∫
R

∫
R+

(ρψt + ρuψr) r
mdrdt = 0 ∀ψ ∈ C1

c (R× R+
0 ) (5.4)∫

R

∫
R+

(
ρuψt + ρu2ψr + p

(
ψr + mψ

r

))
rmdrdt = 0 ∀ψ ∈ C1

0(R× R+
0 ) (5.5)∫

R

∫
R+

(
ρ
(
e+ u2

2

)
ψt +

[
ρ
(
e+ u2

2

)
+ p
]
uψr

)
rmdrdt = 0 ∀ψ ∈ C1

c (R× R+
0 ).

(5.6)

Proposition V.1. Consider the multi-d Euler system (2.1)-(2.3) with a given pressure func-

tion p = p(ρ, e), together with its radially symmetric version (2.4)-(2.6). Then: given a radial

weak solution (ρ̃, ũ, ẽ) of (2.4)-(2.6), and setting

ρ(t, z) = ρ̃(t, r) ~u(t, z) = ũ(t, r)
z

r
e(t, z) = ẽ(t, r) (r = |z|), (5.7)

we obtain a weak solution (ρ, ~u, e) of the multi-d Euler system (2.1)-(2.3).

Proof. First, it is immediate that the properties in parts (i)-(iii) of Definition 2, together

with (5.7), imply parts (i)-(iii) of Definition 1, respectively. It remains to verify the weak

form of the equations. To verify (5.1) we fix ϕ ∈ C1
c (R× Rn) and set

ψ(t, r) :=

∫
|y|=1

ϕ(t, ry) dSy. (5.8)

Then ψ ∈ C1
c (R× R+

0 ) and (5.4) gives

0 =

∫
R

∫
R+

(ρ̃ψt + ρ̃ũψr) r
mdrdt

=

∫
R

∫
R+

[
ρ̃

∫
|y|=1

ϕt(t, ry) dSy + ρ̃ũ

∫
|y|=1

∂r (ϕ(t, ry)) dSy

]
rmdrdt

=

∫
R

∫
R+

∫
|y|=1

[
ρ̃ϕt(t, ry) + ρ̃ũ∇zϕ(t, ry) · y

]
rmdSydrdt =

∫
R

∫
Rn
ρϕt + ρ~u · ∇zϕdzdt,

verifying the weak form (5.1) of the continuity equation (2.1) in the multi-d Euler system.

Next, to verify (5.2) we fix i (1 ≤ i ≤ n) and ϕ ∈ C1
c (R× Rn), and set

ψ(t, r) :=

∫
|y|=1

yiϕ(t, ry) dSy. (5.9)
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Then ψ ∈ C1
0(R× R+

0 ) and (5.5) gives

∫
R

∫
R+

(
ρ̃ũψt︸︷︷︸
I

+ ρ̃ũ2ψr︸ ︷︷ ︸
II

+ p̃
(
ψr + mψ

r

)︸ ︷︷ ︸
III

)
rmdrdt = 0, (5.10)

where p̃ = p(ρ̃, ẽ). Treating each term in turn, we have:

I =

∫
R

∫
R+

ρ̃ũψt r
mdrdt =

∫
R

∫
R+

ρ̃ũ
[ ∫
|y|=1

yiϕ(t, ry) dSy

]
t
rmdrdt

=

∫
R

∫
R+

∫
|y|=1

ρ̃ũyiϕt(t, ry) rmdSydrdt =

∫
R

∫
Rn
ρuiϕt dzdt,

and

II =

∫
R

∫
R+

ρ̃ũ2ψr r
mdrdt =

∫
R

∫
R+

ρ̃ũ2
[ ∫
|y|=1

yiϕ(t, ry) dSy

]
r
rmdrdt

=

∫
R

∫
R+

∫
|y|=1

ρ̃ũ2yi∇zϕ(t, ry) · y rmdSydrdt =

∫
R

∫
Rn
ρui~u · ∇zϕdzdt.

For III we first calculate

(rmψ)r = ∂r

(
rm
∫
|y|=1

yiϕ(t, ry) dSy

)
= ∂r

(∫
|z|=r

ϕ(t, z) zi|z| dSz

)
= ∂r

(∫
|z|≤r

ϕzi(t, z) dz
)

= ∂r

(∫ r

0

∫
|y|=1

ϕzi(t, sy) smdSyds
)

= rm
∫
|y|=1

ϕzi(t, ry) dSy.

Using this we obtain that

III =

∫
R

∫
R+

p̃
(
ψr + mψ

r

)
rmdrdt =

∫
R

∫
R+

p̃ (rmψ)r drdt

=

∫
R

∫
R+

∫
|y|=1

p̃ϕzi(t, ry)rm dSydrdt =

∫
R

∫
Rn
pϕzi dzdt.

Substituting these expressions for I, II, and III back into (5.10), shows that the weak form

(5.2) of the momentum equation (2.2) in the multi-d Euler system is satisfied.

Finally, to verify (5.3) we fix ϕ ∈ C1
c (R × Rn) and again define ψ(t, r) by (5.8). Then
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ψ ∈ C1
c (R× R+

0 ) and (5.6) gives

0 =

∫
R

∫
R+

(
ρ̃
(
ẽ+ ũ2

2

)
ψt +

[
ρ̃
(
ẽ+ ũ2

2

)
+ p̃
]
ũψr

)
rmdrdt

=

∫
R

∫
R+

{
ρ̃
(
ẽ+ ũ2

2

) ∫
|y|=1

ϕt(t, ry) dSy

+
[
ρ̃
(
ẽ+ ũ2

2

)
+ p̃
]
ũ

∫
|y|=1

∂r (ϕ(t, ry)) dSy

}
rmdrdt

=

∫
R

∫
R+

∫
|y|=1

{
ρ̃
(
ẽ+ ũ2

2

)
ϕt(t, ry)

+
[
ρ̃
(
ẽ+ ũ2

2

)
+ p
]
ũy · ∇zϕ(t, ry)

}
rmdrdt

=

∫
R

∫
Rn
ρ
(
e+ u2

2

)
ϕt +

[
ρ
(
e+ u2

2

)
+ p
]
~u · ∇zϕdzdt,

verifying the weak form (5.3) of the energy equation (2.3) in the multi-d Euler system.

Remark V.3. Note that the “test function” ψ in (5.8) typically has non-vanishing trace

along the t-axis (e.g., when n = 3, ψ(t, r) → 4π · ϕ(t, 0) as r ↓ 0), while its r-gradient

does vanish as r ↓ 0. Also, the “test-function” ψ in (5.9) behaves in the opposite manner:

ψ(t, r)→ 0 as r ↓ 0, while typically ψr(t, r) 6→ 0 as r ↓ 0.

VI. SIMILARITY SHOCK SOLUTIONS AS RADIAL WEAK SOLUTIONS

In this section we return to the case of an ideal gas and consider the similarity shock

solutions constructed in Section IV as candidates for weak solutions of the Euler system.

The main result is that these provide bona fide weak solution that suffer blowup of primary

flow variables at collapse. This conclusion holds for flows in two and three space dimensions

provided the similarity shock solution (R(x), V (x), C(x)) satisfies the properties listed in

(P1)-(P3) below. We stress that numerical computations clearly indicate that these prop-

erties are satisfied for the “standard” similarity solutions with λ = λstd(γ, n, 1), for a large

range of γ-values (see Tables 6.4-6.5 in15).

(P1) the function 1 +V (x) is uniformly bounded below away from zero, and from above, as

x varies over all of R;

(P2) the limits ` and L in (3.9) satisfy −∞ < L < 0 < ` <∞;
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(P3) (V (x), C(x))→ (V0,−∞) as x ↑ ∞, where V0 is given by (4.2).

We now fix n = 2 or n = 3 and let s = 1, such that κ in (2.17) vanishes, and ρ(t, r) = R(x).

Lemma VI.1. With n = 2 or 3, and 1 < λ < 1 + n
2
, assume (P1)-(P3) are satisfied for the

solution (R(x), V (x), C(x)) under consideration. Then R(x) > 0 for all x ∈ R, the functions

R(x), V (x), V (x)/x are globally bounded on R, and the functions R(x), V (x)/x, C(x)/x are

continuous at x = 0. Finally, the function R(x)(C(x)/x)2 is globally bounded.

Proof. Clearly, (P1) and (P2) imply global boundedness of V (x), continuity of V (x)/x,

C(x)/x at x = 0 (when the latter two functions are defined to take values ` and L there,

respectively), and therefore also global boundedness of V (x)/x.

Next, linearization of the ODE (3.24) about (V0,−∞) shows that the leading order be-

haviors of V and C there are given by (4.3)-(4.4):

V (x) ∼ V0 = −2(λ− 1)

γn
and C(x) ∼ −xσ as x ↑ ∞, (6.1)

where

σ =
1

λ

(
1 +

λ− 1

γ − q

)
with q =

2(λ− 1)

n
. (6.2)

We note that the constraint λ < 1 + n
2

implies −1 < V0 < 0, and thus

γ − q ≡ γ(1 + V0) > 0. (6.3)

Also recall that the function R(x) takes the value 1 for x < −1; a calculation using the

Rankine-Hugoniot relations (3.3)-(3.5) together with (3.17), shows that R(x) > 0 for all

x > −1 as well. By (3.17), the continuity of V (x) and C(x)/x at x = 0 implies that of R(x).

According to (3.17) we also obtain

R(x) ∼
(C(x)

x

)− 2
q+1−γ ∼ x−

2
γ−q (1− 1

λ
) as x ↑ ∞. (6.4)

Thus, according to (6.3), we have that R(x) tends to zero as x ↑ ∞ (establishing the first

part of (O2) in Section IV C); it is therefore globally bounded. Finally, a similar calculation

shows that

R(x)
∣∣∣C(x)

x

∣∣∣2 ∼ x−2(1− 1
λ

). (6.5)

Together with the continuity of C(x)/x at x = 0, this shows that R(x)(C(x)/x)2 is globally

bounded.
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For the solution (R(x), V (x), C(x)) under consideration we now define ρ, u, c, and e via

(2.15)-(2.17) and (2.10).

Theorem VI.2. With n = 2 or 3, and under the assumption that (P1)-(P3) hold, the

triple (ρ, u, e) constitutes a radial weak solution to (2.4)-(2.6), with ideal pressure law (2.7),

according to Definition 2 whenever

1 < λ < 1 + n
2
. (6.6)

According to Proposition V.1, it follows that these solutions provide (non-vacuum) weak

solutions of the multi-d Euler system (2.1)-(2.3), according to Definition 1, with unbounded

amplitudes.

The proof of Theorem VI.2 is organized as follows. First, part (i) of Definition 2 is

immediate from Lemma VI.1 and the definitions of ρ and e. The next two subsections

consider the continuity and integrability requirements in parts (ii) and (iii) of Definition 2,

respectively. Subsection VI B 1 finishes the proof by analyzing the weak form of the equations

(part (iv) of Definition 2).

A. Continuity and local integrability

For a fixed r̄ > 0 and with

M(t; r̄) :=

∫ r̄

0

ρ(t, r)rm dr, I(t; r̄) :=

∫ r̄

0

ρ(t, r)|u(t, r)|rm dr,

E(t; r̄) :=

∫ r̄

0

ρ(t, r)e(t, r)rm dr +
1

2

∫ r̄

0

ρ(t, r)u2(t, r)rm dr =: EP (t; r̄) + EK(t; r̄),

the issue is to show that the maps t 7→ M(t; r̄), t 7→ I(t; r̄), and t 7→ E(t; r̄) are continuous

at all times t ∈ R. Recall that the incoming and outgoing shock waves follow the paths

r = ri(t) = (−t)1/λ and r = ro(t) = (t/B)1/λ, respectively. In what follows we consider times

t small enough that ri(t) < r̄ if t < 0 and ro(t) < r̄ if t > 0. The calculations for the other

cases are simpler and do not change the conclusions. We set

α :=
n

λ
.
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1. Continuity of M(t; r̄)

For t < 0 we have ρ(t, r) = 1 for 0 < r < ri(t), such that

M(t; r̄) =

∫ ri(t)

0

rm dr +

∫ r̄

ri(t)

ρ(t, r)rm dr =
|t|α

n
+

1

λ
|t|α
∫ t

r̄λ

−1

R(x)
dx

|x|α+1
, (6.7)

while for t > 0 we have

M(t; r̄) =
[ ∫ ro(t)

0

+

∫ r̄

ro(t)

]
ρ(t, r)rm dr =

1

λ
tα
[ ∫ B

t

r̄λ

+

∫ ∞
B

]
R(x)

dx

xα+1
. (6.8)

As R(x) is globally bounded, the integrals in (6.7) and (6.8) are all finite, and t 7→ M(t; r̄)

is continuous at all times t 6= 0. For t = 0 we have

M(0; r̄) =
r̄n

n
R(0). (6.9)

Observe that, as R(x) is globally bounded, the second integral on the right-hand side of (6.8)

and the first term on the right-hand side of (6.7) are of order |t|α, and thus vanish when t ↓ 0

and t ↑ 0, respectively. Therefore, continuity from above at t = 0 of M(t; r̄) follows once it

is established that
1

λ
tα
∫ B

t

r̄λ

R(x)
dx

xα+1
→M(0; r̄) as t ↓ 0.

This may be verified by using L’Hôpital’s rule and the continuity of the map x 7→ R(x) at

x = 0. The same argument shows that

1

λ
|t|α
∫ t

r̄λ

−1

R(x)
dx

|x|α+1
→M(0; r̄) as t ↑ 0

as well. Thus, the map t 7→M(t; r̄) is continuous at all times.

2. Continuity of I(t; r̄)

For t < 0 we have u(t, r) = 0 for 0 < r < ri(t) such that

I(t; r̄) =

∫ r̄

ri(t)

ρ(t, r)|u(t, r)|rm dr =
1

λ2
|t|α−1+ 1

λ

∫ t

r̄λ

−1

R(x)
|V (x)|
|x|

dx

|x|α+ 1
λ

, (6.10)
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while for t > 0 we have

I(t; r̄) =
[ ∫ ro(t)

0

+

∫ r̄

ro(t)

]
ρ(t, r)|u(t, r)|rm dr =

1

λ2
tα−1+ 1

λ

[ ∫ B

t

r̄λ

+

∫ ∞
B

]
R(x)

|V (x)|
x

dx

xα+ 1
λ

.

(6.11)

As R(x) and V (x)/x are globally bounded, and α+ 1
λ
> 1 (by assumption (6.6)), the integrals

in (6.10) and (6.11) are all finite, and t 7→ I(t; r̄) is continuous at any time t 6= 0. For t = 0

we have, by property (P2) and with ` given by (3.9),

I(0; r̄) =
1

λ
R(0)`

r̄n+1−λ

n+ 1− λ
. (6.12)

As the second term on the right-hand side of (6.11) is of order tα−1+ 1
λ , and thus vanishes when

t ↓ 0 (by (6.6)), the continuity of I(t; r̄) from above at t = 0 follows once it is established

that
1

λ2
tα−1+ 1

λ

∫ B

t

r̄λ

R(x)
|V (x)|
x

dx

xα+ 1
λ

→ I(0; r̄) as t ↓ 0.

This may be verified by using L’Hôpital’s rule and the continuity of the map x 7→ R(x) |V (x)|
x

at x = 0. The same argument shows that

1

λ2
|t|α−1+ 1

λ

∫ t

r̄λ

−1

R(x)
|V (x)|
|x|

dx

|x|α+ 1
λ

→ I(0; r̄) as t ↑ 0

as well. Thus, the map t 7→ I(t; r̄) is continuous at all times.

3. Continuity of E(t; r̄)

We consider first the kinetic energy

EK(t; r̄) =
1

2

∫ r̄

0

ρ(t, r)u2(t, r)rm dr,

which is given for t < 0 and t > 0 by

EK(t; r̄) =
|t|α−2+ 2

λ

2λ3

∫ t

r̄λ

−1

R(x)
∣∣∣V (x)

x

∣∣∣2 dx

|x|α−1+ 2
λ

(6.13)

and

EK(t; r̄) =
tα−2+ 2

λ

2λ3

[ ∫ B

t

r̄λ

+

∫ ∞
B

]
R(x)

∣∣∣V (x)

x

∣∣∣2 dx

xα−1+ 2
λ

, (6.14)
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respectively. Global boundedness of R(x) and V (x)/x, together with assumption (6.6), imply

that t 7→ EK(t; r̄) is finite and continuous whenever t 6= 0. Evaluating at time t = 0 yields,

thanks to (6.6),

EK(0; r̄) =
1

2λ2
R(0)`2 r̄n+2−2λ

n+ 2− 2λ
.

As the second term on the right-hand side of (6.14) is of order tα−2+ 2
λ , and thus vanishes

when t ↓ 0 (by (6.6)), the continuity of EK(t; r̄) from above at t = 0 follows once it is

established that

tα−2+ 2
λ

2λ3

∫ B

t

r̄λ

R(x)

∣∣∣∣V (x)

x

∣∣∣∣2 dx

xα−1+ 2
λ

→ EK(0; r̄) as t ↓ 0.

Again, this follows by continuity of R(x)|V (x)/x|2 at x = 0 and L’Hôpital’s rule. The same

argument applied to (6.13) shows that EK(t; r̄) tends to the same limit as t ↑ 0. This shows

that the map t 7→ EK(t; r̄) is continuous at all times.

Finally, consider the potential energy:

EP (t; r̄) =

∫ r̄

0

ρ(t, r)e(t, r)rm dr =
1

γ(γ − 1)

∫ r̄

0

ρ(t, r)c2(t, r)rm dr,

which is given for t < 0 and t > 0 by

EP (t; r̄) =
|t|α−2+ 2

λ

λ3γ(γ − 1)

∫ t

r̄λ

−1

R(x)
∣∣∣C(x)

x

∣∣∣2 dx

|x|α−1+ 2
λ

(6.15)

and

EP (t; r̄) =
tα−2+ 2

λ

λ3γ(γ − 1)

[ ∫ B

t

r̄λ

+

∫ ∞
B

]
R(x)

∣∣∣C(x)

x

∣∣∣2 dx

xα−1+ 2
λ

, (6.16)

respectively. Global boundedness of R(x) and C(x)/x, together with assumption (6.6), imply

that t 7→ EP (t; r̄) is finite and continuous at all times t 6= 0. Evaluating at time t = 0 yields,

thanks to (6.6),

EP (0; r̄) =
1

λ2γ(γ − 1)
R(0)L2 r̄n+2−2λ

n+ 2− 2λ
,

As the second term on the right-hand side of (6.16) is of order tα−2+ 2
λ (by (6.6)), the continuity

of EP (t; r̄) from above at t = 0 follows once it is established that

tα−2+ 2
λ

λ3γ(γ − 1)

∫ B

t

r̄λ

R(x)

∣∣∣∣C(x)

x

∣∣∣∣2 dx

xα−1+ 2
λ

→ EP (0; r̄) as t ↓ 0.
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As above this follows by L’Hôpital’s rule and the continuity of R(x)|C(x)/x|2 at x = 0.

Finally, the continuity of EP (t, r̄) from below at time t = 0 is established in the same

manner.

This concludes the verification of part (ii) of Definition 2.

4. Local space-time integrability

Next, for part (iii) of Definition 2, we need to verify the local integrability in time and

space of the functions ρu2, p, and
[
ρ
(
e + u2

2

)
+ p
]
u. Recall that we consider an ideal gas

(2.7), and that the incoming and outgoing shocks propagate along x = −1 and x = B,

respectively. As a consequence, to verify part (iii) it suffices to show that, for any fixed

r̄ > 0, the space-time integrals

Iβ(r̄) :=

∫ Br̄λ

−r̄λ

∫ r̄

0

ρ|u|βrm drdt, for β = 2, 3,

and

Pβ(r̄) :=

∫ Br̄λ

−r̄λ

∫ r̄

0

p|u|βrm drdt, for β = 0, 1,

are finite. Transforming to dxdt-integrals, and recalling that the fluid is at rest on the inside

of the incoming shock, we have

Iβ(r̄) =
1

λβ+1

{∫ B

−1

R(x)|V (x)|β

|x|α+1+β
λ

[ ∫ |x|r̄λ
0

tα+β( 1
λ
−1) dt

]
dx

+
[ ∫ ∞

B

R(x)|V (x)|β

|x|α+1+β
λ

dx
][ ∫ Br̄λ

0

tα+β( 1
λ
−1) dt

]}

=
1

λβ+1

r̄λ(α+1)+β(1−λ)

(α + 1) + β
(

1
λ
− 1
) {∫ B

−1

R(x)|V (x)|β

|x|β
dx+Bα+1+β( 1

λ
−1)
∫ ∞
B

R(x)|V (x)|β

xα+1+β
λ

dx

}
.

(6.17)

Here we have used that the dt-integrals are finite since, for all values of λ, n, and β under

consideration, (6.6) yields

α + β
(1

λ
− 1
)
> −1.

As R(x), V (x)/x, and V (x) are all globally bounded, it follows from (6.17) that Iβ(r̄) <∞

for any value of r̄ and β = 2 or 3.
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A similar computation for Pβ(r̄) (now using that the pressure p vanishes on the inside of

the incoming shock), yields

Pβ(r̄) =
1

γλβ+3

{∫ B

−1

R(x)
∣∣∣C(x)

x

∣∣∣2∣∣∣V (x)

x

∣∣∣β 1

|x|α+1+(2+β)( 1
λ
−1)

[ ∫ |x|r̄λ
0

tα+(2+β)( 1
λ
−1) dt

]
dx

+
[ ∫ ∞

B

R(x)
∣∣∣C(x)

x

∣∣∣2∣∣∣V (x)

x

∣∣∣β dx

|x|α+1+(2+β)( 1
λ
−1)

][ ∫ Br̄λ

0

tα+(2+β)( 1
λ
−1) dt

]}

=
1

γλβ+3

r̄λ(α+1)+(2+β)(1−λ)

(α + 1) + (2 + β)
(

1
λ
− 1
) {∫ B

−1

R(x)
∣∣∣C(x)

x

∣∣∣2∣∣∣V (x)

x

∣∣∣β dx
+Bα+1+(2+β)( 1

λ
−1)
∫ ∞
B

R(x)
∣∣∣C(x)

x

∣∣∣2∣∣∣V (x)

x

∣∣∣β dx

|x|α+1+(2+β)( 1
λ
−1)

}
. (6.18)

Here we have used that the dt-integrals are finite since, for all values of λ, n, and β under

consideration, (6.6) yields

α + (2 + β)

(
1

λ
− 1

)
> −1.

By global boundedness of R(x), V (x), and C(x)/x, and by (6.6), both integrals on the

right-hand side of (6.18) are finite for both β = 0 and β = 1.

This concludes the verification of part (iii) of Definition 2, under the constraint (6.6).

B. Weak form of the equations

Finally, for part (iv) of Definition 2, we need to verify the weak forms (5.4), (5.5), (5.6)

of the radial equations. This requires some care since the solutions under consideration

are unbounded at the origin. To handle this we shall exploit that the local integrability

properties in parts (ii) and (iii) of Definition 2 have been verified under the condition (6.6).

The issue then reduces to estimating the fluxes of the conserved quantities across spheres of

vanishing radii.
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FIG. 4. Regions of integration in the weak formulation.

1. Weak form of the mass equation

For a fixed ψ ∈ C1
c (R× R+

0 ), with suppψ ⊂ [−T, T ]× [0, A], and for any δ > 0, we have

M(ψ) :=

∫
R

∫
R+

(ρψt + ρuψr) r
mdrdt =

{∫
R

∫ δ

0

+

∫∫
Iδ

+

∫∫
IIδ

+

∫∫
IIIδ

}
(ρψt + ρuψr) r

mdrdt

=: Mδ(ψ) +

{∫∫
Iδ

+

∫∫
IIδ

+

∫∫
IIIδ

}
(ρψt + ρuψr) r

mdrdt (6.19)

where the (open) regions Iδ, IIδ, and IIIδ are indicated in Figure 4 (e.g., Iδ is bounded below

by {t = −T}, on the left by {r = δ}, and on the right by the incoming shock path).

Let Γ−δ , Γ0
δ , and Γ+

δ denote the parts of their boundaries ∂Iδ, ∂IIδ, and ∂IIIδ, respectively,

contained in the set {(t, r) | r = δ}. Recall that the similarity shock solution is a bounded,

classical solution of (2.4) in each of the regions Iδ, IIδ, and IIIδ, and that the Rankine-

Hugoniot conditions are satisfied across the incoming and outgoing shocks. Applying the

divergence theorem therefore gives

M(ψ) = Mδ(ψ) + δm

{∫
Γ0
δ

+

∫
Γ+
δ

}
(ρuψ)(t, δ) dt,
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where we have used that u vanishes along Γ−δ . By making the change of variables t 7→ x =

t/δλ, we obtain

M(ψ) = Mδ(ψ)− δn

λ

∫ T

δλ

−1

R(x)
V (x)

x
ψ(xδλ, δ) dx. (6.20)

As R(x), V (x)/x are globally bounded, the last term in (6.20) is of order δn−λ, which

vanishes as δ ↓ 0 by (6.6). Finally, it follows from the analysis in Section VI A that both

ρ and ρu belong to L1
loc(r

mdrdt). Thus, Mδ(ψ) → 0 as δ ↓ 0, so that M(ψ) = 0 for each

ψ ∈ C1
c (R×R+

0 ). This shows that the weak form (5.4) of the radial mass equation is satisfied.

2. Weak form of the momentum equation

For a fixed ψ ∈ C1
0(R× R+

0 ) and any δ > 0 we have

I(ψ) :=

∫
R

∫
R+

(
ρuψt + ρu2ψr + p

(
ψr + mψ

r

))
rmdrdt

=

{∫
R

∫ δ

0

+

∫∫
Iδ

+

∫∫
IIδ

+

∫∫
IIIδ

}(
ρuψt + ρu2ψr + p

(
ψr + mψ

r

))
rmdrdt

=: Iδ(ψ) +

{∫∫
Iδ

+

∫∫
IIδ

+

∫∫
IIIδ

}(
ρuψt + ρu2ψr + p

(
ψr + mψ

r

))
rmdrdt. (6.21)

Arguing as above and applying the divergence theorem gives (x = t/δλ)

I(ψ) = Iδ(ψ) + δm

{∫
Γ0
δ

+

∫
Γ+
δ

}
((ρu2 + p)ψ)(t, δ) dt

= Iδ(ψ) +
δn+1−λ

λ2

∫ T

δλ

−1

R(x)
[∣∣∣V (x)

x

∣∣∣2 +
1

γ

∣∣∣C(x)

x

∣∣∣2]ψ(xδλ, δ) dx, (6.22)

where we have used that u and p both vanish along Γ−δ . Recalling the observation in Remark

V.2, and using global boundedness of R(x)(V (x)/x)2 and R(x)(C(x)/x)2, we obtain that

δn+1−λ
∫ T

δλ

−1

R(x)
[∣∣∣V (x)

x

∣∣∣2 +
1

γ

∣∣∣C(x)

x

∣∣∣2]ψ(xδλ, δ) dx . δn+2−2λ,

which tends to zero as δ ↓ 0 by (6.6). Finally, to show that Iδ(ψ) also vanishes with δ we

first use Remark V.2 to bound the function ψ
r

by a constant, and then use that, according

to the analysis above, the quantities ρu, ρu2, and p all belong to L1
loc(r

mdrdt). This shows

that also Iδ(ψ) → 0 as δ ↓ 0. Thus, I(ψ) = 0 for each ψ ∈ C1
0(R × R+

0 ), showing that the

weak form (5.5) of the momentum equation is satisfied.
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3. Weak form of the energy equation

For a fixed ψ ∈ C1
c (R× R+

0 ) and any δ > 0 we have

E(ψ) :=

∫
R

∫
R+

(
ρ
(
e+ u2

2

)
ψt +

[
ρ
(
e+ u2

2

)
+ p
]
uψr

)
rmdrdt

=

{∫
R

∫ δ

0

+

∫∫
Iδ

+

∫∫
IIδ

+

∫∫
IIIδ

}(
ρ
(
e+ u2

2

)
ψt +

[
ρ
(
e+ u2

2

)
+ p
]
uψr

)
rmdrdt

=: Eδ(ψ) +

{∫∫
Iδ

+

∫∫
IIδ

+

∫∫
IIIδ

}(
ρ
(
e+ u2

2

)
ψt +

[
ρ
(
e+ u2

2

)
+ p
]
uψr

)
rmdrdt.

(6.23)

Arguing as above and applying the divergence theorem gives (x = t/δλ)

E(ψ) = Eδ(ψ) + δm

{∫
Γ0
δ

+

∫
Γ+
δ

}[
ρu
(
e+

1

2
u2 +

p

ρ

)
ψ

]
(t, δ) dt

= Eδ(ψ) +
δn+2−2λ

λ3

∫ T

δλ

−1

R(x)
V (x)

x

(
1

2

∣∣∣∣V (x)

x

∣∣∣∣2 +
1

γ − 1

∣∣∣∣C(x)

x

∣∣∣∣2
)
ψ(xδλ, δ) dx,

(6.24)

where we have used that u vanishes along Γ−δ . Recalling the global boundedness of R(x),

V (x), V (x)/x, and R(x)(C(x)/x)2, as well as the bound (6.5), we obtain that the last integral

in (6.24) is bounded by

. 1 +

∫ T

δλ

1

x−3 + x−2(1− 1
λ

)−1 dx . 1 + δ2λ + δ2(λ−1) as δ ↓ 0.

According to (6.6) we therefore have that the last term on the right-hand side of (6.24)

vanishes as δ ↓ 0. Finally, under the same constraint on λ, the argument in Section VI A

showed that the quantities ρe ∝ p, ρu2, ρue ∝ up, and ρu3, all belong to L1
loc(r

mdrdt). In

particular, it follows that Eδ(ψ) vanishes as δ ↓ 0. Thus, E(ψ) = 0 for each ψ ∈ C1
c (R×R+

0 ),

showing that the weak form (5.6) of the energy equation is satisfied.

This concludes the proof of Theorem VI.2.
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