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Radial similarity flow offers a rare instance where 1(",thwscid, multi-dimensional,
compressible flows can be studied in detail. Infparticulag, there are flows of this type
that exhibit imploding shocks and cavitiesedn such flows the primary flow variables
(density, velocity, pressure, temperatur, )Lorﬁgunbounded at time of collapse. In
both cases the solution can be propagate egﬁnd collapse by having an expanding
shock wave reflect off the center of mgti

These types of flows are of rele Mbomb-making and inertial confinement fu-
sion, and also as benchmarks&Q‘iQQ tational codes; they have been investigated

tu

extensively in the applied . However, despite their obvious theoretical inter-

est as examples of un solutions to the multi-dimensional Euler system, the

existing literature.does not address to what extent such solutions are bona fide weak
solutions. S

In this wotk wé review the construction of globally defined radial similarity shock

and cavi ﬂxs,’h give a detailed description of their behavior following collapse.
y'ove

We then at similarity shock solutions provide genuine weak solutions, of

unBoun amplitude, to the multi-dimensional Euler system. However, both types of

A

similagity flows involve regions of vanishing pressure prior to collapse (due to vanishing

-ﬁ
mature and vacuum, respectively) - raising the possibility that Euler flows may
I

Q&S bounded in the absence of such regions.

PElectronic mail: jenssen@math.psu.edu

b)Electronic mail: tsikkou@math.wvu.edu


http://dx.doi.org/10.1063/1.5049093

AllP

| This manuscript was accepted by J. Math, Phys. Click here to see the version of record. |

Publishingf 010 Mathematics Subject Classification: 35145, 35167, 7T6N10.

Keywords: Compressible fluid flow, Euler equations, weak solutions, radial symmetry,

similarity solutions, blowup.

CONTENTS / \
Introduction \K

I.
1I. Equations _‘Q"‘"\
III. Similarity shock and similarity cavity goluti 3
A. Similarity shock solutions ,)
B. Similarity cavity solutions \\L—
C. Similarity ODEs \
\T
IV. Construction of complete si s1'f3r1.1;5y OowWS
A. Existence of similarity sh N ions prior to collapse
B. Existence of cavity sim ‘\rl'@gqolutions prior to collapse
C. Existence of simi zn'qssolutlons beyond collapse; the reflected shock
V. Weak and radial saveak<Euler solutions
A. General/ 1ti- e/ak solutions
B. Radial v@ﬂ:%er solutions
VI. Simi ﬁ:y ?hock solutions as radial weak solutions
.Eontsnu ty and local integrability
' B. form of the equations

S Acknowledgments

References

12
14

15
18
19
20

25
25
26

30
32
37

41

41


http://dx.doi.org/10.1063/1.5049093

! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record.

Publishihg INTRODUCTION

We consider two types of radial similarity flows for the compressible Euler system. These
are particular types of solutions with planar (slab), cylindrical, or spherical symmetry. While
all three types of flows are “one-dimensional” in the sense that they dépend on a single spatial
variable 7, we reserve this term for the case of slab symmetry (i.e. Me when there is a
fixed direction in physical space such that, at each fixed time, a Q quantities are constant

in planes normal to this direction). Under a similarity assumption the Euler system reduces

to a coupled, nonlinear system of ODEs with respect to a'similasity variable z =t/ r*, where
t is time, r is distance to the origin, and A is the simil rig}‘; exponent. Similarity flows provide
a rare instance where exact solutions to the mudfi=di 5

lCﬁsﬁsid‘e)able detail. Following Guderley’s

pioneering study'!, they have attracted subSJau\lrl’l;lia ttention from physicists, engineers, and
1i

sional compressible Euler system
can be constructed “by hand” and studied i

mathematicians. For a recent overview of t fure, see?” and references therein.

The existing literature provides ¢ amp%milarity flows where a single (spherical or
cylindrical) incoming shock wave prohtﬁs into a quiescent region about the origin (i.e.,
the fluid there is at rest and at co t density and pressure). The shock strengthens as it
approaches the origin and the Meed becomes unbounded at the instance of collapse

at the origin. (For conv

ia;% the time of collapse is chosen as ¢t = 0.) One can construct

a complete (similarit tion)for all later times as well by having a diverging shock wave

reflect off the oern.

gas fills a spheri - cylindrical cavity (vacuum region) near the origin. Again, the speed of

the fluid-vac urbnterfa e blows up at collapse. Also in this case a global-in-time similarity
be comgtructed by inserting an outgoing shock after collapse. We refer to these

solution ghn be
two types o Jufions as similarity shock and similarity cavity flows, respectively.

In ase the profiles for the fluid velocity, pressure, sound speed, and temperature at
ﬁ

In Section IT we record the multi-dimensional (multi-d) Euler equations for compressible
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Publishifigh of an ideal and polytropic gas with adiabatic exponent v > 1, including its radial form.
We also posit the form of the radial similarity solutions under consideration. Section III
outlines the setup for each type of solutions and collects various properties (initial data,
jump relations, characteristics, etc.) of the similarity solutions under consideration.

For the actual construction of physically relevant similarity solutk/ns with these properties,
we follow Lazarus'® who treats both shock and cavity flows. contplete breakdown of
the various possibilities, including the key determination of allo A? values of the similarity

Em{s. Our main purpose of

exponent A, requires a detailed analysis and numerical la>

verifying that the Euler system admits unbounded weak “solutions, does not require a full

breakdown of all the cases. Instead, Section IV outlin ;;OU%l of this analysis to obtain some
cases of Euler flows with unbounded amplitudes{ In partieular, we restrict attention to the
standard value of the similarity exponent . 'Bii\li’@so—called “analytic” value, denoted
Astq by Lazarus'®. See Section IV for detailSyawher® we also describe how the solutions are
propagated past collapse to yield comp etmbal—in—time), radial similarity flows.
The resulting, well-known, solutions c;\bggtudied in detail. In particular, we deduce
their asymptotic behavior at z = oo}iéh plays a key role in the analysis that follows. It
%Lkin flows after collapse is markedly different near the
center of motion in the shock Cm in the cavity case; see Section IV C. We also include

a discussion to the eff t‘ﬂvﬁat least among similarity flows, the continuation beyond

turns out that the behavior of the

collapse appears to e umiquely determined for both types of flows. Note that all jump

discontinuities a?dea i
g

both the incomi

o in /these similarity flows are, by construction, entropy admissible:
the reflected shocks are compressive.

We then t Q our main concern: to what extent these types of similarity flows represent
genuine Weak golutions of the original, multi-d compressible Euler system. As the similarity

solutigns are ular and suffer blowup of primary flow variables at the origin, it is not

immediately tlear in what sense the weak form is satisfied. While some authors* have
a dresses the constraint of locally finite energy for the similarity flows under consideration,
w$ar\ ot aware of a complete analysis. Concentrating on similarity shock solutions, we

onstrate that the flows constructed in the literature are indeed bona fide weak solutions

whenever the similarity exponent A satisfies the constraint A < & + 1, where n is 2 or 3 for

4
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Publishimgindrical or spherical flow, respectively. The numerical values available in the literature
indicate that the solutions corresponding to the particular value Ay always satisfy this
constraint.

We shall show that the similarity shock solutions under consideration are bona fide weak

solutions in the following sense: all terms occurring in the weak férmulation of the multi-

d Euler system are locally integrable in space-time; the amountS-ef mass, momentum, and
i

S

energy within any fixed, compact spatial region change continuousky with time (in particular,
S%%& d. (Their total mass,

dver,«this could be arranged via

they are finite); and finally, the weak forms of the equatio

momentum and energy in all of space are not bounded;_{l
suitable modifications away from the origin without ffectins; the blowup behavior near the
origin.) -

We emphasize that we verify the weak for (theL_. &ginal, multi-d Euler system. Since
the similarity solutions under considerati nﬁ%lly symmetric, it is convenient to first
derive the corresponding weak formul io&b& getieral radial solutions. This requires some
care as the latter formulation invo e:é\:\:gtypes of “test functions” for the different
conservation laws. For completeness blﬁ’dude the derivation of the radial weak form of
the equations (see Definition 2 an ition V.1; here we follow the analysis'? for radial

Navier-Stokes flow). \

With these preparatighs, Section VI provides the details of the proof that genuine multi-d

weak solutions are opfained from the radial symmetry solutions.

h

Discsussionzf
is of obvious relévaiteg in connection with the general Cauchy problem for the compressible

ist(?tce of singular flows suffering point-wise blowup of flow variables

Euler system: \ah the notable exception of small-variation data near a strictly hyperbolic
state (GHin e is currently no general, global-in-time existence result available for the
one-difriensio ’(1—d) Cauchy problem for hyperbolic systems. (See!™?* for extensions that
coyer. tain&types of large variation data specifically for the Euler system.) In more than
one spads dimension the situation is bleaker, and symmetric flows offer a natural case to
‘GQSSi in isolation. For results on isothermal and isentropic radial flow with general data,

S 5’6}8.

In view of the blowup exhibited by similarity shock and similarity cavity solutions, it
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Publishiwguld appear that any existence result, applying to “general” data, for the multi-d Euler
system would necessarily have to involve unbounded solutions. However, one should be
careful not to draw too general conclusions on the basis of the similarity flows we study here.
These are exceedingly special solutions, some aspects of which are borderline physical. In

son why the Euler

particular, both types of flows involve regions of vanishing pressul?/ rior to collapse. In the
case of a collapsing cavity this is due to the vacuum, and thered ;)Xag

model should provide an accurate description close to its conior the converging shock
c

).

exact solution. In approximate treatments this amounts to 3

case, it turns out that the quiescent state into which the shock propagates, must

ps
Tg]
there) in order to generate an

¢

necessarily be at zero pressure (due to vanishing tempera
—-—

rong shock” assumption.

-

For the case of an incoming shock, it is physically<geasonable that a nonzero counter
pressure would slow it down and possibly prevent tubdunded amplitudes. This would provide
a mechanism to “save” the Euler model fr;@ lowup. In particular, if indeed correct,
this would show that the strong shock aéﬁ%ﬁt&tion fails to capture a crucial aspect of exact
solutions near collapse of symmetri k waves (blowup vs. no blowup of primary flow
variables). The situation for radls%\ opic similarity flow (constant entropy throughout,
disregarding the energy equat s not contradict this picture. In that case a converging
similarity shock can propagate into'guiescent region only if A = 1; no blowup of primary flow

variables occurs, and up}jam pressure is strictly positive. The same applies to radial

isothermal similarity flow. note that a number of works consider the effect of a positive

counter pressur{ o2

still present i t‘h'jse s, none of them provide exact weak solutions to the Euler system.

2526 and references therein. However, while amplitude blowup is

The cdnventionakpoint of view appears to be that the blowup exhibited by radial similarity
flows fesults r{ multi-d wave focusing, much like what occurs for radial solutions to the
li ear d W§ve equation. The remarks above raise the possibility that the unbounded
a plitudfs could be due to the presence of regions of vanishing pressure. We are not aware
\9%1 ite argument one way or the other - possibly both effects are required to generate

wup in L. Unfortunately, 1-d (slab symmetry) similarity flows do not help in assessing

the situation: such solutions fail to generate physically acceptable flows; see Remark IV.1.
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The full, multi-d Euler system for compressible gas flow is given by

pr +div (pi) =0 (2.1)
(pt), + div (pu ® @) + grad p :({\ (2.2)
) )
[pe + ”';" ]t + div [(pe v p';' —l—p)ﬁ ) (2.3)
The variables are p = density, @ = fluid velocity, p = predstme, e's specific internal energy.

Under the assumption of radial symmetry (i.e., all n_lg\n ns depend only on time ¢ and

radial distance r to the origin or an axis of symmetny, and&ﬂf 1s purely radial), the system

takes the form: (u = |u]) < B

%b@m 0 2.4)
(rmpub\r u® + p), = mr™ (2.5)
(rmp[eJr%Dt @'%—F%])r& (2.6)

Here r varies over R, subscript ote differentiation, and m = 1, 2 for flows with cylin-
drical or spherical symmetry, chively. With m = 0 and r varying over R, we have the
one-dimensional Euler system. We“epnsider an ideal, polytropic gas with equation of state

Q = (v = Dpe = (v = Dcupb, (2.7)
where v > 1 an{ are

s‘(tive constants, and ¢ = temperature. The specific entropy S is

related to p h
pp~ 7 = Constant - exp (E) (2.8)
C’U
£
e

It is ascons née of the conservation laws above that S remains constant along particle
traje(b smooth regions of the flow:

ries
ﬁ
) S, + uS, = 0. (2.9)
>e%und speed c is given by
2= % = (7 — e, (2.10)
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Publishimg with u, ¢, and p as primary unknowns, the system (2.4)-(2.6) takes the form:

Loy
uy + uu, + —(pc”), =0 2.11
: W)( ) (2.11)
—1
¢ + uc, + (v 5 )c(ur + (2.12)
mu
putupr+p(ur+ 0 ) = 0. (2.13)

(2.14)

u(t,r) = — (2.15)

c(t,r)=— (2.16)

plt.r) = ﬁt\k .17

Their relevance relies on the fact

where k is a constant. We refer to sowvs A h this particular structure as similarity flows.
t

include physically meaningful flows where either

symmetric shocks or Cavities(}\ onverge, focus, collapse) at the origin. Similarity
flows are determined via gselutions te«ODEs for V', C, and R. These are the similarity ODEs

which we record in Segtion III G below. We stress that, differently from many other cases of

similarity solutions&the gimi

as part of the sq{_\(o&

IT1I. SI II;A TY SHOCK AND SIMILARITY CAVITY SOLUTIONS
ﬂ /
A. imilasi
ﬁ

shock solutions
We sSall first consider similarity flows where a single (spherical, cylindrical, or planar)

ck

ity exponent A is not given a priori, but must be determined

ves toward the origin for negative times, and focuses at the origin at time ¢t =

.
Taking the existence of such similarity flows for granted for now, in this section we

consider the Rankine-Hugoniot conditions, describe various constraints that should be met

8


http://dx.doi.org/10.1063/1.5049093

! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

Publishihg} hysically relevant similarity flows, and describe a particular (critical) characteristic which
plays a central role in the construction of such flows.
First, the flows on both sides of the shock are assumed to be similarity flows with the
same values of A\, 7, and & in (2.15)-(2.17). We assume that the converging shock path is
described by a constant value of the similarity variable x, say /

r=-—1 so that Tshock = (— % &V (3.1)

We shall only consider situations where the shock reac % ith infinite speed, so
that Q"\

(3.2)

We follow!® and let subscripts 0 and 1 denote evaluation™ medlately ahead of and behind
of the shock, respectively. The (exact) jump Nﬁn@d entropy condition then take the

forms \

\J

2072

+ 0 (3.3)

(v+ 1)1+ Vp)
S+ - (L)Y (3.4)
(3.5)
(3.6)
Here (3.6) expresses Ck is supersonic relative to the state ahead; together these
imply C? > (1 + aﬂl ng to the admissibility of the similarity shocks. The fluid on
the inside ahea the nvergmg shock is assumed to be at rest and at constant density

and pressured(quigscent State). According to (2.17), the constant density there dictates that

k=0 an R( onstant; for concreteness let

o 1 for —oc0o <z < —1.

ex."c",h for 1dea1 gas ¢ o %, so that the sound speed is constant in the quiescent region.

As ume A # 1, (2.16) implies that C' must vanishes identically there. As the fluid near
5 origin is assumed to be at rest, we therefore have

V(z)=C(x) =0 for —oo < < —1.
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Publishi& are thus considering a single, converging shock which moves into a quiescent region at
zero pressure and unit density. For an ideal polytropic gas, this means that the temperature
vanishes identically in the region inside the converging shock.

With (Vp, Cy, Ro) = (0,0, 1), inequality (3.6) is satisfied, and the jump relations (3.3)-(3.5)
+

give the following initial conditions for the similarity variables V/, Ratx=—-1":
2 V2 =1 \ +1
V(1) =Vi = c-y=c =YD G- -1 @)

TN v+1 N1
Along the immediate outside of the converging shock, the pri ‘\}NQW variables are therefore
given by (2.15)-(2.17) as (recall that £ = 0 in the present shock case):

C
u:yr_ c:Tl = p_l_Rl. (3.8)

As we assume A\ > 1, it follows that the velocit and@s sound speed ¢ become unbounded

along the outside of the shock as it COIIaKthe rigin, while the density remains finite.

(The same applies along any curve givﬂn\y\—constant € (-1,0).)

Next, we are only interested in dolutionsqwhere the flow variables u, ¢ and p are “well
behaved” at any location r > 0 t&\& In particular, for any fixed r > 0 we require
that u(t,r) and c(¢,r) tend t ﬁrﬁw ast — 0, i.e., as x — 0. According to (2.15) and
(2.16) we must therefore have t\

=i m and L :=lim Cl) are finite, (3.9)
r— a z—0 I
£
Thus, in particulf{, W av9/
3\ V(0) = C(0) = 0. (3.10)

It then follows feom (2.15)-(2.16) and (3.9) that, at time of collapse (¢t = 0), the radial flow
speed u a: éle ;pund speed ¢ blow up according to
ﬂ

L
3 u(0,7) = —érl_)‘ and c(0,1) = —Xrl_)‘, (3.11)

-

wh the)density is constant, p(0,r) = R(0). As a consequence, the pressure and temperature

m at time of collapse blow up according to
p(0,7), 6(0,7) o 207, (3.12)

10
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PublishingWe point out that the limits in (3.9) will turn out to be non-zero and finite for the
solutions constructed below. It follows that all three characteristic speeds (u + ¢ and u) are
bounded at all points except at (¢,7) = (0,0). In particular, all fluid particles, except the one
at the origin, are located away from r = 0 at time ¢ = 0; in other words, the solutions under

consideration are not of “cumulative” type where all (or a part of e mass concentrates at

the origin at collapse (examples of such flows are given in!!?)
Next we note that, by (3.7), \

C>1+V>0 é (3.13)

while (3.10) shows that the opposite inequal lds t x = 0. Thus, for some critical
{ -

z. € (—1,0) we must have ‘\\

(For the solutions considered below, “there is a unique critical value z..) Now, to determine
the full solution of the flow pr
for V(z), C(x), and R(z

that these ODEs aresin

efore collapse, we must integrate the similarity ODEs

x € (—1,0), subject to the initial data in (3.7). It so happens
?}t points where 1 +V = C (see (3.19)-(3.21)), and we have
just seen that th usf oc ur at some point xz. € (—1,0). The corresponding curve in

the (¢, 7)-plane fu h&ujc 0 be a 1-characteristic for the corresponding Euler flow. (More
cu tlon

generally, a dal hows that the curve x = T = constant is a 1-characteristic if and

only if 1 V} .) Passing through = = z. corresponds to crossing the critical

1-chagacteristic, /{e. the 1-characteristic that catches up with the converging shock as it

collapses at f}le origin. See Figure 1.

-

We p%int out that, in considering weak solutions, one should admit solutions with jumps
"ﬂsthe rivatives of the flow variables across characteristics. In particular, V and C' could
enter and exit x = x, with different slopes. However, we shall not exploit this feature in the

present work.

11
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Publishing ’
...... P
1—characteristics
critica/
‘ anjterist
quiescent -
region \
convergmg
shock

FIG. 1. Converging similaritygshoc ofbre collapse (schematic).

Qx

B. Similarity cavity solutions

For the case of a collapsing cavit -ch81der a spherical vacuum region centered at
the origin, surrounded by fluid m V dially inward. Assuming for now the existence of
similarity flows (2.15)-(2.17) Structure we assume that the vacuum-fluid interface
follows the path x = n atl e times. Again we consider the case where this curve
hits the origin with ipfinite sp d at time ¢ = 0, so that A > 1. The interface is a particle

trajectory, glvmg 1al dition for V at z = —11 as

V(-1) = -1. (3.14)

To select i itial ditions for R and C' at x = —1, we impose the further constraint that the
a fixed, constant value S throughout the fluid region for negative times (before
a shodk is reiSected off the origin). The fluid pressure is then given by Ap”, where A = A(S)
if a cons As the fluid pressure must vanish along the vacuum interface, it follows that
&‘éholds for the density p, and also the sound speed ¢ = \/W Equations (2.16)

{2.17) thus gives the initial conditions for C' and R at x = —17 as
C(—1)=R(-1) =0. (3.15)

12
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Publishi_‘ﬁ(gr later reference we note that isentropic similarity flow requires

K= ——2(;\__11); (3.16)
this is a consequence of the momentum equation (2.11) with pc®> = vAp?, upon substituting
for w and p from (2.15) and (2.17), respectively.

It turns out that the similarity cavity flows constructed b Niately leaves the
starting point (V,C') = (—1,0) by moving into the region C, > mﬁv > 0. Just as for the
shock case discussed above, we insist on “well-behaved” s 1 atisfying (3.9). It follows

"hne {C =1+ V}, for some

z. € (—1,0), before continuing on toward the origin. gﬁl

We note that, in contrast to the case of a si 1ty , in similarity cavity flow only
the fluid velocity u blows up along the curve 1,®hlle ¢, p, p, and 6 all vanish there.
On the other hand, (2.15)-(2.17) 1mply ll 0 L; , p, and € blow up along all other

that the cavity solution has to move back across the criti¢

curves x = constant € (—1,0) as t 1 0 sertlon requires that V and C does not
vanish at any = € (—1,0); this will be the case for the similarity cavity flows constructed
below.) Furthermore, the proﬁl S p, and 6 at time of collapse are again given
by (3.11)-(3.12) (provided the llm are non-zero, which holds for the cavity flows

constructed below). Flnally, fo cav1ty flow, also the density is unbounded at time

t=20:
\ p(0,7) = R(0)r"

where k, given b 1 ,étrlctly negative since A\ > 1.
As the sou c vanlshes along the vacuum interface, the characteristics degenerate

there and he tangent to the interface; a representative situation is recorded in Figure

Rem rk IIIjl ]t can be verified that the situation in Figure 2 is valid for the cavity flows

C@i elow. In particular, (4.1) yields C ~ /1 +V near x = —1, and this implies

thatwanydl-characteristic between the interface x = —1 and the critical characteristic x = x.
% meet the interface at a time strictly before collapse. It does so tangentially; at the same

potut a 3-characteristic starts off tangentially into the flow, as indicated.

13
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3—characteristic
__________ .
1 —characteri?
: 4 critica \
) “.  1=ch ct‘eatic
vacuum .
region N
converging \
interface
(characteristic) ( - "
}:x ¢

x=m
FIG. 2. Similarity cavity %'&ﬂapse (schematic).
C. Similarity ODEs ‘\‘S\
Substituting (2.15)-(2.17) 1nt@.13) we obtain a system of three similarity ODEs

for V., C, R. It is well-known % comstancy of specific entropy along particle trajectories
th

provides one exact integral for imilarity ODEs (see?®). Specifically, in any region where

the flow is smooth, we \;\
£ 2
/&(ﬂ/ﬁ“” <@) |1+ V(2)|? = constant, (3.17)
where -)
/ kK(y—1)+2(A—-1)
Y. =" o , (3.18)

)
% 1,2,3 is the spatial dimension. In the case of an incoming cavity, the flow is
< onBoni

for t < 0, and ¢ vanishes according to (3.16), while the right-hand side of (3.17)
fetermined once the constant value S of the entropy is assigned.

One can therefore obtain a closed system for two of the unknowns, the standard choice

14
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Publishingng V and C. The resulting ODEs are (see”'?)

: 1 G(V(x),C(x),\)

Vi®) = = D). o) (3:19)
: 1 F(V(x),C(x),\)

o) =32 D(V(z),C(z)) (3:20)

PR

where ' = % and the polynomial functions D and G, and the r j.%lthion F' are given

by
D(V,C) = (1+V)>=C? ‘)\ (3.21)
+

—
G(V,C,\) = C? [nv + %] v {0

F(V,C,\) = C {02 [1 v ﬁ] —¢1:+ 1)(")1)] (1+V)? (3.23)
)

i {(nl)(w)g(w\l@ TV - (v—l)zu—l)} '
Here s is a logical variable: s =1 for thwhx%&and s = 0 for the cavity case. Combining

(3.22)

/

(3.19) and (3.20) we obtain a single OD

Y (V.0
= — = .24
\\\3\% G(V.C) 324
relating V' and C' along similmﬁon&

0
IV. CONSTRU TI})Q COMPLETE SIMILARITY FLOWS

In this secti % the existence of solutions to the similarity ODEs, and how these
are used to b@lf;ysica ly meaningful similarity shock and similarity cavity flows. We seek
completedolutionsdefined for all times.

Thé overallapproach is, in principle, to solve (3.24) for C' = C(V) with the appropriate
initial ‘data, and substitute the result into (3.19)-(3.20) to obtain z-parametrizations for
w and C' = C(z) via quadrature. From these R = R(x) can be determined from the
‘a:sct egral in (3.17). For the discontinuous solutions under consideration, the Rankine-
~

)
goniot relations (3.3)-(3.5) are used. These will uniquely determine the value of the

constant on the right-hand side of (3.17) in each region where the solution is smooth. The
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Publishimgginal flow variables p, u, and c are then given via (2.14)-(2.17). Finally one needs to verify
that the solution so obtained is physically acceptable.

The analysis is complicated by the fact that the ODE (3.24) possesses a number of critical

points (common zeros of F' and (), whose location varies with , A, and s. Furthermore,

these may or may not be located on the critical lines

Co={C=+1+W}, \\\
S\\i 1scussed below, this is

"ﬁﬂd the work!® by Lazarus

along which the denominator D in (3.19) and (3.20) vanpi

a key issue. Among the many treatments in the litera‘u_t‘ll
to be the most useful for our needs. (Lazarus also studies sélutions with several converging
similarity shocks, a scenario we do not consider i1 the p t work.)

The location of the initial data for ( = —)mphes that the solutions of (3.24)

need to cross the critical line C;, before con ulng n to the origin in the (V, C)-plane. Let
F={(V,O)|F(V,C, Et—fﬂK7 0},

and define G, G. similarly by r%hﬁw C,\) by G(V,C,)\). As shown in'®) the set
)

F N G of critical points for angcontain up to nine distinct points. One of these is

(V,C) = (—1,0), which is the i int for similarity cavity flow. In addition there may
lpﬁ'b%tf located on C; we follow Lazarus’ terminology and refer to

be up to two more criti

these as points 6 and(8.

(3.20). It follows frfo

similarity flow must solve the full ODE system (3.19) and

{e f9(1n of these equations that any solution reaching the critical line
C,, in order to.contiue on to the origin in the (V, C')-plane, must cross at a common zero
of both F an CD Note that F' and G are proportional along C4.) It is this restriction that
is used td detérmine what the relevant values of A can be, for given values of v, n, and s.
Lagarus! oédes a detailed analysis of the subtle issue of which A-values give complete
fl ws. @ pa ticular, Lazarus defines a function Agq = Aga(7y,n,s) by the property that

soluﬁjon of (3.24), with A = Ay4 and starting at the appropriate initial point, passes

Iytieally through point 6 or point 8. As pointed out in'®, most other authors have
N

considered Ay g to be the only physically relevant value of the similarity exponent. Lazarus

argues against this and shows that by removing the analyticity constraint one can, for fixed
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Publishi/m.gv , and s, obtain whole families of complete similarity flows as A varies over certain non-
trivial intervals. To obtain a complete breakdown of the possible cases requires numerical
integration of the similarity ODEs. Most of the details of this analysis are included in'®
In particular, the numerical values of A4 for n = 2, 3 and s = 0, 1 have been determined

to several decimal places for a large number of y-values (cf. Tableg6.2-6.5 in'®). According

to Lazarus, “Numerically, it has been determined beyond questi E3tha it [i.e., the function

iven by 2.9780 for n = 2,
s forgranted. Differently from

Asta] exists for the shock problem for all v > 1, and for the cavigf problem for v > ~44.”
Here 744 depends on the spatial dimension and is approxi %N

and 2.4058 for n = 3. In what follows we take these state

—
many other cases of similarity solutions to PDEs, the simigrl y exponent A is not apriori
given; no analytic expression for Ayy is known. ( o

Having determined those A-values which gw’evgt solutions to the similarity ODEs
co

(3.19) and (3.20) for z € (—1,0), it remai ‘\q\n; wue the solution through the origin and
extend it to all z > 0. As commented e rl& accomphshed by inserting an expanding

similarity shock following a path of e for = A fort >0 (i.e., x = B, where B > 0
is a constant). The determmatlo d‘the construction of the solution for x € (B, o)
are outlined in Section IV C elo m it appears necessary to do so through numerical

integration of the equations.

Having constructed ete similarity shock or cavity solution in this manner, it still
remains to verify th m:bhng flow is physically meaningful. This includes describing
the solution beha or th /qugln r = 0% for t > 0 (e.g., the velocity there should vanish), as
well as checkin N ass, momentum, and total energy are locally bounded quantities.
As we show, Q\; (where we verify in detail that the similarity solutions are genuine
weak soldtions to Euler system), the latter integral constraints require that the similarity
exponént sat A < 1+ 5. Tt turns out that this is satisfied for all known values of A4
(ck Ta es 6& 6.5 in'%).

Whllé)we agree with'® on the relevance of non-analytic similarity flows, the more impor-

t point, for our purposes, is that we obtain some examples of shock and cavity flows that
~

exhibit blowup. We therefore restrict attention to solutions corresponding to the “analytic”

similarity exponent Agyq.

17
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Publishiﬁg Existence of similarity shock solutions prior to collapse

For the shock problem we first observe that, by construction, the converging shock along
x = —1 is compressive. The same holds for the diverging shock following collapse. For the
present case of an ideal gas, this implies that a fluid particle crossifig the shock will suffer
an increase in its physical entropy'®; i.e., all discontinuities un e(h
‘eQropy—satisfying” shocks.
Next, there is no issue near the initial point (V;,C}) given bysthe two first expressions in
(3.7): the ODE (3.24) is well behaved there and has a 1 lgl.ut\ion for any values of A > 1
and 7y > 1. As outlined earlier, the solution must crdss the critical line Cy = {C' = 14V}

before reaching (V,C) = (0,0). As explained aﬁ 'est)ict attention to the particular

congideration involving

jumps of primary (undifferentiated) flow variables, are genuine;

value A = \yy for which the solution crosses the iczﬂ)line C, in an analytic manner.

-

Remark IV.1. The similarity ODEs (3:\&5)-20 remain valid for n = 1. However, an

analysis reveals that the solution starti m (V1,C1) does not reach the critical line in

e same applies to the case of 1-d similarity cavity

this case, instead ending at a cm’tz’ca%( C) lying strictly above C, (this corresponds to

‘point 47 in Lazarus’ terminolo 1\
flow. At (V,C), F(V,C) an\% anish and are Lipschitz continuous, while D(V,C)
critl

[ point is reached for x = 0. However, (2.15) and (2.16)

then tmply that the res térmw 1s physically meaningless at time of collapse in this case.
One could still @i wild a 1-d flow exhibiting blowup by using only a part of the
t desegih

does not vanish; therefore, the

ﬁ, say the part corresponding to x € (—o00,xg), for an xo < 0.

simalarity flow j/
The idea wo Abilt}s(nplete the flow to all negative x, say, by a non-similarity flow (e.g.,

a simple

ve )s However, any change made in the original similarity flow for x > xq will
necessari 'nj‘lue?ce the flow along the interface at x = —1, strictly before t = 0, and thus
possi(@zzzi ntblowup. This is a consequence of the fact that the original similarity solution
dgesno (,S; the critical line C, : there is no critical 1-characteristic in this case (cf. Figure
3

N

After crossing the critical line the Ag4-solution approaches the origin (V, C') = (0, 0), which
is a star point for (3.24). F(V,C) and G(V,C) both vanish and are Lipschitz continuous at
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Publishitig origin, while D(V,C) does not vanish there. It follows that the solution (V(z),C(z))
reaches the origin at x = 0. This critical point is again crossed in an analytic manner and

the solution continues into the lower half of the (V, C')-plane; see Section IV C.

Remark IV.2. According to (3.9) the solution (V(x),C(x)) approtches the origin with a
slope L/C. For all cases we are aware of it is evident from nu{;ﬂ' al integration of the
equations that the limits in (3.9) are non-zero and finite. It fol 'wgrom .11) that the flow
in these cases is “well-behaved” and physically meaningful at Thpe

<

B. Existence of cavity similarity solutions prior to §0 apse

wcollapse.

For the cavity problem the initial point (V, C{e (437 0) for the ODE (3.24) lies on the
critical line C; = {C' = 1+V}. This is a saddle poiut; alinearization about it in the variables
(V, Z = C?) shows that there is a Solution\%

d_Z %O‘_ 1) (4.1)

dv ;}) -2\ —1)

ong the direction

The solution C(V') to (3.24) the ters immediately the region {C' > 1+ V > 0},

provided A <1+ Z(y —1), W&K ssume in what follows (for s = 0).

Remark IV.3. The ¢ esp}jmg solution (V(x),C(x)) of (3.19)-(3.20) has C(x) — 0 as
x | —1. Note that 3’];7,) ith ¢ = 0) also gives R(x) — 0 as x | —1. It follows that the

density p vanishgs.as t in/erface {z = —1} is approached from within the fluid. Therefore,
the construct, dﬁ;m satisfies the physical boundary condition that p o< p'~! vanishes

along the wacuum interface.

£
Fugi‘rial ’{he solution, the situation is similar to that for the shock case: the similarity
A

ust be chosen so that the solution of (3.24) crosses the critical line C, at a

expon
ﬁ

c@;r?cero of F and G, i.e., through one of the critical points labeled 6 or 8 in'®. Differently
m

‘&5 shock case, this will not occur for all values of v > 1. As noted earlier, for the
o
cayity case, there is a minimal v44(n) below which no value of A yields a solution with the

required behavior.
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Publishing, \fter crossing the critical line C,, the situation is as in the shock case. The solution
proceeds toward the origin in the (V, C')-plane, and passes through it in an analytical manner

for x = 0.

C. Existence of similarity solutions beyond collapse; th@ed shock

e not aware of a general

The works®!315:21:22 consider the continuation of similatity ?ck and cavity solutions
beyond collapse, to complete flows defined for all time \

4.3,)3(%.3), symmetric or not, for
—

unbounded initial data. On the other hand, it is reasonab

result addressing the unique continuation of solutions_to
assume that no symmetry
breaking occurs at time of collapse, and restrict @ntio radial similarity flows with the
same values of A\ and x also for t > 0. Furtheriore, t@nbounded pressure distribution at

time of collapse (cf. (3.12)) suggests searching for & solution in which an expanding shock

wave is generated at the origin at time eh
15,22 g\?\

Following >, we outline the cqonstruction of a reflected similarity shock propagating

along a path x = B = wnstanti{())lfsxshock will decay as it moves outward through

complete solution requires the CMtion of the similarity solution (V(x),C(x)) of (3.19)-

the originally converging ﬂow@ n-isentropic flow region in its wake. Providing a
(3.20) found earlier beyend“e = 0, the determination of the reflected shock path (i.e., the
value of B), and thegolutien of (3.19)-(3.20) for all > B. The latter part of the solution

provides the ﬂov;fz'h ’:Na of the reflected shock; in particular, the asymptotic behaviors
) 1

of V(z) and C( N yield the behavior of the flow variables at the center of motion
r=0. &)

Contiduingsthe'solution (V (x),C(x)) through the star point (proper node) at the origin
in the (V4 C)- a‘{e does not present any problem. This can be done in a unique analytic
manne and&he solution (V' (z),C(x)) is continued into the lower half-plane until it meets
critiéjal line C_ = {C' = —1—V}. Following!® we call this first part of the solution curve
wer half of the (V, C)-plane) “arc (a).”

-
e -~
For each point (Vj, Cy) on arc (a), we then apply the Rankine-Hugoniot relations (3.3) and

(3.4) to determine the unique point (V;, Cy), with C; < 0, to which the system can potentially
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Publishijugnp. (Recall that the form (3.3)-(3.5) of the Rankine-Hugoniot relations assumes the
discontinuity follows a “similarity path” x = constant, with the same values of A, 7, and
x on both sides of the discontinuity.) As was noted in connection with (3.3)-(3.5), since

C2 < (1 + V,)? along arc (a), the corresponding points (V;, Cy) necessarily lie below the

critical line C_. /

As x increases from 0, the point (Vy, Cp) = (V(z ) mov: aﬁ%n the origin along
arc (a). At the same time the corresponding point Vl, C'1 ces t a certain simple curve;
we follow!® and refer to it as the jump locus (of arc ump locus is the smiley,

dotted curve in the lower half plane indicated in Flg EC W‘) Accordlng to (3.3)-(3.4)
its left endpoint is (V;, —C}) (corresponding to the paint ( 05 ), where V; and C}
are given by (3.7). Its right end point lies on th@tlcal i

)

{ -
At this stage, each point on the jump I Cu except its endpoints) provides possible initial

C_ and coincides with the end

point of arc (a).

data for (3.19)-(3.20), from which a s aJectory should be continued for all z > B.
The issue now is to argue that there e pomt Vl, C’l) on the jump locus from which
the solution can be continued to r0V1 \hysmaﬂy meaningful solution to (2.1)-(2.3).
A computation shows th 3 24) has a critical point at (V,C) = (Vp, —00),
where
—% (4.2)

gives the vertlca sy tots/for the zero-level of G(V,C, \) in the (V, C)-plane. This point
corresponds t a saddle point at the origin in the variables (v,() = (V — V,,C2). There

is therefore C y one solution of (3.24) which approaches the vertical asymptote V =

Vo. Furthermore, it appears that this solution, when integrated in from infinity, always

lies e ﬂ'ely the critical line C_, before intersecting the formerly determined jump
logus_ dta shgle point (Vl,C’l) This solution trajectory is referred to as “arc (b).” We
then ap%lv ) and (3.4) to find the corresponding point (VO,C’O) on arc (a). The z-
\a&ue\ at which the expanding shock is located is then determined by the condition that

N |oen = (Vo, Co), where (V(z),C(z)) denotes the a-parametrization of arc (a).

Modulo the z-parametrization of arc (b), this procedure determines the solution for all x > 0,
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Publishi;mrg' provides a complete solution for both types of radial similarity flows.

Remark IV.4. As is evident from Figure 8.30 in'>, and explicitly pointed out in®, for v = 3
and n = 3, the similarity shock solution suffers stagnation (u = 0) ahead of the reflected

shock. In the phase plane this corresponds to the situation where?e solution (V(x), C(z))
moves along arc (a) into the left half plane {V < 0} before jumpi gw (b).

Before addressing the uniqueness of this solution, we rengQK Lazarus'® obtains the
owers

of the new independent

[

x-parametrization of arc (b). First V and C' are expande nj

variable w = kx~?, where k and ¢ > 0 are constants to b termined. With the ansatz

= i Viaw'  and ((.w) —5+ i Cw’, (4.3)

V(w)
substitution into (3.19) and (3.20) yields thq\%inl.(AQ) for Vp, and
1 -1 -1
o=— [1 + M} %sge z= A . (4.4)
A 1+ Vy \\:_ (n—1)(y+s—1)
L I

To integrate the ODE system in fro itieal point (Vp, —o0) at infinity, Lazarus instead
integrates the system for V' (w) an &\f om w = 0, and thus obtains the w-parametrization

of arc (b). This provides th%l or which (V(w),C(w))yew, = (V1,C}), the point
where arc (b) intersects the jump“ocus of arc a). As explained above, this determines,

via the Rankine-Hugomigt relations (3.3)-(3.4) and the z-parametrization of arc (a), the

location = B of the reflectéd shock. Finally, the z-parametrization of arc (b) requires the

determination offthe co %t k, which is now given by k = B%wj.

Example )[n Figure 3 we have used Maple to display the complete similarity shock

solution {s =£1) n the (V,C)-plane for the case n = v = 3. We have used the values
A = X3, 3, /,:5 1.5713126233 and B =~ 0.693970 given by Table 6.5 in'® (see erratum
in ‘L({%blution starts at the starred point above the critical line {C = 14 V'}, moves
Wﬁg}, crosses {C =1+ V'} and the origin smoothly, and then crosses the critical line
"{~C> :\—1 — V'} by jumping, before continuing along arc (b) toward the critical point at

,—00). Note that, in accordance with Remark 1V.4, the first jump point, corresponding

to the state ahead of the reflected shock, is close to {V = 0}.
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Publishing

2 4

P

rf/; )

\ B
FIG. 3. Complete trajectory of similarity Sho\cké\ohﬁ@n (n =~ = 3) in the (V,C)-plane. Thick

dash = zero-level of G(V, C), dash-dot zmcaklines, star = starting point, circles = jump points.

We note that, according .\w physical requirement that the particle velocity

u(t, ) vanishes at the ce

r of motien r = 0 for all £ > 0, imposes the condition V(:U)/:L‘% —
0 as = T oo. Of cours i\

is satisfied for the solution determined above since V' (z) in that

case tends to th? ibe limit Vg as x 1 oo.

By combinin asymptotic behavior of V' (z) and C(z) with the exact integral (3.17) we

obtain that m}), and thus a complete description of the flow near the center of motion.

A calcul on/sh s that the result depends on the value of s; at any fixed time ¢ > 0 and
as r wehavey

Q-:w
(@b)<fo ilarity cavity flow (s = 0): p(t,r), p(t,r), and 0(t,r) o c(t,7)* all tend to

noézero constants (cf. Figures 8.19-8.22 in'?);

NI
\2) for similarity shock flow (s = 1): p(t,7) — 0, p(t, r) tends to a strictly positive constant,

while ¢(¢,7) and 6(t,7) both tend to +oo (cf. Figures 8.25-8.28 in'?).
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Publishi(fg)' a representative calculation, see the proof of Lemma VI.1 below.) It is noteworthy
that, in the case of similarity shock flow, the density vanishes at the center of motion after
collapse, without the pressure tending to zero there. For the ideal gas under consideration,
this yields unbounded temperature and sound speed at r = 0 for ¢ > 0. (This contradicts

Lazarus’ statement on p. 330 in'® when s = 1.) In our view, this i%nother manifestation of

the borderline physicality of the radial similarity solutions und nsideration

It remains to discuss the uniqueness of the solution determine G?ove, which was obtained
by exploiting the critical (saddle) point (Vp, —oc) at infi '“‘N DE (3.24). Consider
first similarity cavity flow (s = 0), in which case (3.24) ha; éti't‘al-.points also at (—oo, —00)
and at (oo, —00). However, neither of these appear ‘1;; reachable from the jump locus of
arc (a). Indeed, from the phase portraits it appea@hat alksolution trajectories (V(z), C(x))
starting from points on the jump locus lying tbghe left of (V4,Cy) end up (for a finite value
of x) on the critical line C,, while all tra]%’caﬁmg from points on the jump locus
lying to the right of (Vl, C’1 end up o 1er 1s no way to continue these solutions to

all x > 0 and obtain complete, phys ally anlngful flows.

For the case of snmlarlty sho 3'&. 1), the ODE (3.24) has an additional critical
point at (V,C) = (-1, — ue t ~Lterm in F(V,C, ) in this case, cf. (3.23)).
From the phase portraits it app t all solution trajectories (V' (z),C(z)) starting from

points on the jump loc

ly"mgx;c:) the left of (Vl, C’l) approaches this point. (All trajectories

starting from points jump locus lying to the right of (‘71, C’l) appear again to end

: C) and linearizing, reveals that

up on C_ for finite! x- 1{168)! hanging to the variables (V

the point (V C’/; <1, —0) is necessarily reached for a finite z-value, say & (depending
on where a he jump locus the solution started). According to*?, this shows that the
critical p@int (—17%00) cannot describe the physical state at r = 0% for ¢ > 0 (since this
corregponds ‘é +00), and is therefore irrelevant. However, this does not resolve the issue
o ‘Rl ly. h calculation shows that if (V(z),C(z)) of (3.19)-(3.20) tends to (—1, —o0) as

A thsn the density p(t,r) at a fixed time ¢ > 0 will satisfy

>/\>—A

\ < p(t,r) L0 as vl ()
that is, a vacuum is reached. This solution structure is not unreasonable: one might well
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Publishiimggine an expanding vacuum region opening up in the wake of a strong, expanding shock
(a possibility considered by Hunter!'® for the particular case of similarity cavity flow with
v = 7). However, a further calculation reveals that the pressure p(t,r) does not tend to zero

as 7} (t/&)* (for t > 0 fixed). This type of solutions is therefore rejected as unphysical.

While these observations do not provide rigorous proof, they sdpport the view that the
%h{

ving ( C(x))
approach the saddle point at (Vp, —o0) as = 1 oo. It therefo%a\k\ears that both 81m11ar1ty

only way to obtain a complete and physically admissible soluti
shock and similarity cavity solutions are uniquely dete evond collapse - at least

among similarity flows. ~~

)

V. WEAK AND RADIAL WEAK EULER SO IONS

)

We next consider whether the radial Si% oﬁ?ﬁions constructed above, considered
)

as function of time and space, provide WN
(2.1)-(2.3). <=

ions to the original multi-d Euler system

For concreteness, in what follows, %foqls on the case of similarity shock solutions, in

which case the radial Velocity, SO ed, pressure and temperature are unbounded at

\‘Ebgformulation and verification of the weak form of the

92}

time of collapse, cf. (3.11)-

equations therefore requi ttentlo . Somewhat surprisingly this does not appear to have
been addressed in these 1ng iterature.

In this Sectlo ula e'the weak form of the Euler system (in the absence of vacuum
regions), first f nera multl d solutions, and then specialize it to the case of radial

solutions.

A. ener ﬂ{ultl-d weak solutions

W’é ) for p(t,-) ete., @ = (uy,...,u,), u:= |d], and let z = (z1,...,2,) denote

the atial variable in R™. We restrict attention to non-vacuum solutions.

S

ﬁ ition 1. Consider the compressible FEuler system (2.1)-(2.3) in n space dimen-

sions, with a given pressure function p = p(p,e) > 0, and let the measurable functions
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Publishipguy, ..., u, e : Ry X R — R be given. We say that these constitute a (non-vacuum) weak
solution to (2.1)-(2.3) provided that:

(i) the functions p and e satisfy p(t,z) > 0 and e(t,z) > 0 for a.a. (t,z) € R x R";

(ii) the maps t — p(t), t — p(t)u(t), and t — p(t)(e(t) + u(;)Q) belong to C(Ry; L}, (R™));

(iii) the functions pu?, p, and [p(e + %) +p}u belong to L,

(iv) the conservation laws for mass, momentum, and energy~are

that ‘)._,_\

=
// pov+ pil- V.lgdzdt § 0 (5.1)
R " -

/ / puipr + pu -V, &Q%ﬂjdt =0 fori=1,...,n (5.2)

R n

9 ) . L

// ple+15)en+ [ﬂ(e“?){}u\-
R JRr

whenever p € CHR; x R?) (the spacé-ofl! -smooth functions with compact support).

wdzdt =0 (5.3)

Remark V.1. Note that we allow \ﬁte\possz’bility that the density vanishes on sets of

measure zero. This is relevant sinc : noted above, the similarity shock solutions constructed

earlier include a vacuum state Menter of motion after collapse.
Also, we do not ad admissibility of weak solutions. While not the only possible
%larity shock solutions under consideration to be admaissible

approach, we considef t

since their discontiiuitiés a?, by construction, compressive shocks in ideal gases.

B. Radia @r solutions

£
Next,%l)ﬂeteness we detail the relationship between weak solutions of the multi-d
s
(

Eulergyste :1)-(2.3) and “radial weak solutions” of the radial version (2.4)-(2.6). This
apalysis een provided earlier by Hoff'? for radial solution of the compressible, isentropic
Nawi r—S)okes system.

\ebting m:=n—1 we let
R* = (0, 00), Ry = [0, 00), Litoey(dt X 7™dr) = Lijpey (R x Ry, dt x r™dr),
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Publishimg! C}(R x R{) denotes the set of real-valued functions (¢, r) defined on R x Ry and with
the property that 1 is C' smooth on R x R} and vanishes outside [—,#] x [0, 7] for some
t, 7 € RT. In particular, for any ¢ in C}(R x R{) the derivatives 8!0%) with 0 <1+ k <1
have well-defined (finite), continuous, and possibly non-vanishing, traces along the t-axis.

Finally, we let C}(R x R{) denote the set of functions ¢ € CL(R é/ﬁ%g ) with the additional
property that ¥ (¢,0) = 0. 5

Remark V.2. It follows from this that for any v € C} ]Rj< 4). and any compact time

interval [T, T], there is a constant A = Ay so that ~

—_—

[(t,r)| < Ar for @6 ).
o

The relevance of these function classes 15‘&%&1-‘ ring: when the weak formulation of the
full multi-d Euler system (2.1)-(2.3) is app d adial solutions, then the relevant “test
functions” for the radial continuity and ehergy equatlons will belong to C}(R x Ry), while
the relevant “test functions” for rwl momentum equation will belong to C} (R x Ry).

Before verifying this we deﬁne ‘ra k solutions.”

Definition 2. Consider: dial version (2.4)-(2.6) of the compressible Euler system (2.1)-

(2.3), where (t,r) ra ges X RT and p = p(p,e) > 0 is a given pressure function.

Let the measm’ nct/ns p, u, €: Ry xRF — R be given. We say that these constitute
a (non-vacuu l weak solution to (2.4)-(2.6) provided that:

(i) th unytzon and e satisfy p(t,r) >0 and e(t,r) > 0 for a.a. (t,7) € R x R*;

it g&@)s t p(t), t — p(t)u(t), and t — p(t)(e(t)

\‘%Z)\ functzons pu?, p, and [p(e + “22) + p|u belong to L, (dt x r™dr);

) belong to C(Ry; L}, .(r™dr));

(iv) the conservation laws for mass, momentum, and energy are satisfied in the distribu-
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Publishing  tional sense that

/ / (e + punh,) r™drdt =0 Wi € CHR x RE) (5.4)

R+

/ / (puthy + pu*, + p(¢, + m—)) r™drdt = 0 Vih € C5(R x RY) (5.5)
R+

//R+ (c+ )+ |ple+ %) +p| u, ) rdrdt =0 <V~¢e\cg(RxRo+).

(5.6)
Proposition V.1. Consider the multi-d Euler system (. b ith a given pressure func-
tion p = p(p, e), together with its radially symmetric vérsion (2 6). Then: given a radial
weak solution (p,u,é) of (2.4)-(2.6), and settmg - 5
plt.z) = p(t,r) alt, r>\e (t2) (r=1zl),  (57)
we obtain a weak solution (p,,e) of the m ler system (2.1)-(2.3).

Proof. First, it is immediate that Nles in parts (i)-(iii) of Definition 2, together

with (5.7), imply parts (i)-(iii) x 10? 1, respectively. It remains to verify the weak
form of the equations. To ve x p € CHR x R") and set
‘ e, (5.8)
y|=1

Then ¢ € CHR g1ves

//
RJR
’t( Y y) Sy ‘u 7 (7 ( ? y)) Sy

:/R Jﬁ g1 lyl=1

([ N [pettcrn) + sa9.pttro) o] rmas,arde = [ [ poct pi- Vopdzat,
TV |yl=1 R JR™

-

ifying&the weak form (5.1) of the continuity equation (2.1) in the multi-d Euler system.
;to verify (5.2) we fix i (1 <7< n)and p € CH(R x R"), and set

~' r"drdt

W(t,r) = /|:1 vip(t, ry) dS,. (5.9)
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Publishifien ¢ € Cj(R x Ry) and (5.5) gives

) rdrdt = 0, (5.10)

N—_———
a1

| [ (gaw+giv, +(w + =)
R JR+ \~~ S~
I yis
where p = p(p, €). Treating each term in turn, we have: /\
:// puhy ' drdt :// ,51][/ yz@(&()& r"drdt
R JR+ R JR+ ly|=1 t

— [ [ [ ety s ard = N s dza,
R JR+ J|y|=1 R

)

II—// P, rmdrdt = / m yip(t,ry dS] r"drdt
R+ |
// / Pty V., \ Sydrdt = // pu;t - V. dzdt.
Rt Jly|=1 "

For III we first calculate

and

(), = dS (t,2)% dS. )

lyl 1 \zl

t 2 = 8 / / (t,sy) s™dS ds) =r / @, (t,ry) dS,.
lyl= 1 lyl=1
Using this w al}&q

Q / b P, + ) P drdt = / /R ) . drdt

5 / / / P, (t, ry)r™ dS,drdt = / / PP, dzdt.
&“& R JR* Jly|=1 R JR?
%}S ing these expressions for I, I, and III back into (5.10), shows that the weak form

) of the momentum equation (2.2) in the multi-d Euler system is satisfied.

Finally, to verify (5.3) we fix ¢ € C}(R x R") and again define v (t,7) by (5.8). Then
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Publishing C(R x Ry) and (5.6) gives
0—// ,56+ wt [ ( )—I—p}uwr) r’drdt
R+

- [ [ e[ awmas,
+[p(e+~2)+p] " 10 try/&i{imdrdt

//W/y 1 ﬁe+~2 )it )
" +[,3(é+—)+p]ay-v ,:\rwrdt
//n e+ L s0t+[p(e+ +p]Q%

verifying the weak form (5.3) of the energy equa@ (%3) in the multi-d Euler system. [J

ml:l

Remark V.3. Note that the “test functiop” 1% (5'8) typically has non-vanishing trace
along the t-axis (e.g., when n = 3, ¥(t, x&i ©(t,0) as r | 0), while its r-gradient
does vanish as r | 0. Also, the “test-funclionab in (5.9) behaves in the opposite manner:
W(t,r) — 0 as r | 0, while typically W)\ 0asrlO.

VI. SIMILARITY SHO }’I‘IONS AS RADIAL WEAK SOLUTIONS

In this section we r tu;n\}‘the case of an ideal gas and consider the similarity shock
solutions constructed in S IV as candidates for weak solutions of the Euler system.
The main result tha hesé provide bona fide weak solution that suffer blowup of primary
flow variables olla . This conclusion holds for flows in two and three space dimensions
provided the Si larlty shock solution (R(z),V(x),C(x)) satisfies the properties listed in

e ow e stress that numerical computations clearly indicate that these prop-

ertiesare sa is d for the “standard” similarity solutions with A = Ag4(7,n, 1), for a large

ues (see Tables 6.4-6.5 in'?).
(&\ function 1+ V (z) is uniformly bounded below away from zero, and from above, as

\ " varies over all of R;
(P2) the limits ¢ and L in (3.9) satisfy —oo < L < 0 < ¢ < o0;
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Publishitg?) (V(z),C(x)) = (Vo, —00) as © T oo, where V1 is given by (4.2).
We now fix n =2 or n =3 and let s = 1, such that x in (2.17) vanishes, and p(t,7) = R(z).

Lemma VL.1. Withn =2 or3, and 1 <X <1+ %, assume (P1)-(P3) are satisfied for the
solution (R(z),V(x),C(x)) under consideration. Then R(x) >0 for llx € R, the functions
R(z), V(z), V(z)/x are globally bounded on R, and the functwns /a: C(z)/x are

2

continuous at x = 0. Finally, the function R(x 18 g ba boun ed

C(z)/z at x = 0 (when the latter two functions are de tatake values £ and L there,

respectively), and therefore also global boundedness
Next, linearization of the ODE (3.24) about ) ows that the leading order be-

haviors of V' and C there are given by (4.3)- ) ‘)
2()\ —1) -
V(z) ~ Vo = {\ (x) ~ —a° as x T 0o, (6.1)

where

A—1
Wlth q= g (6.2)
n
We note that the constraint )\ <\* 1 hes —1 < V5 <0, and thus

(1 +Vp) > (6.3)

Proof. Clearly, (P1) and (P2) imply global boundedn< , “continuity of V(z)/z,

Also recall that the fu cti-on\i% x) takes the value 1 for x < —1; a calculation using the
343)-(3.5) together with (3.17), shows that R(z) > 0 for all
x > —1 as well. , thle continuity of V(z) and C(z)/x at x = 0 implies that of R(z).

According to 3.57}&1\&150 obtain

2
R(x) ~ (@) T g () as x T 00. (6.4)

Rankine-Hugoniot rglation

—~

£
Thus, gecords g/&) (6.3), we have that R(z) tends to zero as x 1 oo (establishing the first

part of(02) sn Section IV C); it is therefore globally bounded. Finally, a similar calculation

S ovx-;g that
w R(m)‘c(m) ’2 ~ 72073, (6.5)

N x

ether with the continuity of C(z)/z at = 0, this shows that R(z)(C(z)/x)? is globally
bounded. O
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AP

Publishinglor the solution (R(x),V(x),C(x)) under consideration we now define p, u, ¢, and e via
(2.15)-(2.17) and (2.10).

Theorem VI1.2. With n = 2 or 3, and under the assumption that (P1)-(P3) hold, the
triple (p,u,e) constitutes a radial weak solution to (2.4)-(2.6), with ideal pressure law (2.7),

according to Definition 2 whenever \

l<A<l+2 (6.6)

According to Proposition V.1, it follows that these solutio 'b_‘Rl;o 1de (non-vacuum) weak

solutions of the multi-d Euler system (2.1)- , acc r efinition 1, with unbounded

amplitudes.

The proof of Theorem VI.2 is organized skovv% First, part (i) of Definition 2 is
immediate from Lemma VI.1 and the definitions of“p and e. The next two subsections
consider the continuity and integrability rﬁx& s in parts (ii) and (iii) of Definition 2,
respectively. Subsection VI B 1 finishes the proefiby analyzing the weak form of the equations

(part (iv) of Definition 2).

A. Continuity and local \}1
For a fixed 7 > 0 an W%

0

r)r™dr, I(t;7) = /p(t,r)|u(t,r)|rmdr,

rdr+ 3 / p(t,r)u?(t,r)r™ dr =: Ep(t;7) + Ex(t;7),
0

the issuefis tofsho
at allftimes ﬁ Recall that the incoming and outgoing shock waves follow the paths
r _Q%\(it)l/ Aand r = r,(t) = (t/B)Y*, respectively. In what follows we consider times
t Ssmall éfough that r;(t) < 7if t < 0 and r,(t) < 7 if £ > 0. The calculations for the other

that the maps t — M(t;7), t — I(t;7), and t — E(t;7) are continuous

‘csses are simpler and do not change the conclusions. We set
~

o=

n
"
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Publishidg Continuity of M(t;7)

For t < 0 we have p(t,r) =1 for 0 < r < r;(¢), such that

'r‘i(t) T %
M(t;’f‘):/o rmd’I“-I—/()p( )mdr_l—f- |t|a// | ‘a—&-l’ (67)
i (t

while for ¢ > 0 we have

'r‘g(t) T 1
M(t;f):[/o +/()]p(t,r)rmdrzxt“
ro(t

As R(x) is globally bounded, the integrals in (6.7) a@ c all finite, and ¢t — M (t;7)

is continuous at all times ¢ # 0. For ¢t = 0 we han_
n

M(0;7) =75 R(Q):) (6.9)

Observe that, as R(z) is globally bound d%ﬂd integral on the right-hand side of (6.8)
and the first term on the right-hand gide omre of order |t|*, and thus vanish when ¢ | 0
and t 1 0, respectively. Theref0r< hi‘b& rom above at t = 0 of M(¢;7) follows once it

is established that \1
1, i
1! 7%}““ — M(0;7) ast]O.
oy

This may be verified sing L’Hopital’s rule and the continuity of the map = — R(x) at

xz = 0. The Same a umﬂnt shows that

« $ _
|t| | ot — M(0;7) ast 10
as well. us/ th ap t — M(t;7) is continuous at all times.

tzr)nty of I(t;T)
SgO\LZ 0 we have u(t,r) = 0 for 0 < r < r;(t) such that
~

1) = / plt, Pu(t, )™ dr = 543 / " Ria)

i(t)

V(z)| _dx

|z |£U|cx+-§"

(6.10)
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Publishiwgile for ¢t > 0 we have

d
/ / p(t,r) |utr)|rmdr— to‘ 3 / / xl‘
oz—&-x

(6.11)
As R(x) and V(z)/x are globally bounded, and ar+5 > 1 (by assunztion (6.6)), the integrals

_)}igetgéo For t =0

(6.12)

in (6.10) and (6.11) are all finite, and ¢ — I(¢;7) is continuous
we have, by property (P2) and with ¢ given by (3.9),

I(0;7) = R(0)€
1+% . and thus vanishes when

As the second term on the right-hand side of (6.11) is of order,t l, i
t L 0 (by (6.6)), the continuity of I(¢;7) from a follows once it is established

that
ta 1+1 / —&\1.7'(07“ ast | 0.
A

This may be verified by using L’Hopita d the continuity of the map x — R(z )
at x = 0. The same argument show tha%

dx

AR

8
i

1 1
F|zs|a—1+i — I(0;7)  ast?10

as well. Thus, the map ¢ contmuous at all times.

3. Continuity of F(t;7)

4

We consid ‘E.Smkkinetic energy

) Buttir) =5 [ pltoryte. e an

.
WhiC.@ rt<0andt >0 by
. I e W =y Viz)2 dz
(\\9 Bttir) = "o [ R@)|

;B - ) ta—2+% B 0o V([L’) 2 dr
Be(tn) =S [ [+, TR0l 50 S (614)
-~
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Publishirgpectively. Global boundedness of R(x) and V() /x, together with assumption (6.6), imply
that ¢ — Ex(t;7) is finite and continuous whenever ¢ # 0. Evaluating at time ¢ = 0 yields,

thanks to (6.6),
1 Fn+2—2)
Ex(0;7) = WR(O)Wm.
As the second term on the right-hand side of (6.14) is of order Q‘( 2+%, and thus vanishes
when t | 0 (by (6.6)), the continuity of E(t;7) from abov aﬁ)\follows once it is
established that
jo—2+%

2)3

Again, this follows by continuity of R(z)|V (z)/z|* at %= Oénd L’Hopital’s rule. The same
argument applied to (6.13) shows that F(t;7) tendstethe same limit as ¢ 1 0. This shows

that the map t — Ex(¢;7) is continuous at all times. &
Finally, consider the potential energy: \\

T 1 T
Boltsr) = [ plerettg) e [ ol ar
0 (v —=1) Jo
which is given for t < 0 and ¢ > %
-2 x C(x)|2 dx
Ep(t;7) = R ’ ‘ 6.15
P( T) (,y_ 1) . (l’) T |J]|a_1+% ( )
and
()12 dx
| o (6.16)

respectively. Mdedness of R(z) and C'(x)/z, together with assumption (6.6), imply

that t — Hp(t;™Js finite and continuous at all times ¢ # 0. Evaluating at time ¢ = 0 yields,

thanks to 6)7 y.
) Ep(0;7)

B 1 R(O)L2 Fn+2—2)\
CAy(y—1) n+2-—2\

ws ) from above at ¢t = 0 follows once it is established that
~

ta—2+% )/: R(x) )

Ay =1

2 dr

a—l-l—%

Cla — Ep(0;7)  ast 0.
X

T
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PublishiAg above this follows by L’Hopital’s rule and the continuity of R(x)|C(z)/z* at « = 0.
Finally, the continuity of Ep(t,7) from below at time ¢ = 0 is established in the same
manner.

This concludes the verification of part (ii) of Definition 2.

4. Local space-time integrability 3\

Next, for part (iii) of Definition 2, we need to verify the loeal itegrability in time and

ot

space of the functions pu?, p, and [p(e + “2—2) + p]u. t we consider an ideal gas

(2.7), and that the incoming and outgoing shocks rgﬁagg
respectively. As a consequence, to verify part tu; it suffides to show that, for any fixed

)

N
N

By drdt, for =0, 1,

Br
= [,
are finite. Transforming to dx t&@, and recalling that the fluid is at rest on the inside

of the incoming shock, we have\

[/lxrA ta-i-ﬁ(%_l) dt} dx
(HOWE ) [ i o}

B |x|a+1+>\

L 4\)\ ﬁu—» { [ <x>||v|ﬁ<x>|ﬁ r preisation) [* ROV i}
)+ . x B potHX

Here hav used that the dt-integrals are finite since, for all values of A, n, and § under

c@ers‘rlon (6.6) yields
a—i—ﬁ(%—l) > —1.

N
R(x), V(z)/x, and V(x) are all globally bounded, it follows from (6.17) that I5(7) < oo

along + = —1 and = = B,

7 > 0, the space-time integrals

and

(6.17)

for any value of 7 and 5 =2 or 3.
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Publishing.& similar computation for Ps(7) (now using that the pressure p vanishes on the inside of
the incoming shock), yields

Py(r) = 7/\2+3 {/j R(ﬁ))ogg) ‘2’ Vix) ‘B |x|a+1+ (2+8)( m/ rel ] d

+[/BOO i) [ ’ aﬂiwx\}:&ta%ﬁ( )dt]}
FAa+1)+(248)(1-X) B C ()2 )
:%\;*3 (@+1)+(2+5) (-—1 {/ e )‘ H "

at1+(2+8) (- (
4B (31 ‘ |x|a+1+ o } (6.18)

Here we have used that the dt-integrals are, fini Sm(se— for all values of A, n, and S under

\W\\ 1 -
By global boundedness of % and C(z)/z, and by (6.6), both integrals on the
right-hand side of (6.18) are finitésor both 5 =0 and 5 = 1.
This concludes the \é‘\%n of part (iii) of Definition 2, under the constraint (6.6).

consideration, (6.6) yields

of the equations

Fi aﬁy fo rt (iv) of Definition 2, we need to verify the weak forms (5.4), (5.5), (5.6)
of the dla equations. This requires some care since the solutions under consideration
a unb(%mded at the origin. To handle this we shall exploit that the local integrability
“p.nspe\ fes in parts (ii) and (iii) of Definition 2 have been verified under the condition (6.6).

e issue then reduces to estimating the fluxes of the conserved quantities across spheres of

vanishing radii.
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Publishing

\

1. Weak form of the mass eq Zl'éa.s
\"\
For a fixed v € CH(R x R, vm Y C [=T,T] x [0, A], and for any § > 0, we have
1

N
s g [ e
+

=: Ms(v) + / +// } (ptr + puah,) r™drdt (6.19)
/5 / 5 s
where the (ope @gogi , IIs, and Il are indicated in Figure 4 (e.g., I5 is bounded below
he le

FIG. 4. Regions of i tegﬁ{gm he weak formulation.
X

by {t = -T 0;1) by {r = d}, and on the right by the incoming shock path).

Let I';A T, andJ’f denote the parts of their boundaries 915, 0115, and 91115, respectively,
contajaed, in“ehe et {(t,r)|r = 0}. Recall that the similarity shock solution is a bounded,
classi sohf)ion of (2.4) in each of the regions Is, Il5, and IIls, and that the Rankine-

,ﬁ
goniof conditions are satisfied across the incoming and outgoing shocks. Applying the

di%e e theorem therefore gives
~

M) = My(®) + 6™ { / T / } (pu)(£,5) dt,
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Publishiwfcre we have used that u vanishes along I'y. By making the change of variables ¢ — z =
t/6*, we obtain

M(y) = / R(z

As R(z), V(x)/x are globally bounded, the last term in (6. 20) of order 6"*, which

( 6, 6) da. (6.20)

vanishes as ¢ | 0 by (6.6). Finally, it follows from the analy51s Tlon VIA that both
p and pu belong to L}, (r™drdt). Thus, Ms(¢) — 0 as § | qo = 0 for each
1 € CHRxRY). This shows that the weak form (5.4) of the r ss equation is satisfied.

2. Weak form of the momentum equation [

5

For a fixed ¢ € C3(R x R}) and any 6 > 0 W€ have

:// (putby + puth, + p(e, + 22 )W diedt

)
AL 11 NS
B {// //\ Pu¢t+ﬂu2¢r+p(¢r+m7w)) rmdrdt.  (6.21)
8

Arguing as above and applyi
/F+

é

y WJF/ )\2_ /_fR@)H@

where we haveaised that v and p both vanish along I'; . Recalling the observation in Remark

V.2, and ugingglébal boundedness of R(x)(V(z)/x)? and R(z)(C(z)/z)?, we obtain that

ence theorem gives (z = t/6")

1Y) = Is(v } ((pu® + p))(t,6) dt

2+1‘%2
vl

]7,[1(:)35’\, 5) dx, (6.22)

&7 [} mel S Yot s

-

W igl}ngSSO zero as 0 | 0 by (6.6). Finally, to show that I5(¢) also vanishes with ¢ we

firgt use?nemark V.2 to bound the function % by a constant, and then use that, according
the analysis above, the quantities pu, pu?, and p all belong to L}, (r™drdt). This shows

t t?lso Is(v) — 0 as § } 0. Thus, I(¢)) = 0 for each ¢ € C}(R x R{), showing that the

weak form (5.5) of the momentum equation is satisfied.
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Publishifg Weak form of the energy equation

For a fixed v € C}(R x Ry) and any § > 0 we have

o= [ [ (oer 5t le ) ] u%) i
:{//+//15+//115+//ng} ple+% +‘s§ g
s ([ ] [} ote 910 Ty ] )

(6.23)

Arguing as above and applying the divergence t orem (x =t/0*)

E(¢>=E5<w>+5“1{/ro+/ﬁ} [pu :

grH2—22 3%
— By(4) + [ r
-1

)\3

2
) b(xd*,6) da,

\\ (6.24)

where we have used that u V&ﬂMOﬂg I'y. Recalling the global boundedness of R(x),
V(z), V(x)/z, and R(x) 7)?, as well as the bound (6.5), we obtain that the last integral

in (6.24) is bounded By
/

—2(1—7) 1dx<1—|—52’\—|—52’\1 aséiO

—3
Accordm@\g\we therefore have that the last term on the right-hand side of (6.24)

vanis Fmally, under the same constraint on A, the argument in Section VI A

showe that}he quantities pe o< p, pu?, pue o< up, and pu?, all belong to L (r™drdt). In

p rtlculai 1t follows that Es(1)) vanishes as § | 0. Thus, E(¢)) = 0 for each v € CHR X RY),
that the weak form (5.6) of the energy equation is satisfied.

~
This concludes the proof of Theorem VI.2.
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