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Universal gradings of orders

H. W. Lenstra Jr. and A. Silverberg

Abstract. For commutative rings, we introduce the notion of a universal
grading, which can be viewed as the “largest possible grading”. While
not every commutative ring (or order) has a universal grading, we prove
that every reduced order has a universal grading, and this grading is by
a finite group. Examples of graded orders are provided by group rings
of finite abelian groups over rings of integers in number fields. We also
generalize known properties of nilpotents, idempotents, and roots of unity
in such group rings to the case of graded orders; this has applications to
cryptography. Lattices play an important role in this paper; a novel aspect
is that our proofs use that the additive group of any reduced order can
in a natural way be equipped with a lattice structure.

Mathematics Subject Classification. 13A02.

Keywords. Graded orders, Graded rings, Lattices.

1. Introduction. In 1940, Higman [1, Theorem 3] proved the beautiful result
that if Γ is a finite abelian group, then the torsion subgroup of the group of
units of the group ring Z[Γ] equals ±Γ. His proof was remarkable in that it
depended on properties of the absolute value of complex numbers.

In recent work [4] on cryptography, the present authors needed to use a
similar result on rings that are a bit more general than Higman’s group rings,
namely graded orders. Here an order is a commutative ring A of which the ad-
ditive group A+ is isomorphic to Z

n for some n ∈ Z≥0, and graded refers to the
familiar notion recalled below; our gradings will always be by abelian groups.
If the order A is reduced in the sense that its nilradical is 0, then the group A+

carries a natural lattice structure. Replacing Higman’s technique by this lattice
structure, we were able to prove basic properties of nilpotents, idempotents,
and torsion units in any graded order, as expressed in Theorem 1.5 below.
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Much to our surprise, we discovered that the same lattice structure can be
used to prove a far more fundamental result on graded orders. Namely, as our
main theorem (Theorem 1.3) asserts, each reduced order A has a universal
grading, which controls all gradings of A and can be thought of as its “finest
possible” grading. The precise definition is given in Definition 1.2 below. This
definition does not appear to occur in the literature, presumably because prior
to our discovery no interesting class of examples was known; and indeed, many
naturally occurring rings fail to have universal gradings.

Our main result suggests a number of promising avenues for further re-
search. The first is to exhibit a larger class of commutative rings that have
universal gradings. For Higman’s original result, several far-reaching gener-
alizations have been found, notably in the work of May [6]. Replacing our
“archimedean” arguments by arguments with a p-adic flavor, one can probably
identify algebraic conditions that ensure the existence of a universal grading.

Secondly, we hope to show in forthcoming work [5] that the existence of
a universal grading on any reduced order has important consequences for the
problem of how one may write a given commutative ring as a group ring, a
problem that is closely related to the well-studied subject of isomorphisms
between group rings. Roughly speaking, we prove that, up to isomorphism,
there is a unique “maximal” way of realizing a given reduced order as a group
ring. Such results are probably also achievable over more general base rings
than the ring of integers.

Third, there is the algorithmic question of designing an “efficient” method
for computing the universal grading of a given reduced order, see [9].

Fourth, our main result may be rephrased by saying that there is, in a
suitable sense, a “maximal” abelian group scheme “of multiplicative type”
that acts on a given reduced order (see [8]). One may wonder whether a similar
result holds for more general finite abelian group schemes.

In this paper all rings are supposed to be commutative.

Definition 1.1. Suppose Γ is a multiplicatively written abelian group with
identity element 1. Then a Γ-grading of a ring A is a system B = (Bγ)γ∈Γ of
additive subgroups Bγ ⊂ A that satisfies:

(i) Bγ · Bγ′ ⊂ Bγγ′ for all γ, γ′ ∈ Γ, and
(ii) A =

⊕
γ∈Γ Bγ in the sense that the additive group homomorphism

⊕
γ∈Γ Bγ → A sending (xγ)γ∈Γ to

∑
γ∈Γ xγ is bijective.

We note that if R is a ring and Γ is an abelian group, then there is a natural
Γ-grading of the group ring R[Γ], given by (R · γ)γ∈Γ.

If f : Γ → Δ is a homomorphism of abelian groups, then each Γ-grading
B = (Bγ)γ∈Γ of a ring A gives rise to the Δ-grading

(∑

γ∈f−1(δ)
Bγ

)

δ∈Δ

of A, which we denote by f∗B.

Definition 1.2. By a universal grading of a ring A we mean a pair (Γ,B)
consisting of an abelian group Γ and a Γ-grading B of A with the property
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that for each abelian group Δ and each Δ-grading C of A there is a unique
group homomorphism f : Γ → Δ such that C = f∗B.

If a universal grading of A exists, then by a standard argument it is, in an
obvious sense, unique up to a unique isomorphism; and it exists if and only if
the functor that assigns to an abelian group Δ the set of Δ-gradings of A is
representable.

Many naturally occurring rings fail to have a universal grading; see Ex-
amples 7.3(i,ii,iii) for number fields and finite fields that have no universal
grading. This makes the following result all the more unexpected.

Theorem 1.3. Every reduced order has a universal grading, and its universal
grading is by a finite abelian group.

We prove Theorem 1.3 in Section 9 (using lemmas given earlier in the
paper).

It could be of interest to study non-reduced orders as well. In Exam-
ples 7.3(vi–viii) we show that they may have a universal grading by an infinite
group, or by a finite group, or no universal grading at all. In particular, one
cannot omit “reduced” from Theorem 1.3.

In Section 10 we prove the following result, which answers a question posed
by Kiran Kedlaya.

Theorem 1.4. Let A be an order that is a Dedekind domain. Then the universal
grading of A is by a finite cyclic group.

Suppose A is a ring. The set of nilpotent elements of A is an ideal of A,
denoted

√
0 or

√
0A and called the nilradical. We call x ∈ A an idempotent if

x2 = x. We denote the set of idempotents by Id(A), and we call A connected
if #Id(A) = 2 or, equivalently, if one has Id(A) = {0, 1} and A �= 0. We call
x ∈ A a root of unity if xn = 1 for some n ∈ Z>0. The set of roots of unity of
A, which is a subgroup of the group A∗ of units of A, is denoted by μ(A).

Let A be a ring and let (Bγ)γ∈Γ be a Γ-grading of A. Then the subgroup B1

of A is a subring of A that contains the identity element of A (see Lemma 2.1).
We shall call an additive subgroup H ⊂ A homogeneous if for each (xγ)γ∈Γ ∈⊕

γ∈Γ Bγ one has that
∑

γ∈Γ xγ is in H if and only if each xγ is in H (i.e., H =
⊕

γ∈Γ(H ∩Bγ) via the bijection in Definition 1.1(ii) above). This terminology
will in particular be applied to ideals and to subrings of A. An element of A
is called homogeneous if it belongs to

⋃
γ∈Γ Bγ .

Theorem 1.5. Let Γ be an abelian group, and let A be an order with Γ-grading
(Bγ)γ∈Γ. Then:
(i) the nilradical

√
0A is a homogeneous ideal of A;

(ii) Id(A) = Id(B1), and A is connected if and only if B1 is connected;
(iii) if B1 is connected, then each element of μ(A) is homogeneous.

The three parts of Theorem 1.5 are proved in Propositions 4.1(iii), 5.9, and
6.3, respectively. Note that Theorem 1.5(iii) is clearly false if the connectedness
assumption is dropped.
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In the case that A is a group ring B[Γ] with its natural Γ-grading, with
B an order and Γ a finite abelian group, Theorem 1.5 was known and can
be deduced from results in [6] (Proposition 2 of [6] for (i), the Corollary to
Proposition 3 for (ii), and the Corollary to Proposition 10 for (iii)).

We end the introduction with two important classes of examples of graded
rings.

Example 1.6. (Kummer extensions) Let K ⊂ L be a field extension, and let
W be the set of a ∈ L∗ for which there exists n ∈ Z>0 such that an ∈ K∗

and K contains a primitive n-th root of unity. Then W is a subgroup of L∗

containing K∗, and the subfield K(W ) of L is graded by the group W/K∗; here
the piece of degree aK∗ ∈ W/K∗ is the one-dimensional K-vector space Ka.
This example illustrates that finding a grading for a field extension is closely
related to the classical problem of generating the field by means of radicals.

Example 1.7. (Extended tensor algebras) Suppose A is a commutative ring and
L is a projective A-module of rank 1. For i ∈ Z, let L⊗i denote the i-th tensor
power of L, where for negative values of i we define L⊗i = HomA(L⊗−i, A).
Then the extended tensor algebra Λ =

⊕
i∈Z

L⊗i is graded by an infinite cyclic
group. If r ∈ Z>0 and L⊗r is free, say L⊗r = Ay, then B = Λ/(y − 1)Λ is
graded by a cyclic group of order r, since B =

⊕r−1
i=0 L⊗i. This class of examples

includes the graded orders that we encountered in lattice-based cryptography,
and that play crucial roles in the proofs of the main results in [2,4]. More
precisely, Theorem 1.5(ii,iii) supplies the proof of Proposition 14.3(iv) of [4].

2. Graded rings. In this section we give some relatively straightforward lem-
mas that we will use to prove our main results. The proofs of Theorems 1.3
and 1.5 depend on two techniques. One, mentioned earlier, depends on the
introduction of a natural lattice structure on any reduced order. The other
(Lemma 2.5 below) consists of equipping a Γ-graded ring with an action by
the dual of Γ, after a suitable cyclotomic base change; here Γ is finite.

Lemma 2.1. Suppose A is a ring, Γ is an abelian group, and (Bγ)γ∈Γ is a
Γ-grading of A. Then:
(i) 1 ∈ B1,
(ii) B1 is a ring, and
(iii) each Bγ is a B1-module.

Proof. Write 1 = (1γ)γ∈Γ ∈ A. Take any δ ∈ Γ and α ∈ Bδ. Then

α = 1 · α = (1γ)γ∈Γ · (αγ)γ∈Γ

where αδ = α and αγ = 0 for all γ �= δ. Comparing δ-coordinates we have
α = 11 · α, and likewise α = α · 11. So 11 acts left and right as the identity on
each Bδ, and hence on A. Thus, 1 = 11 ∈ B1, proving (i). Parts (ii) and (iii)
are straightforward. �

If Γ is an abelian group and k ∈ Z, let

Γk = {γk : γ ∈ Γ}.
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The following two lemmas will be used to prove Propositions 4.3 and 3.9,
respectively.

Lemma 2.2. Suppose Γ is an abelian group, B = (Bγ)γ∈Γ is a Γ-grading of a
commutative ring A, and the set

S = {γ ∈ Γ : Bγ �= 0}
is finite. Then there are a finite abelian group Δ and a Δ-grading C = (Cδ)δ∈Δ

of A such that
⋃

γ∈Γ Bγ =
⋃

δ∈Δ Cδ.

Proof. We can and do replace Γ with 〈S〉. Since {1} =
⋂

N∈Z>0
ΓN , if s, t ∈ S

with s �= t, then there exists Ns,t ∈ Z>0 such that st−1 /∈ ΓNs,t . Let

M = lcms,t∈S,s �=t{Ns,t},

let c : Γ → Γ/ΓM be the canonical projection map, and let

C = c∗B = (Cδ)δ∈Γ/ΓM .

By construction, the restriction of c to S is injective, and the desired result
now follows with Δ = Γ/ΓM . �

Lemma 2.3. Suppose A is a commutative ring, Γ is an abelian group, B =
(Bγ)γ∈Γ is a Γ-grading of A, and (Γ,B) is universal. Then

Γ = 〈γ ∈ Γ : Bγ �= 0〉.
Proof. Put Δ = Γ/〈γ ∈ Γ : Bγ �= 0〉, and let t, c : Γ → Δ be the trivial and
the canonical map, respectively. Then t and c agree on each γ with Bγ �= 0,
so t∗B = c∗B, and by universality one gets t = c so Δ = {1}. �

We will use the next lemma to prove Lemma 3.8 and Proposition 4.3.

Lemma 2.4. Suppose Γ is an abelian group, A is either a commutative Q-
algebra with dimQA < ∞ or an order, and (Bγ)γ∈Γ is a Γ-grading of A. Then
Bγ = 0 for all but finitely many γ ∈ Γ.

Proof. This holds since A =
⊕

γ∈Γ Bγ , and A has finite Z-rank (if A is an
order) or finite Q-dimension (if A is a finite dimensional commutative Q-
algebra). �

Suppose k ∈ Z>0. With Φk denoting the k-th cyclotomic polynomial and
ζk = X + (Φk), we have

Z[ζk] = Z[X]/(Φk) =
⊕ϕ(k)−1

i=0
Z · ζi

k,

where ϕ is the Euler ϕ-function. Suppose A is a ring, Γ is an abelian group,
and (Bγ)γ∈Γ is a Γ-grading of A. Then

Bγ [ζk] = Bγ ⊗Z Z[ζk]

is a module over B1[ζk] for all γ ∈ Γ, and

A[ζk] = A ⊗Z Z[ζk] =
⊕

γ∈Γ
(Bγ [ζk])
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is a Γ-graded ring that contains A. If Γ is finite of exponent dividing k, we let

Γ̂k = Hom(Γ, 〈ζk〉),
a multiplicative group with #Γ̂k = #Γ. We use the next lemma to prove
Propositions 4.1 and 5.8.

Lemma 2.5. Suppose A is a ring, Γ is a finite abelian group, (Bγ)γ∈Γ is a
Γ-grading of A, and k is a positive integer divisible by the exponent of Γ. For
χ ∈ Γ̂k, and α = (αγ)γ∈Γ ∈ A[ζk] with αγ ∈ Bγ [ζk], define

χ ∗ α = (χ(γ) · αγ)γ∈Γ ∈ A[ζk].

This defines an action of Γ̂k on A[ζk] by ring automorphisms, and for all δ ∈ Γ
and α = (αγ)γ∈Γ ∈ A[ζk] one has

∑

χ∈Γ̂k

χ ∗ (χ(δ)−1α) = #Γ · αδ ∈ Bδ[ζk] ⊂ A[ζk].

Proof. The proof is an easy exercise. The last statement follows from the fact
that if δ ∈ Γ then

∑
χ∈Γ̂k

χ(δ) is #Γ if δ = 1, and otherwise is 0. �

3. Euclidean vector spaces, lattices, and orders. In a series of examples, we
introduce the lattice structure on reduced orders that we will use in the proofs
of our main results. We conclude the section with a result on gradings of
reduced orders that we will use to prove Proposition 5.8 and Theorem 1.3.

If C is a Z-module or Z-algebra, we will write CQ for C ⊗Z Q.
A Euclidean vector space is a finite dimensional R-vector space E equipped

with a map

〈 , 〉 : E × E → R, (x, y) 
→ 〈x, y〉
that is R-bilinear, symmetric, and positive definite.

Example 3.1. Suppose E is a finite dimensional R-vector space equipped with
a map

〈 , 〉 : E × E → R

that is R-bilinear, symmetric, and positive semidefinite. Let

rad(E) = {x ∈ E : 〈x,E〉 = 0}.

Then

rad(E) = {x ∈ E : 〈x, x〉 = 0},

and 〈 , 〉 makes E/rad(E) into a Euclidean vector space.

Example 3.2. Suppose E is a commutative R-algebra with dimR(E) < ∞. For
all x, y ∈ E, let

〈x, y〉 =
∑

σ:E→C

σ(x)σ(y),

where σ ranges over all R-algebra homomorphisms from E to C. Then rad(E) =√
0E . (If x ∈ √

0E , then σ(x) = 0 for all σ, so 〈x, y〉 = 0 for all y, so x ∈ rad(E).
Conversely, E/

√
0E is a product of fields, and these fields are R and C. Since
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the inner products on R and C are positive definite, so is the inner product
on E. Thus rad(E/

√
0E) = 0, so rad(E) ⊂ √

0E . Note that, as a consequence,
the number of σ’s equals dimR(E).)

Recall that a lattice is a finitely generated free abelian group L equipped
with a positive definite symmetric R-bilinear function

〈 , 〉 : LR × LR → R,

where LR = L ⊗Z R.
If B and C are rings, we write Rhom(B,C) for the set of ring homomor-

phisms from B to C.

Example 3.3. Suppose A is an order. Then E = AR is a finite dimensional
R-vector space equipped with an R-bilinear, symmetric, positive semidefinite
inner product

〈 , 〉 : E × E → R

as in Example 3.2. Further, rad(E) =
√

0E = (
√

0A)R, and thus A/
√

0A has
a natural lattice structure. (That (

√
0A)R ⊂ √

0E is clear. For the reverse
inclusion, A/

√
0A is a reduced order, so (A/

√
0A)Q is a product of finitely

many number fields, so is a product of finitely many separable extensions
of Q. It follows that (A/

√
0A)R = E/(

√
0A)R is a product of finitely many

separable extensions of R, so is reduced. It also follows that #Rhom(A, C)
equals rank(A/

√
0A), the rank of A/

√
0A as an abelian group.)

Example 3.4. Suppose A is a reduced order. Then A/
√

0A = A, so by the
previous example A has a natural lattice structure. It is given by

〈x, y〉 =
∑

σ∈Rhom(A,C)

σ(x)σ(y)

for x, y ∈ A. Note that #Rhom(A, C) = rank(A). It follows that one has

〈ζ, ζ〉 = rank(A) for every ζ ∈ μ(A). (3.4.1)

Example 3.5. Let Γ be a finite abelian group, and let A = Z[Γ]. A short
computation shows that for x =

∑
γ∈Γ xγγ (with xγ ∈ Z) one has

〈x, x〉 = #Γ ·
∑

γ∈Γ

x2
γ .

Hence for x �= 0 one has 〈x, x〉 ≥ #Γ, with equality if and only if x ∈ ±Γ.
Combining this with (3.4.1), one obtains Higman’s theorem μ(Z[Γ]) = ±Γ.

Example 3.6. Let Γ be a finite abelian group, let I be the Z[Γ]-ideal Z·∑γ∈Γ γ,
and put A = Z[Γ]/I. For x = (

∑
γ∈Γ xγγ)+I ∈ A (with xγ ∈ Z), one computes

〈x, x〉 =
∑

γ,δ∈Γ
γ<δ

(xγ − xδ)2,
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where < is any total ordering on Γ. One readily deduces that for x �= 0 this is
at least #Γ − 1 = rank(A), with equality if and only if x ∈ ±Γ + I. As before,
one deduces

μ(Z[Γ]/I) = ±Γ + I.

Example 3.7. Contrary to what the previous two examples might suggest, it
is not the case that 〈x, x〉 ≥ rank(A) for every non-zero x in a reduced order
A, not even when A is connected. For example, let A be the subring of the
product ring Z×Z×Z×Z×Z consisting of those elements whose coordinates
have the same parity, and choose x = (2, 0, 0, 0, 0). Then rank(A) = 5 and
〈x, x〉 = 4. We will refer to this example in Remark 6.1, concerning the proof
of Theorem 1.5(iii).

Lemma 3.8. Suppose Γ is an abelian group, A is either a commutative Q-
algebra with dimQA < ∞ or an order, (Bγ)γ∈Γ is a Γ-grading of A, and A has
no non-zero homogeneous nilpotent elements. Then:
(i) if δ ∈ Γ and δ has infinite order, then Bδ = 0;
(ii) the subgroup 〈γ ∈ Γ : Bγ �= 0〉 is finite.

Proof. By Lemma 2.4, for all but finitely many γ ∈ Γ we have Bγ = 0. Suppose
δ ∈ Γ has infinite order. Then there exists N ∈ Z>0 such that BδN = 0.
Suppose x ∈ Bδ. Then xN ∈ (Bδ)N ⊂ BδN = 0, so x is homogeneous and
nilpotent. By our assumption, x = 0, proving (i). Thus the abelian group
〈γ ∈ Γ : Bγ �= 0〉 is generated by finitely many elements of finite order, so this
group is finite, proving (ii). �
Proposition 3.9. Suppose Γ is an abelian group, A is a reduced order, and
B = (Bγ)γ∈Γ is a Γ-grading of A. Then:
(i) the subgroup 〈γ ∈ Γ : Bγ �= 0〉 is finite;
(ii) if (Γ,B) is universal, then Γ is finite.

Proof. Since A is reduced, it has no non-zero nilpotent elements, so (i) follows
from Lemma 3.8(ii). Part (ii) now follows from (i) and Lemma 2.3. �
4. Nilpotent and separable elements. We next prove Theorem 1.5(i). If R is a
ring and m ∈ Z>0, we write R+[m] for the m-torsion in the additive group R.

Proposition 4.1. Suppose A is a ring, Γ is an abelian group, and (Bγ)γ∈Γ is a
Γ-grading of A.
(i) If Γ is finite and α = (αγ)γ∈Γ ∈ √

0A, then #Γ · αδ ∈ √
0A for all δ ∈ Γ.

(ii) If Γ is finite and A+[#Γ] = 0, then
√

0A is a homogeneous ideal.
(iii) If A is an order, then

√
0A is a homogeneous ideal.

Proof. We first prove (i). Let k denote the exponent of the finite group Γ and
let A′ = A[ζk]. We have α ∈ √

0A ⊂ √
0A′ , and since

√
0A′ is an ideal, we have

χ(δ)−1α ∈ √
0A′ for all χ ∈ Γ̂k and δ ∈ Γ. Since Γ̂k acts by ring automorphisms

(Lemma 2.5), we have
∑

χ∈Γ̂k

χ ∗ (χ(δ)−1α) ∈ √
0A′
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for all δ ∈ Γ. By Lemma 2.5 we now have

#Γ · αδ ∈ √
0A′ ∩ A =

√
0A

for all δ ∈ Γ.
We next prove (ii). Clearly,

⊕
γ∈Γ(

√
0A ∩ Bγ) ⊂ √

0A. For the reverse
inclusion, suppose α = (αγ)γ∈Γ ∈ √

0A and δ ∈ Γ. By (i) we have (#Γ ·αδ)N =
0 for some N ∈ Z>0. But (#Γ·αδ)N = (#Γ)NαN

δ . If A+[#Γ] = 0, then αN
δ = 0,

so αδ ∈ √
0A as desired.

For (iii), let I denote the ideal generated by the homogeneous nilpotent
elements of A, i.e., I is the largest homogeneous ideal of A contained in

√
0A.

Then A/I has a Γ-grading (Cγ)γ∈Γ with

Cγ = Bγ/(
√

0A ∩ Bγ),

and A/I is an order with no non-zero homogeneous nilpotent elements. By
Lemma 3.8(ii), the subgroup 〈γ ∈ Γ : Cγ �= 0〉 is finite; we can and do replace
Γ with this finite group. Since orders have no non-zero torsion, (iii) now follows
from (ii). �

The following example shows that the condition that A+[#Γ] = 0 cannot
be dropped from Proposition 4.1(ii).

Example 4.2. Suppose p is a prime number and Γ is any finite abelian group
of order divisible by p. Then

A = Fp[Γ] =
⊕

γ∈Γ
Fp · γ

is a Γ-graded ring and (
∑

γ∈Γ γ)2 = #Γ
∑

γ∈Γ γ = 0. So
∑

γ∈Γ γ ∈ √
0A, but

the coordinates γ of
∑

γ∈Γ γ are units and thus are not nilpotent, so the ideal√
0A is not homogeneous.

We call a polynomial f ∈ Q[X] separable if f is coprime to its derivative
f ′. If E is a commutative Q-algebra with dimQE < ∞, then α ∈ E is called
separable if there exists a separable polynomial f ∈ Q[X] with f(α) = 0. We
write Esep for the set of separable elements of E. Note that Esep is a sub-Q-
algebra of E (see for example Lemma 2.2 of [3]). We will use the next result
to prove Theorem 1.5(iii).

Proposition 4.3. If Γ is an abelian group and E =
⊕

γ∈Γ Eγ is a Γ-graded
commutative Q-algebra with dimQE < ∞, then both Esep and

√
0E are homo-

geneous.

Proof. By Lemma 2.4 the set {γ ∈ Γ : Eγ �= 0} is finite, and by Lemma 2.2 we
may assume Γ is finite. For

√
0E , see Proposition 4.1(ii). For Esep, the proof

is the same. Namely, suppose α = (αγ)γ∈Γ ∈ Esep and let

E′ = E ⊗Z Z[ζk]

with k the exponent of Γ. Then χ(δ)−1 ∈ 〈ζk〉 ⊂ (E′)sep, and (E′)sep is a
ring that is stable under the ring automorphisms of E′. As in the proof of
Proposition 4.1, we obtain

#Γ · αδ ∈ (E′)sep ∩ E = Esep
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for all δ ∈ Γ. Since (#Γ)−1 ∈ Q ⊂ Esep, we have αδ ∈ Esep for all δ ∈ Γ, as
desired. �

5. Idempotents in graded orders. In this section we prove Theorem 1.5(ii) (see
Proposition 5.9). We will use Proposition 5.8 to prove both Theorems 1.3 and
1.5.

Suppose L is a lattice. If z ∈ L, then a decomposition of z in L is a pair
(x, y) ∈ L × L such that z = x + y and 〈x, y〉 ≥ 0. We say that such a
decomposition is non-trivial if x �= 0 and y �= 0. Call z indecomposable (in L)
if the number of decompositions of z equals 2 or, equivalently, if z �= 0 and z
has no non-trivial decompositions.

Remark 5.1. If L is a lattice and z = x + y with x, y, z ∈ L, then:
(i) 〈x, y〉 ≥ 0 ⇐⇒ 〈z, z〉 ≥ 〈x, x〉 + 〈y, y〉,
(ii) 〈x, y〉 = 0 ⇐⇒ 〈z, z〉 = 〈x, x〉 + 〈y, y〉.
Remarks 5.2. (i) If z is a shortest non-zero vector in a lattice L, then z is

indecomposable.
(ii) If L is a lattice, then L is generated by its set of indecomposable elements.

Recall that Id(A) denotes the set of idempotents of a ring A. Below we use
the natural lattice structure on a reduced order that was given in Example 3.4.

Lemma 5.3. If A is a reduced order and x ∈ A, then

〈x, x〉 ≥ #{σ ∈ Rhom(A, C) : σ(x) �= 0}.

Proof. If σ(x) = 0 for all σ ∈ Rhom(A, C), then x = 0 (see for example
Lemma 3.1 of [4]), and the desired result holds. Assume that x �= 0. Applying
the arithmetic–geometric mean inequality to obtain the first inequality below,
and using that

∏

σ(x) �=0
σ(x)σ(x) ∈ Z>0

for the second, we have

〈x, x〉 =
∑

σ∈Rhom(A,C)
σ(x)�=0

σ(x)σ(x) = #{σ : σ(x) �= 0} ·
∑

σ(x) �=0 σ(x)σ(x)

#{σ : σ(x) �= 0}

≥ #{σ : σ(x) �= 0} ·
⎛

⎝
∏

σ(x) �=0

σ(x)σ(x)

⎞

⎠

1/#{σ:σ(x) �=0}

≥ #{σ : σ(x) �= 0}.

�

Lemma 5.4. If A is a reduced order and e ∈ Id(A), then

〈e, 1 − e〉 = 0.

Proof. Since e ∈ Id(A), for all σ ∈ Rhom(A, C) we have σ(e) ∈ {0, 1}, so

σ(e)σ(1 − e) = 0.
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Thus,

〈e, 1 − e〉 =
∑

σ∈Rhom(A,C)
σ(e)σ(1 − e) = 0.

�

Proposition 5.5. Suppose A is a reduced order. Then the map

F : Id(A) → {decompositions of 1 in A}
defined by e 
→ (e, 1 − e) is a bijection, and its inverse sends a decomposition
(x, y) of 1 to x.

Proof. We first show that the map F is well-defined. Suppose e ∈ Id(A). By
Lemma 5.4 we have

〈e, 1 − e〉 = 0.

Thus (e, 1 − e) is a decomposition of 1 in A, as desired.
The map F is clearly injective. To see that it is surjective, suppose (x, y)

is a decomposition of 1 in A. By Lemma 5.3 we have

〈x, x〉 ≥ #{σ ∈ Rhom(A, C) : σ(x) �= 0},

and the same with y in place of x. Using that x + y = 1 to obtain the third
equality, it follows that

#Rhom(A, C) = rankZA = 〈1, 1〉 ≥ 〈x, x〉 + 〈y, y〉
≥ #{σ ∈ Rhom(A, C) :σ(x) �=0}+#{σ ∈ Rhom(A, C) :σ(y) �=0}
= #Rhom(A, C) + #{σ ∈ Rhom(A, C) : σ(x) �= 0, σ(y) �= 0}
= #Rhom(A, C) + #{σ ∈ Rhom(A, C) : σ(xy) �= 0}.

Thus for all σ ∈ Rhom(A, C) we have σ(xy) = 0. So x(1 − x) = xy = 0. Thus,
x ∈ Id(A) so F is surjective. �

Corollary 5.6. Suppose A is a reduced order. Then A is connected if and only
if 1 is indecomposable.

Lemma 5.7. Suppose A is a reduced order, Γ is a finite abelian group, and
(Bγ)γ∈Γ is a Γ-grading of A. Let k denote the exponent of the group Γ and let

A′ = A ⊗Z Z[ζk].

Then:
(i) A′ is reduced;
(ii) Rhom(A′, C) ∼= Rhom(A, C) × Rhom(Z[ζk], C);
(iii) for all α, β ∈ A ⊂ A′ we have

〈α, β〉A′ = ϕ(k)〈α, β〉A,

where 〈 , 〉A′ and 〈 , 〉A are the inner products of Example 3.4 for A′

and A, respectively.
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Proof. Part (i) holds since A′
Q

= AQ ⊗Q Q(ζk) is a separable algebra over Q

(since AQ and Q(ζk) are). Part (ii) is immediate. Part (iii) follows from (ii)
since

#Rhom(Z[ζk], C) = ϕ(k),

so each element of Rhom(A, C) has ϕ(k) extensions to A′. �

Proposition 5.8. Suppose A is a reduced order, Γ is an abelian group, (Bγ)γ∈Γ

is a Γ-grading of A, and 〈 , 〉 is the inner product of Example 3.4. Suppose
γ, δ ∈ Γ and γ �= δ. Then

〈Bγ , Bδ〉 = 0.

Proof. The conclusion is clear if Bγ = 0 or Bδ = 0. Thus, we can (and do) re-
place Γ by the subgroup 〈γ ∈ Γ : Bγ �= 0〉, which is finite by Proposition 3.9(i).

Let k denote the exponent of the group Γ and embed A in

A′ = A[ζk] =
⊕

γ∈Γ
B′

γ

where B′
γ = Bγ ⊗Z Z[ζk]. It suffices to show 〈B′

γ , B′
δ〉A′ = 0. Let α ∈ B′

γ and
β ∈ B′

δ. Choose χ ∈ Γ̂k such that χ(γ) �= χ(δ). Since χ acts on A′ by a ring
automorphism (Lemma 2.5) we have

〈α, β〉A′ = 〈χ ∗ (α), χ ∗ (β)〉A′ = 〈χ(γ)α, χ(δ)β〉A′ = 〈α, χ(γ)−1χ(δ)β〉A′ .

Thus,
〈B′

γ , (1 − χ(γ)−1χ(δ))B′
δ〉A′ = 0. (5.8.1)

We have χ(γ)−1χ(δ) ∈ 〈ζk〉�{1}. Thus, 1−χ(γ)−1χ(δ) divides
∏k−1

i=1 (1−ζi
k) =

k in Z[ζk]. By (5.8.1) we now have

0 = 〈B′
γ , kB′

δ〉A′ = k〈B′
γ , B′

δ〉A′ .

Thus, 〈B′
γ , B′

δ〉A′ = 0. �

Proposition 5.9. Suppose A is an order, Γ is an abelian group, and (Bγ)γ∈Γ

is a Γ-grading of A. Then Id(A) = Id(B1), and A is connected if and only if
B1 is connected.

Proof. The inclusion Id(B1) ⊂ Id(A) is clear. For the reverse inclusion, take
e = (eγ)γ∈Γ ∈ Id(A).

We first assume A is reduced. By Lemma 2.1(i) we have (1 − e)γ = − eγ if
γ �= 1, and (1 − e)1 = 1 − e1. By Lemma 5.4 and Proposition 5.8 we have

0 = 〈e, 1 − e〉 =
∑

γ∈Γ

〈eγ , (1 − e)γ〉 = 〈e1, 1 − e1〉 −
∑

γ �=1

〈eγ , eγ〉 ≤ 〈e1, 1 − e1〉,

so (e1, 1 − e1) is a decomposition of 1. Now Proposition 5.5 and Lemma 5.4
give

〈e1, 1 − e1〉 = 0,

so 0 =
∑

γ �=1〈eγ , eγ〉, and all eγ with γ �= 1 are 0. Hence e ∈ B1.
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For the general case, the natural maps

Id(A) → Id(A/
√

0A) and Id(B1) → Id(B1/
√

0B1)

are bijections (this follows, for example, from Theorem 1.5 of [3]). By the
reduced case, the natural map

Id(B1/
√

0B1) → Id(A/
√

0A)

is a bijection. It follows that the inclusion Id(B1) ↪→ Id(A) is a bijection. In
particular, A is connected if and only if B1 is connected. �

6. Roots of unity in graded orders. In this section we prove Theorem 1.5(iii).

Remark 6.1. If A is a reduced order with a Γ-grading and ζ = (ζγ)γ∈Γ ∈ μ(A),
then by (3.4.1) and Proposition 5.8 we have rank(A) = 〈ζ, ζ〉 =

∑
γ〈ζγ , ζγ〉.

If each non-zero term in the latter sum were at least rank(A), then there
would be at most one such term, and Theorem 1.5(iii) would follow. However,
Example 3.7 exhibits a connected reduced order A and x ∈ A with 0 < 〈x, x〉 <
rank(A). Thus, more is required to prove Theorem 1.5(iii).

Lemma 6.2. If A is a reduced order, Γ is an abelian group, (Bγ)γ∈Γ is a Γ-
grading of A, and α ∈ A is indecomposable, then there exists δ ∈ Γ such that
α ∈ Bδ.

Proof. Pick δ ∈ Γ with αδ �= 0. Then α = αδ + (α − αδ), and we have αδ ∈ Bδ

and

α − αδ ∈
⊕

γ �=δ
Bγ ,

so 〈αδ, α − αδ〉 = 0 by Proposition 5.8. Since (αδ, α − αδ) cannot be a non-
trivial decomposition of the indecomposable element α, we have α−αδ = 0 as
desired. �

Proposition 6.3. If A is an order, Γ is an abelian group, (Bγ)γ∈Γ is a Γ-grading
of A, and B1 is connected, then μ(A) ⊂ ⋃

γ∈Γ Bγ .

Proof. Proposition 5.9 shows that A is connected. Take ζ = (ζγ)γ∈Γ ∈ μ(A).
First suppose A is reduced. Then 1 is indecomposable in A by Corollary 5.6.

The map x 
→ ζx is a lattice automorphism of A. Hence ζ is also indecompos-
able in A. By Lemma 6.2, there exists δ ∈ Γ such that ζ ∈ Bδ, as desired.

For the general case, applying Proposition 4.3 to E = AQ shows that ζγ ∈
Esep for all γ ∈ Γ. Also,

ζ mod
√

0A ∈ A/
√

0A =
⊕

γ∈Γ
Bγ/(

√
0A ∩ Bγ)

is a root of unity, so by the reduced case there is a unique δ ∈ Γ such that
(ζ mod

√
0A)δ is a root of unity and for all γ �= δ we have

0 = (ζ mod
√

0A)γ = ζγ mod (
√

0A ∩ Bγ).

Thus for all γ �= δ we have ζγ ∈ √
0E ∩ Esep = {0}. �
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7. Universal gradings—lemmas and examples. The results in this section fol-
low in a straightforward way from the definitions, and are left as exercises.

Lemma 7.1. Suppose A is a ring and Γ is an abelian group.

(i) Suppose B = (Bγ)γ∈Γ is a Γ-grading of A, suppose Δ is an abelian group,
suppose

f : Γ → Δ

is a group homomorphism, and let

f∗(B) =
(∑

γ∈f−1(δ)
Bγ

)

δ∈Δ

.

Then f∗(B) is a Δ-grading of A.
(ii) The map Γ 
→ {Γ-gradings of A} is a covariant functor from the category

of abelian groups to the category of sets.

An abelian group H is called indecomposable if H �= 1 and whenever
H = H1 ⊕ H2 with abelian groups H1 and H2 then H1 = 1 or H2 = 1.

Lemma 7.2. Suppose A is a ring.

(i) If (Γ1, (Bγ)γ∈Γ1) and (Γ2, (Cγ)γ∈Γ2) are universal gradings of A, then
there is a unique group isomorphism σ : Γ1 → Γ2 such that for all γ ∈ Γ1

we have Bγ = Cσ(γ).
(ii) If (Γ, (Aγ)γ∈Γ) is a universal grading of A, and (Cδ)δ∈Δ is a Δ-grading

of A, then for each δ ∈ Δ for which Cδ is an indecomposable abelian
group there exists γ ∈ Γ with Cδ = Aγ .

Examples 7.3. We leave verifications of the below statements as an exercise.
A hint is to use Lemma 7.2(ii).

(i) The cyclotomic field Q(ζ8) has a Z/4Z-grading
⊕3

j=0
Q · ζj

8

and a (Z/2Z × Z/2Z)-grading

Q ⊕ Qi ⊕ Q

√
2 ⊕ Qi

√
2

and has no universal grading. For t ≥ 4, the field Q(ζ2t) equals Q(η),
where η = ζ2t

√
2, it has the two gradings

⊕2t−1−1

j=0
Q · ζj

2t and
⊕2t−1−1

j=0
Q · ηj

by a cyclic group of order 2t−1, and it has no universal grading. This
example is taken from [9].

(ii) The field Q( 3
√

2, ζ3) has three different Z/6Z-gradings in which all pieces
have dimension one over Q, and has no universal grading.
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(iii) A Z/2Z-grading of F56 is

F53 ⊕ F53 ·
√

2,

a Z/3Z-grading of F56 is

F52 ⊕ F52 · ζ9 ⊕ F52 · ζ2
9 ,

but F56 has no universal grading.
(iv) If d ∈ Z and d is not a square, then the Z/2Z-grading Z ⊕ √

dZ is the
universal grading on Z[

√
d]. If A is an order of rank 2 and odd discrim-

inant, then the grading by the trivial group is the universal grading on
A.

(v) The ring Z[ 3
√

2, ζ3] has a universal grading
⊕2

j=0 Z[ζ3]
3
√

2
j

by a cyclic
group of order 3.

(vi) The ring Z[X]/(X2) = Z[ε] has a universal grading by an infinite cyclic
group Γ = 〈c〉, with Z[ε]1 = Z, and Z[ε]c = Zε, and Z[ε]γ = 0 for all
γ ∈ Γ � {1, c}. This also gives a Z/nZ-grading on the ring for every
n ∈ Z>1. This non-reduced graded order has no universal grading by a
finite abelian group.

(vii) Let A be the subring of Z[X]/(X4) generated by the images of 1, 2X(1+
X), and 2X2(1 + X). Then A is a non-reduced order, and the grading of
A by the trivial group is the universal grading of A.

(viii) The ring

Z[X,Y ]/(X,Y )2 = Z[ε, η],

with ε = X mod (X,Y )2 and η = Y mod (X,Y )2, has no universal grad-
ing. If Γ is any group, and σ and τ are non-identity distinct elements of
Γ, then one grading is given by

B1 = Z, Bσ = Zε, Bτ = Zη

and another by

B1 = Z, Bσ = Z(ε + η), Bτ = Z(ε + 2η).

(ix) If Γ is an abelian group, then the universal grading of the group ring Z[Γ]
is the natural Γ-grading (Z · γ)γ∈Γ.

8. S-decompositions of lattices. We give a result on S-decompositions of lat-
tices that we will use in Section 9 to prove Theorem 1.3.

If L is a lattice and S is a set, then an S-decomposition of L is a system
(Ls)s∈S of subgroups of L such that:

(i) if s, t ∈ S and s �= t, then 〈Ls, Lt〉 = 0, and
(ii)

∑
s∈S Ls = L.

This implies that L =
⊕

s∈S Ls, in the sense that the map
⊕

s∈S
Ls → L, (αs)s∈S 
→

∑

s∈S
αs

is bijective.
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An S-decomposition (Ls)s∈S of a lattice L is universal if for every set T
and every T -decomposition (Mt)t∈T of L, there is a unique map f : S → T
such that for all t ∈ T we have

Mt =
∑

s∈f−1(t)
Ls.

If a set S and a universal S-decomposition exist for a given lattice, then
by a standard argument S and that decomposition are, in an obvious sense,
unique up to a unique isomorphism.

Theorem 8.1. Every lattice has a universal S-decomposition for some finite set
S, and for that universal S-decomposition all Ls are non-zero.

Theorem 8.1 is classical and due to Eichler, and can be easily proved using
the proof of Theorem 6.4 on p. 27 of [7].

9. Proof of Theorem 1.3. We now prove Theorem 1.3. Since A is a reduced
order, it has a lattice structure as in Example 3.4. By Theorem 8.1 the lattice
A has a universal S-decomposition

A =
⊕

s∈S
Ls

for some finite set S, and each Ls is non-zero. Let Γ be the abelian group with
generating set S and relations s1 · s2 = s3 whenever there are x ∈ Ls1 and
y ∈ Ls2 such that when we write xy =

∑
s∈S zs with zs ∈ Ls, we have zs3 �= 0.

This produces a group Γ equipped with a map h : S → Γ, s 
→ s, and we
obtain a Γ-decomposition (Bγ)γ∈Γ of A with

Bγ =
∑

s∈h−1(γ)
Ls.

If s1 ∈ h−1(γ1) and s2 ∈ h−1(γ2) with γ1, γ2 ∈ Γ, then

Ls1 · Ls2 ⊂
∑

u∈S,u=s1s2

Lu ⊂
∑

u∈h−1(γ1γ2)

Lu = Bγ1γ2 .

Thus Bγ1Bγ2 ⊂ Bγ1γ2 , so the Γ-decomposition B = (Bγ)γ∈Γ is a Γ-grading.
Since each Ls is non-zero, we have that Bγ �= 0 for all γ ∈ h(S), so

Γ ⊃ 〈γ ∈ Γ : Bγ �= 0〉 ⊃ 〈h(S)〉 ⊃ Γ.

It now follows from Proposition 3.9(i) that Γ is finite.
To show the Γ-grading B is universal, let C = (Cδ)δ∈Δ be a Δ-grading

of A, with Δ an abelian group. By Proposition 5.8, we have that C is a Δ-
decomposition of the lattice A, so there is a unique map g : S → Δ such that
for all δ ∈ Δ we have

Cδ =
∑

s∈g−1(δ)
Ls.

If s1s2 = u is one of the relations for the group Γ, then for some x ∈ Ls1 ⊂
Cg(s1) and y ∈ Ls2 ⊂ Cg(s2) we have a product xy with Lu-coordinate non-zero,
so with Cg(u)-coordinate non-zero. But

Cg(s1)Cg(s2) ⊂ Cg(s1)g(s2)
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so g(u) = g(s1)g(s2). So there is a unique group homomorphism f : Γ → Δ
such that f ◦ h = g. This implies that f∗B = C, so the map f 
→ f∗B is
surjective. To show it is injective, suppose

f̃ : Γ → Δ

is a group homomorphism such that f̃∗B = C. By the uniqueness of f we have
f ◦ h = f̃ ◦ h. Since Γ = 〈h(S)〉 it follows that f = f̃ , so the map f 
→ f∗B is
injective.

10. Proof of Theorem 1.4.

Lemma 10.1. Suppose E =
⊕

γ∈Γ Dγ is a finite étale Q-algebra graded by a
finite abelian group Γ, suppose

Γ = 〈γ ∈ Γ : Dγ �= 0〉,
and suppose D1 is a field. Then

dimD1Dγ = 1

for all γ ∈ Γ.

Proof. Each non-zero homogeneous element has a power in D1. That power is
non-zero, hence a unit. Thus all homogeneous elements are units. If γ ∈ Γ and
0 �= x ∈ Dγ , then the map D1 → Dγ , a 
→ ax is an isomorphism of D1-vector
spaces.

To see that each Dγ is non-zero, take γ ∈ Γ and write it as γ =
∏r

i=1 γi with
each Dγi

�= 0. For each i, choose 0 �= xi ∈ Dγi
. Then 0 �= ∏r

i=1 xi ∈ Dγ . �

Lemma 10.2. Suppose A is a Dedekind order and A =
⊕

γ∈Γ Bγ is a Γ-grading.
Then the order B1 is also Dedekind.

Proof. We have B1 = A ∩ (B1)Q. It follows that B1 is the ring of integers of
the number field (B1)Q. �

Next we prove Theorem 1.4. It suffices to prove that if p is prime and A =⊕
γ∈Γ Bγ is a Dedekind order graded by a finite abelian p-group Γ with each

(Bγ)Q one-dimensional over the field (B1)Q, then Γ is cyclic. To see that this
suffices, invoke Lemma 2.3, replace Γ by its p-primary component (viewing that
component either as a subgroup or as a quotient group), and apply Lemma 10.1
with E = AQ.

Let p, A, Γ, (Bγ)γ∈Γ be as above and let q be the exponent of the p-group
Γ. By Lemma 10.2 we have that B1 is a Dedekind order.

Let p be a prime ideal of B1 containing p. Define the ring homomorphism
φ : A → A/pA by φ(x) = xq + pA; this is the canonical map A → A/pA
followed by the q-th powering map from A/pA to itself, the latter being a ring
homomorphism because A/pA contains the finite field B1/p of characteristic
p. The restriction of φ to B1 is the canonical map B1 → B1/p followed by an
automorphism of B1/p. For each γ ∈ Γ one has (Bγ)q ⊂ B1, so φ(Bγ) lands
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in the subring B1/p of A/pA. Since the Bγ generate A, the image of φ in fact
lies in B1/p, giving the following diagram.

A
φ ��

����
���

�� A/pA

∪ ∪
B1

�� �� B1/p

Let r = ker φ. Then r is a prime ideal of A with A/r
∼−→ B1/p, so r lies over

p with residue class field degree f(r/p) = 1. Now we consider the familiar
formula ∑

q

e(q/p)f(q/p) = [AQ : (B1)Q] = #Γ, (10.2.1)

the sum ranging over the prime ideals q of A lying over p and e(q/p) denoting
the ramification index; the last equality follows from our assumption on the
(Bγ)Q. Let q be one of those prime ideals. For each x ∈ r one has xq ∈ pA ⊂ q,
so x ∈ q. This proves r ⊂ q, hence r = q, since r is maximal. Thus there is only
one q, namely q = r. Formula (10.2.1) now becomes e(r/p) = #Γ. For each
x ∈ r one has

xq ∈ pA = re(r/p) = r#Γ,

so q · ordr(x) ≥ #Γ; here ordr counts factors r. Picking x ∈ A such that
ordr(x) = 1, then x ∈ r so q ≥ #Γ. But a finite abelian group whose exponent
is at least its order is clearly cyclic. This gives the desired result.

Remark 10.3. Note that instead of requiring that A be Dedekind, it suffices
that it be locally Dedekind at all primes dividing its Z-rank.

Acknowledgements. We thank Warren May for providing the references to [6],
Bas Edixhoven for helpful comments, Daan van Gent for Example 7.3(i), and
Kiran Kedlaya for helpful comments and for posing a question that led to
Theorem 1.4.

References

[1] Higman, G.: The units of group-rings. Proc. Lond. Math. Soc. 2(46), 231–248

(1940)

[2] Lenstra Jr., H.W., Silverberg, A.: Lattices with symmetry. J. Cryptol. 30, 760–

804 (2017)

[3] Lenstra Jr., H.W., Silverberg, A.: Algorithms for commutative algebras over the

rational numbers. Found. Comput. Math. 18, 159–180 (2018)

[4] Lenstra, Jr., H.W., Silverberg, A.: Testing isomorphism of lattices over CM-

orders. https://www.math.uci.edu/∼asilverb/bibliography/CMorders.pdf (sub-

mitted for publication)

[5] Lenstra, Jr., H.W., Silverberg, A.: Realizing commutative rings as group rings

(in preparation)

[6] May, W.: Group algebras over finitely generated rings. J. Algebra 39, 483–511

(1976)

https://www.math.uci.edu/~asilverb/bibliography/CMorders.pdf


Vol. 111 (2018) Universal gradings of orders 597

[7] Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Ergebnisse der Mathe-

matik und ihrer Grenzgebiete, vol. 73. Springer, New York (1973)
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