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ABSTRACT

With the development of novel sensing techniques, continuous
monitoring, data-driven inferences, precision irrigation control,
and intelligent Internet-of-Things (IoT) systems, agriculture sector
is witnessing a revolution. Specialized devices based on infrared and
laser are developed to assist farmers in assessing the produce quality,
especially its sugar content. However, such devices are expensive
and not readily available to consumers. In this paper, we investigate
the feasibility of using 60 GHz millimeter-wave (mmWave) signal
as a ubiquitous and non-invasive way to estimate the Soluble Sugar
Content (SSC) in fruits. With the rapid development in the mmWave
technology, 60 GHz WiFi is likely to become pervasive in future
mobile devices. Our study shows that when 60 GHz WiFi signals
reflect from a fruit, the reflection can be used to infer the fruit’s
sugar content. We identify the underlying reasons of variations
in reflection signals with varying SSC and study the impact of
size, shape and density of fruits on reflections. We then develop
statistical features based on received signal strength and amplitude,
and use them to design regression-based estimation models. With
an extensive evaluation with 300 fruit samples, we find that our
proposed technique can estimate SSC in three different type of
fruits with an average correlation coefficient of 85%. Our prediction
errors are within the range of user’s taste perception.
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1 INTRODUCTION

The rapid advancements in the Internet of Things (IoT) technologies
have paved the way for smart agriculture. Recent research has
addressed a variety of challenges toward this goal by designing
intelligent IoT systems [50]. At the same time, significant efforts
have been made to develop new approaches to monitor product
quality. For instance, recent studies propose to use the Near Infrared
(NIR) spectroscopy and laser imaging to assess fruit quality [40, 48]
and the Soluble Sugar Content (SSC) of a fruit [18]. Such approaches
can help farmers to carry out informed harvesting to maximize the
yield. Estimating the quality of a fruit and predicting the precise
time of consumption are also important for consumers. With such
techniques, consumers can better choose the fruits based on their
diet and taste preferences and better determine the precise time of
consuming the fruit for highest satisfaction which in turn leads to
better eating habits and healthy diet [12]. However, the existing
approaches either rely on specialized, expensive devices or require
invasive testing, making them infeasible to be used by consumers.
Therefore, low-cost, non-invasive estimation of sugar content in
fruits remains an open problem.

With the low-cost off-the-shelf devices being developed, 60 GHz
mmWave WiFi devices are likely to become popular in future mobile
and wearable devices. In this paper, we investigate the feasibility
of using 60 GHz mmWave signal for non-invasive estimation of
sugar content in fruits. Compared to microwave frequency band,
mmWave can provide a better sensing resolution in the desired
direction. We find that when 60 GHz WiFi signal reflects from a
fruit, the received reflection can be used to infer the sugar content
in the fruit. Specifically, we find that as the sugar content of a fruit
increases, the Received Signal Strength (RSS) of the reflected signal
decreases. Given that 60 GHz mmWave signals are transmitted
using a directional antenna (to combat higher attenuation), a phased
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antenna array on a smartphone can be used to transmit a mmWave
signal probe to a fruit. The received signal can then be analyzed to
estimate the sugar content.

Developing a mmWave system that estimates the sugar content
in fruits poses unique challenges. First, it is not clear what are
the underlying reasons of variation in RSS with changes in SSC.
Understanding these reasons is essential to develop an accurate SSC
estimation technique. Second, different fruits and their cultivar are
different in size, shape, and density. These translate to factors such
as fruit diameter, fruit surface roughness, flesh density and structure.
It is crucial to characterize the impact of these factors on reflection
in order to distill the SSC related impact. Third, depending on
whether coarse-grained statistic like RSS or fine-grained raw signal
is available after reflection, it is necessary to design a feature space
that can be used by the machine learning algorithms to estimate
SSC. Lastly, given the structural diversity in different fruit types
and even the samples of the same fruit type, a large amount of
reflection instances should be collected and analyzed for a robust
evaluation of the claims. We address the above challenges in this
paper. Specifically, the paper makes the following contributions:

(1) We show that it is feasible to use 60 GHz mmWave signal
reflection to estimate sugar content. We use this insight
to develop first-of-its-kind 60 GHz mmWave signal based
SSC estimation technique for fruits. As we discussed before,
the presented technique can be implemented on upcoming
mobile devices (like smartphone and smartwatch) equipped
with 60 GHz WiFi radio.

(2) We systematically study how varying levels of SSC affect
the signal permittivity and in turn change the reflection. The
relationships are studied through experimentation built on
theoretical underpinning. We then investigate factors such
as fruit diameter, fruit surface roughness, and flesh density
and their impacts on the reflection. The studies are carried
out for sugar solutions (for controlled experiments) and off-
the-shelf fruits.

(3) We use our 60 GHz mmWave testbed to measure the re-
flections using coarse-grained RSS as well as fine-grained
properties of the raw signal (e.g., amplitude). We identify sta-
tistical features that show a strong correlation with SSC and
use them to develop regression models for estimation. We
also develop estimation models that only utilize RSS given
that most commodity radios can report RSS.

(4) We perform an extensive evaluation of our proposed tech-
nique using 300 different fruit samples (100 apples, 100 or-
anges and 100 kiwis), and find that our proposed approach
can estimate the SSC with an average correlation coefficient
of 85% (apples: 86%, oranges: 85% and kiwis: 84%) with four
measurements per fruit and measurement time of as low
as 1.5s per measurement. Our RSS-based estimation also
achieves the mean correlation of 78% for regression models
developed for each fruit type. For instance, users can taste
the difference between apples when their Brix is different by
more than 1 Bx [24]. Our prediction errors are within this
range.

The remaining paper is organized as follows. Section 8 discusses

related work. In Section 2, we first show the feasibility of estimat-
ing SSC using mmWave signal. Section 3 provides the underlying
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Figure 1: (a) Brix can be used to measure the simple sugars
(sucrose, fructose and glucose) commonly found in fruits; (b) Our
propose mmWave reflection technique can be used by a consumer

to determine SSC in fruits using smartphone
theoretical reasoning supported by experimentations and Section 4
studies the impact of different factors like size, shape and density
on reflections. We develop our feature space in Section 5 and evalu-
ate our system with experiments in Section 6. Section 7 discusses
different limitations and potential of the proposed technique. We
conclude in Section 9.

2 ESTIMATING SSC USING MMWAVE:
FEASIBILITY STUDY

In this section, we show that it is feasible to use mmWave reflections
to estimate SSC. We first present a metric that is commonly used
to measure SSC and then demonstrate how mmWave reflections
can be used to predict the metric.

2.1 Estimating SSC using Brix

Brix (°Bx) is a commonly used metric to measure soluble solid
content in an aqueous solution. It represents the strength of the
solution as the percentage by mass [54] where 1 °Bx refers to 1
gram of sucrose in 100 grams of aqueous solution. Brix is widely
used in wine, honey, and carbonated drinks industries.

A challenge in directly using Brix for measuring SSC in fruits
is that the simple carbohydrates in fruits include not only sucrose
but also fructose and glucose [42]. We first investigate if the sugar
content of fructose and glucose solutions follow the same Brix scale
which is originally proposed for the sucrose solution. We use 100
mL distilled water and the same portion of fructose, glucose, and
sucrose masses for the Brix of 3 ~ 21g with a step of 3g at room
temperature of 25°C (following the sucrose to Brix conversion
from [6] and temperature adjustment [64]). As we elaborate later,
we use a plastic container instead of a glass container because a
glass layer can attenuate 60 GHz signal by more than 5 dB [25].
An ATAGO PAL-BX/ACID F5 device [4] shown in Fig. 2 is used
to measure the Brix values of these three simple sugar solutions.
The resolution of this device is 0.1°Bx and the accuracy is +0.2°Bx.
These specifications are common in many commercially available
digital portable refractometers [14, 31]. Fig. 1a shows that three
simple sugars share the same scale of Brix measurement, which
means that Brix can be used to measure the total SSC including
sucrose, fructose and glucose. This makes Brix a suitable choice in
our work where we are interested in measuring SSC in fruits.

It is also essential to understand how the Brix metric is related
to user-perceived sugar content. Past researches have shown a
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strong correlation between the Brix value and user-perceived sugar
content. The perceived SSC is measured using the degree of liking
metric which is measured through a hedonic score system (from 1
to 9 where 1 is dislike extremely and 9 is like extremely).

2.2 Estimating Brix using mmWave Reflections

Given that Brix metric can quantify SSC, we are now interested
in investigating its relationship with 60 GHz mmWave signal re-
flections. This relationship can be used by a consumer to estimate
the Brix of a fruit. Fig. 1b shows an illustration where a consumer
uses his smartphone to transmit 60 GHz mmWave signal probe to a
fruit, receive a reflection, process the reflected signal and estimate
the Brix. It is worth noting that in this work, we assume that the 60
GHz signal probe is physically in contact with the fruit (as shown
in Fig. 1b), and there is no signal path-loss between the two.
Although our intended use case is a mono-static (transmit and re-
ceive on the same device, i.e. smartphone) probing system, currently
there is no commercially available 60 GHz transceiver systems in
public that can be directly used for reflection analysis. Devices such
as Netgear nighthawk x10 AD7200 and Tp-link Talon AD7200 WiFi
access points are equipped with 60 GHz chipset and phased an-
tenna array. However, the reconfigurable or programmable options
of these devices are not available to the public, and the measure-
ments for RSS and raw wireless signals are not allowed. Recently,
several 60 GHz testbeds [39, 53, 56, 57] were built for developing
better networking and sensing techniques. Since our objective in
this work is to understand the feasibility of Brix estimation using
60 GHz reflections, we develop our own 60 GHz mmWave software
radio testbed which acts as a bi-static (separate transmitter and
receiver devices) probing system. Fig. 2 shows our experiment setup
and the equipment. Fig. 3 shows the diagram of our 60 GHz testbed.
At the transmitter side, we use VubIQ PEM-004 board [51] to gen-
erate the baseband sine wave signals and use VubIQ PEM-009 60
GHz RF front-end development kit [51] to up-convert the baseband
signal to 60 GHz signals. At the receiver side, a Keysight DSOS254A
oscilloscope is fed with four differential IQ signals. Two horn anten-
nas with 20° 3-dB beamwidth are attached to the waveguide [51].
Note that although our presented analysis is based on the software
radio testbed, it can be integrated to commercial 60 GHz devices in
the future as long as they allow measuring RSS and other related
signal quality metrics. The signal measurements (RSS, amplitude,
etc.) provided by the oscilloscope are streamed to a host computer.
We use our 60 GHz mmWave system and perform controlled
experiments to infer the relationship between SSC and mmWave
signal reflection. In the controlled experiments, we measure the

Figure 3: Block diagram of our 60 GHz
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signal reflection on three sugar (sucrose, fructose, and glucose) solu-
tions as shown in Fig. 2. The reason why we use sugar solutions in
place of actual fruits is that it allows us to control the sugar amount
(thus the Brix). Since the fruits have very high water content with
variable amount of SSC, the sugar solutions well approximate the
reflection behavior in controlled settings. Of course, fruits have dif-
ferent density, surface scattering, penetration property, etc. which
we will study in Section 4.

Fig. 4 shows the relationship between 60 GHz reflection Received
Signal Strength (RSS) and the Brix values of the solutions. For each
of the 8 Brix samples, the experiments are repeated five times
at 25°C room temperature to achieve 90% confidence intervals.
We observe that RSS decreases as the Brix value increases. The
linear correlation coefficients of sucrose, fructose, and glucose are
calculated to be 0.89, 0.96 and 0.86, respectively. This observation
validates that 60 GHz signal reflection is influenced by the amount
of soluble sugar content and it is feasible to be used as a sensing
modality for inspecting SSC in fruits. We note that Fig. 4 shows a
correlation between mean RSS and Brix, however, mean RSS alone
is not sufficient to accurately estimate Brix (overlapping error bars).
We show in Sections 5 and 6 that when the mean RSS is augmented
with other statistical features calculated over RSS time series data
and raw reflected signal, the Brix estimation accuracy substantially
increases. In the next section, we explore the underlying reasons
behind why the RSS changes with varying levels of SSC.

3 PERMITTIVITY AND MMWAVE
REFLECTION

Varying levels of SSC affect the permittivity of the solution which
in turn changes how much signal is reflected. In this section, we
explain the impact of permittivity on signal reflection and elabo-
rate on the relationships among permittivity, density, and Brix. As
shown in Fig. 5, our Tx and Rx are in contact with the fruit while
measuring RSS. Hence, we assume the signal propagation based on
the near-field effects.

3.1 Reflection Coefficient

An object’s permittivity indicates how much signal penetrates the
object and how much reflects from it. Aside from the penetration
and reflection, the signal is also absorbed and scattered by the
objects. We let L,(¢) denote reflection loss from the object with
relative permittivity of €. Relative permittivity is a ratio of the
absolute permittivity of the material to the vacuum permittivity.
The reflection loss L, (¢) can be calculated using the reflection
coefficient (R). The reflection coefficient is the ratio of the amplitude
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of the reflected electromagnetic wave to that of the incident wave,
and it can be calculated as [46]
1—¢/ 26

R=———<Ri,
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where § = ZT”I\/ € — sin® ¢, [ denotes the thickness of the reflecting
source, A denotes the signal wavelength and ¢ is the incident angle.
R, and R are the Fresnel’s reflection coefficients when the electric
field is perpendicular and parallel to the incidence plane, respec-
tively [46]. The reflection coefficient (R) can be used to estimate the
reflection loss L, = Po/P; = |R|?> where Pp and Py are the values
of reflected (after reflection) and incident (before reflection) power.

3.2 Permittivity, Density and Brix

When SSC concentration increases in a solution/fruit, its permit-
tivity and Brix value change. The change in permittivity results in
how much signal is reflected (different reflection coefficient). Our
proposed system attempts to infer Brix using the reflection (dashed
arrow). We next explore the relationship between SSC density and
permittivity, and SSC density and Brix. As mentioned before, since
sugar water solution closely matches the characteristics of fruits,
we use it as the basis of our explanation below.

3.2.1 SSC Density and Permittivity. Given the SSC density (the
amount of SSC, i.e. sugar) of a solution, permittivity can be calcu-
lated using three existing models developed in previous researches.
The models are developed primarily for fructose and are described
below:

(1) Debye model: The model presents the permittivity of pure

water [13] as

€ —€
eD(a))zeoo+u

1+iwtp @

where € is the static permittivity, e« is the infinite frequency

permittivity, 7p is a constant relaxation time, and w is the
angular frequency.

(2) Cole-Cole model: The model represents the permittivity of

fructose solution when fructose amount is 1 monomol/L [10]:

®)

€) — €co

ccl) = e ¥ T Ta
where « is a parameter to define spectral shapes.

(3) Combined Debye and Cole-Cole model: The combined model
is the Cole-Cole model function with the addition of a Debye
term presenting the permittivity of fructose solution when
fructose amount is more than 2 monomol/L [17]:

Aec Aep

1+ (iwte)l=*  1+iwtp

4

ecp(w) = € +

where €y = €co + Aec + Aep.
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Figure 6: (a-b) Relationship between density, Brix and permittivity (c) The Figure 7: RSS variation for
relationship between Brix and reflection coefficient remains unchanged for
different incident angles

Fuji apple samples with
different Brix values
Based on these three models, we calculate the permittivity for
a given solution with varying SSC densities. The relationship is
shown in Fig. 6a. We observe that as the SSC density increases, the
permittivity decreases monotonically. The density values shown
here correspond to typical Brix values observed in fruits. The de-
crease in permittivity forms the basis of our proposed technique.

3.2.2  SSC Density and Brix. Calculating the Brix value given
the SSC density is also challenging due to the dependence of Brix on
solution temperature. Even for a given fructose solution with a fixed
density, Brix value can vary at different temperatures. There is not
ready-to-use lookup or conversion table available for different room
temperatures other than 20°C. We address this issue by allowing a
Brix adjustment process as described below.

The Brix value at 20°C can be calculated using the inverse func-
tion version of Kimball equation in [28] as

P20
0.524484

where By is Brix value at 20°C, and pyy is the density of the
solution at 20°C. pyg can be calculated as

P20 = phy Tao = phe” (Tr — agg) = " (p1 /P57 = az)  (6)

where p‘gow refers to the density of pure water at 20°C, Iy is
Specific Gravity (SG) of the solution at 20°C, I'r is the SG of the
solution at temperature T, ocZTO is a constant adjustment of SG values
between the temperature T and 20°C, which is formalized from
Table 18 in [44], pr refers to the density of solution at the tempera-

By = 412.838 ln( ) —330.872 (5)

ture T and pIT’W denotes the density of pure water at temperature
T. We also formalize constant adjustment of Brix values between
temperature T and 20°C using ﬁzTo as

Br = By + - (7)
Therefore, the Brix value at the temperature T, Br, based on the
density of solution pr can be derived based on Eq. 5-7 as

flpr)

Br = 412.8384 1 - 330.872 + 8
T " (0.524484) & ®

where f(pr) = pao = ply’ (pr/ph" — ). Because ", ph",

and azTo can be regarded as constants [6, 52], we rewrite Eq. 6 as
a function of pr in Eq. 8. Fig. 6a shows the relationship between
the SSC density and the Brix value calculated using Eq. 8. Fig. 6b
also shows that permittivity monotonically decreases as the Brix
value increases. This relationship in essence allows our system to
estimate Brix using the reflection.

Fig. 6¢ shows how reflection coefficient changes with Brix for
different incident angles (¢ in Eq. 1). We find that the relationship
(monotony property) does not change over different incident angles,
making our proposed system more robust to such changes.
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Container Diameter (mm) R, in mm
Type A 69.43 Smooth (0.0028)
Type B 89.01 Smooth (0.0030)
Type C 105.43 Smooth (0.0027)
Type D 75.98 Coarse (0.088)

Table 1: Four types of containers used in controlled experiments,
and their size and shape properties

4 ESTIMATING SSC IN FRUITS

We now turn our focus on estimating SSC in real fruits and under-
standing different factors that affect the estimation accuracy. We
use our mmWave probing system on 100 different Fuji apples and
collect the reflection RSS values. The RSS values along with the Brix
values are shown in Fig. 7. Compared to Fig. 4, the generic trend
of RSS decreasing with higher Brix is also observed with the apple
samples. This means that the mmWave reflection characteristics
that we discussed previously for sugar solutions are maintained for
the real fruits. However, we observe that the linear correlation co-
efficient is ~ 0.65. In many cases, apples which have the same Brix
value have considerably different RSS. This means that compared
to the sugar solution, estimating Brix using mmWave reflections
on fruits need to involve a range of other factors.

When mmWave signal impinges a fruit, it is not considered as
a uniform medium because the signal reflection and propagation
inside it is complex due to different fruit characteristics. The sig-
nal undergoes scattering, reflection, and absorption as shown in
Fig. 5. We assume they are based on the near-field effects. Such
signal propagation is dependent on many different factors: (i) fruit
diameter, (ii) fruit surface roughness, (iii) flesh density and (iv) flesh
structure. Diameter and surface roughness depend on the size and
shape of a fruit, while the flesh density and structure are unique
characteristics of different types of fruits.

4.1 Impact of Fruit Size and Shape
Irregularities

Compared to previous experiments (sugar solution in a plastic con-
tainer), fruits have highly variable, imperfect shapes and sizes. Even
the fruits of the same cultivar (e.g., Fuji apples), these properties can
vary significantly. Since these factors are difficult to accurately mea-
sure, we use controlled experiments with sugar solution in plastic
containers to understand their impacts. We use two different types
of solutions (10 grams, and 20 grams of sucrose in 100 mL water) to
evaluate the mmWave reflections. We choose four different types of
plastic containers, and their diameter and surface roughness values
(measured using caliper) are shown in Table 1.

The thin plastic wall of the containers does not imitate fruit
skin. In this work where the fruit skin is not considered a separate
layer compared to the flesh of the fruit. Other than the fact that
studying the reflection properties of the skin is challenging with our
testbed setup, our objective is to design a non-destructive method
of Brix estimation where the user does not have to alter the fruit
(e.g., remove skin) to estimate its Brix. Typically, plastic containers
are made of polyethylene terephthalate (PET) [3]. The four plastic
containers we use in our study have wall thickness within the
0.34—0.38mm range. Based on the permittivity of PET at 60 GHz [11]
as well as the Equations 1, its reflection coefficient can be calculated
as 0.067 for a wall thickness of 0.34 mm and 0.080 for a wall thickness
of 0.38 mm under small incident angles (0° to 5°). As a reference,
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the reflection coefficient of air is 0 at 60 GHz [43]. Such a low
value of reflection coefficient suggests that signal impinging on the
plastic container with these properties mostly penetrates through
the wall. Since sucrose molecules interact less with water molecules,
creating non-uniform reflections and complex permittivity, sucrose
solution is considered not uniform at molecule levels [32, 47]. This
means that most of the reflections occur from the solution inside
the container, making such a setup suitable for our study. Given
that container thickness does not have a significant impact on
reflection, we use the containers to study the impact of diameter
and roughness. We repeat the experiments for 12 containers (3
containers for each of the four types) to calculate mean values.

Figure 8: Impact of diameter
and roughness on RSS

o Diameter: Fig. 8 shows how RSS varies with the change in
container diameters. Containers A, B, and C have similar sur-
face roughness, hence, variations in RSS for the same sucrose
concentration is due to variation in their diameters. We find
that the RSS decreases with the increase in diameter. Note
that this result is difficult to generalize but our observations
are useful in understanding the range of diameters typical
in fruits (a few centimeters).

¢ Roughness: Fig. 8 shows a comparison between RSS for
Containers D and the other three. We measure the rough-
ness using the procedure described in [8]. Here, we measure
the wall thickness of each container using a cantilever 20
times, and calculate the mean wall thickness (¥). We then
perform additional N = 20 measurements of thickness (Y;)
at randomly chosen locations on the container wall. The
roughness is then calculated as R, = Zfil lyi|/N where
y; = (Y; — Y)/2. These roughness values are shown in Ta-
ble 1. Since the increase in diameter decreases the RSS, if
Container D had the surface roughness similar to that of
Containers A, B, and C, the RSS of the Container D would
have been between that of Containers A and B (based on its
diameter). However, Container D has the highest RSS which
can be attributed to its coarse surface. The roughness of the
surface is known to scatter the signal more [7], resulting in
more reflection and higher RSS.

4.2

Apart from the size and shape related factors discussed above, dif-
ferent fruits have different density depending on the percentage of
water and non-soluble contents (e.g., fiber tissues). The non-soluble
contents also significantly affect the absorption and scattering be-
havior of the mmWave signal. Authors in [33] showed that in case
of mmWave signals, when the scatterer’s particles are smaller than
the wavelength of the mmWave signal, the absorption and scatter-
ing can be approximated using the Rayleigh model. However, when

Impact of Flesh Density and Structure
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Metrics All features GFS GS FS

Corr. coeff. 0.8177 0.8302 0.8294 0.8397
MAE 0.7723 0.7174 0.6885 0.6812
RMSE 0.9660 0.9349 0.9602 0.8915
NRMSE 0.0666 0.0644 0.0662 0.0618

Table 2: Correlation coefficient and prediction errors for three
searching methods using the feature subset evaluator CFS

Var of RSS

Skewness of max of amp
Kurtosis of max of amp
Mean of RSS

2nd peak of channel power 3rd
quantile of peak to peak amp

Peak to peak

Features

p value 0 0.005 0.01

(b) Selected statistical features calculated over

(a) Maximum and
peak-to-peak amplitude raw signal and p-values using the Firefly search

of raw signal method
Figure 10: Statistics calculated over the raw reflected signal shows
strong correlation with the Brix value
the size of the scatterer’s particles is larger than 1 or 2 mm (as in
fruit flesh structure), Rayleigh model based approximation does not
always stand valid. In such a case, Mie Theory [36] is used to model
the scattering behavior. In terms of absorption, Lambert-Beer Law
[59] models mmWave absorption similar to the optical frequencies.
Since the density and structure of the fruit flesh is difficult to
measure, we rely on the controlled experiments to understand the
impact of flesh density on reflection RSS. We first produce pure pulp
(no added water) of 20 apple samples and measure the Brix value
of the pure pulp. We then prepare a sucrose solution which has
the same Brix value as the pulp. Finally, the pulp and the sucrose
solution are mixed in different proportions (1:9, 5:5, 9:1). Since the
pulp represents the non-soluble content of a fruit, varying levels of
it in sucrose solution allows us to imitate different flesh densities.
This method allows us to study the impact of varying levels of
flesh density while keeping the Brix value constant. Fig. 9 shows
the RSS for the pulp solutions. It can be observed that as the pulp
portion increases, the RSS reduces. This can be attributed to higher
absorption and scattering resulting from more non-soluble content.
We find that various factors such as diameter, surface roughness,
flesh density and structure affect the mmWave reflection. Fruits
exhibit large diversity in terms of these factors. For example, in
our experiments, Fuji apples and oranges have the mean density of
0.80g/mL while kiwis’ mean density is 1.01g/mL. Similarly, apples,
oranges, and kiwis have different diameters (75.12mm, 84.82mm and
53.85mm respectively). This means that it might be difficult to use
one regression model to estimate their Brix using RSS. Hence, we
propose to train and use a dedicated regression model for different
fruits. We will compare the per-fruit type models and common
models in our evaluation (Section 6). In the next section, we first
describe our feature space and demonstrate how to develop the
estimation models.

5 FEATURES AND BRIX ESTIMATION
MODELS

We are now interested in developing a Brix estimation model for
each type of fruit. To do so, we first explore statistical features of
mmWave signal reflection.

As shown in Fig. 7, purely using RSS can yield lower Brix estima-
tion accuracy. This is expected given that RSS is a coarse-grained
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Figure 11: Although the signal features are correlated to Brix, the
differences in correlation for different fruit types motivates us to
develop separate and common regression models for estimation

statistic calculated over the reflected signal. A time-series data can
be further characterized by time and frequency domain analysis
to understand a wide range of properties otherwise not available
through mean. The usage of statistical features are widely found
in literature for feature extractions from various types of time-
series signals [27, 30]. We explore the use of fine-grained statistical
features calculated over the raw reflected signal. Specifically, we
consider three additional properties of the raw signal: (i) maximum
value of amplitude, (ii) amplitude peak-to-peak value in time, and
(iii) channel power in frequency domain. The first two features are
calculated over time series (shown in Fig. 10a). Using these three
properties, we calculate first, second and higher order statistics
including mean, median, variance, standard deviation, skewness,
kurtosis, etc. Note that these statistics are calculated individually
for each of the three properties mentioned above and also for RSS
to create a feature vector.

In order to evaluate if these features are useful in estimating
Brix, we apply the correlation-based feature selection (CFS) [22]
with the following three feature searching methods:

(1) Greedy forward search (GFS): The greedy process iterates
through the feature space and at each step includes an addi-
tional feature that when combined with the selected subset
provides the highest predictive ability.

(2) Genetic search (GS), which uses the genetic algorithm [20]
to perform the searching procedure of feature selection.

(3) Firefly search (FS), which imitate the biochemical communi-
cation system of real fireflies using luminescent flashes as
signals [55].

The output of these searching methods is a subset of features,
which are highly correlated to Brix but less correlated with each
other. The feature dimension is consequently reduced. The proce-
dure is applied on 100 Fuji apple samples (same as in Section 4). We
use three metrics - Mean average error (MAE), Root mean squared
error (RMSE), and Normalized root mean squared error (NRMSE) -
to evaluate the feature selection performance of these methods by
assessing their prediction errors. The metrics can be calculated as

1< RMSE
- Z(mi —pi)%; NRMSE = —

i=1 - Z;lzl mj
n

RMSE = )

where n is the number of samples, m; and p; denote the measured
value and the predicted value of the i-th sample, respectively. Since
RMSE performs the quadratic operation before the arithmetical av-
erage operation, large errors are amplified. Therefore, RMSE is able
to capture large errors with a relatively higher weight compared
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Figure 12: Our 60 GHz mmWave testbed setup showing how we
measure signal reflection from a fruit
to MAE. NRMSE is able to avoid the scale dependency of errors
in RMSE, but keep the property of sensitivity to large errors like
RMSE. The prediction is considered excellent when NRMSE is less
than 10% [26].

Table 2 presents the results of linear regression using the three
feature selection methods compared to using all features. We ob-
serve that with feature selection, there is a minor improvement
in the correlation coefficient and a minor reduction in prediction
errors. Due to its high correlation coefficient and lowest prediction
errors, we choose Firefly algorithm as our feature search method.

Different searching algorithms have different searching strate-
gies resulting in a subset of features that are different from each
other. During the feature selection procedure, the dimension of
feature space is reduced from 76 to 33, 48, and 44, using the three
searching methods, greedy forward search, genetic search, and
Firefly search, respectively. We observe that the larger number of
features in the subsets using genetic search or Firefly search keep
more features in frequency domain than greedy search. In Section 6,
we develop regression models that use two sets of features: (i) the
chosen subset based on feature selection and (ii) RSS-based fea-
tures only. This is because many of the commodity wireless radios
usually record RSS which can be easily extracted to user-space for
estimation.

We also investigate the subset of features using p-value assess-
ment. p-value is commonly used to present the significance of
variables/features in multiple regression. We propose a hypothesis
that each of the features does not help in predicting the Brix value.
Smaller p-value of a feature means higher probability to reject
the null hypothesis, that is, the feature is important to predict the
Brix. Typically, the significance level is 0.05 for p-value [37], which
mean that if p-value is above 0.05 then the null hypothesis is not
rejected. Fig. 10b shows that some features in the feature subset
have very low p-values. Let us take the variance of RSS (first feature
in Fig. 10b) for an example. As Fig. 5 shows, the signals undergo
scattering and reflection behaviors inside the fruit sample, and the
received signals will be a mixture of the signals from various prop-
agation sources (scattering, diffusion, reflection). As a result, the
signal fluctuation will be non-trivial [1]. Variance of RSS shows
the variation of received signals, and thus is able to represent this
signal fluctuation behavior.

We next evaluate if these features can also be used for Brix
estimation in other fruits. For this purpose, we collect mmWave
reflection for 100 oranges and 100 kiwis along with their Brix values
in addition to the 100 Fuji apple samples. Fig. 11a shows standard
deviation of maximum of amplitude and its relationship with Brix
for all 300 different fruit samples. It can be observed that this fea-
ture is noticeably different for different type of fruits. This can
be attributed to the heterogeneity in fruit diameter, fruit surface
roughness, flesh density and structure of different fruits along with
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its impact on estimated Brix
their Brix value. Another feature, second quartile of channel power,
is depicted in Fig. 11b. We find the feature provides clear distin-
guishability in terms of its relationship with Brix. However, the
relationship between the feature and Brix is different for different
fruit types, further making a case that one Brix estimation model
common across all fruit type can also be developed albeit at some
penalty in accuracy.

6 EVALUATION

Since there is no commercially available off-the-shelf mmWave
transceiver device that can provide in-band sensing control, we use
our testbed described in Section 2 for our evaluation. Fig. 12 shows
the experiment setup with horn antenna close to a fruit sample. The
incident angle is set to 45°. We proceed with an exhaustive evalua-
tion using 100 apples, 100 oranges, and 100 kiwis. We select these
three types of fruits because of their diverse shapes, sizes, surface
roughnesses (e.g., kiwi vs. apple), flesh structures (orange vs. apple)
and densities. Additionally, these fruit types provide significant di-
versity in terms of their Brix values, allowing us to better study our
estimation accuracy and sensitivity (as discussed later in Fig. 16a).
Each fruit sample is measured from 4 different positions (every 90°)
to obtain multiple observations. At each position, mmWave signal
reflections are measured for 10 seconds. After mmWave measure-
ment, ATAGO PAL-BX/ACID F5 device [4] (shown in Fig. 2) is used
to measure the Brix value of the fruit as the metric of its sugar
content. We cut every fruit sample into small pieces and use a fruit
press to acquire its pure juice. The juice is then put into the sample
stage of the Brix meter (in Fig. 2). After every measurement, we
clean the sample stage using distilled water to remove any remain-
ing juice or residue, and dry it using lab paper to assure the next
measurement is not affected by the previous measurement.

We apply three different regression algorithms to evaluate the
estimation performance: (1) linear regression (LR), (2) random for-
est regression (RFR), and (3) support vector regression (SVR) with
radial basis function (RBF) kernel. Random Forest is a popular ma-
chine learning algorithm for classification and regression [9]. It
constructs multiple decision trees to perform the majority of votes
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Figure 15: (a-d) Regression model developed using the subset of features (RSS + Amplitude) provide high Brix estimation accuracy (higher
correlation coefficient and lower MAE, RMSE, and NRMSE)

for classification, or to calculate a mean for regression. Support
Vector Machine is another popular machine learning algorithm de-
signed for classification. Nevertheless, it can also be applied for
regression [16]. Aside from keeping the advantages of kernel func-
tion, the major difference in the usage of classification or regression
is that the margin created by hyperplanes contributes a "tube" area,
where the cost function excludes the training points that are beyond
the margin.

6.1 Impact of Measurement Time and Positions
(Usability)

Before evaluating the relationship between Brix and the reflection
profile of the fruit samples, we first evaluate how many positions
one needs to measure and for how long in order to yield an accurate
estimate of Brix. This reflects how usable our proposed scheme is
for a user and how much effort is necessary for evaluating one
fruit from a consumer’s perspective. The dataset of Fuji apples is
used in this evaluation. We select the linear regression model and
do 5-fold cross-validation on the training set of 100 Fuji samples.
Fig. 13 shows the correlation coefficient for the linear regression
and its relationship with the number of observed positions and
time. Here, we train the regression model using the same number
of measured position as it is used in testing. For example, when the
correlation coefficient for 2 measured positions is evaluated, the
number of measured positions used in training is also 2. As we can
see, as the number of observed positions increases, the coefficient
also increases. On the other hand, we observe that measuring for a
longer time does not necessarily improve the estimation accuracy.
We find that in most cases, it is sufficient for a user to measure a
fruit for approximately 1.5 seconds at 4 different positions to yield
a correlation coefficient of around 0.82.

Fig. 14a shows the correlation coefficient of Brix estimation when
the different number of positions are used for training and testing.
Here, we only focus on cases where the number of measured po-
sitions used in training are greater than or equal (diagonal - same
as Fig. 13) to the number of measured positions in testing. The
objective here is to understand whether training using more num-
ber of measured positions improves the Brix estimation or not. We
observe considerable improvement in Brix estimation accuracy for
all combinations. For example, in the case where 4 measured posi-
tions are used for training compared to 1 measured position, the
correlation coefficient increases from 0.39 to 0.49 when 1 measured
position is used in testing. This demonstrates that the impact of vari-
ations observed in measurements from different orientations can
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be reduced by training with model with more number of measured
positions.

The variations observed in estimated Brix can also be attributed
to how the ground truth of Brix is measured. In a typical fruit sample,
Brix value varies significantly within the same fruit. To evaluate
the inherent Brix variation within the fruits, we take 20 Fuji apple
samples and cut each of them in four equal-sized pieces. We then
separately measure the Brix value of each fruit piece. For each piece,
we measure the Brix value of each piece three times. We observe
that the Brix value of the same fruit piece (three measurements)
varies from 0.0 ~ 0.2°Bx (same as the accuracy range of our Brix
meter). We calculate the mean of the three measurements and
calculate the differences of means for the four pieces of each fruit
sample. For a total of 20 Fuji samples, this results in 120 (20 X 6)
Brix difference values. Fig. 14b shows how much the measured
Brix value varies between two pieces of the same fruit sample.
This presents that even within the same fruit, the measured Brix
values vary significantly (standard deviation of 0.5232°Bx and the
maximum observed variation of 2°Bx.

In the results presented in the paper, we only measure one Brix
value of the entire fruit which can be treated as the mean of the Brix
value of different parts of the fruit. When the mmWave reflections
are measured from different orientations, the Brix value of that
portion of the fruit can be different from the mean value, leading
to a lower correlation coefficient. Hence, when multiple measure-
ments are performed, the estimated Brix value appears closer to
the measured ground truth mean Brix value.

6.2 Comparing Machine Learning Algorithms
(Accuracy)

We use the 4 positions and 1.5 seconds of measurement time per
position for each of the 300 fruit samples. Here, the LR is compared
with RFR and SVR in terms of their estimation accuracy. We build
separate estimation model for each fruit type and use 5-fold cross-
validation for training and testing. Figs. 15a, 15b, 15¢, and 15d show
the correlation coefficient, MAE, RMSE, and NRMSE, respectively,
for all three fruit types and three regression models. Users can
taste a difference between apples when more than 1°Bx difference
occurs [24]. Since our prediction MAE and RMSE are within this
range, our accuracy boundaries are able to meet user’s expectations.
The highest mean correlation coefficients (apples: 0.86, oranges:
0.85, kiwis: 0.84) are observed with RFR, while SVR-based model
performs similar to the RFR model. Using RFR and SVR, the model
better adapts to the available Brix values in the training set which
results in better estimation accuracy using these algorithms. It can
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be observed that LR performs poorly in case of oranges and kiwis.
This can be attributed to the fact that our apple samples have a
larger Brix range as shown in Fig. 16a compared to that of oranges
and kiwis. This observation is in line with Fig. 11 as well. This
larger Brix range also causes the relatively higher MAE and RMSE
values compared to those of oranges and kiwis. It is worth noting
that even though RMSE of Fuji apples is higher, all the NRMSE
values across the three fruit types are far less than 10% [26], further
validating the accuracy of our proposed technique.

6.3 RSS Only Vs. All Features

As we noted before, most commodity radio chipsets usually output
only RSS value to the user-space. Profiling raw signal requires low-
level (driver and firmware) control in most wireless radio devices.
Recent advances in making Channel State Information (CSI) [23]
available in user-space has resulted in a plethora of sensing related
research. However, this has been limited to 2.4/5 GHz WiFi devices.
Such modification and development of tools are likely for 60 GHz
mmWave WiFi in the future. Hence, we compare the accuracy of
Brix estimation for models developed for just RSS-based features
and all features. Fig. 16b shows the correlation coefficient of regres-
sion models developed only using RSS features. We find that just
utilizing RSS can still achieve reasonably high estimation accuracy
(for both RFR and SVR). Additional features based on amplitude
can certainly provide a more fine-grained look at the variations in
reflection and can in turn achieve higher accuracy.

6.4 Common and Cross Models

We now evaluate the Brix estimation accuracy for two different
cases - common models and cross models. In common models,
we combine the observations of all fruit samples (300 fruits X 4
positions per fruit) and train a type-agnostic model. We then apply
5 and 10-fold cross-validation, and evaluate how the model trained
using observations from all different fruit performs in estimating
Brix of given fruit instances. The results are presented in Table 3.
The observed correlation coefficient is 0.67, 0.71 and 0.68 for LR,
RFR and SVR, respectively. We find that due to the diversity of
fruit characteristics and their relationship with reflected RSS, the
common model performs poorly in SSC estimation. The MAE and
RMSE values are worse here as expected. This further validates our
claims in Section 4 where we studied the impact of these factor in
controlled experiments.
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Cross validation

Features Metrics 5-fold 10-fold
LR RFR SVR| LR RFR SVR
Corr. coeff.| 0.67 0.71 0.68 | 0.68 0.72 0.69
All features MAE 0.96 0.79 0.90 | 0.97 0.83 0.89
RMSE 1.18 1.07 1.21| 117 1.10 1.23
NRMSE 0.092 0.083 0.094]0.091 0.086 0.096
Corr. coeff.| 0.65 0.68 0.65 | 0.65 0.66 0.64
RSS features | MAE 091 093 091|091 0.92 0.92
only RMSE 1.22 117 1.20 | 1.22 1.20 1.26
NRMSE 0.094 0.091 0.093]0.095 0.093 0.098

Table 3: Correlation coefficient, MAE, RMSE, and NRMSE for
estimation models developed using samples of all fruit types

We also evaluate cross models where a regression model is
trained for one fruit type and used for testing on another. Fig. 17
presents the confusion matrix for each regression algorithm in case
of the cross models. Similar to the common model, we find that
LR performs better compared to RFR and SVR because the latter
two suffer from over-fitting. Such over-fitting is not observed in
per-fruit models. The common and cross models confirm that the di-
versity in fruit characteristics necessitates development of per-fruit
type model for higher estimation accuracy. There is an opportu-
nity to develop fruit-type-agnostic models which can be applied to
test any fruit type. However, such a model requires large, diverse
training dataset and through validation. We leave this exploration
to future work.

6.5 Fruit Type Identification

Lastly, we evaluate how our mmWave signal probing system can be
used to identify the type of fruit. Such identification can be useful
for developing machine intelligence with applications in object
recognition, smart grocery scales and automatic fruit sorting. We
use the same feature space to develop classification models using
Naive Bayes, Random Forest, and Logistic Regression Classifier.
The accuracy of fruit-type identification with 1200 samples and
10-fold cross validation is found to be 84.67%, 92.33%, and 92.67%
respectively. This suggests that our proposed approach has the
potential to not only identify the Brix value of a fruit but also to
identify the type of fruit based on mmWave reflections.

6.6 Impact of Temperature and Other
Atmospheric Variables

All experiments presented till now were performed when the fruit
sample and the sugar solutions are at room temperature (25°C).
Temperature is known to have a non-trivial impact on the dielec-
tric property of reflecting objects, altering the amount of radio
frequency signal reflected back. To study this impact, We con-
sider a sucrose solution with different sucrose densities, 15g/100mL,
18g/100mL, and 21g/100mL. We vary the temperature of the solu-
tions to consider three levels: cold (12°C), room (25°C) and warm
(37°C). Fig. 18 shows the RSS measurements of the three solutions at
different temperatures. We observe that (i) the underlying trend of
decrease in RSS with increases in sugar content remains consistent
even with variations in temperature, (ii) the absolute RSS value at
different temperatures for different sugar contents decreases as the
temperature increases. This means that in order to use our proposed
technique of SSC estimation for fruits at different temperatures,



1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

- N
2 o 2 o
80 &0 20 &h
£ 5 £ 5
£ E g g
'z O s O
B o
E 2
Va M
Fuji  Orange Kiwi Fuji  Orange Kiwi
Test set Test set
(a) LR model (b) RFR model

Figure 17: Correlation coefficient decreases significantly when applying regression model
trained using samples of one fruit type to others

temperature itself should be included in the training of the model.
Note that the Brix meter used in our study can perform automatic
temperature compensation when operating at different tempera-
tures, but it requires recalibration using pure water. Hence, the
model should be trained using the RSS features as well as the recal-
ibrated Brix values. Since the underlying relationship between RSS
and SSC is maintained, such a model can still accurately estimate
SSC at different temperatures.

It is worth noting that other factors such as humidity in the
air, moisture in the fruit and dirt on the surface of the fruit can
also affect the mmWave reflections. Since we assume that the 60
GHz mmWave probing device is in contact with the fruit when
estimating SSC, the atmospheric humidity is likely to have a little
impact on the reflections. Variations in amount of moisture in the
fruit can certainly have a non-trivial impact. For the different types
and cultivars of fruits, moisture can be measured and included
in the training model. As our primary application is a consumer
determining SSC while shopping, we assume that the fruits do not
have dirt on their surface. However, if our proposed SSC estimation
is to be applied to do the same in other settings (e.g., farms), the
impact of dirt and other chemicals on the fruit surface should be
studied. We leave the exploration of these factors and their impacts
to future work.

7 LIMITATIONS, POTENTIAL AND FUTURE
WORK

Limitations. As mentioned before, our proposed technique of
estimating SSC in fruits is only the first step towards developing a
new set of consumer-oriented food and agriculture produce sensing
techniques. We show that it is indeed feasible to use mmWave
wireless radio chipset available in consumer devices to sense the
sugar content in fruits. However, we believe that there are multiple
limitations of our work:

e Fruit types and cultivar: Even for three types of fruits that
we investigated in our evaluation, a diverse set of fruit char-
acteristics (size, shape, flesh structure, etc.) are observed.
We have tried to characterize the impact of these character-
istics on reflection using sugar solution studies. Also, our
proposed approach does not take fruit cultivars (e.g., Gala
vs. Fuji apples) in account.

o Need of larger dataset to combat heterogeneity: Fruit pro-
duce available to today’s consumers largely depends on the
supply-chain operations. It is difficult to assess the diversity
of our fruit samples compared to the ones available at differ-
ent part of the country or world. Extensive experimentation

Training set

22

Z.Yang et al.

Il 15¢ sucrose
[]18g sucrose
[ ]21g sucrose

=
&5
0]
on
=]
<
St
@)
£
M

12°C

25°C  37°C
Temperature (°C)
Figure 18: RSS results of three
sucrose solutions under three
different temperatures

Fuji  Orange Kiwi
Test set

(c) SVR model

is required to understand the diversity of fruits and how they
impact our Brix estimation framework.

e End-user studies: Due to the controlled nature of our experi-
ments, we are unable to understand different factors that can
affect the accuracy and usability when our system is used
by end users. For example, it is not clear what are the user’s
preferences in terms of measurement time on a fruit. We
plan to study this factors in our ongoing work where a hand-
held mmWave probe can be used to evaluate its real-world
performance.

Potential. In spite of the limitations, we believe that our proposed
research opens a new direction for a variety of consumer-oriented
and other sensing techniques. We describe a few of them below.

e Sensing sugar in other food and beverages: Our proposed
approach can be extended to drinks and beverages like wine
and dairy products. A consumer can also evaluate the amount
of sugar in beverages where nutrition information is not
available.

e Augmenting supply-chain operations: With development of
low-cost Brix estimation device, each entity (not just the
farmers) involved in bringing the produce from farms to
consumers can assess the exact time at which the produce
should reach the consumers for highest satisfaction. Such
estimates can simplify operations and reduce storage cost.
Even for a consumer, this information can provide an accu-
rate estimate on “time to ripe”, and consuming a produce at
the desired level of SSC can encourage a healthy diet.

e Smart groceries: Evaluation shows that our mmWave system
can also classify the fruit type. Automatic fruit type and
cultivar identification can considerably reduce manual labor
and eliminate the need to paper tags on produces. This can
not only reduce the maintenance cost of grocery store, but
it can also make way for the development of new tools for
automatic produce recognition at the weighing scale.

8 RELATED WORK
8.1 60 GHz mmWave Sensing and Networking

mmWave signals have been used as an effective sensing modality
for a variety of applications. Authors in [53] designed an object
motion tracking system using 60 GHz signals. Its beam scanning
mechanism can locate the object’s initial position, and then track
its trajectory using a signal phase information. Instead of using
phase information, an RSS based imaging system was presented in
[63]. It leverages RSS measurements only to create an image of an
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object, and precisely estimate the object’s surface shape and contour.
Another RSS-based object recognition system using a single 60 GHz
mobile device was proposed in [62]. Beyond object recognition, 60
GHz is a promising technology for health monitoring. A vital sign
monitoring system was designed in [57] to monitor breathing rates,
heart rates, and sleep using the RSS of 60 GHz signals. Authors in
[45] designed a blood glucose estimation system which exploits
the signal penetration property of 60 GHz signals to measure the
penetration on the thin skin between thumb and pointer finger.

60 GHz millimeter wave wireless communication is being used
to design the next generation of WiFi networks. It is currently an
active area of research. Authors in [49] provided link level char-
acterization of blockage and reflection in an indoor environment.
60 GHz communication has also been studied for wireless links in
data center networks [61], for wireless local area networks with
the assistance of traditional 2.4/5 GHz WiFi [39], for mobile motion
sensors [58], and for potential VR/AR applications [60]. With this
ever-increasing interest in the technology, 60 GHz WiFi is likely to
be ubiquitous in indoor WLANS in the coming years.

8.2 Fruit Quality Assessment Using
Electromagnetic Waves

NIR spectroscopy is a popular non-invasive technology for fruit
quality estimation [48] because it can measure important optical
properties of fruits. During the past decade, many research ap-
proaches using this technology have been proposed to measure
the constituents of various fruits. Authors in [38] presented esti-
mation of the sugar content of Fuji apples using Fourier transform
NIR spectroscopy, where the partial least squares (PLS) regression
models between measured diffuse reflectance spectra and sugar
content were evaluated by correlation coefficient at four difference
sensing distances. The sugar content in oranges was studied in
[35], where authors applied five spectral pre-processing methods
at different spectral ranges to build regression models. Authors in
[2] investigated the relationship between NIR spectroscopy mea-
surements and the sugar content of kiwifruit at three different
temperatures using discriminate analysis and PLS regression. The
sugar content and firmness of two cherry cultivars were proposed
in [34]. Although the performance of these techniques are found to
be accurate, they require professional-grade, high-cost hardware
setup. Due to the requirement of dedicated, custom hardware, these
techniques are not readily accessible to consumers.

Some studies have proposed the use of a low-cost imaging imag-
ing spectrometer [5]. For example, a low-cost hyper-spectral imag-
ing system operating in visible and NIR bands is presented in [19].
One of its applications is to distinguish the ripeness of 10 various
fruit types without the need of system calibration for each specific
fruit. All of these approaches still require some additional device
embedded into or attached to a smartphone, making them less
suitable for end users. Instead, we demonstrate the feasibility of
using 60 GHz transceiver embedded in smartphones to perform
SSC estimation without any external attachment. As stated before,
this enables a “reuse” of existing 60 GHz wireless networking hard-
ware for a sensing application. Channel State Information (CSI) has
been the research focus for many WiFi-related sensing papers. Our
current platform can be extended in the future to get CSI. Given
that RSSI might be more easily available on COTS 60 GHz devices,
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in this work, we focus our attention on establishing the feasibility
of SSC estimation using RSS.

Regarding low frequency wireless bands, a non-destructive method
proposed in [21] took 10 to 1800 MHz signals to measure the di-
electric properties and to detect the sugar content of three apple
breeds. The Rician k-factor of 2.45 GHz signal response was used
to estimate the granulated parts in tangerine [29]. Authors in [15]
proposed to measure banana sugar content using ultrasound ve-
locity, and similar to other approaches, such techniques require
new dedicated hardware devices which are not readily available
to consumers. Authors in [41] used mmWave signals to estimate
sugar content in apples. However, the focus there is on a different
mmWave frequency (40 GHz). Alternatively, our work uses 60 GHz
frequency which is also an ISM frequency band. Also, compared to
[41], we provide regression models that use RSS and can be readily
deployed on consumer’s smartphone equipped with off-the-shelf
60 GHz radios.

9 CONCLUSIONS

In this paper, we developed a soluble sugar estimation technique
where 60 GHz mmWave signal can be reflected off fruits to estimate
their Brix values. First, we showed how the sugar content changes
the permittivity which in turn affect the RSS of the reflected signal.
We then systematically studied different factors of fruits such as
fruit diameter, flesh density and surface roughness to show that
these factors have non-trivial impacts on reflection. This motivates
us to develop separate per-fruit estimation model using regression.
We derived two types of features (amplitude and RSS) and showed
how they can be useful in Brix estimation. With extensive evalu-
ation, we showed that our per fruit type regression models that
use all features can achieve a mean correlation coefficient of 85%
(apples: 86%, oranges: 85% and kiwis: 84%). We also developed a
common model across all fruit types and found that due to the
diversity of fruit characteristics such models perform poorly in SSC
estimation. Lastly, we showed that when only RSS based features
are used, the SSC estimation can reach the mean correlation co-
efficient of 78%. Given that our research focuses on establishing
the feasibility of SSC estimation using mmWave, it opens up new
directions of research and application development as discussed in
the previous section.
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