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ABSTRACT

With the development of novel sensing techniques, continuous

monitoring, data-driven inferences, precision irrigation control,

and intelligent Internet-of-Things (IoT) systems, agriculture sector

is witnessing a revolution. Specialized devices based on infrared and

laser are developed to assist farmers in assessing the produce quality,

especially its sugar content. However, such devices are expensive

and not readily available to consumers. In this paper, we investigate

the feasibility of using 60 GHz millimeter-wave (mmWave) signal

as a ubiquitous and non-invasive way to estimate the Soluble Sugar

Content (SSC) in fruits.With the rapid development in themmWave

technology, 60 GHz WiFi is likely to become pervasive in future

mobile devices. Our study shows that when 60 GHz WiFi signals

reflect from a fruit, the reflection can be used to infer the fruit’s

sugar content. We identify the underlying reasons of variations

in reflection signals with varying SSC and study the impact of

size, shape and density of fruits on reflections. We then develop

statistical features based on received signal strength and amplitude,

and use them to design regression-based estimation models. With

an extensive evaluation with 300 fruit samples, we find that our

proposed technique can estimate SSC in three different type of

fruits with an average correlation coefficient of 85%. Our prediction

errors are within the range of user’s taste perception.
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1 INTRODUCTION

The rapid advancements in the Internet of Things (IoT) technologies

have paved the way for smart agriculture. Recent research has

addressed a variety of challenges toward this goal by designing

intelligent IoT systems [50]. At the same time, significant efforts

have been made to develop new approaches to monitor product

quality. For instance, recent studies propose to use the Near Infrared

(NIR) spectroscopy and laser imaging to assess fruit quality [40, 48]

and the Soluble Sugar Content (SSC) of a fruit [18]. Such approaches

can help farmers to carry out informed harvesting to maximize the

yield. Estimating the quality of a fruit and predicting the precise

time of consumption are also important for consumers. With such

techniques, consumers can better choose the fruits based on their

diet and taste preferences and better determine the precise time of

consuming the fruit for highest satisfaction which in turn leads to

better eating habits and healthy diet [12]. However, the existing

approaches either rely on specialized, expensive devices or require

invasive testing, making them infeasible to be used by consumers.

Therefore, low-cost, non-invasive estimation of sugar content in

fruits remains an open problem.

With the low-cost off-the-shelf devices being developed, 60 GHz

mmWaveWiFi devices are likely to become popular in futuremobile

and wearable devices. In this paper, we investigate the feasibility

of using 60 GHz mmWave signal for non-invasive estimation of

sugar content in fruits. Compared to microwave frequency band,

mmWave can provide a better sensing resolution in the desired

direction. We find that when 60 GHz WiFi signal reflects from a

fruit, the received reflection can be used to infer the sugar content

in the fruit. Specifically, we find that as the sugar content of a fruit

increases, the Received Signal Strength (RSS) of the reflected signal

decreases. Given that 60 GHz mmWave signals are transmitted

using a directional antenna (to combat higher attenuation), a phased
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object, and precisely estimate the object’s surface shape and contour.

Another RSS-based object recognition system using a single 60 GHz

mobile device was proposed in [62]. Beyond object recognition, 60

GHz is a promising technology for health monitoring. A vital sign

monitoring system was designed in [57] to monitor breathing rates,

heart rates, and sleep using the RSS of 60 GHz signals. Authors in

[45] designed a blood glucose estimation system which exploits

the signal penetration property of 60 GHz signals to measure the

penetration on the thin skin between thumb and pointer finger.

60 GHz millimeter wave wireless communication is being used

to design the next generation of WiFi networks. It is currently an

active area of research. Authors in [49] provided link level char-

acterization of blockage and reflection in an indoor environment.

60 GHz communication has also been studied for wireless links in

data center networks [61], for wireless local area networks with

the assistance of traditional 2.4/5 GHz WiFi [39], for mobile motion

sensors [58], and for potential VR/AR applications [60]. With this

ever-increasing interest in the technology, 60 GHz WiFi is likely to

be ubiquitous in indoor WLANs in the coming years.

8.2 Fruit Quality Assessment Using

Electromagnetic Waves

NIR spectroscopy is a popular non-invasive technology for fruit

quality estimation [48] because it can measure important optical

properties of fruits. During the past decade, many research ap-

proaches using this technology have been proposed to measure

the constituents of various fruits. Authors in [38] presented esti-

mation of the sugar content of Fuji apples using Fourier transform

NIR spectroscopy, where the partial least squares (PLS) regression

models between measured diffuse reflectance spectra and sugar

content were evaluated by correlation coefficient at four difference

sensing distances. The sugar content in oranges was studied in

[35], where authors applied five spectral pre-processing methods

at different spectral ranges to build regression models. Authors in

[2] investigated the relationship between NIR spectroscopy mea-

surements and the sugar content of kiwifruit at three different

temperatures using discriminate analysis and PLS regression. The

sugar content and firmness of two cherry cultivars were proposed

in [34]. Although the performance of these techniques are found to

be accurate, they require professional-grade, high-cost hardware

setup. Due to the requirement of dedicated, custom hardware, these

techniques are not readily accessible to consumers.

Some studies have proposed the use of a low-cost imaging imag-

ing spectrometer [5]. For example, a low-cost hyper-spectral imag-

ing system operating in visible and NIR bands is presented in [19].

One of its applications is to distinguish the ripeness of 10 various

fruit types without the need of system calibration for each specific

fruit. All of these approaches still require some additional device

embedded into or attached to a smartphone, making them less

suitable for end users. Instead, we demonstrate the feasibility of

using 60 GHz transceiver embedded in smartphones to perform

SSC estimation without any external attachment. As stated before,

this enables a łreusež of existing 60 GHz wireless networking hard-

ware for a sensing application. Channel State Information (CSI) has

been the research focus for many WiFi-related sensing papers. Our

current platform can be extended in the future to get CSI. Given

that RSSI might be more easily available on COTS 60 GHz devices,

in this work, we focus our attention on establishing the feasibility

of SSC estimation using RSS.

Regarding low frequencywireless bands, a non-destructivemethod

proposed in [21] took 10 to 1800 MHz signals to measure the di-

electric properties and to detect the sugar content of three apple

breeds. The Rician k-factor of 2.45 GHz signal response was used

to estimate the granulated parts in tangerine [29]. Authors in [15]

proposed to measure banana sugar content using ultrasound ve-

locity, and similar to other approaches, such techniques require

new dedicated hardware devices which are not readily available

to consumers. Authors in [41] used mmWave signals to estimate

sugar content in apples. However, the focus there is on a different

mmWave frequency (40 GHz). Alternatively, our work uses 60 GHz

frequency which is also an ISM frequency band. Also, compared to

[41], we provide regression models that use RSS and can be readily

deployed on consumer’s smartphone equipped with off-the-shelf

60 GHz radios.

9 CONCLUSIONS

In this paper, we developed a soluble sugar estimation technique

where 60 GHz mmWave signal can be reflected off fruits to estimate

their Brix values. First, we showed how the sugar content changes

the permittivity which in turn affect the RSS of the reflected signal.

We then systematically studied different factors of fruits such as

fruit diameter, flesh density and surface roughness to show that

these factors have non-trivial impacts on reflection. This motivates

us to develop separate per-fruit estimation model using regression.

We derived two types of features (amplitude and RSS) and showed

how they can be useful in Brix estimation. With extensive evalu-

ation, we showed that our per fruit type regression models that

use all features can achieve a mean correlation coefficient of 85%

(apples: 86%, oranges: 85% and kiwis: 84%). We also developed a

common model across all fruit types and found that due to the

diversity of fruit characteristics such models perform poorly in SSC

estimation. Lastly, we showed that when only RSS based features

are used, the SSC estimation can reach the mean correlation co-

efficient of 78%. Given that our research focuses on establishing

the feasibility of SSC estimation using mmWave, it opens up new

directions of research and application development as discussed in

the previous section.
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