
On Non-Preemptive VM Scheduling in the Cloud
Konstantinos Psychas, and Javad Ghaderi

Columbia University

ABSTRACT
We study the problem of scheduling VMs (Virtual Machines) in

a distributed server platform, motivated by cloud computing ap-

plications. The VMs arrive dynamically over time to the system,

and require a certain amount of resources (e.g. memory, CPU, etc)

for the duration of their service. To avoid costly preemptions, we

consider non-preemptive scheduling: Each VM has to be assigned

to a server which has enough residual capacity to accommodate

it, and once a VM is assigned to a server, its service cannot be dis-
rupted (preempted). Prior approaches to this problem either have

high complexity, require synchronization among the servers, or

yield queue sizes/delays which are excessively large. We propose

a non-preemptive scheduling algorithm that resolves these issues.

In general, given an approximation algorithm to Knapsack with

approximation ratio r , our scheduling algorithm can provide rβ
fraction of the throughput region for β < r . In the special case of a

greedy approximation algorithm to Knapsack, we further show that

this condition can be relaxed to β < 1. The parameters β and r can
be tuned to provide a tradeoff between achievable throughput, delay,

and computational complexity of the scheduling algorithm. Finally

extensive simulation results using both synthetic and real traffic

traces are presented to verify the performance of our algorithm.

KEYWORDS
Scheduling Algorithms, Stability, Queues, Knapsack Problem, Cloud

ACM Reference Format:
Konstantinos Psychas, and Javad Ghaderi. 2018. On Non-Preemptive VM

Scheduling in the Cloud. In SIGMETRICS’18 Abstracts: ACM SIGMETRICS
International Conference on Measurement & Modeling of Computer Systems
Abstracts, June 18–22, 2018, Irvine, CA, USA. ACM, New York, NY, USA,

3 pages. https://doi.org/10.1145/3219617.3219644

1 INTRODUCTION
There has been an enormous momentum recently in moving stor-

age, computing, and various services to the cloud. By using cloud,

clients no longer require to install and maintain their own infras-

tructure and can instead use massive cloud computing resources

on demand. Clients can procure Virtual Machines (VMs) with spe-

cific configurations of CPU, memory, disk, and networking in the

cloud. In a more complex scenario, clients can put together an entire

service by procuring and composing VMs with specific capabilities.

This work was supported by NSF Grant CNS-1652115.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMETRICS’18 Abstracts, June 18–22, 2018, Irvine, CA, USA
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5846-0/18/06.

https://doi.org/10.1145/3219617.3219644

In this paper, we consider a distributed server platform, con-

sisting of possibly a large number of servers. The servers could

be inhomogeneous in terms of their capacity (e.g. CPU, memory,

storage). As an abstraction in our model, VM is simply a multi-

dimensional object (vector of resource requirements) that cannot
be fragmented among the servers.

We are interested in scalable non-preemptive scheduling algo-

rithms that can provide high throughput and low delay. To maintain

scalability, we would like the scheduling decisions to be made by

the servers individually in a distributed manner. In this work, we

propose an algorithm to meet these objectives and we characterize

its theoretical performance.

2 SYSTEM MODEL
Cloud Cluster and VM-based Job Model. We consider a collection

of L servers denoted by the set L. Each server ℓ ∈ L has a limited

capacity for various resource types (e.g., memory, CPU, storage).

We assume there are R different types of resources. There is also

a collection of J VM types denoted by the set J . Each VM type

j ∈ J requires fixed amounts of the various resources. So each VM

type is a R-dimensional vector of resource requirements.

Job Arrivals and Service Times. We assume VMs of type j arrive
according to a Poisson process with rate λj . Each VM must be

placed in a server that has enough remaining resources to accom-

modate it. Once a VM of type j is placed in server, it departs after

an exponentially distributed amount of time (service time) with

mean 1/µ j , independently of the other existing VMs in the server.

Server Configuration and System Configuration. We denote by

kℓj the number of type-j VMs that are accommodated by server ℓ.

For each server ℓ, a vector kℓ = (kℓ
1
, · · · ,kℓJ) ∈ N

J
0
is said to be

a feasible configuration if the server can simultaneously accom-

modate kℓ
1
type-1 VMs, kℓ

2
type-2 VMs, ..., kℓJ type-J VMs, without

violating its capacity. We use Kℓ to denote the set of all feasible

configurations for server ℓ excluding the 0-configuration 0J , and
¯Kℓ to denote Kℓ ∪ {0J }.

Queueing Dynamics and Stability. When VMs arrive, they are

queued and later served by the servers. We use Q j (t) to denote

the number of type-j VMs waiting in the queue to get service at

time t . The respective vector of all queue sizes is denoted by Q(t).
The system is said to be stable if the expected size of queues is

bounded as time goes to infinity. A vector of arriving rates λ and a

vector of mean service times 1/µ are said to be supportable if there

exists a scheduling algorithm under which the system is stable.

Let ρ j = λj/µ j be the workload of type-j VMs. We will define the

throughout region of the cluster as

C = {x ∈ R
J
+ : x =

∑
ℓ∈L

xℓ , xℓ ∈ Conv(¯Kℓ), ℓ ∈ L}, (1)

Session: Cloud SIGMETRICS'18 Abstracts, June 18-22, 2018, Irvine, CA, USA

67

https://doi.org/10.1145/3219617.3219644
https://doi.org/10.1145/3219617.3219644

where Conv(·) is the convex hull operator. It has been shown that

the set of supportable workloads is the interior of C.

3 ALGORITHM
Before describing the algorithm, we make two definitions.

Definition 1 (weight of a configuration). The weight of con-

figuration kℓ for server ℓ, given a queue size vector Q, is defined
as

f (kℓ ,Q) :=
∑
j ∈J

Q jk
ℓ
j . (2)

Definition 2 (r -max weight configuration). Given a constant

r ∈ (0, 1], and a queue size vectorQ, an r -max weight configuration

for server ℓ is a feasible configuration k(r)ℓ ∈ Kℓ such that

f (k(r)ℓ ,Q) ≥ r f (kℓ ,Q), ∀kℓ ∈ Kℓ . (3)

Under our scheduling algorithm, each server at any time is either

in an active period or in a stalled period. We will also refer to the

state of a server as active or stalled depending on the period in

which it is at a certain time.

Active period: In this period, the server schedules VMs from

the queues according to a fixed configuration. Formally, let the

configuration of server ℓ in an active period be
˜kℓ = (˜kℓj : j ∈ J).

The server can contain at most
˜kℓj VMs of type j, j ∈ J , at any

time. If there are not enough type-j VMs in the system, the server

reserves the remaining empty slots for future type-j arrivals.
Stalled period: In this period, the server does not schedule any

more VMs, even if there are VMs waiting for service that can fit in

the server. It only processes VMs which already exist in the server.

The stalled period ends when all the existing VMs in the server

finish their service and leave, at which point the server will enter a

new active period.

Note that by the above definitions, an arriving VM of type j will
not be queued (i.e., it enters the queue but immediately gets service)

if there is an empty slot available for it in any of the active servers

as it will be scheduled in one of the empty slots immediately. Also

the change of configuration in a server can only happen when the

server is empty and stalled and that change results in a transition

from a stalled period to an active period.

Our scheduling algorithm described in Algorithm 1 determines

the following:

(1) Transition from active to stalled. Suppose server ℓ is in an

active period with configuration
˜kℓ . The server makes a tran-

sition to a stalled period if upon departure of a VM from the

server at time t ,

f (˜kℓ ,Q(t)) < β f (k(r)ℓ(t),Q(t)), (4)

where k(r)ℓ(t) is an r -max configuration, given the queue size

vector Q(t), and 0 < β < 1 is a constant parameter of the

algorithm.

(2) Transition from stalled to active. Suppose a server is in

a stalled period. When the server becomes empty the server

makes a transition to an active period.

(3) Server configuration during an active period. Suppose server
ℓ enters an active period at time t(a). The configuration of server

ℓ for the entire duration of its active period,
˜kℓ , is fixed and

set to k(r)ℓ(t(a)), an r -max weight configuration based on the

queues at time t(a).

Algorithm 1 Basic Non-preemptive Scheduling

When a VM of type j arrives at time t :
1: Add the VM to the queue j
2: if exists empty slots for type-j VMs then
3: Schedule the VM in the first empty slot.

4: end if
When a VM of type j in server ℓ is completed at time t :

1: if ℓ is active with configuration
˜kℓ then

2: if condition (4) holds then
3: Switch ℓ to stalled.
4: else
5: Schedule a type-j VM in server ℓ from queue j. If queue j

is empty, register an empty slot of type j in server ℓ.

6: end if
7: end if
8: if ℓ is empty and stalled then
9: Switch ℓ to active.
10: Find an r -max weight configuration k(r)ℓ .
11: Set the configuration of server ℓ during its active period to

be fixed and equal to k(r)ℓ .
12: for j ∈ J do
13: Schedule kj

(r)ℓ
VMs of type j in server ℓ. If there are not

enough VMs in queue j, register an empty slot for each
unused slot.

14: end for
15: end if

The following theorem states the main result about the perfor-

mance of the algorithm.

Theorem 3.1. Consider Algorithm 1 with parameter r ∈ (0, 1]

and 0 < β < r . Then the algorithm can support any workload vector
ρ in the interior of Cr β (rβ-fraction of the capacity region C).

Proofs and extensions to the theorem as well as algorithms that

find an r -max weight configuration for different values of r are in
full version of the paper [3].

4 SIMULATIONS
In this section, we verify our theoretical results and also compare

the performance of our algorithm with two other algorithms, the

randomized sampling algorithm [1] and the MaxWeight at local

refresh times [2], which will refer to them as G16 and M14 respec-

tively.

4.1 Inefficiency of other algorithms
Example 1 (Instability of M14: MaxWeight based on local re-
fresh times). Consider one server with capacity 6 units and two

VM types, type-1 VMs require 4 units and type-2 VMs require 1

units. Service rates are the same for both VMs and arrival rate of the

small VM type is 8 times higher than the large one. The workload

vector is chosen to be 0.89×(0.5, 4), which is supportable. When the

server starts scheduling according to configuration (1, 2), the arrival

Session: Cloud SIGMETRICS'18 Abstracts, June 18-22, 2018, Irvine, CA, USA

68

0 5000 10000 15000 20000 25000
t im e (s)

0

500

1000

1500

To
ta

l q
u

eu
e

si
ze

Algorithm 1

M14

Figure 1: M14 fails in Example 1 while Algorithm 1 still
stabilizes the queues.

0 50000 100000 150000 200000
t im e (s)

0

500

1000

1500

2000

To
ta

l q
u

eu
e

si
ze

Algorithm 1

G16

Figure 2: G16 performs poorly in Example 2 although it
theoretically converges. Algorithm 1 performsmuch bet-
ter.

rate of small VMs will be higher than their service rate. That will

result in the queue of small VMs to grow and configuration never

resets with a non-zero probability. Figure 1 depicts the total queue

size (sum of the queue sizes) under our algorithm and M14. The

sawtooth behavior under our algorithm indicates the configuration

reset times.

Example 2 (Large queue size under G16: Randomized sam-
pling). In the second example we show that although G16 guaran-

tees stability it can yield large queue sizes. Consider a setting of 4

different servers with 1, 2, 4, 8 resource units and 4 types of VMs

with resource requirements 1, 2, 4, 8. Arrival and service rates are

the same for all VMs and traffic load is 0.89. Figure 2 depicts the

total queue size under G16 and our algorithm.

4.2 Experiment with Google trace dataset
In this experiment, we use a real traffic trace from a large Google

cluster. From the original dataset, we extracted the arrival times

of tasks and their service times by taking the difference of the

deployment time and the completion time.

Resource requirements involve two resources (CPU andmemory)

and are collected once a VM is submitted. The resources are not

treated as discrete; their range in the original dataset is normalized

to have a maximum of 1. To map the VMs to a tractable number of

types, we took the maximum out of the two resources and rounded

it up to the closest integer power of 1/2. All tasks that are mapped

to the same power of two are considered to belong to the same type.

The highest power of 1/2 considered was 7, since lower valued VMs

account for less than 1% of requests.

0 20 40 60 80 100
Index of 20 m in window

0.0

0.5

1.0

1.5

2.0

2.5

N
um

be
r

of
 a

rr
iv

al
s

1e4

Figure 3: Number of arrivals over time in the
Google trace, computed over 20-minute time win-
dows.

800 900 1000 1100 1200
Num ber of servers

5000

10000

15000

20000

M
e

a
n

 t
o

ta
l

q
u

e
u

e
 s

iz
e Algorithm 1

G16

M14

Figure 4: The performance of different algorithms under
the Google trace, for different number of servers.

In actual trace the number of servers changes dynamically with

servers being added, removed or modified. To keep things sim-

pler we assumed that the sizes of all servers are all 1 which is the

maximum possible and their number is fixed throughout a run.

In simulations we work with a window of 1 million arrivals. The

traffic intensity for that part of trace is depicted in Figure 3. We

evaluate the performance of all the algorithms using the above

trace and for different number of servers that ranges from 800 to

1250. The change in the number of servers implicitly controls the

traffic intensity. All runs were repeated 3 times and the reported

results which appear in Figure 4 are the average of these runs.

As we can see, our algorithm has the best overall performance

in the whole range of the number of servers. The performance

of G16 deteriorates as the number of servers scales up, while the

performance of M14 deteriorates as the number of servers scales

down.

REFERENCES
[1] Javad Ghaderi. 2016. Randomized algorithms for scheduling VMs in the cloud. In

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications. IEEE, 1–9. https://doi.org/10.1109/INFOCOM.2016.7524536

[2] Siva Theja Maguluri and R Srikant. 2014. Scheduling jobs with unknown duration

in clouds. IEEE/ACM Transactions on Networking 22, 6 (2014), 1938–1951.

[3] Konstantinos Psychas and Javad Ghaderi. 2017. On Non-Preemptive VM Schedul-

ing in the Cloud. Proc. ACM Meas. Anal. Comput. Syst. 1, 2, Article 35 (Dec. 2017),
29 pages. https://doi.org/10.1145/3154493

Session: Cloud SIGMETRICS'18 Abstracts, June 18-22, 2018, Irvine, CA, USA

69

https://doi.org/10.1109/INFOCOM.2016.7524536
https://doi.org/10.1145/3154493

	Abstract
	1 Introduction
	2 System Model
	3 Algorithm
	4 Simulations
	4.1 Inefficiency of other algorithms
	4.2 Experiment with Google trace dataset

	References

