Session: Cloud

SIGMETRICS'18 Abstracts, June 18-22, 2018, Irvine, CA, USA

On Non-Preemptive VM Scheduling in the Cloud

Konstantinos Psychas, and Javad Ghaderi
Columbia University

ABSTRACT

We study the problem of scheduling VMs (Virtual Machines) in
a distributed server platform, motivated by cloud computing ap-
plications. The VMs arrive dynamically over time to the system,
and require a certain amount of resources (e.g. memory, CPU, etc)
for the duration of their service. To avoid costly preemptions, we
consider non-preemptive scheduling: Each VM has to be assigned
to a server which has enough residual capacity to accommodate
it, and once a VM is assigned to a server, its service cannot be dis-
rupted (preempted). Prior approaches to this problem either have
high complexity, require synchronization among the servers, or
yield queue sizes/delays which are excessively large. We propose
a non-preemptive scheduling algorithm that resolves these issues.
In general, given an approximation algorithm to Knapsack with
approximation ratio r, our scheduling algorithm can provide rj
fraction of the throughput region for f < r. In the special case of a
greedy approximation algorithm to Knapsack, we further show that
this condition can be relaxed to f < 1. The parameters f§ and r can
be tuned to provide a tradeoff between achievable throughput, delay,
and computational complexity of the scheduling algorithm. Finally
extensive simulation results using both synthetic and real traffic
traces are presented to verify the performance of our algorithm.

KEYWORDS
Scheduling Algorithms, Stability, Queues, Knapsack Problem, Cloud

ACM Reference Format:

Konstantinos Psychas, and Javad Ghaderi. 2018. On Non-Preemptive VM
Scheduling in the Cloud. In SIGMETRICS’18 Abstracts: ACM SIGMETRICS
International Conference on Measurement & Modeling of Computer Systems
Abstracts, June 18-22, 2018, Irvine, CA, USA. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3219617.3219644

1 INTRODUCTION

There has been an enormous momentum recently in moving stor-
age, computing, and various services to the cloud. By using cloud,
clients no longer require to install and maintain their own infras-
tructure and can instead use massive cloud computing resources
on demand. Clients can procure Virtual Machines (VMs) with spe-
cific configurations of CPU, memory, disk, and networking in the
cloud. In a more complex scenario, clients can put together an entire
service by procuring and composing VMs with specific capabilities.

This work was supported by NSF Grant CNS-1652115.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS’18 Abstracts, June 18-22, 2018, Irvine, CA, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5846-0/18/06.

https://doi.org/10.1145/3219617.3219644

67

In this paper, we consider a distributed server platform, con-
sisting of possibly a large number of servers. The servers could
be inhomogeneous in terms of their capacity (e.g. CPU, memory,
storage). As an abstraction in our model, VM is simply a multi-
dimensional object (vector of resource requirements) that cannot
be fragmented among the servers.

We are interested in scalable non-preemptive scheduling algo-
rithms that can provide high throughput and low delay. To maintain
scalability, we would like the scheduling decisions to be made by
the servers individually in a distributed manner. In this work, we
propose an algorithm to meet these objectives and we characterize
its theoretical performance.

2 SYSTEM MODEL

Cloud Cluster and VM-based Job Model. We consider a collection
of L servers denoted by the set L. Each server ¢ € £ has a limited
capacity for various resource types (e.g., memory, CPU, storage).
We assume there are R different types of resources. There is also
a collection of J VM types denoted by the set J. Each VM type
J € J requires fixed amounts of the various resources. So each VM
type is a R-dimensional vector of resource requirements.

Job Arrivals and Service Times. We assume VMs of type j arrive
according to a Poisson process with rate A;. Each VM must be
placed in a server that has enough remaining resources to accom-
modate it. Once a VM of type j is placed in server, it departs after
an exponentially distributed amount of time (service time) with
mean 1/, independently of the other existing VMs in the server.

Server Configuration and System Configuration. We denote by
k]‘.) the number of type-j VMs that are accommodated by server £.

For each server ¢, a vector k! = (kf, cee, kjf) €]Ng is said to be
a feasible configuration if the server can simultaneously accom-
modate kf type-1 VMs, kg type-2 VMs, ..., kj type-J VMs, without
violating its capacity. We use K to denote the set of all feasible
configurations for server ¢ excluding the 0-configuration 0, and
Ky to denote Ky U {os}.

Queueing Dynamics and Stability. When VMs arrive, they are
queued and later served by the servers. We use Q;(t) to denote
the number of type-j VMs waiting in the queue to get service at
time ¢. The respective vector of all queue sizes is denoted by Q(t).
The system is said to be stable if the expected size of queues is
bounded as time goes to infinity. A vector of arriving rates A and a
vector of mean service times 1/ are said to be supportable if there
exists a scheduling algorithm under which the system is stable.
Let pj = A;/u; be the workload of type-j VMs. We will define the
throughout region of the cluster as

C={xeR]:x= Z x!, x{ € Conv(KY), ¢ € L},
tel

(1)

https://doi.org/10.1145/3219617.3219644
https://doi.org/10.1145/3219617.3219644

Session: Cloud

where Conv(-) is the convex hull operator. It has been shown that
the set of supportable workloads is the interior of C.

3 ALGORITHM

Before describing the algorithm, we make two definitions.

DEFINITION 1 (weight of a configuration). The weight of con-
figuration k¥ for server ¢, given a queue size vector Q, is defined
as

FOQ) = > ikt @
jeg

DEFINITION 2 (r-max weight configuration). Given a constant
r € (0, 1], and a queue size vector Q, an r-max weight configuration

for server ¢ is a feasible configuration k(¢ € K, such that

F&D, Q) = rfkt, Q). VK¢ € %,. ®)

Under our scheduling algorithm, each server at any time is either
in an active period or in a stalled period. We will also refer to the
state of a server as active or stalled depending on the period in
which it is at a certain time.

Active period: In this period, the server schedules VMs from
the queues according to a fixed configuration. Formally, let the
configuration of server ¢ in an active period be Kl = (I;f cje).

The server can contain at most l;][VMs of type j, j € J, at any
time. If there are not enough type-j VMs in the system, the server
reserves the remaining empty slots for future type-j arrivals.

Stalled period: In this period, the server does not schedule any
more VMs, even if there are VMs waiting for service that can fit in
the server. It only processes VMs which already exist in the server.
The stalled period ends when all the existing VMs in the server
finish their service and leave, at which point the server will enter a
new active period.

Note that by the above definitions, an arriving VM of type j will
not be queued (i.e., it enters the queue but immediately gets service)
if there is an empty slot available for it in any of the active servers
as it will be scheduled in one of the empty slots immediately. Also
the change of configuration in a server can only happen when the
server is empty and stalled and that change results in a transition
from a stalled period to an active period.

Our scheduling algorithm described in Algorithm 1 determines
the following:

(1) Transition from active to stalled. Suppose server ¢ is in an
active period with configuration k’. The server makes a tran-
sition to a stalled period if upon departure of a VM from the
server at time ¢,

F&ELQ) < BFEDE (1), Q(1)),)

where k()¢(¢) is an r-max configuration, given the queue size

vector Q(t), and 0 < f < 1 is a constant parameter of the

algorithm.

Transition from stalled to active. Suppose a server is in

a stalled period. When the server becomes empty the server

makes a transition to an active period.

(3) Server configuration during an active period. Suppose server
{ enters an active period at time ¢(,). The configuration of server

¢ for the entire duration of its active period, l~([, is fixed and

68

SIGMETRICS'18 Abstracts, June 18-22, 2018, Irvine, CA, USA

set to k(")f(t(a)), an r-max weight configuration based on the
queues at time f(4).

Algorithm 1 Basic Non-preemptive Scheduling

When a VM of type j arrives at time t:
1: Add the VM to the queue j
2: if exists empty slots for type-j VMs then
3: Schedule the VM in the first empty slot.
4. end if
When a VM of type j in server { is completed at time t:

1: if £ is active with configuration k! then
2. if condition (4) holds then
3 Switch ¢ to stalled.
4 else
5 Schedule a type-j VM in server ¢ from queue j. If queue j
is empty, register an empty slot of type j in server ¢.
end if
end if
if ¢ is empty and stalled then
Switch € to active.
Find an r-max weight configuration k("
Set the configuration of server ¢ during its active period to
be fixed and equal to k("¢
forj e J do
Schedule k j(r)[VMs of type j in server £. If there are not
enough VMs in queue j, register an empty slot for each
unused slot.
14 end for
15: end if

0w 2 N R

11:

12:

The following theorem states the main result about the perfor-
mance of the algorithm.

THEOREM 3.1. Consider Algorithm 1 with parameterr € (0,1]
and 0 < B < r. Then the algorithm can support any workload vector
p in the interior of Cy g (rf-fraction of the capacity region C).

Proofs and extensions to the theorem as well as algorithms that
find an r-max weight configuration for different values of r are in
full version of the paper [3].

4 SIMULATIONS

In this section, we verify our theoretical results and also compare
the performance of our algorithm with two other algorithms, the
randomized sampling algorithm [1] and the MaxWeight at local
refresh times [2], which will refer to them as G16 and M14 respec-
tively.

4.1 Inefficiency of other algorithms

Example 1 (Instability of M14: MaxWeight based on local re-
fresh times). Consider one server with capacity 6 units and two
VM types, type-1 VMs require 4 units and type-2 VMs require 1
units. Service rates are the same for both VMs and arrival rate of the
small VM type is 8 times higher than the large one. The workload
vector is chosen to be 0.89 (0.5, 4), which is supportable. When the
server starts scheduling according to configuration (1, 2), the arrival

Session: Cloud

© —— Algorithm 1
5 15004 — M14
[0}
=]
® 1000 -
=]
o
S 500
o
[t

O.

0 5000 10000 15000 20000 25000
time (s)

Figure 1: M14 fails in Example 1 while Algorithm 1 still
stabilizes the queues.

2000 1 —— Algorithm 1
i G16
» 1500 A
[}
>
$ 1000 -
o
©
< 500 1
2
01 PN, P o, S Rl
0 50000 100000 150000 200000
time (s)

Figure 2: G16 performs poorly in Example 2 although it
theoretically converges. Algorithm 1 performs much bet-
ter.

rate of small VMs will be higher than their service rate. That will
result in the queue of small VMs to grow and configuration never
resets with a non-zero probability. Figure 1 depicts the total queue
size (sum of the queue sizes) under our algorithm and M14. The
sawtooth behavior under our algorithm indicates the configuration
reset times.

Example 2 (Large queue size under G16: Randomized sam-
pling). In the second example we show that although G16 guaran-
tees stability it can yield large queue sizes. Consider a setting of 4
different servers with 1, 2, 4, 8 resource units and 4 types of VMs
with resource requirements 1, 2, 4, 8. Arrival and service rates are
the same for all VMs and traffic load is 0.89. Figure 2 depicts the
total queue size under G16 and our algorithm.

4.2 Experiment with Google trace dataset

In this experiment, we use a real traffic trace from a large Google
cluster. From the original dataset, we extracted the arrival times
of tasks and their service times by taking the difference of the
deployment time and the completion time.

Resource requirements involve two resources (CPU and memory)
and are collected once a VM is submitted. The resources are not
treated as discrete; their range in the original dataset is normalized
to have a maximum of 1. To map the VMs to a tractable number of
types, we took the maximum out of the two resources and rounded
it up to the closest integer power of 1/2. All tasks that are mapped
to the same power of two are considered to belong to the same type.
The highest power of 1/2 considered was 7, since lower valued VMs
account for less than 1% of requests.

69

SIGMETRICS'18 Abstracts, June 18-22, 2018, Irvine, CA, USA

1e4

N
o
)

N
<)
"

Number of arrivals
o A
o o
: A

©
o
)

©
<)
"

0 20 40 60 80

Index of 20 min window

100

Figure 3: Number of arrivals over time in the
Google trace, computed over 20-minute time win-

dows.
20000 1
) —%— Algorithm 1
> G16
o 15000 A —e— M14
[0}
>
o
< 10000 1
°
c
g 5000 1
=

1000 1100 1200

Number of servers

800 900

Figure 4: The performance of different algorithms under
the Google trace, for different number of servers.

In actual trace the number of servers changes dynamically with
servers being added, removed or modified. To keep things sim-
pler we assumed that the sizes of all servers are all 1 which is the
maximum possible and their number is fixed throughout a run.

In simulations we work with a window of 1 million arrivals. The
traffic intensity for that part of trace is depicted in Figure 3. We
evaluate the performance of all the algorithms using the above
trace and for different number of servers that ranges from 800 to
1250. The change in the number of servers implicitly controls the
traffic intensity. All runs were repeated 3 times and the reported
results which appear in Figure 4 are the average of these runs.
As we can see, our algorithm has the best overall performance
in the whole range of the number of servers. The performance
of G16 deteriorates as the number of servers scales up, while the
performance of M14 deteriorates as the number of servers scales
down.

REFERENCES

[1] Javad Ghaderi. 2016. Randomized algorithms for scheduling VMs in the cloud. In
IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications. IEEE, 1-9. https://doi.org/10.1109/INFOCOM.2016.7524536
Siva Theja Maguluri and R Srikant. 2014. Scheduling jobs with unknown duration
in clouds. IEEE/ACM Transactions on Networking 22, 6 (2014), 1938-1951.
Konstantinos Psychas and Javad Ghaderi. 2017. On Non-Preemptive VM Schedul-
ing in the Cloud. Proc. ACM Meas. Anal. Comput. Syst. 1, 2, Article 35 (Dec. 2017),
29 pages. https://doi.org/10.1145/3154493

[2

3

https://doi.org/10.1109/INFOCOM.2016.7524536
https://doi.org/10.1145/3154493

	Abstract
	1 Introduction
	2 System Model
	3 Algorithm
	4 Simulations
	4.1 Inefficiency of other algorithms
	4.2 Experiment with Google trace dataset

	References

