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We show several reductions between problems in the complexity class PPP related to the 
pigeonhole principle, and harboring several intriguing problems relevant to Cryptography. 
We define a problem related to Minkowski’s theorem and another related to Dirichlet’s 
theorem, and we show them to belong to this class. We also show that Minkowski is very 
expressive, in the sense that all other non-generic problems in PPP considered here can be 
reduced to it. We conjecture that Minkowski is PPP-complete.
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1. Introduction

Total search problems [7,9] still constitute an exotic 
domain of complexity theory — exotic in both senses 
“strange, unusual” and “remote, unexplored.” Take the 
class PPP, for example. It is known to include all of PPAD, 
and is defined in terms of the generic complete problem

Pigeon: Given a Boolean circuit C with n inputs and n
outputs, find x �= y ∈ {0, 1}n such that either C(x) = 0n

or C(x) = C(y).
The class PPP consists of all search problems reducible 

to Pigeon. As for other problems known to be in PPP, 
[9] only mentions

Equal sums: Given positive integers a1, . . . , an such that ∑
i ai < 2n−1, find two subsets S �= T ⊆ {1, . . . , n} such 

that 
∑

i∈S ai =
∑

i∈T ai .
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and these two problems, Pigeon and Equal sums, are to 
our knowledge1 the only problems discussed in the litera-
ture that are known to be in PPP and not known to be in 
included classes, e.g. Nash.

Over the past decade, the class PPAD and its com-
plete problems have substantially informed and advanced 
our algorithmic understanding of Game Theory [8]. Can
PPP serve the same role for Cryptography? The generic 
problem Pigeon is loosely about collisions of hash func-
tions; furthermore, it was recently pointed out that Fac-

toring belongs to PWPP (the class of problems whose 
totality is proved through a weak pigeonhole principle), a 
subclass of PPP, via randomized reductions [6]. The two 
new problems that we introduce here, Minkowski and
Dirichlet, are also motivated by Cryptography, since they 
are both the complexity renderings of mathematical results 
which have been used in the foundations of lattice-based 
crypto systems [1]. There may be important dividends in 
understanding better this class and its complete problems.

1 See Section 1.2 for a discussion on results published after writing this 
note.
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Fig. 1. Problems in PPP.
Incidentally, other classes of total problems from [9]
have recently been connected to Cryptography: Factoring

was shown to also belong in the class PPA, again via ran-
domized reductions, and also in the class PWPP [6]. Note 
that the only other problems known to be in PPP ∩ PPA
are the problems in PPAD, such as Nash [3,4]. Determining 
whether Factoring is in PPAD (via randomized reductions) 
is a most important open question. Recall also the recent 
insight that PPAD is intractable under standard crypto-
graphic assumptions [2] (standard in the sense that they 
are adopted in parts of the mainstream literature).

1.1. Our contributions

As we mentioned, Pigeon and Equal sums are, as far as 
we know, the only problems in PPP discussed in the litera-
ture.2 In other words, the picture of PPP prior to this note 
has been as shown in Fig. 1(a). In this note we introduce 
two new problems:

Minkowski: Given an n ×n matrix A with | det (A) | < 1, 
find a nontrivial integer combination of its rows with 
l∞ norm less than one.

Dirichlet: Given n rational numbers a1, . . . , an and 
an integer N , find integers q, p1, . . . , pn such that
|ai − pi

q | < 1
qN for all i, and 1 ≤ q ≤ Nn .

We show that these two problems are in PPP. In fact, 
we show that Minkowski is remarkably expressive, in the 
sense that the two currently known non-generic problems 
in PPP (Equal sums and Dirichlet, leaving out problems, 
such as Nash, which belong to subclasses) are reducible to
Minkowski.

Theorem 1. Minkowski and Dirichlet are reducible to Pi-

geon.

Theorem 2. Equal sums and Dirichlet are reducible to
Minkowski.

None of these results is trivial, but the reduction from
Minkowski to Pigeon is, surprisingly, the hardest to prove. 
In other words, the new picture of problems in PPP is as 

2 We refer the reader to Section 1.2 for a discussion on recent results.
shown in Fig. 1(b). These results suggest that Minkowski

is a natural candidate for a non-generic complete problem 
for PPP. Thus, the following important open problem is the 
main message of this work:

Conjecture 1. Pigeon is reducible toMinkowski.

1.2. Additional related work

When writing this note the authors were not aware 
of the following two, very relevant works (or the works
didn’t exist in the case of the second paper by Sotiraki 
et al. [10]).

Hoberg et al. [5]
In a recent work, Hoberg et al. [5] show (independently 

of this work) that the problem Number balancing is equiv-
alent to polynomial approximations of Minkowski’s theo-
rem. The result most relevant to this note is the following. 
Given an algorithm that takes as input a lattice � ⊆ R

n

with | det (�) | < 1 and finds a non-zero vector x ∈ � such 
that ‖x‖∞ ≤ ρ , there exists a δ-approximation algorithm 
for the number balancing problem, where δ = 2−n�(1/ρ)

. 
Their proof is similar to the reduction of Equal sums to
Minkowski presented in this note.

Sotiraki et al. [10]
In a recent unpublished manuscript, Sotiraki et al. [10]

identify two new problems in PPP: a computational prob-
lem associated with Blichfeldt’s fundamental theorem, and 
a generalized version of the Short Integer Solution prob-
lem from lattice based cryptography. They prove that both 
problems are in PPP, and furthermore that both prob-
lems are PPP-hard. This breakthrough therefore gives us 
the first natural PPP-complete problems. The authors pro-
vide a new proof that Minkowski is in PPP, via a reduction 
to Blichfeldt. Their reduction of Blichfeldt to Pigeon is 
similar in spirit to the reduction of Minkowski to Pigeon

presented in this note.

2. Preliminaries

We are interested in search problems, that is, problems 
in which we are given the input to a problem in NP, and 
we are asked for a witness of this input (if none exists, we
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return “no”). This class of problems is often called FNP (for 
function problems in NP).

Within FNP, we are interested in total search problems, 
that is, problems in which “no” is never a legitimate an-
swer, for all inputs. The class of all total search problems 
is denoted TFNP. Evidently, every total search problem in
TFNP must possess a mathematical proof of its totality. 
Consequently, total search problems can be further catego-
rized in terms of the corresponding existence proofs. There 
are certain simple combinatorial facts, such as the pigeon-
hole principle and the parity argument, asserting the ex-
istence of an object with a certain property from among 
a population of objects, which are used often in such ex-
istence proofs. Syntactic subclasses of TFNP, such as PPP, 
PPA, PLS, PPAD, etc., are defined in terms of such facts. 
(Incidentally, it is remarkable and intriguing that we know 
of only five existence proofs that are not immediately con-
structive.) In particular, the class PPP is defined in terms of 
the pigeonhole principle as explained in the Introduction.

Minkowski, Dirichlet and the Pigeonhole principle

We now state and prove the existence theorems of in-
terest in this note.

Theorem 3 (Minkowski’s convex body theorem). Let S be a 
closed convex body in Rn, symmetric with respect to the origin 0
and having volume vol(S). Then every lattice L of determinant 
det(L) such that vol(S) > 2n| det(L)| has a point in S distinct 
from the origin.

Proof. Let P denote the fundamental parallelepiped
spanned by the basis of lattice L; we also denote
2P � {2x : x ∈ P }. Define f : S → 2P as a “modulo-2P op-
erator”, where for every x ∈ S , f (x) = x +2v ∈ 2P for some 
lattice vector v ∈ L. Since vol(S) > 2n| det(L)| = vol(2P )

and f is locally area-preserving, then f is not injective.
Thus, we can find two distinct points p and q in S

where f (p) = f (q). By the definition of f , there exists a 
lattice point w �= 0 such that q = p + 2w . Since S is sym-
metric with respect to the origin, then −p ∈ S . Since S is 
convex, then w = (q − p)/2 is in S ∩ L. �

For our computational problem, Minkowski, we take S
to be the hypercube [−1, 1]n .

Theorem 4 (Dirichlet’s approximation theorem). Given real 
numbers α1, ..., αk and a natural number N, then there are in-
tegers p1, ..., pk, q ∈ Z, 1 ≤ q ≤ Nk, such that 

∣∣∣αi − pi
q

∣∣∣ ≤ 1
qN .

Proof. We define a map φ : {0, 1, 2, ..., Nk} → [0, 1]k tak-
ing q to ({qα1}, {qα2}, . . . , {qαk}), where {a} denotes the 
fractional part of a. Now subdivide the hypercube [0, 1]k
into hypercubelets of side length 1/N . There are Nk such 
cubelets and Nk +1 elements in the domain of φ so by the 
pigeonhole principle, there exist q′ �= q′′ such that φ(q′)
and φ(q′′) are in the same cubelet.

Let q = ∣∣q′′ − q′∣∣. Then each component of φ(q) has a 
fractional part smaller than 1/N . Thus, there exist inte-
gers pi such that |qαi − pi | ≤ 1/N for all i. The result 
follows. �

We note that one can prove Dirichlet’s approximation 
theorem using Minkowski’s convex body theorem. We also 
comment that in the case of k = 1, the computational 
problem Dirichlet can be solved in polynomial time. It is 
enough to compute the continued fraction expansion of α1
for sufficiently many terms.

3. Reducing to PIGEON

Lemma 1. Minkowski is reducible to Pigeon.

Proof. Given an n by n matrix A with determinant strictly 
smaller than 1, let P be the fundamental parallepiped of 
the vectors spanned by the rows of A. We will construct a 
circuit C that computes a “modulo lattice” function simi-
lar to the function f in the proof of Minkowski’s theorem, 
mapping the hypercube [0,1)n to P . A collision in this cir-
cuit (two inputs mapped to the same output) will give us 
a short lattice vector, i.e. an integer combination of rows 
of A with l∞ smaller than 1.

The challenge: how to succinctly represent a point in 
a parallelepiped

At first look, the reduction from Minkowski to Pigeon

seems like a trivial adaptation of the proof of Minkowski’s 
Theorem. For the ultimate step which invokes the Pigeon-
hole Principle, we used A’s determinant to argue that 
the lattice (the range of the “modulo lattice” function) is 
smaller than the unit hypercube (the domain). In Pigeon, 
the circuit must have an equal number of input and out-
put bits; this is how the range is guaranteed to be smaller 
than the domain. Hence, we must represent the output of 
the “modulo lattice” function with optimal succinctness. 
Even if we only waste one bit in every dimension, the 
reduction would only work if the parallelepiped is expo-
nentially smaller than the cube. For example, the naive 
representation of a point in the parallelepiped as a linear 
combination of lattice vectors is far too wasteful. (By num-
ber of “necessary bits” we mean the precision we use for 
the input in the unit hypercube.) How, then, do you rep-
resent a point in a parallelepiped without wasting even a 
single bit?

Wlog, we can assume the entries of A are all in δZ for a 
small δ. Thus, the lattice points of P all lie on a hypergrid 
that has unit length δ. We want to be able to efficiently 
encode all the grid points in P . Note that if P were a hy-
perrectangle rather than a general parallelipiped, it would 
be easy to express its grid points. This is because if the 
hyperrectangle was ×n

i=1 [0,ki), then the set of grid points 
would be exactly the set of all (c1δ, c2δ, . . . , cnδ) where the 
ci are integers and 0 ≤ ci < ki/δ for all i.

We first transform our matrix A so that it is in upper 
triangular form with positive pivot elements, all entries are 
still integer multiples of δ, and its volume is preserved (e.g. 
Hermite Normal Form).

Let Â denote the resulting upper triangular matrix, and 
let P denote the parallelepiped spanned by its rows. Given 
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a grid point in P , we embed it into the equal-volume hy-
perrectangle H :=×n

i=1

[
0, Âi,i

)
by simply taking the i-th 

coordinate modulo Âi,i :
f i(x) = xi (mod Âi,i),

where f i denotes the i-th entry of our embedding
f : P → H .

We want to show that the embedding is one-to-one, 
i.e. if f x = f y, then x = y where x and y are grid points 
in P . We can deduce by induction that the first n − 1 co-
ordinates of x and y are equal. Below, we argue that the 
respective n-th entries of x and y differ by less than Ân,n . 
Since by definition they differ by a multiple of Ân,n , they 
must indeed be equal.

We now argue that xn and yn differ by less than Ân,n . 
Both x and y are linear combinations of the rows of Â
with coefficients in [0, 1). In particular, their difference is 
a linear combination (with coefficients in (−1, 1)) of the 
rows of Â. Notice that: (i) by our inductive hypothesis, 
x and y are equal on the first n − 1 coordinates; (ii) be-
cause of the upper-triangular form, the upper left subma-
trix Â[n−1],[n−1] has full rank; and (iii) the n-th row does 
not contribute to the first n − 1 coordinates (again by the 
upper triangular structure). Therefore it follows that the 
difference has 0 coefficient on all but the last row. Hence 
we have that indeed |xn − yn| < Ân,n .

Finishing the proof of Lemma 1

Since we have an embedding from P to H , we can en-
code the grid points of P in our output strings of length at 
most

�log2
n∏

i=1

(
Âi,i/δ

)

 = �log2 |det A| + n log2 (1/δ)


≤ �n log2 (1/δ)
,
where we used the fact that 

∏n
i=1 Âi,i = | det A|. Thus we 

can construct a PPP circuit with input and output length 
equal to �n log2 (1/δ)
. Any input values greater than 1/δn
will be mapped to themselves to avoid spurious colli-
sions. Therefore the circuit never outputs any values in (|det A|/δn,1/δn]. �
Lemma 2. Dirichlet is reducible to Pigeon.

Proof. To develop some intuition, we first present the re-
duction for n = 1, i.e. our Dirichlet input is a rational a
and an integer N , and we are looking for two integers q
and p, with q ≤ N , such that |a − p

q | < 1
qN .

Let Ca(x) be the circuit that takes as input an (logN bit) 
integer x from 1 to N and outputs an (logN bit) integer t
such that xa mod 1 ∈ [

t 1
N , (t + 1) 1

N

)
, where t takes values 

from 0 to N − 1. This circuit is a valid input for Pigeon. 
Let x1 and x2 be integers such that Ca(x1) = Ca(x2), and 
let x2 > x1 without loss of generality (we deal with the 
case these don’t exist later). Also, let b1 and b2 be numbers 
such that x1a = �x1a� +b1 and x2a = �x2a� +b2. Notice that

| (x2 − x1)a − (�x2a� − �x1a�) | = |b2 − b1| < 1

N
,

thus p = �x2a� − �x1a� and q = x2 − x1. If no such x1, x2
exist, and the solution to Pigeon is a number x′ such that 
Ca(x′) = 0, then simply set q = x′ and p = �x′a�

For a general n, our circuit will map integers not to 
intervals of [0,1), but on hypercubelets of [0,1)n . Each hy-
percubelet will have sides of length 1

N .
Let C(x) be the circuit that takes as input an integer x

from 1 to Nn , and outputs the hypercubelet (under some 
valid encoding) where the vector (xa1 mod 1, xa2 mod 1,
. . . , xan mod 1) lies. There are Nn possible outputs, i.e. C
is a valid input for Pigeon.

Let x1, x2, with x2 > x1, be a solution to Pigeon. Setting 
q = x2 − x1, and pi = �x2ai� − �x1ai� approximates all ai
simultaneously. �
4. Reducing to MINKOWSKI

Lemma 3. Equal sums reduces toMinkowski

Proof. We will construct an (n + 1) × (n + 1) lower diago-
nal matrix, with determinant strictly less than 1. The first 
column of the matrix is (2n − 1, a1, a2, . . .an). The diago-
nal is (2n − 1, 1/2, 1/2, . . . , 1/2), and all other entries are 
zero:
⎡
⎢⎢⎢⎢⎢⎣

2n − 1 0 0 . . . 0
a1

1
2 0 . . . 0

a2 0 1
2 . . . 0

...
...

...
. . .

...

an 0 0 . . . 1
2

⎤
⎥⎥⎥⎥⎥⎦

The determinant of the matrix is 1
2n

(
2n − 1

)
< 1. By 

Minkowski’s theorem, there must be a non-trivial integer 
combination of rows so that each coordinate is less than 
1 in magnitude. Moreover, this integer combination must 
satisfy the following:

• The coefficient of rows 2 to n + 1, can only be −1, 0, 
or 1: a coefficient greater than 1 or less than −1 will 
get multiplied with the diagonal element, which can 
never be canceled (since it’s the only element of the 
column).

• The elements of the first column are integers, thus the 
coefficient of rows 2 to n + 1 must be chosen in such 
a way that the ai ’s sums up to zero.

• The coefficient of the first row is 0: the other rows 
with coefficient −1, 0, 1 can’t cancel the 2n − 1.

The subsets with the same sum can be recovered as 
follows: one of the sets consists of the rows that were 
picked with coefficient 1, and the other subset consists of 
the ones with coefficient −1. This completes the reduction 
from Equal sums to Minkowski. �
Lemma 4. Dirichlet reduces toMinkowski

Proof. The reduction from Dirichlet to Minkowski is very 
similar. Given n numbers a1, . . . , an and an integer N we 
will construct an (n + 1) × (n + 1) upper diagonal matrix, 
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with determinant strictly less than 1 as follows: the first 
row of the matrix is (Nn + 1/2)−1, a1N, a2N, . . . , anN . For 
rows 2 through n +1, the i-th element is N , and everything 
else is zero:
⎡
⎢⎢⎢⎢⎢⎣

(Nn + 1/2)−1 a1N a2N . . . anN
0 N 0 . . . 0
0 0 N . . . 0
...

...
...

. . .
...

0 0 0 . . . N

⎤
⎥⎥⎥⎥⎥⎦

The determinant of this matrix is Nn

Nn+1/2 < 1, thus 
there exists an integer combination q, p1, . . . , pn of the 
rows with norm infinity smaller than 1. We will show that 
q and p1, . . . , pn are exactly the integers that satisfy the 
conditions of Dirichlet’s approximation theorem.

Since (Nn+1)−1 is the only element of the first column, 
we get that − 

(
Nn + 1/2

)
< q < Nn + 1/2. Since q is an 

integer, then we get −Nn ≤ q ≤ Nn . Moreover, for every 
column i from 2 through n + 1, we get that −1 < aiqN +
piN < 1, which implies that |ai − pi

q | < 1
qN . �
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