
Journal of Computer and System Sciences 94 (2018) 167–192
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Towards a unified complexity theory of total functions

Paul W. Goldberg a,∗, Christos H. Papadimitriou b

a Oxford University, UK
b Columbia University, NY, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 May 2017
Received in revised form 20 December 2017
Accepted 22 December 2017
Available online 28 December 2017

Keywords:
Computational complexity
First-order logic
Proof system
NP search functions
TFNP

The class TFNP, of NP search problems where all instances have solutions, appears not
to have complete problems. However, TFNP contains various syntactic subclasses and
important problems. We introduce a syntactic class of problems that contains these known
subclasses, for the purpose of understanding and classifying TFNP problems. This class is
defined in terms of the search for an error in a concisely-represented formal proof. Finally,
the known complexity subclasses are based on existence theorems that hold for finite
structures; from Herbrand’s Theorem, we note that such theorems must apply specifically
to finite structures, and not infinite ones.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The complexity class TFNP is the set of total function problems that belong to NP; that is, every input to such a non-
deterministic function has at least one output, and outputs are easy to check for validity — but it may be hard to find an
output. It is known from Megiddo [28] that problems in TFNP cannot be NP-complete unless NP is equal to co-NP. On the
other hand, various TFNP problems, such as Factoring and Nash are believed to be genuinely hard [35,12,10].

Presently, our understanding of the complexity of TFNP problems is a bit fragmented. Many TFNP problems arise in
domains such as economic theory, social choice theory, number theory, and local optimisation, and our main means for
deriving evidence of hardness for such problems is by showing completeness in one of the five known subclasses of TFNP,
corresponding to well-known elementary non-constructive existence proofs:

• PPP (embodying the pigeonhole principle);
• PPAD (embodying the principle “every directed graph with an unbalanced node must have another”);
• PPADS (same as PPAD, except we are looking for an oppositely unbalanced node);
• PPA (“every graph with an odd-degree node must have another”), and
• PLS (“every dag has a sink”).

Much is known about these classes. PPP is known to contain PPAD and PPADS, while essentially all other possible
inclusions are known to be falsifiable by oracles, see for example [1]. They all have complete problems (actually, the most
commonly used definition of, for example, PPAD is “all NP search problems reducible to End of the Line”). PLS and PPAD

* Corresponding author.
E-mail addresses: Paul.Goldberg@cs.ox.ac.uk (P.W. Goldberg), christos@cs.columbia.edu (C.H. Papadimitriou).
https://doi.org/10.1016/j.jcss.2017.12.003
0022-0000/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2017.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:Paul.Goldberg@cs.ox.ac.uk
mailto:christos@cs.columbia.edu
https://doi.org/10.1016/j.jcss.2017.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2017.12.003&domain=pdf

168 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
have many other natural complete problems besides the basic one (“natural” can be taken to mean: the problem does not
incorporate an explicit circuit), and PPA has also recently acquired such a problem [14].

Even the union of these classes does not provide a home for all natural TFNP problems. For example, Factoring is only
known to be reducible to PPP and PPA through randomized reductions [20]. The problem Ramsey (e.g., “Given a Boolean
circuit encoding the edges of a graph with 4n nodes, find n nodes that are either a clique or an independent set”) is not
known to be in any one of the five classes, and the same obtains for a problem that could be called Bertrand–Chebyshev

(“Given n, produce a prime between n and 2n”).
The status quo in TFNP, as described above, is a bit unsatisfactory. Many natural questions arise: Are there other im-

portant complexity subclasses of TFNP, corresponding to novel nonconstructive arguments? Can the three rogue problems
above (along with a few others) be classified in a more satisfactory way?

More importantly, is there a more holistic, unified approach to the complexity of TFNP problems? For example, are there
TFNP-complete problems? The answer here is strongly believed to be “no”, as TFNP (the set of all polynomial-depth
nondeterministic computations that have a witness, for every input) is very similar in spirit and detail to the classes UP
(computations with at most one witness, for every input) and BPP (computations whose fraction of witnesses is bounded
away from half, for every input), both known to have no complete problems under oracles [36,16]. Indeed, Pudlák ([33],
Section 6) presents a similar result specifically for TFNP. Hence, this route for a unified complexity view of total functions
is not available.

This paper aims to develop a more unified complexity theory of TFNP problems. We define a new subclass of TFNP that
includes all five known classes. This new class, which we call PTFNP1 (for “provable TFNP”), does have complete problems,
and these problems are therefore natural generalisations of all known completeness results in TFNP.

In particular, we define a kind of consistency search problem, a notion that has recently been studied in the literature
on Bounded Arithmetic [4]. Fix a consistent deductive system — in this paper we use a propositional proof system that
we call Q-EFF (for “quantified boolean formulae with extended Frege functions”; it allows lines of a proof to define new
n-ary functions). Now consider a Boolean circuit which, when input an integer j, produces the jth line of an exponentially
long purported proof in this system (the line itself is of polynomial length). Suppose further that this proof arrives at a
contradiction (one of the lines is “false”). There surely must be an incorrect line in this proof; the challenge is to find it!
We call this problem Wrong Proof, and we define PTFNP as the set of all search problems reducible to it; it is obviously a
subset of TFNP. We establish that PTFNP contains PPP (and by extension, PPAD and PPADS), and also PPA and PLS. The study
of exponentially-long proofs that are presented concisely via a circuit was introduced by Krajíček [23].

Of course, any finite collection of problems — or classes with complete problems — can be generalised in a rather trivial
way, by proposing a new problem or class that artificially incorporates the key features of the old ones. However, Wrong
Proof makes no explicit reference to the problems that are complete for the above complexity classes. Its proof system
Q-EFF uses quantified boolean formulae with polynomially-many propositional variables, an exponential sequence of n-ary
function symbols, and no predicates. The novel features that we exploit are the ability to use exponentially many steps,
together with the exponential sequence of function symbols.

The results of the present paper are in fact implicit in recent work in the Bounded Arithmetic literature, discussed in
more detail in the next subsection. We reduce the TFNP problems of interest to consistency search problems that use Q-EFF,
which appears to be more powerful than the Frege and extended Frege ones resulting in Bounded Arithmetic. (The facility
in Q-EFF to define long sequences of new function symbols, is at least as powerful as a facility to define new propositional
variables, as in extended Frege proofs.) The reason why the present results are of interest is that our proof system Q-EFF
seems to allow more direct reductions to the corresponding consistency search problem (this is, Wrong ProofQ-EFF). Our
reductions do not require background knowledge of the theories that are applicable to prove the total search principles
underlying PPP, PPA, and PLS, and hence the operations of the resulting formal proofs will be more understandable to most
readers. We also raise a new question of whether Q-EFF can be simulated by extended Frege proofs, or whether it defines
a larger class of TFNP problems. We discuss these further in Section 8, where we also mention the Bounded Arithmetic
literature that sheds light on TFNP problems such as Factoring, Ramsey, and Bertrand–Chebyshev.

1.1. Related recent work

Various connections have been made between the complexity of TFNP problems and formal proofs, a research direction
that seems timely and productive. The literature on Bounded Arithmetic has classified many TFNP problems in terms of
the kind of proof system needed to formally prove the totality principle underlying a TFNP problem. Buss’s hierarchy [4] of
Bounded Arithmetic theories is denoted

PV ⊆ S12 ⊆ T 1
2 ⊆ T 2

2 ⊆ T 3
2 ⊆ . . .

1 The class should perhaps be called PTFNPQ-EFF since it is defined with respect to a deductive system Q-EFF that we introduce and use in our proofs
here. Similar definitions with respect to other proof systems are possible. In this paper we just refer to it as PTFNP. A similar point applies to the problem
Wrong Proof used to define PTFNP.

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 169
and at the bottom level, when a total search principle can be proven in PV or S12 then the corresponding TFNP problem
can be solved in polynomial time. The totality principles underlying PPP, PPA, and PLS are known to be provable in the
second order bounded arithmetic theory U1

2 . These theories give rise to completeness classes of total search problems, for
example based on the coloured PLS problem for T 2

2 [27], game induction principles for classes T k
2 [38], and local improvement

principles [21,2].
Krajíček [23] introduced the notion of concisely-represented proofs of exponential length, there called implicit proofs,

here we refer to them as circuit-generated proofs (Definition 1). The search for a contradiction in such a proof is known
as a consistency search problem, and such problems have been studied in work of Krajíček [24] and Skelley and Thapen
[38]. A recent paper of Beckmann and Buss [3], also within the tradition of bounded arithmetic, proves certain results that
appear to strengthen the present ones, by reducing the problems of interest to consistency search problems in less powerful
systems. They consider two consistency search problems, one corresponding to Frege systems, and another to extended
Frege, called FCon and eFCon respectively. Then they show these to be complete for the classes of total function problems
in NP whose totality is provable within the bounded arithmetic systems U 1

2 and V 1
2 , respectively. These include the classes

of problems of interest to us here, for which these theories (in particular U 1
2) can prove the totality principles.

In contrast with most TFNP-related work within bounded arithmetic, we focus on the “white box” concise circuit model
of the functions that define the problems characterising the complexity classes of interest. In some respects this makes a
significant difference: for example, a recent paper of Komargodski et al. [22] shows that any such TFNP problem has a query
complexity proportional to the description-size of a problem instance. However, the results of [3] should still be applicable,
since a reduction using the oracle model should allow a logical description of a circuit to be plugged in.

One more item to note on the topic of totality principles provable with bounded arithmetic theories is the following.
With regard to problems such as Factoring and Ramsey (whose relationship with the TFNP subclasses highlighted in the
Introduction is unclear), these have also been addressed in the Bounded Arithmetic literature, and similar results are obtain-
able for Ramsey [32,19] and Factoring [26] (specifically, [26] formalise Pratt certificates in first-order fragments of Bounded
Arithmetic). Bertrand–Chebyshev (in fact—more generally—Sylvester’s Theorem) is addressed similarly in [39,31]. Conse-
quently, these problems belong to versions of PTFNP (including the one we study here). This goes some way to addressing
the challenge we noted, of classifying these “rogue problems” in a more satisfactory way. As noted in the Introduction, we
have separately applied the approach we take here, to placing some of these problems in PTFNP [15].

There are some well-known reducibilities amongst PPAD-like complexity classes, for example that PPAD reduces to
PPADS, which reduces to PPP. Buss and Johnson [8] connect these results with derivability relationships (in a proof sys-
tem) amongst the combinatorial principles that guarantee that they represent total search problems; so for example, the
principle underlying PPAD can be derived from the one underlying PPADS, and generally, any such derivability result would
tell us that the deriving corresponding complexity classes generalises the other. Our focus here, in contrast, is on formal
proofs that correspond with individual instances of TFNP problems (finding an error in the proof allows us to find a solution
for the corresponding problem-instance).

Pudlák [33] shows how every TFNP problem reduces to a Herbrand consistency search problem: any TFNP problem X is
characterised by an associated formula � whose Herbrand extension is guaranteed to be satisfiable, but the challenge of
finding a satisfying assignment is equivalent to X . This correspondence is somewhat reminiscent of Fagin’s theorem. The
focus of [33] is not on syntactic guarantees that we have a total search problem: it would be hard to check whether a given
� corresponds to a TFNP problem. By contrast, our definition of Wrong Proof is intended as a highly-general TFNP problem
for which there is a syntactic guarantee that any instance has a solution.

Finally, Hubáček et al. [18] show that hard-on-average NP problems lead to hard-on-average TFNP problems. The TFNP
problems thus constructed are specific to the associated NP problems; our concern here, in contrast, is to identify a single
easily-understood TFNP problem that generalises previous ones.

1.2. Background on propositional proofs and the pigeonhole principle

In 1979, Cook and Reckhow [11] initiated the study of the proofs of propositional tautologies, with regard to the question
of how long do such proofs need to be. Abstractly, a proof system for a language (here, the set of tautologies) is a scheme
for producing efficiently-checkable certificates for words in that language. As noted in [11], a polynomially bounded proof
system for tautologies is only possible if NP is equal to co-NP. They obtain results that various proof systems can efficiently
simulate each other; these results allow us to conclude that one such system is polynomially bounded if and only if another
such system is.

[11] introduce Frege and extended Frege systems: roughly, in a Frege system a proof consists of a sequence of lines
containing propositional formulae that are either generated by some axiom scheme (and are known to hold for that reason)
or are derivable by modus ponens from two formulae in previous lines of the proof. In an extended Frege system, we
also allow lines that introduce a new propositional variable and set it to equal a propositional formula φ over pre-existing
variables. The new variable can then be plugged in to a larger formula as a shorthand for φ, and if this process is iterated,
it may result in an exponential saving in space. It remains a central open problem in proof complexity whether extended
Frege proofs can in general be simulated by Frege proofs, with only a polynomial blowup in size of the proof.

In studying this question, various candidate classes of formulae have been considered, the most widely-studied being
ones that express the pigeonhole principle, as introduced in [11]. The “n + 1 into n” version of this, denoted PHPn+1

n , states

170 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
that a function from n + 1 input values to n output values must map two different inputs to the same output. That is,
f : [n + 1] → [n] must have a collision: two inputs that f maps to the same output.2 f can be described by a propositional
formula ψ (whose variables indicate which numbers map to which according to f , specifically, variable Pij is true if
and only if i is mapped to j) stating “each number in the domain maps to some number in the codomain, and any pair
map to different values.” By the pigeonhole principle, ψ is unsatisfiable, so its negation ψ̄ is a tautology (and ψ̄ has size
polynomial in n). [11] gave polynomially-bounded extended Frege proofs of these expressions. Buss [6] subsequently gave
polynomially-bounded Frege proofs of these, and in [7] quasi-polynomial size Frege proofs that are a reformulation of the
extended Frege proofs of [11]. See [7] for a discussion of other candidate classes of formulae and progress that has been
made on them.

Papadimitriou [30] introduced the Pigeonhole circuit problem, in which a pigeonhole function on an exponential-sized
domain is concisely presented via a boolean circuit C . ψ as constructed above would be exponentially large in C , but a
“dual” statement that two inputs to C map to the same output can still be expressed as a concise propositional formula
φ. By construction, φ is satisfiable, and a short proof of this fact consists of a satisfying assignment, but in general such
a satisfying assignment appears to be hard to find, and this search characterises the complexity class PPP. In seeking to
better understand the challenge, we find a new point of contact between the pigeonhole principle and proof complexity.
The difference here is we have a propositional formula that is known to be satisfiable; we want to exhibit a proof of this;
but the naive approach of just exhibiting a satisfying assignment is believed to be hard, so instead we fall back on a long
and “opaque” proof of satisfiability.

1.3. Organisation of this paper

Section 2 gives details of our deductive system and the problem Wrong Proof. Section 3 shows how to prove unsatis-
fiability of certain existential expressions, in such a way that any error in the proof allows a satisfying assignment to be
readily reconstructed. Sections 4, 5, 6 reduce PPP, PPA, and PLS problem-instances to proofs that corresponding existential
expressions are satisfiable. (The expressions are the ones we can also “prove” unsatisfiable.)

Finally, notice that the heretofore “five subclasses” of TFNP correspond to five elementary non-constructive existence
arguments in combinatorics, and all these five elementary arguments share one intriguing property: They only hold for finite
structures, and are false in infinite ones. We note in Section 7 that this is no coincidence: Herbrand’s Theorem from 1930 [17,
5] tells us that any existential sentence in predicate calculus that is true for all models (finite and infinite) is equivalent to
the disjunction of a finite number of quantifier-free formulas; it follows that the corresponding TFNP problem is necessarily
in P. We conclude in Section 8.

2. Deductive systems and the WRONG PROOF problem

A deductive system (or proof system) is a mechanism for generating expressions (theorems) in some well-defined (for-
mal) language. The expressions should come with a semantics, defining which ones are true and which false. A basic
property of a system is consistency, that it should not be able to generate two expressions that contradict each other. Con-
sistency is ensured if the rules of the system are valid, in the sense that we cannot deduce any false expressions from true
ones. The system Q-EFF used in this paper deals with theorems consisting of quantified boolean formulae and (many) n-ary
functions symbols, with a standard semantics. It is not hard to check the consistency of the rules that we use. Similar proof
systems have been studied in [13,25,37]. From [13,37], quantified propositional logic can work with PSPACE properties; in
view of the power of the function extension axioms we use, discussed in Section 8, it is likely that we should be able to
dispense with quantifiers without affecting the power of our system; our usage of quantified expressions just makes the
system easier to work with. The Wrong Proof problem of Definition 2 formalises the computational challenge of receiving
a proof of two such expressions that contradict each other, and searching for an erroneous step in the proof (guaranteed to
exist by the contradiction that we are shown).

The set of expressions that can be produced by a deductive system are called the theorems of the system. The system is
usually given in terms of a set of axioms and inference rules that allow theorems to be derived from other theorems. A proof
consists of a sequence of numbered lines. A line contains a well-formed formula that either holds due to some axiom, or is
inferable from the contents of previous lines. A typical line contains one of the following kinds of expression:

�, �′ � A, or � � A, or � A,

where A is a well-formed formula inferred at the current line, and �, �′ are the numbers of earlier lines (�, �′ are thus strictly
smaller than the current line number). The expression “�, �′ � A” means that the current line claims that A is inferable from
the formulae located at lines � and �′ (using one of the given inference rules). “� � A” means that A is inferable from the
formula located at line �. “� A” means that A holds ipso facto (due to an axiom, e.g. rule (1) lets us write � (A ∨ ¬A), for
any well-formed formula A).

2 We use the standard notation that for a positive integer x, [x] denotes the set {1, 2, . . . , x}.

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 171
Our system makes use of a kind of extension axiom line, written as f (x) ↔ φ(x), where f is a new function symbol
whose value on input x is defined by φ. f should not occur within φ, or in any previous line. So, these lines allow us to
define new boolean functions that may appear in later lines.3

Definition 1. With respect to some given consistent deductive system, a circuit-generated proof consists of a directed boolean
circuit C having n input nodes. C has a corresponding formal proof having 2n lines. The output of C on input � ∈ [2n]
contains the theorem that has been deduced at line �, together with the numbers of any earlier line(s) from which �’s
theorem has been deduced.

Definition 2. Let S be a logically valid and consistent deductive system having the property that any line � of a proof
that uses S can be checked for correctness (i.e. syntactic correctness, and correctness with regard to how the formula of
� is derived in S from other lines) in time polynomial in the length of �. An instance of Wrong ProofS consists of a
circuit-generated proof (represented by a circuit C) that uses S .

The proof should contain two given lines (say, lines 2n and 2n − 1) that contradict each other: One of them contains
as its theorem some expression A and other contains expression ¬A. The challenge is to identify some line number �
whose corresponding theorem is not derivable in the way stated by C(�). Since S is consistent and we have observed a
contradiction, such a line must exist.

An equivalent version of this definition could say instead that the proof contains a single known line that contains the
constant false (or ⊥). Such a line might be validly derived from two other lines that contradict each other.

Wrong Proof is in TFNP: any incorrect line of an instance of Wrong Proof can readily be verified to be incorrect. We
have so far defined Wrong Proof rather abstractly, with respect to an unspecified deductive system. In this paper we focus
on a specific deductive system that we describe in detail in the rest of this section.

2.1. The formulae and theorems of our system Q-EFF; some notation

We work with expressions of quantified propositional logic (variables take values true/false), augmented with a se-
quence of n-ary function symbols. We also use, for convenience, symbols such as x and y to denote vectors of n
propositional variables, and expressions like x < y to denote relationships between x and y, regarding these vectors as
representing numbers in [2n]. x(0), x(1), x(2) denote respectively the n-vectors (false, . . . , false), (false, . . . , false, true),
(false, . . . , false, true, false), or the numbers 2n, 1, 2. Since the all-zeroes vector x(0) corresponds to 2n , this means that
x(0) ≥ x for any other vector x (this convention tends to reduce clutter in our expressions).

In this paper, the two contradictory statements in an instance of Wrong Proof take the form ∃x, x′(φ(x, x′)) and
¬∃x, x′(φ(x, x′)), asserting that some 2n-variable formula φ is (respectively, isn’t) satisfiable. We continue with more de-
tail on the expressions used in our proofs.

For complexity parameter n, the vocabulary we use contains a polynomial-size collection of variable symbols, together
with an exponential-size collection of n-ary function symbols; in particular they include a sequence f i , for i ∈ [2n]. In our
proofs, f2n is defined in terms of an instance of some TFNP problem, and (for each i ∈ [2n]) f i is defined in terms of f j (for
j > i, usually j = i + 1) via an extension-axiom line. There are no predicates. The expressions we use are first-order, in that
they may have quantification over the variable symbols, but not the functions.

The language consists of terms built up from variables (such as x), the constants true, false, and n-ary function symbols
applied to subterms. Atomic formulae are built up from these using standard boolean connectives. Formulae can also contain
quantified boolean variables.

While we work with expressions whose variables represent vectors of propositional variables, note that such expres-
sions represent polynomially-larger expressions whose variables are simple propositional variables. Variable x represents
(x1, . . . , xn) where the xi are propositional variables, and expressions involving x can be converted to basic propositional
formulae in the individual xi without an excessive blowup in the size of the formula. This extra syntax makes our expres-
sions more concise and readable. For example, given non-zero vectors x, x′ , the expression x < x′ represents the following
propositional formula involving the variables xi and x′

i (treating x1 and x′
1 as the most significant bits):

¬x1 ∧ x′
1 ∨ (x1 = x′

1 ∧ (¬x2 ∧ x′
2 ∨ (x2 = x′

2 ∧ (¬x3 ∧ x′
3 ∨ · · · (¬xn ∧ x′

n))) · · ·))
Another notational convenience that we use is expressions such as ∀x < y(φ(x, y)), meaning ∀x, y(x < y → φ(x, y)), or

if y is a vector of propositional constants, it would mean ∀x(x < y → φ(x, y)). Similarly, ∃x �= x′(φ(x, x′)) means ∃x, x′(x �=
x′ ∧ φ(x, x′)).

3 This facility to define the behaviour of new functions is a rather novel feature of our system, and gives rise to the question of whether we should be
able to make do with standard extended Frege axioms. An extended Frege system is a propositional proof system that allows us to use extension axiom
lines of the form x(new) ↔ φ , where x(new) is a variable symbol that has not occurred previously in the proof, and φ is a formula that gives the value of
x(new) in terms of pre-existing variables. So, we are allowing ourselves to define new functions on vectors of boolean variables, as opposed to just individual
variables. In Section 3.1 we explain why it is useful to have these extension-axiom lines that define new functions.

172 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
2.2. Axioms and inference rules

We use the following kinds of rules:

• Axioms (written as � A) let us write down certain expressions that can be seen to evaluate to true based on some
easily-checkable property, for example A is of the form B ∨ ¬B .

• Inference rules, written as A, B � C for example, say that given expressions A and B , we can write the expression C .
• Equivalences, written as A ≡ B , say that two expressions are logically equivalent. An equivalence represents a rule

of replacement in that it may be applied to sub-expressions of any expression that appears in a line of a proof. For
example, using the equivalence A ∧ B ≡ B ∧ A we could take a line � containing the expression true ∨ (xi ∧ yi) and
write a new line containing � � true∨ (yi ∧ xi).

• “Extension axiom” lines define new n-ary functions, and are written as f (x) ↔ φ(x), where f is a new symbol that has
not appeared previously in the proof, and φ specifies how f behaves on input (n-vector) x. So, this kind of line means
∀x(f (x) � φ(x)), and the system can use ∀x(f (x) = φ(x)) as a theorem.

Some of the rules we list below are redundant in the sense that they could be simulated using the others. We prefer
to limit ourselves to rules that are not too novel and ad-hoc, that are clearly consistent, and which, crucially, allow that
any individual line of a proof can be checked for correctness in time polynomial in n. Section 2.3 contains rules that we
prove can be simulated by the ones in Section 2.2; usage of these additional rules allows some of the formal proofs to be
presented more cleanly. We have not however tried to minimise the collection of rules in Section 2.2; some of the rules in
the section can be simulated using the others.

As noted earlier, our extension axiom lines are somewhat novel. A standard extension-axiom line of an extended Frege
proof may introduce a new propositional variable and set its value to equal some expression in terms of pre-existing values.
Our extension-axiom rules (see rule (13)) allow us to define new functions via expressions that define their behaviour in
terms of pre-existing functions. So we call the proof system Q-EFF (for “extended Frege functions”) on account of this novel
feature.

In the following, A, B, C represent arbitrary well-formed formulae and x, y are length-n vectors of propositional variables,
where x (say) may also be thought of as ranging over integers in the range [2n], as noted in Section 2.1. The equivalences
we allow ourselves to use are the following:

• A ∧ B ≡ B ∧ A; A ∨ B ≡ B ∨ A; (commutativity)
• A ∧ (B ∧ C) ≡ (A ∧ B) ∧ C ; A ∨ (B ∨ C) ≡ (A ∨ B) ∨ C ; (associativity)
• A ∧ (B ∨ B) ≡ (A ∨ B) ∧ (A ∨ C); A ∨ (B ∧ B) ≡ (A ∧ B) ∨ (A ∧ C); (distributivity)
• ¬¬A ≡ A; (double negation)
• ¬(A ∧ B) ≡ ¬A ∨ ¬B; ¬(A ∨ B) ≡ ¬A ∧ ¬B; (De Morgan)
• A ≡ A ∨ A ≡ A ∧ A ≡ A ∧ true ≡ A ∨ false;
• A → B ≡ ¬B ∨ A;
• A → (B → C) ≡ (A ∧ B) → C .

These equivalences may be applied to any expression arising in a derivation, also they may be applied (in a simple step)
to any well-formed subexpression of a larger expression arising in a derivation (thus constituting a kind of deep inference;
such a step can be checked for correctness in polynomial time). We also allow a step of a proof to rename a bound
variable throughout the subexpression where it occurs. So, a proof line of the form � � A may state that A is derived from
expression A′ , where A′ is the theorem derived at line �, via applying one of these basic manipulations to A′ , or to some
subexpression of A′ . It is easy to see that any such step may be checked for correctness in polynomial time, and there is no
need for a line to specify which rule is being used.

For any well-formed expression A, we may use any of the following lines in our proofs:

false � A, � (A → A), � (A ∨ ¬A), � true. (1)

Modus ponens (rule (2)) states that if lines � and �′ contain theorems A and A → B respectively, a subsequent line
containing the expression “�, �′ � B” is a valid line.

A, A → B � B. (2)

“Conjunction introduction” (rule (3)) states that if lines � and �′ contain theorems A and B respectively, a subsequent
line containing the expression “�, �′ � A ∧ B” is valid.

A, B � A ∧ B. (3)

A “case analysis” rule (4) (a form of disjunction elimination) means that if lines � and �′ contain theorems B → A and
¬B → A, then a subsequent line containing “�, �′ � A” is valid.

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 173
B → A, ¬B → A � A. (4)

The disjunction introduction rule (5) means that if line � contains theorem A, then a subsequent line containing � � A ∨ B
is valid.

A � (A ∨ B). (5)

Antecedent strengthening:

(A → C) � (A ∧ B → C). (6)

Basic equivalences for quantified variables: let xi be an individual propositional variable; let A(true/xi) and A(false/xi)
be obtained by plugging in the constants true and false respectively in place of xi , in A(xi). Then we have:

∃xi(A(xi)) ≡ A(true/xi) ∨ A(false/xi)

∀xi(A(xi)) ≡ A(true/xi) ∧ A(false/xi)
(7)

Distributive rules for quantifiers (recall x is a vector of variables):

∃x(A(x)) ∨ ∃x(B(x)) ≡ ∃x(A(x) ∨ B(x))

∀x(A(x)) ∧ ∀x(B(x)) ≡ ∀x(A(x) ∧ B(x))
(8)

(In the context of circuit-generated proofs, the distributive rules (8) can be derived from the previous rules. Recall
that x denotes the n-vector (x1, . . . , xn). Starting from the expression ∀x(A(x) ∧ B(x)), we go via intermediate expressions
of the form ∀(x1, . . . , x j)(∀(x j+1, . . . , xn)A(x) ∧ ∀(x j+1, . . . , n)B(x)) to end up with ∀x(A(x)) ∧ ∀x(B(x)), while keeping all
intermediate expressions to be of polynomial length.)

Bringing quantifier to front: suppose A contains no variables in x, then if ◦ is any boolean connective, we have

A ◦ ∃x(B) ≡ ∃x(A ◦ B)

A ◦ ∀x(B) ≡ ∀x(A ◦ B)
(9)

Universal instantiation: let A(t) be the expression obtained by plugging in term t in place of variable symbol x (t is any
term, i.e. a propositional variable or constant, or a function symbol applied to other terms.)

∀x(A(x)) � A(t). (10)

Universal generalization: if x and y are n-vectors of propositional variables, and x is a vector of free variables, we have

A(x) � ∀yA(y). (11)

Existential generalization: if A(x) is obtained by plugging in variable(s) x in place of term(s) t , we have

A(t) � ∃x(A(x)). (12)

Extended Frege-style definitions of functions:
We use extension axioms written as:

f (x) ↔ φ(x) (13)

where φ is an expression that defines the value of f (x). φ may include functions defined earlier, but not f . f is a new
function symbol, x is a vector of variable symbols, and φ(x) is a formula that specifies the value taken by f on any input x.
This rule can be understood as saying ∀x(f (x) � φ(x)).

2.3. Further rules derivable from the ones of Section 2.2

It is useful to note the following further rules for writing down lines of a proof, which can be simulated by the ones
of Section 2.2. We can assume we have the “hypothetical syllogism” rule, A → B, B → C � A → C (we can simulate this
using the rules of Section 2.2: a combination of modus ponens and case analysis). We can also assume we have an “axiom”
saying that expressions of the following form can be written down for free: ∀x(A(x)) → A(t), where t is a n-vector of
terms that is plugged in for (n-vector) x in A. (We can write down ∀x(A(x)) → ∀x(A(x)), equivalently ∀x(A(x)) → ∀y(A(y)),
where y is another n-vector of propositional variables, equivalently ∀x, y(A(x) → A(y)), then by universal instantiation,
∀x(A(x) → A(t)), which is equivalent to ∀x(A(x)) → A(t).) In a similar way, we can write down expressions of the form
A(t) → ∃x(A(x)).

174 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
We also use the equivalences (derivable from (7) and de Morgan’s rules):

¬∃x(A) ≡ ∀x(¬A)

¬∀x(A) ≡ ∃x(¬A)
(14)

The following rule is used in the proof of Lemmas 1 and 2. Suppose φ is a quantifier-free propositional formula over
n variables. Let x denote a vector of n terms, where terms may consist of constants true/false, or variables, or functions
applied to variables. Suppose i ∈ [2n] is a satisfying assignment of φ, so i is a vector of n constants true/false. We may use
the rule

� x = i → φ(x), (15)

where φ(x) denotes φ with the entries of x plugged in for the variables of φ.
Rule (15) can be simulated using previous rules, as follows. Using the axiom A → A, we can write a line containing

� (x = i → φ(x)) → (x = i → φ(x)). We then apply a sequence of basic manipulations to the first occurrence of (x = i →
φ(x)), simplifying it to the constant true: provided that i really satisfies φ, this should be achievable. (These manipulations
just do the job of plugging into φ the n propositional constants in vector i, and simplifying. We can ensure that intermediate
expressions are of polynomial size, by pushing any occurrences of ¬ to the bottom of the parse tree of φ; write the
expression as (x1 = i1 → (x2 = i2 → . . . xn = in → φ(x)) . . .), and repeatedly use equivalences A → B ◦C ≡ (A → B) ◦(A → C),
for ◦ ∈ {∧, ∨}.) This leaves us with true → (x = i → φ(x)), which is equivalent to x = i → φ(x). Note that this process does
not evaluate any functions represented by function symbols in x.

We also make use of equivalence (16), which can be simulated in a straightforward way using the previous rules. Letting
x be an n-vector of propositional variables and i an n-vector of propositional constants, and φ a quantifier-free boolean
formula, we have

x = i → φ(x) ≡ φ(i). (16)

3. Preliminaries to the reductions to WRONG PROOF

In this section we establish results that are useful subsequently, and we discuss certain features that our reductions all
have in common with each other.

An instance of Wrong Proof is supposed to consist of proofs of two contradictory statements, and in our reductions,
these statements take the form ∃(x, x′)φ(x, x′) and ¬∃(x, x′)φ(x, x′), for n-vectors x, x′ of propositional variables. φ depends
on the specific instance of a TFNP problem that we reduce from.

Any problem in TFNP is reducible to the search for a satisfying assignment to a propositional formula φ, where φ

obeys some syntactic constraint that guarantees that it does, in fact, have a satisfying assignment.4 In reducing to Wrong
Proof, we “prove” the contradictory statements ∃(x, x′)φ(x, x′) and ¬∃(x, x′)φ(x, x′) where x, x′ are vectors of n propositional
variables. In fact, the φ that we use is not purely propositional; it includes a function symbol that is constructed (using our
extension-axiom rule) to encode a TFNP problem-instance, in a way described in Section 3.2.

The proofs of these contradictory statements consist of sequences of applications of the rules of Sections 2.2, 2.3, and
they are instances of Wrong Proof, i.e. long proofs presented via a circuit. The error occurs in the “proof” of ¬∃(x, x′)φ(x, x′).
Of course, it’s trivial to exhibit a faulty proof of the unsatisfiability of φ, but we require something more, namely that any
error should let us efficiently reconstruct a satisfying assignment of φ. Lemma 1 shows how to construct such a proof. The
three expressions in the statement of Lemma 1 correspond to the existence principles underlying PPP, PPA, and PLS (recall
that PPAD and PPADS are special cases of PPP).

The proofs of ∃(x, x′)φ(x, x′) are done separately for each TFNP problem of interest, in Sections 4, 5, 6. Section 3.1
introduces the general approach taken in Sections 4, 5, 6 to construct those proofs. Section 3.2 presents Lemma 1 that shows
how to make a suitable proof of ¬∃(x, x′)φ(x, x′). Section 3.3 proves some technical results that show how circuit-generated
proofs of certain expressions can be constructed.

3.1. Overview of the reductions presented in Sections 4, 5, 6

In Sections 4, 5, 6, we consider computational problems Pigeonhole Circuit, Lonely, and Iter, which are complete for
PPAD, PPA, and PLS respectively. We reduce each of these problems to Wrong Proof.

Any instance of the problems Pigeonhole Circuit, Lonely, and Iter is defined in terms of a boolean circuit C . Section 3.2
begins with a general method to define a function f using the rules of Q-EFF, so that f is the function computed by C . We

4 To see this, note that for any problem X ∈ TFNP, any instance I of size n has a solution S I of size poly(n); solutions are checkable with a poly-time
algorithm A that takes candidate solutions as input and outputs “yes” iff A received a valid solution. A can be converted to a circuit and thence to a
propositional formula that is satisfied by inputs representing any valid solution S I of instance I along with extra propositional variables for gates of the
circuit.

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 175
derive from C an existential formula � = ∃(x, x′)φ(x, x′) in terms of f stating (correctly) that there is a solution associated
with the instance of the problem. We have noted that Section 3.2 shows how to “prove” ¬�. Sections 4, 5, 6 show how to
construct contrasting (and correct!) circuit-generated proofs of �. The approach to proving that � is satisfiable, is based on
a syntactic feature that assures us that it is, indeed, satisfiable. These syntactic features are different for the three problems
under consideration (which is why we have three different complexity classes), so we need three distinct reductions.

At this point we are ready to explain our usage of extension axioms (rules of type (13)) to define long sequences of new
n-ary boolean functions. In the context of Pigeonhole circuit, any instance I has an associated function f I : [2n] → [2n − 1],
and the search is for two inputs to f I that map to the same output. Call such a pair of inputs a “collision” for f I . We
reduce the search for a collision for f I to the search for a collision for a new function f ′

I : [2n − 1] → [2n − 2]. f ′
I is defined

in terms of f I using an extension-axiom line. We reduce this in turn to the search for a collision for a new function
f ′′
I : [2n − 2] → [2n − 3], and so on. With an exponential sequence of similar reductions (that can all be efficiently generated

via a circuit), we eventually reduce to the search for a collision of a function from {1, 2} to {1}, whose existence has a
simple (formal) proof. Lonely and Iter have similar sequences of functions.

Functions defined using rules of type (13) have the codomain {true, false}. f I can of course be defined in terms of n
n-ary functions that map to individual bits of the output of f I , as can each of the exponential sequence of functions that is
derived from it.

We have aimed to make the presentation as consistent as possible for the three reductions to Wrong Proof. The fol-
lowing presentational aspects are shared by the reductions. We let C denote a typical instance of a TFNP problem, since
the problem-instances we consider are represented as (boolean) circuits. �C denotes the corresponding instance of Wrong
Proof. We describe �C in terms of the lines of �C , as opposed to the circuit that generates it: for the exponential sequences
of lines that we define, we assume it is easy to check that they can be compactly represented using a circuit. f denotes
the function computed by C ; f is constructed using extension-axioms as described at the start of the next subsection. We
set a new function f2n equal to f . The reductions use sequences of well-formed expressions that appear in the instances of
Wrong Proof, that we denote Ai , Ci and Fi , for i ∈ [2n]. Fi is an extension-axiom line that defines new function f i−1 in
terms of f i . Ai asserts implicitly (or non-constructively) that an instance of a problem corresponding to function f i has a
guaranteed solution (due to a syntactic property of f i). Ci is an existential expression that asserts that same thing explicitly.
We end up proving C2n that states the existence of a solution, and C2n is equivalent to �. This contradicts the expression
¬� that is “proved” using Lemma 1.

We work through the formal steps for the first reduction (from Pigeonhole Circuit) in some detail (mainly in the
appendices), and do rather less detail on the formal steps for the reductions from Lonely and Iter.

3.2. Construction of functions from circuits, and a method for locating the errors in instances of Wrong Proof

Given a boolean circuit C with n input nodes, Q-EFF can define a function f that computes C as follows. Each gate g
of C has an associated n-ary function f g mapping the inputs to C to the value taken at g . We can construct f using a
sequence of extension-axiom rules (of type (13)), in which if, say, gate g is the AND of gates g′ and g′′ , then we add the
rule f g(x) ↔ f g′ (x) ∧ f g′′(x). If g is the j-th input gate, then f g is defined by f g(x) ↔ x j , where x j is the j-th component
of n-vector x.

Lemma 1. Suppose f is defined according to the above construction. Consider the expressions5

• ∃(x, x′)((x �= x′ ∧ f (x) = f (x′)) ∨ f (x) = x(0)),
• ∃(x, x′)(f (x(1)) �= x(1) ∨ (x �= x(1) ∧ f (x) = x) ∨ (x′ = f (x) ∧ x �= f (x′))),
• ∃(x, x′)(f (x(1)) = x(1) ∨ f (x) < x ∨ (x′ = f (x) ∧ f (x′) = f (x))).

We can efficiently construct circuit-generated proofs of the negations of these expressions in such a way that any error in the proof
allows us to efficiently construct (x, x′) satisfying the expression.

The expressions in the statement of Lemma 1 are the principles underlying PPP, PPA, and PLS, used in Theorems 1, 2, 3.
They are all satisfiable, so their negations are all false.

Proof. The negation of any of the above expressions takes the form ∀(x, x′)(φ(x, x′)), where φ performs some test on values
of x, x′ , f (x), and f (x′). For example, the negation of the first of these expressions is

∀(x, x′)¬
(
(x �= x′ ∧ f (x) = f (x′)) ∨ f (x) = x(0)

)
. (17)

We show how to construct a circuit-generated proof of (17) such that any error will identify a pair of n-vectors x, x′ whose
existence is claimed by the first of the three existential statements. The following approach applies also to the negations of
the other two existential expressions in the statement of this lemma.

5 Recall that x(0) and x(1) denote the all-zeroes bit-vector, and the bit vector corresponding to number 1.

176 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
Let M be the matrix of (17), i.e. the subexpression ¬((x �= x′ ∧ f (x) = f (x′)) ∨ f (x) = x(0)). We continue by giving a
method for proving the following stronger expression, from which (17) is derivable:

∀(x, x′)(C1 ∧ . . . ∧ Cm ∧ M) (18)

where Ci are clauses that construct the values of f (x), f (x′) by working through the values taken at the gates of the circuit;
the Ci are of the form f g(x) = f g′(x) ◦ f g′′(x) (for ◦ ∈ {∧, ∨}), or f g(x) = ¬ f g′ (x), or f g(x) = x j (in the case that g is the
j-th input gate). M is a boolean combination of expressions of the form f g(x) = f g′ (x′) or f g(x) �= f g′ (x′), for output gates
g, g′ , or of the form f g(x) = true/false.

Let φ′(x, x′) = C1 ∧ . . . ∧ Cm ∧ M , and for i ∈ [22n] let �′
i be the formula ∀(xx′ ≤ i)φ′(x, x′), where xx′ represents the

2n-digit number 2n(x − 1) + x′ . It can be formally proved that (18) is equivalent to �′
22n

; we omit the details. For each
i ∈ [22n], some line �i of the proof contains �′

i . We show below how to prove expressions of the form (xx′ = i) → φ′(x, x′),
which we then use to derive �′

i from �′
i−1 in conjunction with (xx′ = i) → φ′(x, x′). In particular we can derive �′

i−1 ∧
((xx′ = i) → φ′(x, x′)), equivalently ∀xx′((xx′ < i → φ′(x, x′)) ∧ (xx′ = i → φ′(x, x′))), equivalently ∀xx′((xx′ < i ∨ xx′ = i) →
φ′(x, x′)), equivalently (details in Section A.7), ∀xx′(xx′ ≤ i → φ′(x, x′)), which is the same as �′

i .

How to formally prove (xx′ = i) → φ′(x, x′):
For each gate g of C , in the order in which the functions f g are defined, we can prove a line saying

(xx′ = i) → f g(x) = jg(x)

where jg(x) ∈ {true, false} is the appropriate propositional constant. This is done by using the extension-axiom line that
defines f g , with gate g ’s inputs. (If say g takes inputs from g′ and g′′ , we use previous lines containing expressions (xx′ =
i) → f g′(x) = jg′ (x), (xx′ = i) → f g′′(x) = jg′′(x).)

Letting g(1), . . . , g(m) be the sequence of gates, listed in the order in which their functions f g(1), . . . , f g(m) are defined,
we have

(xx′ = i) →
∧
r∈[m]

(f g(r)(x) = jg(r)(x), f g(r)(x
′) = jg(r)(x

′))

It then suffices to prove(
(xx′ = i) ∧

∧
r∈[m]

(f g(r)(x) = jg(r)(x), f g(r)(x
′) = jg(r)(x

′))
)

→ M

which is a line of type (15), and can be proved by the procedure of plugging in the constants i, jg(r)(x), jg(r)(x′) in place
of the terms x, x′, f g(r)(x), f g(r)(x′) in the way described below Equation (15). An error in the proof will correspond to this
expression evaluating to false, and getting treated as true.

To conclude, note that we can construct a small circuit that on input i ∈ [22n], outputs the above proof of (xx′ = i) →
φ′(x, x′). The circuit can be extended to a concise proof of (17). �
3.3. Technical lemmas

The following results are useful for showing how to construct certain aspects of circuit-generated proofs, but can be
skipped at a first reading. Lemma 2 is a construction of a circuit-generated proof of ∀xφ(x) where φ is a propositional
formula (with no functions or quantifiers), thus the proof is error-free if and only if φ is a tautology. Corollary 1 is a similar
result for expressions ∃xφ(x), having error-free proofs if and only if φ is satisfiable. Lemmas 3 and 4 are used in the proofs
in the appendix; they show how to construct certain circuit-generated proofs involving more general subformulae (denoted
φ, ψ , ξ in Lemmas 3, 4).

Lemma 2. Let φ(x) be a propositional formula over n-vector x (where φ(x) may not contain function symbols). We can construct in
time polynomial in the size of φ , a circuit C that generates a proof � of ∀xφ(x) such that

• if φ is a tautology, then � is a valid proof, using the rules of Section 2.2,
• if φ is not a tautology, any error in � allows us to construct some x̂ for which ¬φ(x̂) holds.

Proof. Let �i be the formula ∀x ≤ i(φ(x)). It can be proved formally that �2n is equivalent to ∀xφ(x); we omit the details.
For each i ∈ [2n], � contains a line �i containing �i , which may be formally derived from �i−1 (itself located at a known

line �i−1 < �i) together with a line stating that i satisfies φ, which we give more detail on as follows.
Using rule (15) we can write a line containing the expression

(x = i) → φ(x).

(If i does not satisfy φ, this line is incorrect, and the error allows us to recover the value i that does not satisfy φ.)

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 177
By universal generalisation (rule (11)) we can deduce ∀x(x = i → φ(x)).
Applying conjunction introduction (rule (3)), we can deduce from this and �i−1 (recall that �i−1 = ∀x(x ≤ i −1 → φ(x))):

∀x(x ≤ i − 1 → φ(x)) ∧ ∀x(x = i → φ(x)).

Using rule (8) we get ∀x((x ≤ i − 1 → φ(x)) ∧ ((x = i) → φ(x))); using the equivalence A → B ≡ ¬A ∨ B , and distribution
of disjunction over conjunction we get ∀x((x ≤ i − 1 ∨ x = i) → φ(x)). Finally x ≤ i − 1 ∨ x = i can be manipulated further to
get x ≤ i (see Section A.7), from which we get �i . �
Corollary 1. Let � be a formula of the form ∃xφ(x), where x is a vector of propositional variables that constitute the free variables of
propositional formula φ . We can efficiently construct a circuit-generated proof � of ¬�, such that if φ is unsatisfiable (and thus ¬�

holds), then � has no errors, and if φ is satisfiable then � has at least one error, and given any error in � we can efficiently recover a
satisfying assignment of φ .

Corollary 1 follows by noting that ¬� is equivalent (by (14)) to ∀x(¬φ(x)). We then apply Lemma 2 to ¬φ(x). Corollary 1
is a general construction of a circuit-generated proof that a propositional formula φ is unsatisfiable: the proof is correct if
indeed φ is unsatisfiable, and from any error we can easily recover a satisfying assignment. The reader might briefly wonder
whether a similarly general circuit-generated proof should be constructible that φ is satisfiable. The answer is no (unless
NP=co-NP): such a result would provide unsatisfiable formulae with concise certificates (of unsatisfiability). In Sections 4, 5,
6 we give separate proofs of satisfiability that exploit structural properties of formulae corresponding to the syntactic TFNP
complexity classes of interest there.

Lemma 3. Suppose we have a circuit that takes as input i ∈ [2n], and outputs a proof of x = i → (φ(x) → ψ(x)), where x is a vector
of n propositional variables. Then we can efficiently construct a circuit-generated proof of ∀xφ(x) → ∀xψ(x).

Proof. Let �i be the proof of x = i → (φ(x) → ψ(x)), constructed by the circuit. We show how to construct a proof � of
∀xφ(x) → ∀xψ(x). � contains, for each i ∈ [2n], a copy of �i , containing at some line �i the expression x = i → (φ(x) →
ψ(x)).

Via a sequence of elementary manipulations we can derive from �i the following line �′
i (�i, �′

i are easily computable
from i; �′

i > �i > �′
i−1) containing the expression:

(x = i → φ(x)) → (x = i → ψ(x)).

Let � = ∀xφ(x) and � = ∀xψ(x), thus � should end with a line containing � → �.
Let �i = ∀x ≤ i(φ(x)) and �i = ∀x ≤ i(ψ(x)).
� contains a straightforward proof of �1 → �1 (at a line with number �′′

1) and for each i > 1, i ∈ [2n], a line with
number �′′

i > �′′
i−1 containing �i → �i , whose proof uses �′′

i−1 and �′
i .

Omitting details of the derivation, one may derive �i → �i , starting from �′′
i−1 containing �i−1 → �i−1 and �′

i , for all
i ∈ [2n], i ≥ 2. These derivations are then chained together to obtain a circuit-generated proof of �2n → �2n , which will be
seen to be equivalent to ∀xφ(x) → ∀xψ(x).

�2n → �2n is the expression ∀x(x ≤ 2n → φ(x)) → ∀x(x ≤ 2n → ψ(x)). The tautologous subexpression x ≤ 2n can be
replaced by true via further basic manipulations, then after using the equivalence (true → A) ≡ A, we end up with
∀xφ(x) → ∀xψ(x). �

We also use the following extension of Lemma 3.

Lemma 4. Suppose we have a circuit that takes as input i ∈ [2n] and proves φ(i) ∧ ψ(i) → ξ(i). Then we can use it to make a
circuit-generated proof of a statement of the form ∀xφ(x) ∧ ∃yψ(y) → ∃zξ(z).

Proof. We want to prove ∀xφ(x) ∧ ∃yψ(y) → ∃zξ(z), equivalently ∀x(∃y(φ(x) ∧ ψ(y))) → ∃zξ(z). At the beginning of Sec-
tion 2.3, we noted that it is possible to prove theorems of the form ∀x(A(x)) → A(t) where t is a vector of terms that is
plugged in for x in A, so we can prove the theorem

∀x(∃y(φ(x) ∧ ψ(y))) → ∃y(ψ(y) ∧ φ(y)).

Then it is sufficient to prove

∃y(ψ(y) ∧ φ(y)) → ∃zξ(z).

Equivalently,

∀z(¬ξ(z)) → ∀z(¬(ψ(z) ∧ φ(z))),

178 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
which can be done with a concise circuit-generated proof, using Lemma 3 and our assumption that we have a circuit that
can prove, for any z, ψ(z) ∧ φ(z) → ξ(z), which is equivalent to ¬ξ(z) → ¬(ψ(z) ∧ φ(z)). �
4. Reduction from PPP to WRONG PROOF

In this section we establish the following result:

Theorem 1. Any problem that belongs to the complexity class PPP (which includes PPAD and PPADS) is reducible to Wrong Proof
(with respect to our deductive system Q-EFF of Sections 2.1, 2.2).

The complexity class PPP is defined as the set of all problems reducible to the problem Pigeonhole Circuit, which is
informally described as follows: suppose we are given a boolean circuit having n bits of input and output. Suppose that no
input maps to the all-zeroes output. By the pigeonhole principle, there must be a collision, a pair of input vectors that map
to the same output. The problem is to find a collision. Notice that this problem is in NP, since a collision is easy to verify,
but finding one seems hard. We use the following definition of Pigeonhole Circuit.

Definition 3. An instance of Pigeonhole Circuit consists of a circuit C having n input bits and n output bits. A solution
consists of either a n-bit string that C maps to the all-zeroes string, or two n-bit strings that C maps to the same output
string.

Proof of Theorem 1. We reduce from Pigeonhole Circuit to Wrong Proof. Given an instance C of Pigeonhole Circuit
we need to construct (in time polynomial in the size of C) a circuit-generated proof �C (an exponentially-long, concisely-
represented formal proof containing a known contradiction) whose error(s) allow us to find solution(s) to C .

Recall that n-bit strings correspond with numbers in [2n] (2n being the all-zeroes string). We include in �C a function f :
[2n] → [2n], which we construct using Q-EFF according to the first paragraph of Section 3.2. The (2n into 2n − 1) pigeonhole
principle assures us that

∃(x, x′)
(
(x �= x′ ∧ f (x) = f (x′)) ∨ f (x) = 2n

)
(19)

Lemma 1 of Section 3.2 tells us how to generate a purported proof that (19) does not hold; the proof will be incorrect,
but from error(s) in that proof we can efficiently recover satisfying assignments of (x �= x′ ∧ f (x) = f (x′)) ∨ f (x) = 2n , which
in turn identify solutions to the original Pigeonhole Circuit problem C .

So the challenge is to write down a (correct) circuit-generated proof of (19). Let TC denote the formula of (19) (the
“target” formula to be proved, for given C). The proof of (19) has a known line containing TC , whose formal proof begins
as follows.

Let SC = ∃x(f (x) = 2n). Then using the case analysis rule (4), TC is inferable from SC → TC and ¬SC → TC . SC → TC is
straightforward; note that it is of the form:

∃xA(x) → ∃x, y(A(x) ∨ B(x, y))

In Section A.1 we show how to prove this using Q-EFF.
So, the main challenge that remains is to generate a proof of

¬SC → TC . (20)

We give the constructions of the formulae Ai , Ci , and Fi discussed in Section 3. Thus, Ai asserts a property of some
instance i that implies, non-constructively, the existence of a solution. Ci is the explicit existential statement of a solution’s
existence. Fi is an extension axiom of the form (13), defining the construction of function f i−1 in terms of f i .

For i ∈ [2n], i ≥ 2, let Ai be the sentence

∀x
(
x ≤ i → f i(x) ≤ i − 1

)
. (21)

Ai states that f i([i]) ⊆ [i − 1] (which implies, non-constructively, that f i has a collision in the range [i − 1]).
For i ∈ [2n], i ≥ 2, let Ci be the sentence

∃x �= x′(x ≤ i ∧ x′ ≤ i ∧ f i(x) = f i(x
′) ∧ f i(x) ≤ i − 1

)
. (22)

Ci states explicitly that f i has a collision in the range [i − 1], with the two colliding inputs in the range [i]. The pigeonhole
principle tells us that Ci should follow from Ai , and we will achieve this (i.e. derive Ci from Ai) using exponentially many
steps of a circuit-generated proof.

We include a sequence of extension-axiom lines—of type (13)—as follows. For i ∈ [2n], i ≥ 2, line �(Fi) contains expres-
sion Fi defining function f i−1 in terms of f i (see Fig. 1). We also use a special line �F—also an extension-axiom line of type

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 179
[i]

f i([i]) = [i − 1]

[i − 1]

f i−1([i − 1]) = [i − 2]

“naive” choice of f i−1(x) for x such that f i(x) = i − 1, is to set f i−1(x) to be some fixed value in [i − 2] (here, i − 2). We construct f i−1 as shown in
examples below.

f i f i−1

1 i

1 i − 1

1 i − 1

1 i − 2

1 i

1 i − 1

1 i − 1

1 i − 2

1 i

1 i − 1

1 i − 1

1 i − 2

1 i

1 i − 1

1 i − 1

1 i − 2

x x

Fig. 1. Construction of f i−1 from f i (re proof of Theorem 1), such that from f i(x) < i for all x ≤ i, we have f i−1(x) < i − 1 for all x ≤ i − 1. Dotted
lines represent evaluations of f i−1 on i, and we are just interested in f i−1 on the domain [i − 1]. Dashed lines are ones that have been “redirected” in
construction of f i−1.
The naive approach of setting f i to some value less than i, may create collisions for f i−1 for which we cannot reconstruct a collision for f i based on a
collision we found for f i−1.

(13)—that sets f2n equal to f : formally, �F contains the expression F := f2n (x) ↔ f (x). Section A.2 shows how to prove A2n

based on F together with ¬SC . For i ∈ [2n], i ≥ 2, Fi defines f i−1 as follows.

f i−1(x) ↔

⎧⎪⎨
⎪⎩

i − 2 if x < i ∧ f i(i) = i − 1∧ f i(x) = i − 1

f i(i) if x < i ∧ f i(i) < i − 1∧ f i(x) = i − 1

f i(x) otherwise. (i.e. x ≥ i ∨ f i(x) < i − 1)

(23)

Fi states that f i−1 is derived from f i as follows. f i−1 and f i are intended to satisfy Ai−1 and Ai respectively, and suppose
we know that f i satisfies Ai and want to construct f i−1 from f i in such a way that f i−1 satisfies Ai−1. (23) ensures that
for x ∈ [i − 1], f i−1(x) ∈ [i − 2]. If x ∈ [i − 1] is mapped by f i to i − 1, it is redirected to i − 2 if f i(i) = i − 1, and if f i(i) is

180 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
less than i − 1, it is redirected to f i(i). The construction is designed to allow us to reconstruct a collision for f i based on an explicit
statement of a collision for f i−1 . For that, it does not work to just take inputs that f i maps to i − 1, and let f i−1 send them
to i − 2; the more complicated rule of (23) seems necessary. The construction is related to the one of [11], that also sets
f i−1(x) to f i(i) whenever f i(x) = i − 1, but we have a different treatment of the case that f i(i) = i − 1, which allows us to
recurse all the way down to i = 2.

We define a sequence of lines of �C as follows. For all i ∈ [2n], i ≥ 3, we include lines �(Ai) (each line number �(Ai)

and its contents are efficiently computable from i), such that �(Ai) contains the expression:

�′(Ai), �
′′(Ai) � (Fi ∧ Ai) → Ai−1; (24)

�(Ai) states that if function f i−1 is constructed from f i according to formula Fi , and f i satisfies Ai , then f i−1 satisfies Ai−1.
�′(Ai) and �′′(Ai) contribute to a formal proof of the expression of �(Ai); all these lines are distinct. In Section A.3 we show
how to do this, hence proving f i([i]) ⊆ [i − 1] for all i ≥ 2, by backwards induction starting at f = f2n . Given all these lines
of type (24), together with a line containing ¬SC → A2n (proved in Section A.2), and the lines containing Fi , we can infer a
sequence of lines containing ¬SC → Ai , for all i ≥ 2.

�C contains a special line �(C2), saying that if we have A2, then C2 can be proved. C2 is the “obvious” statement that
f2, which maps both x(1) and x(2) to x(1) , has a collision. Line �(C2) is of the form

�′(C2) � A2 → C2; (25)

for some other special line �′(C2) used in a single self-contained proof of (25). �(C2) states that C2 can be deduced without
any further assumptions about f2. By construction, f2 maps both x(1) and x(2) to x(1) , so we know where to look for a
collision! In Section A.5 we show how to formally prove that f2 has this “obvious” collision.

For i ∈ [2n], i ≥ 3, we include lines �(Ci), (again, these line numbers and the lines themselves are efficiently computable
from i), where �(Ci) contains the expression

�′(Ci), �
′′(Ci) � (Ai ∧ Fi ∧ Ci−1) → Ci; (26)

�(Ci) states that if Ci−1 can be established, then given Fi and Ai we can deduce Ci (a collision for function f i) where �′(Ci)

and �′′(Ci) are some further lines used in the proof of (26). In Section A.4 we give some more detail on how to construct a
formal proof of (26) using Q-EFF.

Putting it all together, we noted earlier that we have a sequence of lines containing ¬SC → Ai , for i ∈ [2n], i ≥ 2. We also
know that C2 follows from A2 (25). We may use these, along with the lines �(Fi) that give us Fi , and the lines �(Ci) (i.e.
of the form (26)) to deduce (by repeated applications of modus ponens and conjunction introduction) ¬SC → C2n ; using �F

we get (20) as desired. This completes the construction of a formal proof according to the strategy outlined at the end of
Section 3. �
5. Reduction from PPA to WRONG PROOF

In this section we establish the following theorem:

Theorem 2. Any problem that belongs to the complexity class PPA is reducible toWrong Proof.

To prove Theorem 2, we make use of the problem Lonely (Definition 4), that was shown PPA-complete in Beame et
al. [1]. Suppose we represent an undirected graph on the set [2n] via a function f : [2n] → [2n] such that an edge {x, x′}
is present iff f (x) = x′ and f (x′) = x. Suppose that some given x̄ ∈ [2n] satisfies f (x̄) = x̄ (so, x̄ is a “lonely” vertex that
is unattached to any other). Since [2n] has an even number of elements, there must exist another unattached vertex. The
following formula captures this parity principle that if we have a finite set with an even number of elements, some of which
are paired off with each other, and we are shown an element that is not paired off, then there should exist another element
that is not paired off.

f (x̄) = x̄ → ∃x
(
x �= f (f (x)) ∨ (x �= x̄∧ x = f (x))

)
(27)

In the following definition, we let the bit string corresponding to the number 1, which we denote x(1) , be the special
element of [2n] — having the role of x̄ — that is mapped to itself.

Definition 4. The problem Lonely is defined as follows. Given a function f : [2n] → [2n] presented as a boolean circuit C
having n inputs and n outputs, find x �= x(1) such that either (a) f (x(1)) �= x(1) , or (b) f (x) = x, or (c) x �= f (f (x)).

It can be shown that this problem is PPA-complete by reduction from Leaf (the original PPA-complete problem of [30]);
using Lonely simplifies the reduction to Wrong Proof.

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 181
Proof of Theorem2. We reduce from Lonely to Wrong Proof. Let C be the circuit in an instance of Lonely. We may assume
C is syntactically constrained so that its function f satisfies f (x(1)) = x(1) and for all x, f (f (x)) = x: the problem of finding
x �= x(1) with f (x) = x remains PPA-complete.6

Given C , the circuit representing an instance of Lonely, we construct a Wrong Proof instance �C as follows. We start
by including in �C a construction of the function f computed by C as described at the start of Section 3.2.

Equation (28) is analogous to equation (19) in Theorem 1: it’s a formula involving a function f that is derived easily
from C , being plugged in to a combinatorial principle (here, the PPA principle) stating that some solution exists. Recall that
Lemma 1 explained how to construct a “proof” of the negation of (28), in such a way that any error in the proof lets us
reconstruct (x, x′) that satisfy it. �C contains that proof.

∃(x, x′)(f (x(1)) �= x(1) ∨ (x �= x(1) ∧ f (x) = x) ∨ (x′ = f (x) ∧ x �= f (x′)). (28)

Using our assumption that C has been syntactically constrained as described above, �C also proves (29), from which (28)
(unnegated) is derivable7:

∃(x, x′)(x �= x(1) ∧ f (x) = x) (29)

We introduce a sequence of functions f i , for even numbers i in the range 2 ≤ i ≤ 2n , where f2n = f , constructed as fol-
lows. f i represents an instance of Lonely on the domain [i]. f i−2 is derived from f i as follows (see Fig. 2 for an illustration):

1. If f i maps i and i − 1 to i and i − 1, then set f i−2(x) = f i(x) for all x.
2. If f i(i) = i and f i(i − 1) = y < i − 1 then set f i−2(y) = y; for other elements x of [i − 2], f i−2(x) = f i(x).
3. If f i(i − 1) = i − 1 and f i(i) = y < i − 1 then set f i−2(y) = y; for other elements x of [i − 2], f i−2(x) = f i(x).
4. If f i(i) = y < i − 1 and f i(i − 1) = y′ < i − 1, y′ �= y, then set f i−2(y) = y′ and f i−2(y′) = y and for x �= y, y′ , set

f i−2(x) = f i(x).

We do not have to consider a case where f i(i) = f i(i −1): it does not arise due to our assumption that f (f (x)) = x for all x.
For even numbers i ∈ [2n], let Ai be the sentence

(f i(x
(1)) = x(1)) ∧ ∀x, x′ ≤ i

(
f i(x) ≤ i ∧ (f i(x) = x′ → f i(x

′) = x)
)

(30)

Ai states that f i is a valid instance of Lonely on domain [i]. Analogously with (21), this is an implicit, or non-constructive
statement that f i has a fixpoint in {2, . . . , i}.

Similar to (23), for even numbers i < 2n we include an extension-axiom line (of type (13)) with line number �(Fi)
containing Fi given as in (31). Fi defines f i−2 in terms of f i . As in Theorem 1 we also use a special line �F—also an
extension-axiom line of type (13)—that sets f2n equal to f : formally, �F contains the expression F := f2n (x) ↔ f (x).

f i−2(x) ↔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f i(i) if f i(i − 1) = i − 1∧ f i(i) < i − 1∧ x = f i(i)

f i(i − 1) if f i(i) = i ∧ f i(i − 1) < i − 1∧ x = f i(i − 1)

f i(i) if f i(i) < i − 1∧ f i(i − 1) < i − 1∧ x = f i(i − 1)

f i(i − 1) if f i(i) < i − 1∧ f i(i − 1) < i − 1∧ x = f i(i)

f i(x) otherwise. (i.e. x �= f i(i), f i(i − 1).)

(31)

Similar to (22), for even numbers i ∈ [2n], let Ci be the sentence

∃x ≤ i
(
x �= x(1) ∧ f i(x) = x

)
(32)

Ci states that the Lonely instance associated with f i restricted to domain [i] has a solution. It remains for us to construct
a circuit-generated formal proof of C2n .

We proceed in a similar way as previously, omitting details of the application of the inference rules. f is constructed so
as to satisfy A2n , and using our proof system, it can be shown that

1. A2n holds. A2n is a universally quantified sentence that has a circuit-generated proof using the technique of Lemma 1,
that checks all possible values of the quantified variables in A2n . By our assumption that C has been modified so that
f (x(1)) = x(1) and f (f (x)) = x for all x, this proof will be correct.

6 We can take an unrestricted circuit C and modify it (without excessive increase in size) such that these conditions are met, and a solution for the
modified circuit (call it C ′) yields a solution to C . C ′ should map x(1) to itself, and for any x �= x(1) , it should check whether f (f (x)) �= x, if so, map x to
itself, rather than to f (x).
7 An alternative approach would be to note that the technique of Lemma 1 applies directly to (29).

182 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
Fig. 2. Construction of f i−2 from f i (re proof of Theorem 2).

2. for 4 ≤ i ≤ 2n , Ai−2 is derivable from Ai and Fi , i.e. Ai ∧ Fi → Ai−2.
3. C2 follows from A2, i.e. A2 → C2,
4. for 4 ≤ i ≤ 2n , Ci is derivable from Fi and Ci−2, i.e. Fi ∧ Ci−2 → Ci . (We do not seem to need Ai here, in contrast with

Theorem 1, where we proved Ai ∧ Fi ∧ Ci−1 → Ci .)

Finally, (29) is the same as C2n .
We omit the details of item (2).
To prove item (3), note that A2 is the expression

(f2(x
(1)) = x(1)) ∧ ∀x, x′ ≤ x(2)(f2(x) ≤ x(2) ∧ (f2(x) = x′ → f2(x

′) = x))

C2 is the expression

∃x ≤ x(2)(x �= x(1) ∧ f2(x) = x)

A2 is equivalent to a version where the quantifier appears at the front; then as noted in Section 2.3, we can prove the
following theorem, saying that A2 implies a version where x(2) and x(1) have been plugged in for x and x′:

A2 → (f2(x
(1)) = x(1)) ∧ f2(x

(2)) ≤ x(2) ∧ (f2(x
(2)) = x(1) → f2(x

(1)) = x(2))

Letting R denote the right-hand side of this, we can separately prove R → x(2) �= x(1) ∧ f2(x(2)) = x(2) . Using the rules in
Section 2.3, we can write x(2) �= x(1) ∧ f2(x(2)) = x(2) → C2. Finally, we can deduce A2 → C2 by a sequence of applications
of the hypothetical syllogism rule.

The proof of item (4) above proceeds by case analysis (4) on values of f i(i) and f i(i − 1). We give some details on two
of the cases. The expression Fi ∧ Ci−2 → Ci that we aim to prove, can be written as (renaming bound variables):

Fi ∧ ∃y ≤ i − 2(y �= x(1) ∧ f i−2(y) = y) → ∃z ≤ i(z �= x(1) ∧ f i(z) = z)

In the case that f i(i − 1) = i and f i(i) = i − 1, or indeed where f i(i − 1) = i − 1 and f i(i) = i, Fi simplifies to ∀x(f i−2(x) =
f i(x)), and so it suffices to prove

∀x(f i−2(x) = f i(x)) ∧ ∃y ≤ i − 2(y �= x(1) ∧ f i−2(y) = y) → ∃z ≤ i(z �= x(1) ∧ f i(z) = z),

which can be proved using Lemma 4.
Consider the case that f i(i) = i and f i(i − 1) = y < i − 1. From this and Fi it follows that

∀x ≤ i

⎧⎪⎨
⎪⎩

f i(x) �= f i(i − 1) → f i−2(x) = f i(x)

f i−2(i) = f i(i)

f (x) = f (i − 1) → f (x) = f (x)

(33)
i i i−2 i

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 183
We want to prove

(33)∧ ∃y ≤ i − 2(y �= x(1) ∧ f i−2(y) = y) → ∃z ≤ i(z �= x(1) ∧ f i(z) = z)

and the right-hand side follows by putting z = i.
In the case that f i(i) = y < i −1, f i(y) = i, f i(i −1) = y′ < i −1, f i(y′) = i −1, the element of [i −2] that is said to exist

by Ci−2 is the one that we use to satisfy the matrix of Ci . �
6. Reduction from PLS to WRONG PROOF

In this section we establish the following theorem:

Theorem 3. Any problem that belongs to the complexity class PLS is reducible toWrong Proof.

To prove this, we make use of the problem Iter (Definition 5), shown PLS-complete by Morioka [29] (Section 3.2).
Equation (34) captures the iteration principle [9], that if f : {0, . . . , N} → {0, . . . , N} maps 0 to a positive number, and any
number i to a number at least as large as i, then there exists x such that f (x) > x and f (f (x)) = f (x). Notice that such an
x can be found by following the sequence 0, f (0), f (f (0)), . . . and taking the number that occurs just before the fixpoint of
f .

0 < f (0) ∧ ∀x(x ≤ f (x)) → ∃x(x < f (x) ∧ f (f (x)) = f (x)) (34)

In our context we apply the principle to the numbers in [2n] as before, so our definition uses 1 as the smallest number
rather than 0, and recall x(1) is the bit-string representing 1.

Definition 5. The problem Iter is defined as follows. Given a function f : [2n] → [2n] presented as a boolean circuit having
n inputs and n outputs, find x such that either (a) f (x(1)) = x(1) , or (b) f (x) < x, or (c) x < f (x) and f (f (x)) = f (x).

Proof of Theorem 3. Given the circuit C that defines an instance of Iter, we construct an instance �C of Wrong Proof as
follows. As before, �C constructs the function f computed by C as described at the start of Section 3.2. ((35) corresponds
to (19) in Theorem 1). C has corresponding formula (35) that is satisfiable by some pair (x, x′) due to the iteration principle.

∃(x, x′)
(
f (x(1)) = x(1) ∨ f (x) < x∨ (x′ = f (x) ∧ f (x′) = f (x))

)
(35)

As in the two previous theorems, �C contains a proof of the negation of (35) constructed according to Lemma 1 of
Section 3.2. It remains to devise a correct (circuit-generated) proof that (35) holds, which can be incorporated into �C .

We introduce functions f i : [i] → [i] for i ∈ [2n], i ≥ 2, and set f2n = f . f i−1 is derived from f i according to (36); it can
be seen that f i is like f but with a ceiling of i imposed on the value it can take, i.e. f i(x) = min{i, f (x)}. Let Fi be the
following extension-axiom expression that defines f i−1 in terms of f i , thus taking any number that maps to i, and mapping
it to i − 1 instead:

f i−1(x) ↔
{

i − 1 if f i(x) = i

f i(x) otherwise. (i.e. x > i ∨ f i(x) < i)
(36)

One could alternatively define f i−1 directly from f2n :

f i−1(x) ↔
{

i − 1 if f2n(x) ≥ i

f2n(x) otherwise. (i.e. x > i ∨ f i(x) < i)

For i ∈ [2n], i ≥ 2, let Ai be the sentence

(f i(x
(1)) > x(1)) ∧ ∀x ≤ i(f i(x) ≥ x∧ f i(x) ≤ i)

Ai states that f i obeys the iteration principle for the domain and codomain [i] (hence some number x ≤ i should be a
fixpoint of f i). As before, this statement of existence of such a fixpoint is implicit, not explicit.

For i ∈ [2n], i ≥ 2, let Ci be the sentence

∃x, x′ ≤ i
(
f i(x) > x∧ x′ = f i(x) ∧ f i(x

′) = f i(x)
)

Ci states explicitly that f i has a fixpoint in [i].
We proceed in a similar way to Theorems 1, 2, omitting details of the sequence of steps of the formal proof. Using our

proof system, it can be shown that

184 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
1. for i ∈ [2n], i ≥ 2, (Ai ∧ Fi) → Ai−1,
2. A2 → C2,
3. for i ∈ [2n], i ≥ 2, (Ai ∧ Fi ∧ Ci−1) → Ci .

To prove item (1), we use Lemma 3. (Ai ∧ Fi) is equivalent to (using the distributive rule for the universal quantifier (8)):

∀x ≤ i (f i(x(1)) = x(1) ∧ f i(x) ≥ x∧ f i(x) ≤ i ∧
(f i(x) < i → f i−1(x) = f i(x)) ∧ (f i(x) = i → f i−1(x) = i − 1))

Ai−1 is equivalent to ∀x(f i−1(x(1)) > x(1) ∧ x ≤ i − 1 → (f i−1(x) ≥ x ∧ f i−1(x) ≤ i − 1)). For any value of x, the matrix of
this is efficiently derivable from the matrix of the expression for (Ai ∧ Fi), so Lemma 3 can be applied.

To prove item (2), the expression A2 → C2, we have

C2 = ∃x < x(2), x′ ≤ x(2)
(
f1(x) > x∧ x′ = f1(x) ∧ f1(x

′) = f1(x)
)

A2 = f2(x
(1)) > x(1) ∧ ∀x ≤ x(2)(f2(x) ≥ x∧ f2(x) ≤ x(2))

The proof of A2 → C2 is similar to the one for the corresponding expression in Theorem 2, and we omit the details.
For item (3) above, Ci−1 identifies x < i − 1 that f i−1 maps to a fixpoint x′ of f i−1. To identify a solution for f i we

proceed by case analysis, rule (4). If x′ < i − 1 then (based on the way Fi constructs f i−1 from f i) we can deduce that
x must be a solution of f i (in that f i(x) = x′ and f i(x′) = x′). If x′ = i − 1 then we proceed by case analysis according to
whether f i(x) = i − 1 (in which case x is a solution of f i), and the alternative is f i(x) = i, in which case, since we know
from Ai that f i(i) = i, x continues to be a solution for f i . �
7. Finitary existential sentences and TFNP

To end on a different note, let us look back at the five classes: All five correspond to elementary combinatorial existence
arguments (such as “every dag has a sink”, recall the five bullets in the Introduction). Importantly, all five combinatorial
existence arguments yielding complexity classes are finitary: They are true of finite structures and not true of all infinite
structures. Is this a coincidence? Can there be an interesting complexity subclass of TFNP defined in terms of an existence
argument that is not finitary, but is true of all structures, finite and infinite?

Seen as sentences in logic, these combinatorial arguments are statements of the form “for all finite structures (such as
topologically sorted dags) there exists an element (a node) that satisfies a property (has no outgoing edges).” The corre-
sponding logical expression is a sentence ∃x̄�(x̄) in predicate logic, involving a set of existentially quantified variables x̄ and
an expression � with any number of other variables, as well as function symbols capturing structures such as undirected
and directed graphs, pigeonhole functions, or total orders and potential functions. The “for all finite structures” quantifica-
tion is implicit in the requirement that the sentence ∃x̄�(x̄) be valid on finite structures.

And conversely, it is easy to see any such sentence yields a problem Find Witness� in TFNP (and consequently a com-
plexity class, through reductions). Find Witness� is defined as follows: “Given a finite structure for �, where the finite
universe can be assumed to be an initial segment of the nonnegative integers and the structures are presented implicitly
through circuits computing the functions of � on elements of the universe encoded in binary, find a tuple x̂ of integers that
satisfy �.”

We can now formulate the question in the section’s opening paragraph in logic terms: All five sentences � corresponding
to the five known complexity subclasses of TFNP are of course true in any finite model, but all of them happen to be false
for some infinite models (for example, “every dag has a sink” fails for the totally ordered integers). Is this necessary? Can
there be an interesting subclass of TFNP based on a valid sentence ∃x̄�(x̄), that is, one that is true of all models, finite or infinite?

Employing an ancient theorem in Logic due to Jacques Herbrand [17] (1930) one can show that the answer is negative:

Observation 1. For any valid sentence in predicate logic of the form ∃x̄�(x̄), the corresponding problem Find Witness� can be solved
in polynomial time.

This result, and its proof which we omit, are closely related to the dichotomy of the resolution complexity of sequences
of propositional tautologies encoding combinatorial principles obtained by Riis in 1999 [34].

8. Discussion

We have defined PTFNP, a subclass of the total function problems with NP verification of witnesses, which we see as
a “syntactic” (in the sense of having complete problems) approximation of TFNP. We showed that PTFNP contains the five
known classes PPP, PPA, PPAD, PPADS, and PLS, and noted that via earlier results in Bounded Arithmetic, it also contains
various other NP total search problems of interest. Alternative versions of PTFNP can be defined, associated with the formal
theory used in concisely-represented proofs associated with PTFNP.

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 185
While the present results are implicit in recent work in Bounded Arithmetic, our system Q-EFF is of interest since it
seems to allow more direct reductions. It may be of interest to see whether our reductions can be modified straightforwardly
to use Frege, or extended Frege theories, as indicated should be possible, by [3]. We also highlight the general topic of using
more powerful logic to define more expressive versions of the Wrong Proof problem, and whether new TFNP problems can
be defined as a result. The topic of more powerful systems raises a general question of whether we reach a limit where
no further TFNP problems can be expressed. This relates to the open problem in propositional proof complexity of whether
there’s a most powerful proof system, for which the answer is believed to be negative.

In that regard, Q-EFF is actually a rather powerful proof system, and it is natural to conjecture it is stronger than ex-
tended Frege. This is of course an open question however, since extended Frege may already have polynomial size proofs of
tautologies! It can be seen8 that the function extension axioms allow the introduction of function symbols for all exponen-
tial time computable functions. To prove this, fix an alternating polynomial space Turing machine M , and let the function
f s(w) express that “w is a configuration for M that leads to acceptance within s steps” (where w is a vector of variables).
Then f s(w) can be defined in terms of f s−1(·), namely by a polynomial size formula using f s−1(·). The proof system is
powerful enough to concatenate exponentially many definitions so that, letting wx , be the initial configuration with input x,
f s(wx) with s exponentially bounded by |wx| defines the acceptance of M(x). In contrast, Frege systems reason about NC1

properties, and extended Frege about P properties.

Acknowledgments

Many thanks to the “PPAD-like classes reading group” at the Simons Institute during the Fall 2015 program on Economics
and Computation for many fascinating interactions, and to Sam Buss and Pavel Pudlák for an inspiring lunch conversation in
November 2015. We also thank Arnold Beckmann and Sam Buss for helpful comments on earlier versions of this paper, also
the journal referees for further details on the related literature on Bounded Arithmetic, and the pointer to Riis’ paper [34].
Thanks also to the organisers of the 2015 “Algorithmic Perspective in Economics and Physics” research program at the
Centre de Recerca Matemàtica (CRM), Barcelona, where this research was initiated. This work was supported by NSF grant
CCF-1408635.

Appendix A. Some formal proofs and expressions

A.1. Proof of SC → TC (from proof of Theorem 1)

We noted that SC → TC is of the form:

∃xA(x) → ∃x, y(A(x) ∨ B(x, y))

which is proved as follows. Using the distributive rule for quantifiers (8) this is equivalent to

∃xA(x) → ∃xA(x) ∨ ∃x, yB(x, y). (37)

Rule (1) of Q-EFF lets us write down lines containing � A → A for any well-formed formula A, so we can write

¬∃xA(x) → ¬∃xA(x)

The antecedent strengthening rule (6) lets us deduce

(¬∃xA(x) ∧ ¬∃x, yB(x, y)) → ¬∃xA(x)

Applying the rule of replacement A → B ≡ ¬B → ¬A, we have

∃xA(x) → ¬(¬∃xA(x) ∧ ¬∃x, yB(x, y))

which (applying ¬(A ∧ B) ≡ ¬A ∨ ¬B , and removal of double negation) is equivalent to (37).

A.2. Proof of ¬SC → A2n (from proof of Theorem 1)

We want to prove ¬SC → A2n , and noting that ¬SC is equivalent to ∀x(f (x) �= 2n), this is:

∀x(f (x) �= 2n) → ∀x(x ≤ 2n → f2n(x) ≤ 2n − 1).

Let F be the expression ∀x(f2n (x) = f (x)), which we have as an extension axiom. So we would like to prove

8 We thank one of the journal referees for pointing this out.

186 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
F → (¬SC → A2n)

which using modus ponens in conjunction with F would yield the desired result ¬SC → A2n . Equivalently, aim to prove
(F ∧ ¬SC) → A2n , i.e.

(∀x(f2n (x) = f (x)) ∧ ∀x(f (x) �= 2n)) → A2n

i.e. by (8)

∀x(f2n (x) = f (x) ∧ f (x) �= 2n) → A2n

where A2n is ∀x(x ≤ 2n → f2n (x) ≤ 2n − 1).
By Lemma 3 it suffices to show that we can construct a polynomial-size circuit that takes i ∈ [2n] as input, and outputs

a proof of

(x = i) →
(
(f2n(x) = f (x) ∧ f (x) �= 2n)) → (x ≤ 2n → f2n (x) ≤ 2n − 1)

)
The right-hand side of this expression (i.e., omitting the initial “(x = i) →”), can be seen to be a tautology over the 3n
propositional variables x, f (x), and f2n (x), and can be proved to be equivalent to true.

A.3. Proof of lines (24) from Theorem 1: Fi ∧ Ai → Ai−1

We show how to formally prove (Fi ∧ Ai) → Ai−1. Writing out this expression in full (we use line breaks and indentation
indicate the priority of connectives in the expression, so the left-hand “→” symbol has lowest priority), we have (38), where
Fi appears in the first three lines of (38), and Ai and Ai−1 appear in the fourth and fifth lines respectively.

∀x((x < i ∧ f i(i) = i − 1∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧ ∀x((x < i ∧ f i(i) < i − 1∧ f i(x) = i − 1) → f i−1(x) = f i(i))

∧ ∀x((x ≥ i ∨ f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∀x(x ≤ i → f i(x) ≤ i − 1)

→ ∀x(x ≤ i − 1 → f i−1(x) ≤ i − 2)

(38)

We show that (38) is derivable via the proof system Q-EFF of Section 2.2. Applying the case analysis rule (4) with
B = f i(i) = i − 1, (38) is derivable from the following two statements (the contents of lines �′(Ai) and �′′(Ai) that are
referred-to in (24) and discussed below (24)):

f i(i) = i − 1 → (38) (39)

f i(i) �= i − 1 → (38) (40)

We omit the proof of (40), which is similar to the proof of (39); we focus on the details of the proof of (39).
Using the identity A → (B → C) ≡ (A ∧ B) → C , (39) is equivalent to:

f i(i) = i − 1

∧ ∀x((x < i ∧ f i(i) = i − 1∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧ ∀x((x < i ∧ f i(i) < i − 1∧ f i(x) = i − 1) → f i−1(x) = f i(i))

∧ ∀x((x ≥ i ∨ f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∀x(x ≤ i → f i(x) ≤ i − 1)

→ ∀x(x ≤ i − 1 → f i−1(x) ≤ i − 2)

(41)

Using the antecedent strengthening rule (6), (41) is inferable from the following expression, in which the third line of
(41) has been omitted:

f i(i) = i − 1

∧ ∀x((x < i ∧ f i(i) = i − 1∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧ ∀x((x ≥ i ∨ f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∀x(x ≤ i → f i(x) ≤ i − 1)

→ ∀x(x ≤ i − 1 → f (x) ≤ i − 2)

(42)
i−1

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 187
By rule (9) (bringing a quantifier to the front) and simple manipulations, this is equivalent to the following expression
in which the second line omits the subexpressions f i(i) = i − 1:

f i(i) = i − 1

∧ ∀x((x < i ∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧ ∀x((x ≥ i ∨ f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∀x(x ≤ i → f i(x) ≤ i − 1)

→ ∀x(x ≤ i − 1 → f i−1(x) ≤ i − 2)

(43)

Equivalently (splitting the third line into two):

f i(i) = i − 1

∧ ∀x((x < i ∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧ ∀x(x ≥ i → f i−1(x) = f i(x))

∧ ∀x(f i(x) < i − 1 → f i−1(x) = f i(x))

∧ ∀x(x ≤ i → f i(x) ≤ i − 1)

→ ∀x(x ≤ i − 1 → f i−1(x) ≤ i − 2)

(44)

The above is derivable from the following (obtained by dropping the first and third lines, i.e. strengthening the an-
tecedent):

∀x((x < i ∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧ ∀x(f i(x) < i − 1 → f i−1(x) = f i(x))

∧ ∀x(x ≤ i → f i(x) ≤ i − 1)

→ ∀x(x ≤ i − 1 → f i−1(x) ≤ i − 2)

(45)

By the distributive rule for quantifiers (8) this is equivalent to:

∀x [((x < i ∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧(f i(x) < i − 1 → f i−1(x) = f i(x))

∧(x ≤ i → f i(x) ≤ i − 1)]
→ ∀x(x ≤ i − 1 → f i−1(x) ≤ i − 2)

(46)

Lemma 3 implies that the above follows if we prove for all j (restating Lemma 3 with j instead of i, to avoid a clash
with the i being used in the current context):

(x = j) → [((x < i ∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧(f i(x) < i − 1 → f i−1(x) = f i(x))

∧(x ≤ i → f i(x) ≤ i − 1)]
→ (x ≤ i − 1 → f i−1(x) ≤ i − 2)

(47)

It can be checked that the right-hand side of (47), i.e. omitting the “(x = j) →”, is (for all i) a tautology over the vectors
of propositional variables x, f i(x), and f i−1(x). This can be proved by a sequence of basic manipulations, but it’s convenient
to apply Lemma 2. This is done as follows. Suppose we take the right-hand side of (47), replace f i(x) and f i−1(x) with
vectors of new variables y and z respectively, so we get the expression

[((x < i ∧ y = i − 1) → z = i − 2)

∧ (y < i − 1 → z = y)

∧ (x ≤ i → y ≤ i − 1)]
→ (x ≤ i − 1 → z ≤ i − 2)

(48)

Given that this is a tautology over x, y, z, using Lemma 2 we write down a circuit-generated proof of a version of (48) that
is preceded with ∀x, y, z. Then we can apply the universal instantiation rule (10) to replace y and z with f i(x) and f i−1(x).

188 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
A.4. Proof of lines (26) from Theorem 1: Ai ∧ Fi ∧ Ci−1 → Ci

Lines of type (26) contain formulae of the form Ai ∧ Fi ∧ Ci−1 → Ci , and (49) is such a line when written out in full. We
give an overview of how to formally prove (49) without going into quite as much detail of individual formal steps as we
did in Section A.3.

By way of some intuition, the first line of (49) contains Ai , saying that f i maps elements of [i] to elements of [i − 1].
Implicit in that is the bottom line of (49), that states explicitly that two elements z and z′ of [i] are mapped to the same
element of [i −1]. Fi , which defines how f i−1 is derived from f i , appears in the second, third, and fourth lines of (49). Ci−1

is given in the fifth line, and is an explicit statement of the collision for f i−1: y and y′ denote the colliding elements. Since
we now have, in y and y′ , two identifiers or handles, for the colliding elements for f i−1, it becomes possible to express z
and z′ in terms of y and y′ , in such a way that they provably satisfy the bottom line.

∀x ≤ i(f i(x) ≤ i − 1)

∧ ∀x((x < i ∧ f i(i) = i − 1∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧ ∀x((x < i ∧ f i(i) < i − 1∧ f i(x) = i − 1) → f i−1(x) = f i(i))

∧ ∀x((x ≥ i ∨ f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∃y �= y′(y ≤ i − 1∧ y′ ≤ i − 1∧ f i−1(y) = f i−1(y′) ∧ f i−1(y) ≤ i − 2)

→ ∃z �= z′(z ≤ i ∧ z′ ≤ i ∧ f i(z) = f i(z′) ∧ f i(z) ≤ i − 1)

(49)

We begin with a slight simplification, motivated by the observation that the colliding elements z and z′ that we are
looking for, are supposed to occur in the range [i]. We can remove the subexpression “x ≥ i∨” from the fourth line to obtain
the expression (50), which is stronger than (49) in the sense that (49) can be seen to be formally derivable from (50).

∀x ≤ i(f i(x) ≤ i − 1)

∧ ∀x((x < i ∧ f i(i) = i − 1∧ f i(x) = i − 1) → f i−1(x) = i − 2)

∧ ∀x((x < i ∧ f i(i) < i − 1∧ f i(x) = i − 1) → f i−1(x) = f i(i))

∧ ∀x((f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∃y �= y′(y ≤ i − 1∧ y′ ≤ i − 1∧ f i−1(y) = f i−1(y′) ∧ f i−1(y) ≤ i − 2)

→ ∃z �= z′(z ≤ i ∧ z′ ≤ i ∧ f i(z) = f i(z′) ∧ f i(z) ≤ i − 1)

(50)

We proceed by case analysis (4) according to whether or not we have f i(i) = i −1. Thus we want to prove f i(i) = i −1 →
(50) and f i(i) < i − 1 → (50). We do not need to consider the case f i(i) > i − 1 → (50) since that case is ruled out by the
first line of (50) that contains Ai (i.e. ∀x ≤ i(f i(x) ≤ i − 1)).

f i(i) = i − 1 → (50) is equivalent to (after simplifying by removing the third line of (50), that assumes f i(i) < i − 1):

∀x ≤ i(f i(x) ≤ i − 1)

∧ f i(i) = i − 1

∧ ∀x ≤ i − 1(f i(x) = i − 1 → f i−1(x) = i − 2)

∧ ∀x((f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∃y �= y′(y ≤ i − 1∧ y′ ≤ i − 1∧ f i−1(y) = f i−1(y′) ∧ f i−1(y) ≤ i − 2)

→ ∃z �= z′(z ≤ i ∧ z′ ≤ i ∧ f i(z) = f i(z′) ∧ f i(z) ≤ i − 1)

(51)

We prove (51) using another application of case analysis, this time according to whether or not we have ∃w < i(f i(w) =
i −1). In the case that ∃w < i(f i(w) = i −1), the bottom line of (51) follows from this and the rest of (51) by taking z = i and
z′ = w . (See Fig. 3, first example.) In the case of ¬∃w < i(f i(w) = i −1)—which can be rewritten as ∀x < i(f i(x) �= i −1)—we
derive the bottom line from this and the rest of (51) by taking z = y and z′ = y′ (the y and y′ asserted to exist in the
penultimate line). (We do this case in more detail in Section A.6.)

f i(i) < i − 1 → (50) is equivalent to

∀x ≤ i(f i(x) ≤ i − 1)

∧ f i(i) < i − 1

∧ ∀x ≤ i − 1(f i(x) = i − 1 → f i−1(x) = f i(i))

∧ ∀x((f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∃y �= y′(y ≤ i − 1∧ y′ ≤ i − 1∧ f i−1(y) = f i−1(y′) ∧ f i−1(y) ≤ i − 2)

→ ∃z �= z′(z ≤ i ∧ z′ ≤ i ∧ f (z) = f (z′) ∧ f (z) ≤ i − 1)

(52)
i i i

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 189
Fig. 3. Illustration re proofs of (51), (52).

We prove (52) using another application of case analysis, again according to whether or not we have ∃w < i(f i(w) =
i − 1). Here we have to refine the case analysis further, according to whether w is unique: formally whether we have
∃w �= w ′(w, w ′ < i ∧ f i(w) = i − 1 ∧ f i(w ′ = i − 1)). (See Fig. 3, second and third examples.) If so, w and w ′ can be used
for z and z′ in the bottom line of (52). If not, it should be inferable that the x and x′ that collide for f i−1 also collide for f i .
If we have ¬∃w < i(f i(w) = i − 1), then it should also follow that the x and x′ that collide for f i−1 also collide for f i .

As a final note, an alternative approach to the case analysis to proving (50) in the case where f i(i) = i − 1, would be
by further case analysis on y, y′: consider a case where y and y′ satisfy f i−1(y) = f i−1(y′) < i − 2 (in which case, choose
z = y, z′ = y′). In the alternative case of f i−1(y) = f i−1(y′) = i − 2, if f i(y) = i − 1 then f i(y) = f i(i)—choose z = y, z′ = i.
Similarly if f i(y′) = i − 1 then f i(y′) = f i(i)—choose z = y′, z′ = i.

A.5. Proof of line (25) from Theorem 1: the formula A2 → C2

Recall that x(0) denotes the n-vector (0, . . . , 0), x(1) denotes the n-vector (0, . . . , 0, 1), and x(2) denotes the n-vector
(0, . . . , 0, 1, 0). Thus x = x(2) is an abbreviation for x1 = x2 = . . . = xn−2 = false; xn−1 ∨ xn; ¬(xn−1 ∧ xn).

Using rule (1), which allows us to write down A → A for any well-formed expression A, we can write

� A2 → A2

where recall A2 is the expression ∀x(x ≤ x(2) → f2(x) ≤ x(1)).
Rename x to x̄ in the right-hand occurrence of A2, and bringing the quantifier to the front, we can deduce

∀x̄(A2 → (x̄ ≤ x(2) → f2(x̄) ≤ x(1)))

Using universal instantiation (rule (10)), plugging in x(1) for x̄ and then plugging in x(2) for x̄ we can write down two
lines containing the following expressions:

A2 → (x(1) ≤ x(2) → f2(x
(1)) ≤ x(1))

A2 → (x(2) ≤ x(2) → f2(x
(2)) ≤ x(1))

We can simplify these two expressions since x(1) ≤ x(2) and x(2) ≤ x(2) both evaluate to true (using basic rules of replace-
ment), to get

A2 → (f2(x
(1)) ≤ x(1))

A2 → (f2(x
(2)) ≤ x(1))

Then via conjunction introduction and A → (B ∧ C) ≡ (A → B) ∧ (A → C), we have

A2 → ((f2(x
(1)) ≤ x(1)) ∧ (f2(x

(2)) ≤ x(1)))

190 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
The right-hand side of the above can be shown to imply that f2(x(1)) = f2(x(2)), so we can combine with the above to write
down

A2 → ((f2(x
(1)) ≤ x(1)) ∧ (f2(x

(2)) ≤ x(1)) ∧ f2(x
(1)) = f2(x

(2))).

Insert into the RHS the expressions x(1) ≤ x(2) and x(2) ≤ x(2) .
Use existential generalisation rule (12) twice (replacing occurrences of the constants x(1) and x(2) with existentially

quantified variables x and x′). Push the existential quantifier into the RHS of the expression (using (9)), and we end up with
the desired A2 → C2.

A.6. Further details on the proof of (51)

Equation (51), in the case ∀x < i(f i(x) �= i − 1), is equivalent to

∀x ≤ i(f i(x) ≤ i − 2)

∧ f i(i) = i − 1

∧ ∀x((f i(x) < i − 1) → f i−1(x) = f i(x))

∧ ∃y �= y′(y ≤ i − 1∧ y′ ≤ i − 1∧ f i−1(y) = f i−1(y′) ∧ f i−1(y) ≤ i − 2)

→ ∃z �= z′(z ≤ i ∧ z′ ≤ i ∧ f i(z) = f i(z′) ∧ f i(z) ≤ i − 1)

(53)

We can see that we would like to put z, z′ equal to y, y′ respectively.
Using the antecedent strengthening rule (6), it is sufficient to prove a version of the above where the subexpression

“∧ f i(i) = i − 1” is omitted, also the first and third lines imply ∀x ≤ i(f i(x) ≤ i − 2 ∧ f i−1(x) = f i(x)), so it’s sufficient to
prove:

∀x ≤ i(f i(x) ≤ i − 2∧ f i−1(x) = f i(x))

∧ ∃y �= y′(y ≤ i − 1∧ y′ ≤ i − 1∧ f i−1(y) = f i−1(y′) ∧ f i−1(y) ≤ i − 2)

→ ∃z �= z′(z ≤ i ∧ z′ ≤ i ∧ f i(z) = f i(z′) ∧ f i(z) ≤ i − 1)

(54)

In order to apply Lemma 4 we need to make an extra copy of the universally-quantified variable vector x in (54); (54) is
equivalent to:

∀x, x′ ≤ i(f i(x) ≤ i − 2∧ f i−1(x) = f i(x) ∧ f i(x′) ≤ i − 2∧ f i−1(x′) = f i(x′))
∧ ∃y �= y′(y ≤ i − 1∧ y′ ≤ i − 1∧ f i−1(y) = f i−1(y′) ∧ f i−1(y) ≤ i − 2)

→ ∃z �= z′(z ≤ i ∧ z′ ≤ i ∧ f i(z) = f i(z′) ∧ f i(z) ≤ i − 1)

(55)

Lemma 4 says that it’s sufficient to be able to generate, for all i, x, x′ , a proof of:

x, x′ ≤ i → (f i(x) ≤ i − 2 ∧ f i−1(x) = f i(x) ∧ f i(x′) ≤ i − 2∧ f i−1(x′) = f i(x′))
∧ (x �= x′ ∧ x ≤ i − 1∧ x′ ≤ i − 1∧ f i−1(x) = f i−1(x′) ∧ f i−1(x) ≤ i − 2)

→ (x �= x′ ∧ x ≤ i ∧ x′ ≤ i ∧ f i(x) = f i(x′) ∧ f i(x) ≤ i − 1)

(56)

It can be checked that (56) is a tautology, so Lemma 2 can be used.

A.7. Proof of a technical equivalence used in Lemmas 1, 2

We show that the standard replacement rules of propositional logic allow us to prove that for any i ∈ [2n](
x ≤ i − 1∨ x = i

)
≡ x ≤ i.

Put k = i − 1. Note that for some j ∈ [n],

i1 = k1, i2 = k2, . . . , i j = true,k j = false, i j+1 = false,k j+1 = true . . . in = false,kn = true. (57)

x = i is an abbreviation for

x1 = i1 ∧
E︷ ︸︸ ︷

x2 = i2 ∧ . . . ∧ xn = in . (58)

P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192 191
x ≤ i − 1 is an abbreviation for

A︷ ︸︸ ︷
¬x1 ∧ k1 ∨

B︷ ︸︸ ︷
(x1 = k1 ∧

D︷ ︸︸ ︷
(¬x2 ∧ k2 ∨ x2 = k2 ∧ (. . .¬xn ∧ kn) . . .)) (59)

(for a non-strict inequality, we would insert ∨xn = kn at the end).
Similarly, x ≤ i is an abbreviation for

¬x1 ∧ i1 ∨ (x1 = i1 ∧ (¬x2 ∧ i2 ∨ x2 = i2 ∧ (. . .¬xn ∧ in) . . .)) (60)

So we want to prove

(59)∨ (58) ≡ (60) (61)

(59)∨ (58) are of the form (A ∨ B) ∨ C , i.e. A ∨ (B ∨ C) where A = ¬x1 ∧ i1 (assuming j > 1). We have B = (x1 = i1) ∧ D
and C = (x1 = i1) ∧ E , so B ∨ C ≡ (x1 = i1) ∧ (D ∨ E). So the LHS of (61) can be written as

¬x1 ∧ i1 ∨ (x1 = i1 ∧ (D ∨ E)).

D and E have the same structure as (59) and (58), so continue until we reach x j :
(59) ∨ (58) is equivalent to

¬x1 ∧ i1 ∨ (x1 = i1 ∧ (. . . (¬x j−1 ∧ i j−1 ∨ (x j−1 = i j−1 ∧ (D j ∨ E j) . . .)))) (62)

where D j is ¬x j ∧ k j ∨ (x j = k j ∧ (¬x j+1 ∧ k j+1 ∨ (. . .) . . .)), and from (57) D j is the expression ¬x j ∧ false ∨ (x j = false ∧
(¬x j+1 ∧ true∨ (. . .) . . .)).

E j is x j = i j ∧ . . . ∧ xn = in . From (57) we have i j = true, and i j+1, . . . , in = false, and so E j is the expression x j =
true∧ x j+1 = false . . . ∧ xn = false, so E j ≡ x j ∧ ¬x j+1 ∧ . . . ∧ ¬xn .

At this point, we aim to manipulate the subexpression D j ∨ E j (using the rules of replacement) to obtain the expression
(having similar structure to (60)):

¬x j ∧ i j ∨ (x j = i j ∧ (¬x j+1 ∧ i j+1 ∨ x j+1 = i j+1 ∧ (. . .¬xn ∧ in) . . .)). (63)

From (57) we have that i j = true and i j+1 = . . . = in = false, so (63) is equivalent to
¬x j ∧ true ∨ (x j = true ∧ (¬x j+1 ∧ false ∨ x j+1 = false ∧ (. . .¬xn ∧ false) . . .)). At this stage it’s hopefully clear that a

further, rather tedious, sequence of replacement rules makes this the same as D j ∨ E j .

References

[1] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, T. Pitassi, The relative complexity of NP search problems, J. Comput. Syst. Sci. 57 (1998) 3–19.
[2] A. Beckmann, S. Buss, Improved witnessing and local improvement principles for second-order bounded arithmetic, ACM Trans. Comput. Log. 15 (1)

(2014) 2.
[3] A. Beckmann, S. Buss, The NP search problems of frege and extended frege proofs, ACM Trans. Comput. Log. 18 (2) (2017) 11.
[4] S. Buss, Bounded Arithmetic, Bibliopolis, Naples, Italy, 1986, http://www.math.ucsd.edu/~sbuss/ResearchWeb/BAthesis/.
[5] S. Buss, On Herbrand’s Theorem, in: Maurice Daniel, Raphaël Leivant (Eds.), Logic and Computational Complexity, in: Lect. Notes Comput. Sci., Springer-

Verlag, Berlin, New York, 1995, pp. 195–209, http://www.math.ucsd.edu/~sbuss/ResearchWeb/herbrandtheorem/.
[6] S.R. Buss, Polynomial size proofs of the propositional pigeonhole principle, J. Symb. Log. 52 (1987) 916–927.
[7] S. Buss, Quasipolynomial size proofs of the propositional pigeonhole principle, Theor. Comput. Sci. 576 (2015) 77–84.
[8] S.R. Buss, A.S. Johnson, Propositional proofs and reductions between NP search problems, Ann. Pure Appl. Log. 163 (9) (2012) 1163–1182.
[9] S. Buss, J. Krajíček, An application of boolean complexity to separation problems in bounded arithmetic, Proc. Lond. Math. Soc. s3-69 (1) (1994) 1–21.

[10] X. Chen, X. Deng, S.-H. Teng, Settling the complexity of computing two-player Nash equilibria, J. ACM 56 (3) (2009) 1–57.
[11] S.A. Cook, R.A. Reckhow, The relative efficiency of propositional proof systems, J. Symb. Log. 44 (1) (1979) 36–50.
[12] C. Daskalakis, P.W. Goldberg, C.H. Papadimitriou, The complexity of computing a Nash equilibrium, SIAM J. Comput. 39 (1) (2009) 195–259.
[13] Martin Dowd, Propositional Representation of Arithmetic Proofs, Ph.D. dissertation, University of Toronto, 1979.
[14] A. Filos-Ratsikas, P.W. Goldberg, Consensus Halving is PPA-Complete. CoRR, arXiv:1711.04503, 2017.
[15] M. Greaves, Classifying the Computational Complexity of the Ramsey and Factoring Problems, MSc dissertation, Departments of Mathematics and

Computer Science, University of Oxford, 2017.
[16] J. Hartmanis, L.A. Hemachandra, Complexity classes without machines: on complete languages for UP, Theor. Comput. Sci. 58 (1–3) (1988) 129–142.
[17] J. Herbrand, Recherches sur la théorie de la démonstration, PhD thesis, Université de Paris, 1930.
[18] P. Hubáček, M. Naor, E. Yogev, The Journey from NP to TFNP Hardness. Electronic Colloquium on Computational Complexity, Report TR16-199, 2016.
[19] E. Jeřábek, Approximate counting by Hashing in bounded arithmetic, J. Symb. Log. 74 (3) (2009) 829–860.
[20] E. Jeřábek, Integer factoring and modular square roots, J. Comput. Syst. Sci. 82 (2) (2016) 380–394.
[21] L. Kolodziejczyk, P. Nguyen, N. Thapen, The provably total NP search problems of weak second-order bounded arithmetic, Ann. Pure Appl. Log. 162 (6)

(2011) 419–446.
[22] I. Komargodski, M. Naor, E. Yogev, White-Box vs. Black-Box Complexity of Search Problems: Ramsey and Graph Property Testing. Electronic Colloquium

on Computational Complexity, Report TR17-015, 2017.
[23] J. Krajíček, Implicit proofs, J. Symb. Log. 69 (2) (2004) 387–397.

http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4243454950s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib42423134s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib42423134s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4242s1
http://www.math.ucsd.edu/~sbuss/ResearchWeb/BAthesis/
http://www.math.ucsd.edu/~sbuss/ResearchWeb/herbrandtheorem/
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib427573733837s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib427573733135s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib424As1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib424B3934s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib434454s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib43523739s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib444750s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib446F77643739s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib46473137s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib477265617665733137s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib477265617665733137s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4848s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib48s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib484E593136s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4A65722D4A534C3039s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4A3132s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B4E543131s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B4E543131s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B4E59s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B4E59s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B72616A6963656B3034s1

192 P.W. Goldberg, C.H. Papadimitriou / Journal of Computer and System Sciences 94 (2018) 167–192
[24] J. Krajíček, Consistency of circuit evaluation, extended resolution, and total NP search problems, Forum Math. Sigma 4 (2016), e15, 13 pp.
[25] J. Krajíček, P. Pudlák, Quantified propositional calculi and fragments of bounded arithmetic, Z. Math. Log. Grundl. Math. 36 (1990) 29–46.
[26] J. Krajíček, P. Pudlák, Some consequences of cryptographic conjectures for S12 and EF, Inf. Comput. 140 (1) (1998) 82–94.
[27] J. Krajíček, A. Skelley, N. Thapen, NP search problems in low fragments in bounded arithmetic, J. Symb. Log. 72 (2) (2007) 649–672.
[28] N. Megiddo, A Note on the Complexity of P -Matrix LCP and Computing an Equilibrium, Res. Rep. RJ6439, IBM Almaden Research Center, San Jose,

1988, pp. 1–5.
[29] T. Morioka, Classification of Search Problems and Their Definability in Bounded Arithmetic. Electronic Colloquium on Computational Complexity, Report

No. 82, 2001.
[30] C.H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of existence, J. Comput. Syst. Sci. 48 (1994) 498–532.
[31] J.B. Paris, A.J. Wilkie, A.R. Woods, Provability of the pigeonhole principle and the existence of infinitely many primes, J. Symb. Log. 53 (4) (1988)

1235–1244.
[32] P. Pudlák, Ramsey’s theorem in bounded arithmetic, in: Proceedings of the 4th Workshop on Computer Science Logic CSL’90, in: Lect. Notes Comput.

Sci., vol. 553, 1991, pp. 308–317.
[33] P. Pudlák, On the complexity of finding falsifying assignments for Herbrand disjunctions, Arch. Math. Log. 54 (2015) 769–783.
[34] S. Riis, A complexity gap for tree resolution, Comput. Complex. 10 (3) (2001) 179–209.
[35] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM 21 (2) (1978) 120–126.
[36] M. Sipser, On relativization and the existence of complete sets, in: Proceedings of the 9th Colloquium on Automata, Languages and Programming,

Springer-Verlag, 1982, pp. 523–531.
[37] A. Skelley, Propositional PSPACE reasoning with Boolean programs versus quantified Boolean formulas, in: Procs. of ICALP, in: Lect. Notes Comput. Sci.,

vol. 3142, 2004, pp. 1163–1175.
[38] A. Skelley, N. Thapen, The provably total search problems of bounded arithmetic, Proc. Lond. Math. Soc. 103 (1) (2011) 106–138.
[39] A. Woods, Some Problems in Logic and Number Theory and Their Connections, PhD thesis, University of Manchester, Manchester, 1981.

http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B72616A6963656B3136s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B503930s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B502D49433938s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4B53543037s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4D6567s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4D6567s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4D6F72696F6B613031s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib4D6F72696F6B613031s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib506170s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib5057573838s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib5057573838s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib5075646C616B2D52616D7365793931s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib5075646C616B2D52616D7365793931s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib507564s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib52696973s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib525341s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib536970s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib536970s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib536B3034s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib536B3034s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib53543131s1
http://refhub.elsevier.com/S0022-0000(17)30287-8/bib573831s1

	Towards a uniﬁed complexity theory of total functions
	1 Introduction
	1.1 Related recent work
	1.2 Background on propositional proofs and the pigeonhole principle
	1.3 Organisation of this paper

	2 Deductive systems and the Wrong Proof problem
	2.1 The formulae and theorems of our system Q-EFF; some notation
	2.2 Axioms and inference rules
	2.3 Further rules derivable from the ones of Section 2.2

	3 Preliminaries to the reductions to Wrong Proof
	3.1 Overview of the reductions presented in Sections 4, 5, 6
	3.2 Construction of functions from circuits, and a method for locating the errors in instances of Wrong Proof
	3.3 Technical lemmas

	4 Reduction from PPP to Wrong Proof
	5 Reduction from PPA to Wrong Proof
	6 Reduction from PLS to Wrong Proof
	7 Finitary existential sentences and TFNP
	8 Discussion
	Acknowledgments
	Appendix A Some formal proofs and expressions
	A.1 Proof of SC->TC (from proof of Theorem 1)
	A.2 Proof of ¬SC ->A2n (from proof of Theorem 1)
	A.3 Proof of lines (24) from Theorem 1: Fi^Ai->Ai-1
	A.4 Proof of lines (26) from Theorem 1: Ai^Fi^Ci-1->Ci
	A.5 Proof of line (25) from Theorem 1: the formula A2->C2
	A.6 Further details on the proof of (51)
	A.7 Proof of a technical equivalence used in Lemmas 1, 2

	References

