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a b s t r a c t

In evolutionary biology, randomness has been perceived as a force that, in and of itself, is capable
of inventing: mutation creates new genetic information at random across the genome which leads to
phenotypic change, which is then subject to selection. However, in science in general and in computer
science in particular, the widespread use of randomness takes a different form. Here, randomization
allows for the breaking of pattern, as seen for example in its removal of biases (patterns) by random
sampling or random assignment to conditions. Combined with various forms of evaluation, this breaking
of pattern becomes an extraordinarily powerful tool, as also seen in many randomized algorithms in
computer science. Here we show that this power of randomness is harnessed in nature by sex and
recombination. In a finite population, and under the assumption of interactions between genetic variants,
sex and recombination allow selection to test howwell an allele will perform in a sample of combinations
of interacting genetic partners drawn at random from all possible such combinations; consequently, even
a small number of tests of genotypes such as takes place in a finite population favors alleles that will most
likely performwell in a vast number of yet unrealized genetic combinations. This power of randomization
is not manifest in asexual populations.

© 2018 Published by Elsevier Inc.

1. Introduction

Sexual reproduction has been intensively studied in evolution-
ary theory for about a century now: Modifier theory has pro-
vided numerous invaluable insights on what factors affect the
evolution and maintenance of sex (e.g., Nei, 1967; Feldman, 1972;
Feldman et al., 1980; Feldman and Liberman, 1986; Altenberg
and Feldman, 1987; Bergman and Feldman, 1990, 1992; Barton,
1995; Charlesworth, 1993; Korol et al., 1994; Otto and Lenor-
mand, 2002; Hadany and Beker, 2003; Otto and Nuismer, 2004;
Keightley and Otto, 2006; Hadany and Otto, 2007, 2009), while
other work (referred to as ‘‘intrinsic theories’’ by Felsenstein,
1974, and ‘‘optimality arguments’’ by Feldman et al., 1997) has
investigated how the existence of sex affects the evolution of
other traits and the population mean fitness. Focusing on the
latter, the Fisher–Muller theory entails that sex speeds up the
increase in population mean fitness by allowing beneficial alleles
in different loci to spread in the population in parallel, rather
than having to accumulate serially in an asexual clone (Fisher,
1930; Muller, 1932). According to Muller’s ratchet, sexual repro-
duction regeneratesmutation-free genotypes from genotypes har-
boring deleterious mutations in different loci, thus saving a finite
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population from perpetual accumulation of slightly deleterious
mutations (Muller, 1964). The deterministic mutation hypothesis
concerns an extension of Muller’s ratchet to infinite populations. It
proposes that sexual reproduction increases the population mean
fitness by speeding up the destruction of deleterious mutations
through combining them from different genotypes into particu-
larly unsuccessful genotypes, under the assumption of prevalent
synergistic negative epistasis (Kondrashov, 1982). According to the
Hill–Robertson effect, selection acting at one locus increases the
variance in fitness of an allele at another locus and thus reduces
the effectiveness of selection on the latter, themore so the stronger
the linkage between these loci, and thus sexual recombination
reduces the interference between selection at different loci (Hill
andRobertson, 1966) (which also provides a general framework for
the Fisher–Muller theory and Muller’s ratchet; Felsenstein, 1974).
The parasite hypothesis entails that sexual recombination keeps
regenerating less common genotypes, which are better at escaping
common parasites adapted to the common genotypes (Jaenike,
1978; Hamilton, 1980). Considerations of diploidy show that an
advantageous mutation must appear twice in a parthenogenetic
species for its establishment and eventual substitution to occur
but only once in a sexual species, which provides an advantage
to sexuals under incomplete dominance (Kirkpatrick and Jenkins,
1989). As we examine these ideas and others (e.g., Eshel and
Feldman, 1970; Zhuchenko and Korol, 1983; Bernstein et al., 1985;
Hadany and Beker, 2003), the possibility that sex could enable
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random sampling of combinations of interacting genetic variants
from an exponentially large population of possible genotypes by
a relatively small, finite population of genetic combinations, and
thus allow selection to favor alleles that will perform well across a
vast number of yet unseen genetic combinations, seemsnot to have
been a part of the discussion on the effects of sex on evolution. In
other words, the possibility that the interaction of sex and natural
selection harnesses randomization for predictive power has not
been considered in these references.

The power of random sampling is well demonstrated through-
out the experimental sciences. When gathering subjects for a
controlled trial of a psychology experiment, for example, ideally,
subjects are selected at random from the population of interest
and then assigned at random to the different study conditions.
This helps to avoid patterns in the selection of participants for
the study as a whole and for its different conditions. For example,
it avoids studying only people who have just had lunch, or only
people of a particular gender, etc.; it avoids placing in one condition
only the people who arrive early and in another condition only
the people who arrive late to the study, etc. Any such difference
may potentially be correlated with psychological differences that
may not be of interest in the given study but may introduce biases
and errors in the interpretation of the results. Randomization, by
almost certainly breaking any possible pattern, allows the experi-
menters to focus the study on the element of interest. Furthermore,
it ensures that the results will be, in all likelihood, relevant for the
entire population, and not only for the particular, small sample of
individuals studied (it makes the small sample representative of
the entire population). In otherwords, thanks to random sampling,
even a very small sample can provide an accurate prediction of
what would happen in a vast number of unknown individual
sample points.

The power of breaking a pattern, or randomness, is also used
in a myriad of contexts in computer science (e.g., Motwani and
Raghavan, 1995; Goldreich, 1998; Wigderson, 2006; Wigderson,
2019). It is used in algorithms for testing whether an algebraic
identity is correct, for encrypting messages, for playing games of
strategy, for testing software, for sorting large files, and more. Es-
sentially, one devises algorithmswhich,while employing chance in
a few crucial and well chosen steps, maintain a firm deterministic
control on others, a technique often used to explore a distribution
with a small sample andmake decisions based on the properties of
the distribution revealed with high probability by the sample, and
widely used, fromMonte Carlo simulations to testing for primality.
In fact, a fundamental problem in computer science is how to
create and amplify randomness (Wigderson, 2019), which shows
how useful randomness is — when used properly.

How this power of randomness applies to sex and recombina-
tion can be described in a simple and intuitiveway. Sex and recom-
bination shuffle the genes. This means that the genetic partners for
any given allele within and across loci are being randomized, so
that this allele participates in a random sample of genotypes. This
randomization ensures that the outcome of selection, representing
howwell this allele interactedwith a variety of combinations of ge-
netic partners in the small, actual population, can be extrapolated
to represent how well it will interact with a vast number of yet
untried, potential combinations of genetic partners, namely how
well it will perform in the vast array of potential genotypes. In a
sense, and as counterintuitive as it may first seem, randomization
by sex allows theprocess of selection to predict future performance
in yet untested interactive genetic contexts, and not just record
past performance.

This point connects with a recent approach to the role of sex in
evolution, calledmixability theory (Livnat et al., 2008, 2010, 2011).
While the leading idea of 20th-century theoretical research on the
role of sex in evolution using population-genetic models has been

that sex must somehow facilitate the increase in the population
mean fitness measure (e.g., Karlin and Mcgregor, 1972; Karlin and
McGregor, 1974; Kondrashov, 1982), mixability theory argues that
the sexual shuffling of the genes shifts the focus of natural selection
from favoring particular genetic combinations of high fitness to
favoring alleles that performwell across a wide variety of different
genetic contexts — it favors mixable alleles (Livnat et al., 2008,
2010, 2011). Additionally, mixable alleles can be thought of as ro-
bustmodules (Livnat et al., 2008, 2010; Srivastava et al., 2014), and
related approaches in terms of the allele-based vs. genotype-based
selection also found a connection between sexual reproduction
and the appearance of genetic modules (Misevic et al., 2006; Ne-
her and Shraiman, 2009).1 So far, however, for finite populations,
investigators have focused on phenomena such as hitchhiking and
issues related to the theories mentioned earlier (Otto and Barton,
2001; Peck, 1994; Howard and Lively, 1994; Hartfield and Otto,
2011), whereas mixability has only been studied in infinite pop-
ulations (Livnat et al., 2008, 2010, 2011). It is in the shift from
studying mixability in infinite populations to studying it in finite
populations that the idea of sex as random sampling immediately
presents itself: It is the mixability of an allele in a vast space of
potential genotypes that is tested by random sampling, which is
implemented by the interaction of sex and natural selection in
finite populations.

If the fitness of an individual were determined by ‘‘beneficial
alleles’’ whose benefits extend across all genetic contexts, as in
the Fisher–Muller theory (Fisher, 1930; Muller, 1932; Crow and
Kimura, 1965), then there would be no information to be exposed
by random sampling about the value of an allele. Once beneficial,
always beneficial: No randomization by sex would be needed (sex
could only avoid clonal interference). At the same time, if the
fitness of an individual were a random function (themost complex
function in a Kolmogorov-complexity sense) of the genotype, then
again there would be no information to be exposed about the
value of an allele by any sampling. It is intriguing, therefore, that
if sex implements random sampling, then genetic interactions are
important for evolution yet have some structure — they are not
overly complex.

At the conceptual level, one may now compare the idea that
sex enables random sampling to past ideas on the benefits of sex.
Take for example the deterministic mutation hypothesis (DMH,
Kondrashov, 1982). Random sampling is a far more widely known
and important effect across diverse realms than the effect mod-
eled by DMH. Furthermore, its implication that there must be
structured genetic interactions (of any form, but not as complex
as random) is a far more plausible a priori biological assumption
than the requirement of ubiquitous negative synergistic epistasis.
Therefore, we believe that the effect of random sampling needs to
be considered in trying to expand our understanding of the role of
sex in evolution.

Sex is often analyzed in terms of the costs and benefits it
may entail to individuals or to populations and how it may have
evolved from asex based on them. However, it is neither clear that
sex evolved from asex originally2 nor that substantial adaptive
evolution could occur empirically in the long-term in a purely
asexual state and serve as a viable point of contrast against which
sex could be said to have costs and benefits (Livnat, 2013, p. 5–
10). In addition, while modifier theory has been a central tool used
to successfully study the evolution of recombination rates, some-
times in connectionwith perceived benefits of sex (Otto and Lenor-
mand, 2002; Otto and Nuismer, 2004; Keightley and Otto, 2006),

1 For related views on modularity, see Park et al. (2015a,b).
2 An alternative is that advanced sexual mechanisms evolved from a primordial

world where natural mixing of materials represented primitive sex; see (Livnat,
2013, p. 5–10).
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it has not been easy to overcome the reduction principle [namely
that modifiers for reduced recombination rates are favored (Feld-
man, 1972; Feldman et al., 1980; Feldman and Liberman, 1986;
Altenberg et al., 2017)], nor does it address the emergence of
the ability to recombine or the ability to modify recombination
rates in the first place. Thus, scientific caution is required when
pursuing the question of the evolution of sex including attention
to previously implicit assumptions, so that attempts to understand
the phenomenon of sex for what it is will not be encumbered by
untested hidden assumptions about its own evolution. While an
important question, in the current paper we do not consider the
question of the emergence of sex, but only attempt to characterize
a consequence of sex for evolution, given that it exists.

Since the principle of random sampling is well known, our goal
here is not to provide an unexpected mathematical result per se,
but rather to cast a fundamental biological fact in a new light. We
will capture the effect of random sampling by sex with a simple,
explicit population genetic model.

2. Model

Evolutionary theoreticians interested in the role of sex in evo-
lution or in the evolution of sex often construe ‘‘sex’’ broadly to
mean genetic shuffling, which can take many forms (Barton and
Charlesworth, 1998; Livnat, 2013). In eukaryotes, genetic shuf-
fling involves the random assortment of chromosomes, both ho-
mologous and non-homologous, as well as recombination within
chromosomes, all of which occur during meiosis. In prokaryotes,
other events such as conjugation or transformation lead to the
shuffling of genes. A one-locus diploid model allows us to examine
that part of sexual shuffling which is represented by Mendelian
segregation of homologous chromosomes in eukaryotes, and is a
mathematically convenient starting point (although later we will
comment on the multilocus case, which we expect to show a
stronger effect). Consider such a model with many alleles, discrete
generations, panmixia and no mutation. We will examine change
across one generation only.

Let there be N individuals in the population and n alleles, such
that 1 < n ≤ 2N. As we will soon see, for random sampling to
be meaningful, N must be substantially smaller than the number
of possible genotypes that could be constructed from these alleles,
which is n(n+1)

2 . In other words the number of alleles must not be
too small relative to the population size. Closely linked loci, for
example nucleotides in a sequence where exchange of segments
is rare, would produce a large number of possible alleles with
variation at the nucleotide level. Let vt

i be the number of instances

of allele i in the population, and f ti =
vti
2N be its frequency, at

generation t .
To represent Mendelian segregation in the simplest possible

way, we will start by considering a diploid population in which
random mating occurs by random union of gametes. Under this
assumption, the starting population can be represented as a gene
pool. Considering cN births in the given generation (c is a pa-
rameter representing fertility), we can draw from this gene pool
two alleles at random with replacement for each birth. This pair
of alleles will form the new genotype, which will then undergo
selection. To represent selection, let the fitness of genotype ij, wij,
be its probability of survival (viability, but not fertility, is genetic).

In our model and simulations below, genetic drift is imple-
mented either via the random sampling of gametes (in the gene-
pool representation) or via the sampling of individuals for random
mating and the random sampling of alleles within individuals due
to meiosis (where the initial state consists of individual, diploid
genotypes). In addition we allow for further randomness in the
change of allele frequencies due to the probabilistic nature of

Table 1
Genotype classes and their probabilities of survival.
Genotype class Number of Probability of

surviving genotypes genotype surviving

îx k1 p1 = 2f t
î

∑
l̸=î,ĵ

f tl wîl

ĵx k2 p2 = 2f t
ĵ

∑
l̸=î,ĵ

f tl wĵl

î̂j k3 p3 = 2f t
î
f t
ĵ
wî̂j

î̂i k4 p4 = f t
î
2
wî̂i

ĵ̂j k5 p5 = f t
ĵ
2
wĵ̂j

fitness. Note, however, that the effects of genetic drift, though
present in the model, are not our focus of interest.

Let us examine a pair of specific alleles, î and ĵ, and let x be any
allele other than î or ĵ, x ̸= î, ĵ. After random union of gametes,
which represents the outcome of sexual reproduction, 5 classes
of genotypes may be obtained that include î and/or ĵ, namely îx,
ĵx, î̂j, î̂i and ĵ̂j, as shown in Table 1. Let k1, . . . , k5 be the number
of surviving genotypes of each class, and let p1, . . . , p5 be the
probabilities that a genotype in each class survives (see Table 1).

The probabilities p1, . . . , p5 do not sum up to 1 because they
do not include probabilities of no survival or of genotypes not
involving î or ĵ. We let k6 be the number of genotypes (of cN births)
that either did not survive or carried neither allele î nor ĵ, k6 =

cN − k1 − k2 − k3 − k4 − k5, and let p6 = 1−p1 −p2 −p3 −p4 −p5
be the probability of a genotype in that category.

Effective random sampling existswhen two conditions aremet:
First, the probability of ‘‘error’’ in the inferencemade regarding the
space of potential genotypes must be small, and second, the size of
the finite population (the sample size) must be small compared to
the space of genotypes being sampled.

Using our one-locus diploid population genetic model, we will
examine the first condition with the help of the probability P that
allele î will fare better (increase relatively more in frequency)
than allele ĵ in the finite population in the current generation,

P
(

f t+1
î
f t
î

>
f t+1
ĵ
f t
ĵ

)
, given that itwouldhave faredbetter in an analogous

infinite population testing all possible genotypes, a condition de-
scribed by the following inequality:

p1 + p3 + 2p4
f t
î

>
p2 + p3 + 2p5

f t
ĵ

. (1)

In other words, P is the probability of ‘‘correct inference’’ [under
condition (1)].3

Now, the probability P
(

f t+1
î
f t
î

>
f t+1
ĵ
f t
ĵ

)
equals P

(
vt+1
î
vt
î

>
vt+1
ĵ
vt
ĵ

)
.

Therefore:

P =

∑
k1+k2+···+k6=cN

(
cN

k1, k2, . . . , k6

)
pk11 pk22 pk33 pk44 pk55 pk66

× F (k1, k2, k3, k4, k5),

(2)

where

F (k1, k2, k3, k4, k5) =

{
1 if k1+k3+2k4

f t
î

>
k2+k3+2k5

f t
ĵ

0 otherwise.

3 Of course, we do not use the terms ‘‘randomization’’ and ‘‘inference’’ to imply
that the process of natural selection in the presence of sex is a conscious process that
is purposefully randomizing genotypes in order to make an inference, but rather to
point out that this process is such that its outcome is one that would have been
achieved by applying randomization and inference-making.
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Starting from equal frequencies

To satisfy the first condition for random sampling byMendelian
segregation of homologous chromosomes, we must show that the
probability P is large, but this goal must be simplified and refined
first. In particular, it is pedagogically helpful to start from equal
allele frequencies, for two reasons. First, if only few alleles relative
to the population size are very common, and the rest are very rare,
then overall the finite populationmust behave very similarly to the
infinite population in the sense that all possible combinations of
high frequency alleles will be sampled many times (the very rare
alleles will be dominated by drift). Assuming f ti = f tj ∀i, j provides
a simple way of examining that aspect of the finite population
that is of interest here: It allows us to examine allele frequency
dynamics when the finite population can test only a small fraction
of the genotypes that these alleles could make, in a case where all
these genotypesmust be considered important because they are all
equally likely to appear, even though only a small fraction of them
will.

Second, let us define the mixabilities of alleles î and ĵ, µî and
µî respectively, as the arithmetic means of the fitnesses of the
genotypes carrying these alleles, namely µî =

1
n

∑
l wîl and µĵ =

1
n

∑
l wĵl, respectively (since f ti = f tj =

1
n ∀i, j, in this case,

these are themarginal average allele fitnesses, althoughmixability
in general is not equivalent to marginal fitness; see Livnat et al.,
2008). Now imagine for example that µĵ > µî, allele ĵ is very
common, allele î is very rare, the fitness of genotype î̂j is very
high, and all other fitnesses are very low. This case demonstrates
that, when the allele frequencies are not all equal, one can choose
f t
î
, f t

ĵ
and w such that the frequency of allele î will jump in the

first generation from near 0 to near 50% and the frequency of ĵ
will jump from near 100% to near 50%, even though allele ĵ has
higher mixability. By choosing f ti = f tj ∀i, j, we exclude such
artificial cases and make the interpretation of F and inequality (1)
easier, because they can nowbe understood directly in terms of the
mixabilities of alleles î and ĵ, as shown below.

Under the simplification f ti = f tj ∀i, j, we now obtain the
probabilities in Table 2.

Now,

P

(
f t+1
î

f t
î

>
f t+1
ĵ

f t
ĵ

)
= P

(
vt+1
îx

+ 2vt+1
î̂i

> vt+1
ĵx

+ 2vt+1
ĵ̂j

)
,

where vyz is the count of genotype yz in the population, p6 and k6
are defined as before, and therefore:

P =

∑
k1+k2+···+k6=cN

(
cN

k1, k2, k3, k4, k5, k6

)
pk11 pk22 pk33 pk44 pk55 pk66

× F (k1, k2, k4, k5), (3)

where

F (k1, k2, k4, k5) =

{
1 if k1 + 2k4 > k2 + 2k5
0 otherwise.

(Note that p3 and k3 drop out because of the assumption of equal
allele frequencies.)

As before, we want to show that P is large given that

p1 + 2p4 > p2 + 2p5,

or: ∑
l

wîl >
∑

l

wĵl. (4)

Inequality (4) (when multiplied by 1
n ) involves precisely the mixa-

bilities of alleles î and ĵ, respectively. In other words, starting from

Table 2
Genotype classes and their probabilities of survival; the simple case.
Genotype class Number of Probability of

surviving genotypes genotype surviving

îx k1 p1 =
2
n2
∑
l̸=î,ĵ

wîl

ĵx k2 p2 =
2
n2
∑
l̸=î,ĵ

wĵl

î̂j k3 p3 =
2
n2

wî̂j

î̂i k4 p4 =
1
n2

wî̂i

ĵ̂j k5 p5 =
1
n2

wĵ̂j

equal allele frequencies, we want to show that if the mixability of
allele î in the infinite population is sufficiently larger than that of
allele ĵ, then the probability that the frequency of allele î will be
higher than that of ĵ in the next generation in the finite population
is large.

To meet the second condition for random sampling by sex, we
must check that the number of genotypes actually represented is
relatively small compared to the size of the space being sampled.
For this purpose, let G(N, c, n) be the expected number of different
genotypes tested by the finite population in the span of one gener-
ation:

G(N, c, n) =

cN∑
m11=0

cN−m11∑
m12=0

cN−m11−m12∑
m13=0

· · ·

cN−···∑
m22=0

···∑
m23=0

· · ·

···∑
m33=0

· · ·

·

(
cN

m11,m12,m13, . . . ,m22,m23, . . . ,m33, . . .

)
·
(
f 21
)m11

(2f1f2)m12 (2f1f3)m13 · · ·

·
(
f 22
)m22

(2f2f3)m23 · · ·
(
f 23
)m33

· · ·

·H (m11,m12,m13, . . . ,mnn)

(5)

where H is the number of m terms that are larger than zero. After

simplification, the product of f terms becomes
(

1
n2

)cN
2
∑

y̸=z myz

Now, while G is the expected number of different genotypes tested
by the finite population, let g(N, c, n) be the fraction of this number
of genotypes tested among all possible genotypes, g(N, c, n) =

2G(N,c,n)
n(n+1) .

We now have two functions, g(N, c, n) and P(N, c, n, µ′

î
, µ′

ĵ
,

wî̂i, wĵ̂j), where µ′

î
=

1
n

∑
l̸=î,ĵ wîl and µ′

ĵ
=

1
n

∑
l̸=î,ĵ wĵl. P being

large means that the probability of correct inference regarding
the alleles’ relative performance in the population comprising all
possible genotypes is large. g being smallmeans that the genotypes
sampled are a small fraction of all possible genotypes. Therefore, if
P can be large and g can be small at the same time, then sex can
implement random sampling. If so, the conditions where P is large
and g is small are the conditions under which sex (in the form of
Mendelian segregation of homologous chromosomes) implements
random sampling in the one-locus diploid model.

Description of the simulation

While the above calculations give us in principle the exact
values of P and g , it is not practical to run these calculations on a
computer for all but the smallest populations, because of the large
multinomial coefficients. However, it is possible to simulate the
calculation above in a very simple way.

For the n(n+1)
2 genotypes of the diploid one-locus model with

n alleles, for each trial of the simulation, we randomized the fit-
ness values wij such that the two alleles of interest, î and ĵ with
mixabilitiesµî andµĵ defined as before, namelyµî =

1
n

∑
l wîl and

µĵ =
1
n

∑
l wĵl, respectively, had amixability ratio of

∑
l wîl /

∑
l wĵl
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Fig. 1. Sex enables random sampling in a single-locus diploid model. In each panel, results from a mixability-based comparison of two alleles are shown for a population
size of 2000 and for a varying number of alleles from 2 to 4000. In each panel, for each number of alleles, based on 200 independent runs of 100 independent trials each, the
red line shows the average fraction of all possible genotypes that actually materialized and were tested by the population (for each such genotype, at least one individual
was born with that genotype and either survived or did not), the blue solid line shows the average fraction of trials in which the allele that is moremixable across all possible
genotypes increased in frequency more than the allele that is less mixable across all possible genotypes, and the blue dashed lines demarcate the 95% confidence interval of
the latter, obtained empirically by excluding the top and bottom 2.5% of the runs. Each panel shows the results of this analysis for a different ratio d of mixabilities of the
two alleles of interest (see main text for procedure), ranging from 1 to 1.2. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

almost equal to a pre-chosen value, dî̂j, as follows. Fitness values
were first set as

wij = 1 − hijs,
where the hij were drawn from the uniform distribution over the
interval [0, 1], and s is a parameter representing selection strength.
Then, the fitness values of alleles î and ĵwere adjusted as follows:

wîk := wîk

√
dî̂j
∑

l̸=î wĵl∑
l̸=ĵ wîl

and

wĵk := wĵk

√ ∑
l̸=ĵ wîl

dî̂j
∑

l̸=î wĵl
.

These adjusted values have amixability ratio between î and ĵnearly
equal to dî̂j.

At each ‘‘trial run’’ of the simulation, a generation was created
by repeatedly drawing a pair of alleles ij at random with equal
probabilities across the alleles (reflecting the assumption of equal
starting allele frequencies) and allowing it to survive with prob-
ability wij, until N surviving individuals were obtained, where N
is the population size. At the same time, the number of different
genotypes that materialized in the process (namely the number of
genotypes that were tested at least once, whether they survived or
not) was recorded.

Finally, for eachmixability ratio dî̂j, number of alleles n and pop-
ulation size N , multiple independent trials were run. The across-
trials average fraction of all possible genotypes that materialized
and were tested by the population, g(N, c, n) (where the c value
is implicitly defined by the simulation procedure), was then calcu-
lated. Then the fraction of trials in which, of the particular allele
pair î and ĵ, the allele that was more mixable across all possible
genotypes increased in frequency more than the allele that was
less mixable across all possible genotypes was recorded (ties in
this measure, whether due to equal mixabilities or due to an equal
change in frequency, were counted as ‘‘half a point’’ for each allele).
For clarity, we note that our results discussed below capture the
fact that sex promotes the ability of alleles to perform well in the
vast number of yet unseen combinations of existing alleles. They
do not, however, capture in and of themselves the ability of alleles
to perform well in interaction with alleles that have not yet been
created.

3. Results

Fig. 1 shows the results of such a simulation for a population size
of N = 2000 diploids, dî̂j values ranging from 1 to 1.2, selection
strength s of 0.2 and 100 independent trials for each parameter
combination. In the top-left panel, where dî̂j = 1, the alleles are
equally mixable by definition, and the blue line shows random
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Fig. 2. Random sampling in a single-locus diploid model for different population sizes. The mixability-based comparison of the two focal alleles is shown in each panel
for a few mixability ratios d ranging from 1 to 1.2 on the x-axis. For each d value, based on 200 independent runs of 100 independent trials each, the red line shows the
average fraction of all possible genotypes that actually materialized and were tested by the population, the blue solid line shows the expected fraction of trials in which the
allele that is more mixable across all possible genotypes increased in frequency more than the allele that is less mixable across all possible genotypes, and the blue dashed
lines demarcate the 95% confidence interval of the latter. Each panel shows the results of this analysis for a different pair of N and n, which are multiples of 2000 and 200,
respectively. The green line shows the particular values of the two measures plotted at d = 1.08, for demonstration. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

deviations from equal frequencies; this serves as a ‘‘control’’ con-
dition. All other panels can be understood as follows. On the left
side of each panel, each allele is represented by many copies (with
the extreme at the left end being 2000 instances for each of the 2
alleles), and the number of alleles is small relative to the population
size. Therefore, in each of these dî̂j > 1 panels, on the left side,
all possible genotypes get tested by the materialized population,
and almost always, themoremixable allele wins. On the right side,
the number of alleles is large relative to the population size (2N
alleles at the right end), each allele is represented by very few
copies (a single instance per allele at the right end), and therefore
the dynamics of allele frequencies are dominated by drift.

In the middle range, however, the situation becomes inter-
esting. Ranging from a few to a few dozen instances per allele
under the given population size, we see that the allele that is more
mixable across all possible genotypes is the one more likely to
win, even though only a small fraction of all possible genotypes
is actually tested. As expected, we see this effect in each panel

where dî̂j > 1, and this effect increases with dî̂j. For demonstration,
the green line, positioned at ∼ 200 alleles, or ∼ 20 instances per
allele, shows the fraction of times that the allele more mixable
across all possible genotypes was favored and the expected frac-
tion of all possible genotypes tested under those parameters; the
former fraction is almost always larger than 0.5, while the latter is
substantially lower than 0.5. This demonstrates that sex – in this
case, Mendelian segregation of homologous chromosomes – en-
ables random sampling in selecting for mixability. Under realistic
conditions, the probability of correct evaluation is high while the
sample size is low.

Fig. 2 shows the results for the same range of dî̂j values, now
on the x axis, but for different population sizes N and numbers of
alleles n, which are multiples of 2000 and 200 respectively. The
expected fraction of genotypes tested (red line) increases slightly
with dî̂j because, given the procedure above, larger dî̂j values force
the average of all fitnesses to be lower, and thus more genotypes
are lost in generating the next generations’ N surviving genotypes.
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Fig. 3. Random sampling in the single-locus diploid model with fitness values either 0 or 1. In each panel, results are shown for a population size of 2000 and for a varying
number of alleles from80 to 1024. As before, for each number of alleles, based on 200 independent runs of 100 independent trials each, the red line shows the average fraction
of all possible genotypes that actually materialized and were tested by the population, the blue solid line shows the average fraction of trials in which the allele that is more
mixable across all possible genotypes increased in frequency more than the allele that is less mixable across all possible genotypes, and the blue dashed lines demarcate the
95% confidence interval of the latter. The fraction of genotypes of fitness 1 of all possible genotypes for the more mixable allele is 0.9 for each panel, whereas the fraction
of genotypes of fitness 1 of all possible genotypes for the less mixable allele decreases from 0.8 to 0.55, producing a range of d values (the ratio between the fractions of
genotypes of fitness 1) from 1.125 to over 1.6. The green line shows the particular values of the two measures for n close to 200, for demonstration. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

More importantly, we can see that, as the population size and
number of alleles increase, the fraction of all possible genotypes
tested decreases substantially, until at N = 12,000 and n = 1200,
selection in the presence of sex evaluates the mixability of the full
space ‘‘correctly’’ 59% of the times, even though it samples only 2%
of all possible genotypes.

Variations of the diploid one-locus case

As noted, one of the causes of random deviations from ‘‘correct
evaluation’’ of mixabilities in this model is the probabilistic nature
of survival. To study the importance of this source of variance, we
have run the same simulations again, but with the fitness of each
genotype taking the values of either 0 or 1. The mixability of an
allele now can be understood as the fraction of genotypes of fitness
1 that carry this allele, and the parameter dî̂j can be understood

as the ratio of these fractions for the two alleles of interest. This
scenario has a further advantage that now the performance of
alleles can bemore quickly and intuitively gathered from the num-
bers. At the same time, we move from representing the starting
population with a gene pool to a starting population of concrete,
specific genotypes, in order to ensure that no parent of the starting
population has fitness 0 (i.e., all parents that survived to replicate
have fitness 1).

Note that, at low values of n, the requirement that no parent
has fitness 0 conflicts with the pedagogical requirement of equal
starting allele frequencies at low values of n. We used a simple
procedure to ensure that the starting allele frequencies are equal
and that no parent is of fitness zero: we formed parents from an
equal number of allele instances for all alleles, and then assigned
fitness 0 at random to genotypes that have not been formed, at the
rate that would lead to allele mixabilities that closely approximate
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Fig. 4. Random sampling in the single-locus diploid model with fitness values either 0 or 1 and with two mating types. The simulation conditions are as described in Fig. 3,
except that now the parents are divided into two mating types, so that mating can occur only between type 1 and type 2 individuals.

the mixability ratio, dij, chosen for the given simulation. Using
this simple procedure, simulations show that, for the given range
of parameters, the two requirements mentioned above do not
materially conflict at n ≥ 80. Therefore, we ran the simulations
of discrete fitness values for n ≥ 80.

Fig. 3 shows the results for this scenario, produced in a manner
analogous to Fig. 1. For the more mixable allele, the fraction of
genotypes with fitness 1 was always fixed at 0.9, and for the less
mixable allele this fraction took the values of 0.8, 0.75, 0.7, 0.65, 0.6
and 0.55 across the panels.We see that, for the range of parameters
examined before (top two panels), the results remain essentially
the same. However, it is now also possible to understand more in-
tuitively the importance of randomization by sex for larger values
of dî̂j (in the previous scenario described by Fig. 1, at values of dî̂j
greater than 1.2, each genotype of the more mixable allele would
have had higher fitness than any genotype of the less mixable
allele; this is no longer the case here).With themoremixable allele
surviving at a rate of 0.9 and the less mixable at the rate of 0.55,
with ∼ 200 alleles and a population size of 2000, selection makes
the ‘‘correct’’ mixability evaluation 93% of the times, even though
it tests only 13% of all possible genotypes (Fig. 3, bottom right).

So far, we have examined Mendelian segregation of homolo-
gous chromosomes in hermaphrodites capable of selfing. To ex-
amine the case of two mating types, we have divided the starting
population into two separate types, ‘‘type 1’’ and ‘‘type 2,’’ and
allowed mating only between types. Results are shown in Fig. 4.
Given that the 95% confidence intervals of Figs. 3 and 4 over-
lap almost entirely, there is no significant difference between
the two figures, i.e., no substantial differences appear between
hermaphrodites capable of selfing and two mating types — as one
might expect.

Besides probabilistic fitness, another, more important cause of
random deviations from correct inference of mixabilities is ran-
dom genetic drift due to the sampling of parents and of alleles
within parents with replacement. This sampling creates random
variation in the parents’ fertilities, as well as random variation
in the transmission success of alleles within a parent. To observe
the ‘‘pure’’ effect of random sampling by sex for a pedagogical
purpose, free of these effects of drift, one can remove these sources
of randomness by running the same simulations, while ensuring
that each individual appears in exactly twomating events and that
each allele is transmitted exactly once.
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Fig. 5. Random sampling in the single-locus diploidmodel with fitness values either 0 or 1, twomating types andwithout replacement of parents and alleles. The simulation
conditions are as described in Fig. 4, except that now each parent participates in exactly two reproductive events, and each allele in each parent is transmitted exactly once.
The differences between the present figure and Figs. 3 and 4 show the importance of drift due to the sampling of parents and of alleles with replacement. Note furthermore
that the number of alleles does not normally divide 2N . This creates deviations from the assumption of equal frequencies which, given the n values simulated, are strongest
at n = 322 and n = 644, leading to dips at those n values across the 6 panels. If n values are chosen that divide 2N , the resulting curves would be smooth.

To keep the simulation elegant and simple, this scenario forces
us to forgo the constant population size: Instead of generating new
individuals until N of them survive, we repeat the simulation now
until N parents have appeared in 2N mating events. In particular,
we have run the simulations with discrete fitness values and with
two mating types under this condition.

Fig. 5 shows the results for this scenario in a manner analogous
to Fig. 3. With random genetic drift removed, the results are now
clearly stronger. Take for example the scenario depicted by the
green line in the top-right panel: With a population size of 2000,
∼ 200 alleles, and with the more mixable allele surviving at a rate
of 0.9 and the less mixable at the rate of 0.75 (top-right panel),
selection makes the correct evaluation 87% of the times by testing
9% of all possible genotypes, in contrast to Fig. 3 (drawing parental
alleles with replacement), where selection makes the correct mix-
ability evaluation 71% of the times by testing 11% of all possible
genotypes under the same conditions. This evaluation reaches a
rate of 99% correct with dî̂j ≈ 1.6 (bottom-right panel, Fig. 5).

Thus, as expected, removing random variation in the fertility of
individuals and transmission of alleles increases the accuracy of
the evaluation of genetic mixability across all possible genotypes
by random sampling due to sex.

The parameter d and the statistical view

It is important to discuss the parameter dî̂j. dî̂j ̸= 1 implies that
fitness is a non-random function of the alleles in the genotype. It
is critical to note, however, that this function need not be additive,
and indeed is not additive in our model and simulation. The fact
that dî̂j causes the fitness function to deviate from what would
otherwise be a random function is critical. If fitness were a purely
random function of the genotype, then no samplewould have been
informative about the population not sampled, and there would
have been no room for random sampling by sex. At the same time,
had we defined ‘‘beneficial alleles’’ as alleles that are beneficial
across all genetic contexts and simply bound to spread in the



Please cite this article as: L. Vasylenko, M.W. Feldman, C. Papadimitriou et al., Sex: The power of randomization. Theoretical Population Biology (2019),
https://doi.org/10.1016/j.tpb.2018.11.005.

10 L. Vasylenko, M.W. Feldman, C. Papadimitriou et al. / Theoretical Population Biology xxx (xxxx) xxx

population once they arise, as in the Fisher–Muller theory of the
benefit of sex (Fisher, 1930;Muller, 1932; Crow andKimura, 1965),
then there would have been no room to expose the possible value
of an allele in amultigenerational process involving the interaction
of sex and natural selection – no room for random sampling by sex
– nor for considerations of mixability. Random sampling is only
meaningful when the signs of the mixability differences between
alleles are both not known in advance and estimable. Then, the
interaction between sex and natural selection can discover them,
which is what we demonstrate here.

Of course, it is possible to look at the above from a basic,
statistical point of view. The competition between two alleles in
a finite population is equivalent to comparing two samples drawn
from two different almost-independent distributions, each sample
being a set of genotypes containing one of the alleles. Random-
ization by sex makes it so that the mixability of each allele in its
sample is the best estimate of its mixability in the much larger
space of potential genotypes, and that the statistical power of the
comparison of mixabilities by selection depends on the difference
between the means of the distributions, their variances, and the
sample sizes. Statistics textbooks mention randomization as an
essential, key element of study design. However, since there is no
proper ‘‘control group’’ lacking randomization with which to con-
trast the randomized group and thus demonstrate the importance
of randomization per se, we are satisfied with merely pointing
out that this randomization is a fundamental idea in statistics and
that, once one moves away from the focus on ‘‘beneficial alleles’’
as beneficial across all genetic contexts (Crow and Kimura, 1965)
as well as the traditional focus on the population mean fitness
measure toward focusing on genetic interactions and mixability,
this randomization immediately becomes front and center when
examining the question of the role of sex in evolution.

That being said, one way of drawing 2N/n genotypes non-
randomly from the distribution of all potential genotypes with
replacement is by drawing the same particular genotype, chosen
once at random, 2N/n times. It is immediately obvious that, unless
the difference in means between two such repetitive samples is
large compared to the variances, the probability of ‘‘error’’ in com-
paring such samples by natural selection is incomparably larger
than when drawing genotypes at random 2N/n times for each
sample4. Indeed, an asexual clone is one such repetitive sample.

The multilocus case

The effect demonstrated in the single diploid locus model is
not relevant if the number of alleles is too small relative to the
population size. N must be substantially smaller than the number
of possible genotypes. However,whilen alleles per locus give n(n+1)

2

genotypes in the single diploid locusmodel, they give
( n(n+1)

2

)L
pos-

sible genotypes (under the conservative assumption of no position
effects) in the multilocus model with L loci. Therefore, the one-
locus diploid model actually gives a severely restricted version of
the power of random sampling that sexual reproduction in general
provides. With each allele being represented by the same number
of instances that overcomes the effects of drift in both kinds of
model, the size of the population of potential genotypes being
sampled would be vastly greater with multiple loci. Therefore, we
predict that the gap between the curve representing the fraction
of genotypes tested and the curve representing the probability of
correct inference would grow faster with the number of alleles
in the multilocus case (and of course much faster as the number
of loci increases in the multilocus case), and the results would be
much stronger than those of the one-locus diploid model. Indeed,

4 2N/n is the maximum number of individuals carrying a given allele in the
diploid model when alleles are of equal frequencies.

note that any living population can only sample a tiny fraction of
the space of possible genotypes that can in principle be created
by recombination from the genetic diversity present in it. With a
genotype of 100 loci with 2 alleles per locus, for example, the num-
ber of possible genetic combinations is 2100, which is incomparably
larger than the size of any living population.

Let us now consider L unlinked, interacting loci. In the weak
selection regime,where the recombination rate ismuch larger than
fitness differences – a commonly made assumption for unlinked
loci (Nagylaki, 1993; Nei, 2005) – the alleles are approximately at
linkage equilibrium (Nagylaki et al., 1999). Thus the focal allele
will sample partners within and across loci at random from the
total space of potential genetic combinations. Selectionwill thenbe
able to test which alleles will perform better overall in interactions
with alleles across loci across a vast space of potential genotypes
through only a tiny number of actual tests. In particular, according
to an exciting result by Rabani et al. (1995), in a sexual population
without selection with multiple loci and two alleles per locus, the
mixing time, defined as

τ (ϵ) = max
p0

min{t : ∥pt ′ − p∞∥ ≤ ϵ ∀t ′ ≥ t},

where pt is the distribution of genotypes at generation t , ∥ · ∥

denotes the variation distance, and ϵ ∈ (0, 1], is bounded as
follows:

τ (ϵ) ≤ log1/(1−r)

(
L2

ϵ

)
,

where r is the lowest recombination rate in the genome (Rabani
et al., 1995). In other words, the mixing time, defined as the
shortest time under the worst starting distribution of genotypes to
a variation distance between the distribution of genotypes and the
stationary distribution, p∞, that is less than or equal to a constant
ϵ is on the order of log L for free recombination, and on the order
of log L

− log(1−r) in general. Thus, after only log L generations in the case
of free recombination, each allele will have been removed from its
original genetic context, andwill be sampling from the full realmof
genetic possibilities. By comparison, a Monte Carlo process is said
to be rapidlymixing if after logM steps,whereM is the total (poten-
tial) population, it is sampling from the true distribution (Sinclair,
1993). Rabani et al.’s result shows that recombination creates a
kind of ‘‘super-rapid’’ mixing, where true sampling starts after
only log logM steps (Rabani et al., 1995). Though this result was
obtained for recombinationwithout selection, it gives a clear sense
of the breadth of sampling of potential genotypes in themultilocus
case. Of course, with epistatic selection, the dynamics will depend
strongly on the functional form of the epistasis (duPlessis et al.,
2016).

4. Discussion

Our model demonstrates an important biological point: Due
to the randomization that is due to sex, a small number of tests
suffices to find an allele that will perform well as an interact-
ing partner in a large number of unknown and untested genetic
combinations — even under the assumption that alleles interact in
rather complex, but structured ways. We have demonstrated this
in particular for the single locus diploid case (see conceptual figure,
Fig. 6) and conjectured that results will only be much stronger for
themultilocus case. There is no counterpart for this in asexual pop-
ulations, in which the same mutation will have to be introduced
independently a great number of times into many distinct clones
in order to achieve any extensive sampling of genotypes, and the
sampling will be constrained to the existing genotypes. Note also
that our result could not be achieved assuming an infinite pop-
ulation; there, all possible combinations are immediately tested
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Fig. 6. A schematic figure capturing the meaning of the model. Each circle represents an individual in the 1-locus diploid case. The two lines inside each circle represent the
two alleles at the locus under study. The different colors of the lines represent the different alleles that segregate in the population. We are interested neither in the case
where ‘‘beneficial’’ alleles are favored across all genetic contexts as in the Fisher–Muller theory (Crow and Kimura, 1965) nor in the case where fitness is a random function
of the genotype, but instead in all forms of genetic interactions that have some structure (here, fitness is a function of the combination of alleles at the diploid locus). Sexual
reproduction entails that the actual genotypes that materialize (white circles) are a random sample drawn from the space of all possible genotypes. These materialized
genotypes are then subject to selection, which takes into account the interactions between alleles within each genotype. The alleles that are favored (e.g., red over blue)
– the mixable alleles – are ones that have interacted well with their genetic partners overall across the combinations that materialized. However, the alleles thus favored
are also, with high probability, ones that will interact well with a far wider variety of existing potential genetic partners in combinations that have not yet materialized
(gray circles). This effect is due to randomization. Specifically, it is due to the randomization that sexual reproduction, under the assumption of randommating, entails. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

by selection, and there is no benefit of extrapolation from a small
number of tests to a large space of potential possibilities.

Notice that howwell an allele performs across genetic contexts
is the allele’s mixability (Livnat et al., 2008, 2010, 2011; Livnat
and Papadimitriou, 2016), defined here as the expected fitness of a
genotype carrying this allele in the current mix of potential geno-
types. This connects our results to previous theory. However, while
previous theory studied mixability in infinite populations (Livnat
et al., 2008, 2010, 2011; Livnat and Papadimitriou, 2016), the
present effect – sex as random sampling – can be seen as a study
of mixability in finite populations (see also Otto and Barton, 2001;
Peck, 1994; Howard and Lively, 1994; Hartfield and Otto, 2011,
which address the advantage of sex in finite populations). It is
interesting that adding a realistic aspect to mixability – i.e., the
switch from an infinite to a finite population – adds a new and
powerful effect: The ability of natural selection to act as though
a prediction is made on how an allele will interact with genetic
partners in yet unseen combinations.

The present result has an intriguing implication for the nature
of genetic interactions. If the fitness of an individualwere a random
function of its multilocus genotype, the performance of an allele in
any finite population would not be indicative of its performance
in other genotypes, and there would be no benefit to random
sampling. Likewise, if the fitness of an individual were determined
by rare additive alleles as assumed by the Fisher–Muller theory
for example (Fisher, 1930; Muller, 1932; Crow and Kimura, 1965;
Bodmer, 1970), there would be no benefit to random sampling as
discussed. Thus, the idea that sex implements random sampling
intriguingly implies that alleles across loci interact, but that there
is a certain structure to the genetic interactions; fitness is not an
entirely random function of them.

Let us now clearly distinguish the present results from past
theory. It has already been proposed that the benefit of recom-
bination is that it releases a beneficial mutation from the non-
ideal background on which it may have appeared (Fisher, 1930;
Muller, 1932; Crow and Kimura, 1965; Hill and Robertson, 1966;
Felsenstein, 1974). Based on this, onemay try to argue that random
sampling is already implicit in such a release, and therefore the
random sampling effect of sex is already known and understood.
However, those past works asked whether and under what con-
ditions sex enables a faster spread of ‘‘beneficial’’ mutations or a
faster destruction of ‘‘deleterious’’ mutations and what the impli-
cations are for the population mean fitness measure. They did not
concern themselves with exposing the value of a mutation in the
first place, or whether sex has consequences that are notable and
useful for a more basic process of this sort.

For example, in the classic Fisher–Muller theory, the relevant
mutations are defined as ‘‘beneficial.’’ Once such amutation arises,
itwill spread to fixation deterministically (CrowandKimura, 1965;
Felsenstein, 1974) — in other words, it is conceptualized as bene-
ficial in all genetic contexts, and there is no room for random sam-
pling. This lack of recognition of random sampling can be extended
to Muller’s ratchet and the Hill–Robertson effect, and Felsenstein
has argued that these three are conceptually related (Felsenstein,
1974). Indeed, the fact that previous studies did not draw the
implications of random sampling for genetic interactions makes it
clear that they did not address the effect of sex as randomization
per se— randomization in the service of exposing howwell alleles
will perform in many, yet unseen, genetic combinations.

It is worthwhile to comment on the use of the concept of
randomness in evolutionary biology in general. So far, randomness
has been perceived as a force that, in and of itself, is capable of
directly inventing: Random mutation creates new genetic infor-
mation and phenotypic change that are subject to selection. This
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notion of mutation, recently criticized by Livnat (2013, 2017), is
actually different from its counterpart in evolutionary computa-
tion, a field that involves computational problem-solving methods
that have been heavily inspired by evolution, such as simulated
annealing (Kirkpatrick et al., 1983) or genetic algorithms (Hol-
land, 1975). The difference is that in evolutionary biology, tra-
ditional thinking has held that random mutation is ultimately
completely uncontrolled – it can disrupt the genome anywhere
(but see discussions of evolvability, Sterelny, 2007; Koonin, 2011,
and Livnat, 2013, 2017) – whereas in evolutionary computation,
it is controlled: Prior knowledge is used to restrict the parameter
space to be sampled by mutation in a useful way, the core part
of the algorithm does not mutate, and mutation can be further
controlled, for example by the gradual lowering of the tempera-
ture parameter in simulated annealing. However, moving beyond
evolutionary computation to examine not only computer science
but science in general and other realms like polling, we have noted
that randomization is used there in a way that is very different
from randomization as encapsulated in the traditional notion of
‘‘random mutation,’’ yet one that is very powerful: It is used to
break patterns (to destroy — almost the opposite of invent); and
sometimes, breaking apattern, in conjunctionwith other elements,
is an extraordinarily powerful tool. What if, when randomization
is harnessed by biological evolution, it is harnessed in this way?
Here, we have argued that sex could be a prime example of this
point.
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