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Abstract— The problem of distributed networked sensor
agents jointly estimating the state of a plant given by a linear
time-invariant system is studied. Each agent can only measure
the output of the plant at intermittent time instances, at which
times the agent also sends the received plant measurement and
its estimate to its neighbors. At each agent, a decentralized
observer is attached which utilizes the asynchronous incoming
information being sent from its neighbors to drive its own esti-
mate to the state of the plant. We provide sufficient conditions
that guarantee global exponential stability of the zero estimation
error set. Numerical illustrations are provided.

I. INTRODUCTION

Distributed state estimation in networked systems has seen
increased attention recently. A typical challenge in such
system occurs when information is only intermittently avail-
able; namely, when information is transmitted to neighboring
agents asynchronously and only at isolated time instances
which are not known a priori. Furthermore, the amount of
ordinary time elapsed between communication events for
each agent can be different. For instance, an agent can receive
information at a much faster rate than others.

Several observer architectures and design methods have
been proposed in the literature. Results for when information
is available periodically, discrete-time observers can be used
[1], [2], [3]. Algorithms that treat the communication as
impulsive events along the continuous dynamics of the plant
have also been developed; see, e.g., [4], [5]. In [6], a
distributed observer with undirected fixed communication
topology and switching communication topology for peri-
odic sampling time/communication events is presented. Dis-
tributed Kalman filtering is employed for achieving spatially-
distributed estimation tasks in [7]. In [8], a continuous-
discrete distributed observer design was presented for linear
systems with discrete communication.

A distributed observer design that addresses the challenge
of robustly reconstructing the state of the plant, at each
agent, when information is arriving at intermittent (aperi-
odic) and asynchronous (between agents) time instants is
considered. Namely, we construct a distributed observer,
assigned to each agent, that uses available information it

R. G. Sanfelice is with the Department of Computer Engineering, Univer-
sity of California, Santa Cruz, CA 95064. Email: ricardo@ucsc.edu.

S. Phillips and R. Scott Erwin is with the Air Force Research Laboratory,
Space Vehicles Directorate, Kirtland AFB, NM 87117.

Research by R. G. Sanfelice has been partially supported by the National
Science Foundation under CAREER Grant no. ECS-1450484, Grant no.
ECS-1710621, and Grant no. CNS-1544396, by the Air Force Office of
Scientific Research under Grant no. FA9550-16-1-0015, by the Air Force
Research Laboratory under Grant no. FA9453-16-1-0053, and by CITRIS
and the Banatao Institute at the University of California.

receives about the plant by way of direct measurements
and communication from neighboring agents. We model the
closed-loop system using the hybrid systems framework in
[9]. With an appropriate change of coordinates, we show
global exponential stability of the zero estimation error set.
The main contribution of this work lay on the establishment
of sufficient conditions for nominal and robust estimation
over networks where information at each agent arrives at
time instances triggered by each agent locally. Different from
our previous work in [10], [11], this work assumes that
information arrives to each agent asynchronously. Numerical
examples that validate the results are presented throughout
the paper.

The remainder of this paper is organized as follows.
Notation along with a brief overview of hybrid systems and
graph theory is given in Section II. In Section III, the problem
description, modeling, and main results are presented.

II. PRELIMINARIES

A. Notation

Given a matrix A, eig(A) is the set of all eigenvalues of
A and |A| == max{|A]z : X € eig(AT A)}. Given two

vectors u,v € R™, |u| := VuTu and notation [u” v']T
is equivalent to (u,v). Given a function m : R>o — R”,
|m|eo := sup;sq|m(t)|. The symbol N denotes the set of

natural numbers including zero. Given a vector x € R"™ and
a closed set A C R", the distance from = to A is defined
as |z|4 = inf,ea |z — z|. Given a symmetric matrix P,
A(P) := max{\ : A € eig(P)} and A\(P) := min{]\ :
A € eig(P)}. Given matrices A, B with proper dimensions,
we define the operator He(A,B) := ATB+ BT A; A® B
defines the Kronecker product; diag(A, B) denotes a 2 x
2 block matrix with A and B being the diagonal entries;
and A * B defines the Khatri-Rao product! between A and
B. Denote * as the symmetric block in a block-partitioned
matrix. Given N € Z>1, Iy € RNVNXN defines the identity
matrix and 1y is the vector of N ones. A function « :
R>g — R>q is a class-K function, also written a € K, if
is zero at zero, continuous, strictly increasing; it is said to
belong to class-Ko, also written o € Ko, if a € K and is
unbounded; « is positive definite, also written o € PD, if
a(s) > 0 for all s >0 and «(0) = 0. A function 5 : R>¢ X
R>9 — Rx is a class-KL function, also written 3 € KL,
if it is nondecreasing in its first argument, nonincreasing in
its second argument, lim, o+ 5(r, s) = 0 for each s € R>,
and lim,_, o B(r, s) = 0 for each r € R>(. Given a function

'For more information on Kronecker and Khatri-Rao products, see [12].



f:R™ — R™, the domain of f is denoted by dom f. Given
a closed set S, Tg(xz) denotes its tangent cone S at z; see,
e.g., [9, Definition 5.12].

B. Preliminaries on graph theory

A directed graph (digraph) is defined as T' = (V, &, G).
The set of nodes of the digraph are indexed by the elements
of V=1{1,2,..., N} and the edges are the pairs in the set
E C V x V. Each edge directly links two nodes, i.e., an
edge from 7 to k, denoted by (7, k), implies that agent ¢ can
receive information from agent k. The adjacency matrix of
the digraph I is denoted by G € RV*N where its (i, k)-th
entry g;x is equal to one if (i,k) € £ and zero otherwise.
Without loss of generality, we assume that an agent may be
connected to itself; i.e., the edge (i,4) is contained in the
edge set £ and the corresponding element in the adjacency
matrix G is g;; = 1. Let the cardinality of the edge set &£
be defined as €. The in-degree and out-degree of agent 7 are
defined by di" = Y"1, gix and d9% = S | gr;. The in-
degree matrix D is the diagonal matrix with entries D;; =
d;ﬁ" for all ¢ € V. Each element ¢;;, € R in the Laplacian
matrix of the graph T, denoted by £ € RY*¥ s defined
as ;. = —gx for each i,k € V such that i # k and ¢;; =
di™ for each diagonal element i € V. The set of indices
corresponding to the neighbors that can send information to
the i-th agent is denoted by N (i) :={k € V : (i,k) € £}.

C. Preliminary on Hybrid Systems

This section introduces the main notions and definitions on
hybrid systems used throughout this work. More information
on such systems can be found in [9]. A hybrid system H has
data (C, f, D, G) and can be represented in the compact form

H.{g =f) ¢ecC,
€T eGE) e,

where £ € R" is the state. The data of the hybrid system
is given by (C, f,D,G). The flow map, defined as f :
R™ — R™, is a single-valued map capturing the continuous
dynamics, which are allowed to occur in the flow set C' C
R"™. The set-valued mapping G : R™ = R" defines the jump
map and determines the value of £ after jumps, which is
denoted by £*. Jumps are allowed to occurs in the jump
set, defined as D C R™. Solutions ¢ to H are parameterized
by (t,j), where ¢ € R>( counts ordinary time and j € N
counts the number of jumps. The domain dom ¢ C R>gx N
is a hybrid time domain if for every (T, J) € dom ¢, the set
dom ¢N([0,T] x {0,1,...,J}) can be written as the union
of sets U/_o(I; x {j}), where I; := [t;,t;41] for a time
sequence 0 = top < t; < 2o < -+ < tyyq. The t;’s with
7 > 0 define the time instants when the state of the hybrid
system jumps and j counts the number of jumps.

A hybrid system H = (C, f,D,G) with data in (1) is
said to satisfy the hybrid basic conditions if it satisfies the
conditions in [9, Assumption 6.5].

Definition 2.1: (global exponential stability) Let a hybrid
system H be defined on R™. Let A C R™ be closed. The set
A is said to be globally exponentially stable (GES) for H if
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Fig. 1. Decentralized network architecture under consideration. When the
timer state resets (i.e., 7; = 0), the i-th agent receives the output of the
plant y; and transmits it, along with its current estimate &;, to its neighbors,
which, in turn, updates the corresponding information state 7;; for each

ke N(3).

there exist x,a > 0 such that every maximal solution ¢ to
‘H is complete and satisfies

o(t, )l < Kexp(—a(t +))[¢(0,0)]
for each (¢,j) € dom ¢. O

III. DISTRIBUTED HYBRID ESTIMATION PROTOCOL AND
NOMINAL PROPERTIES

A. Problem Formulation and Proposed Solution

In this paper, we consider the problem of designing a
distributed observer to estimate the state of a plant over a
network of N agents. Wherein each agent may have a local
heterogeneous sensor and memory. The plant has continuous-
time dynamics

T = Az (2)

where x is the state and A € R™ "= is the state matrix.
The N agents are connected via a directed graph and each
agent runs a local observer estimating the state = of (2). Each
agent in the network can measure the output of the plant and
can transmit this measurement and estimate to its neighbors
at time instances given by the sequence {%}°° ;. Namely, at
each such time instant t € {¢1}°°,, the i-th agent receives
a measurement of the output of the plant and transmits it to
its neighbors. The measurement is given by

yl(t) = Hil'(t) (3)

where H; € R":*"= js a local output matrix of the plant
for agent <.

The event times in the sequence {t%}2° , are independently
defined for each agent. Given positive scalars T4 > T} for
each 7 € V), the only restriction imposed on such times is
that they must satisfy

tiﬂ —t! € [T}, T3]
< Ty .

Vs e {1,2,...}, @



The scalars T} and T are the nominal parameters that define
the lower and upper bounds, respectively, of the time allowed
to elapse between consecutive events. The parameters 77 and
Tzi are assumed to be known, but are not necessarily the same
for each agent.

Due to the impulsive nature of the communication and
measurement events {t%}5° satisfying (4), for each i € V,
we define a decreasing timer to trigger such events. Inspired
by [13], the timer at the i-th agent, denoted by 7; € [0, TQi],
decreases with ordinary time and upon reaching zero is reset
to a point in the interval [T}, T4]. Namely, the dynamics of
T; are given by

Ti € [OaTQZ]v
T, = 0.

7o=—1
L Sy ©
Note that the domain of solutions to this system, denoted ¢-,,
are such that the jump times ¢; satisfy ¢;41 —t; € [T}, T3]
for each 7 > 1 and t; < TQi; i.e., the sequence of times
satisfy (4).

We propose a distributed hybrid observer that is capable
of asymptotically reconstructing the state of the plant x
locally at each agent, with stability and by only exchanging
information from the plant and its neighbors at commu-
nication events {t2}°°; satisfying (4). Each observer runs
an algorithm at the ¢-th agent that generates an estimate
of the state x, which is denoted z; € R™, and utilizes
di™ information states, denoted by 7, for each k € N (i),
stored locally at the i-th agent. Let 7 = (71, 72,...,7N) €
[0, T3] x [0,TZ] x --- x [0, T§¥] =: T. When no timer state
has expired, i.e., when 7 € 7 \ {0}, no new information
has arrived and the observer states &; are each continuously
updated by the following general differential equations:

i = Al + Z Nik
kEN (7) (6)
ik = fir(Zis k) Vk € N (i)

for each ¢ € V, where f;;, : R% x R" — R™ defines
the continuous evolution of the information state. When data
arrives from measurements of the plant or from neighboring
agents, the estimation state and corresponding information
state 7);, are updated. For example, when 7, = 0 and ¢ €
N (k) (where agent ¢ is a neighbor of agent k) which triggers
agent k to transmit information to agent ¢ and the rest of
its neighbors, the estimation and corresponding information
states are updated by

A+7A
T, =T

vienw).

ni = Gik(Zi, T, yr)
where G, : R™ x R™ x R — R™= defines the function
which combines the received information. The continuous
and discrete dynamics in (6) and (7), respectively, along with
(5). The interconnection of these systems leads to a hybrid
dynamical system H as in (1) capturing the dynamics of
modeling the entire networked system.

B. Distributed Estimation Protocol and Hybrid Modeling

In this section, we define the particular form of the
information states under consideration. In particular, the
continuous evolution of the states 7;; in (6) is governed by
the following data:

Nik = hiknik =2 fir(Ti, Mik) (®)
where h;; € R. When the k-th agent takes a measurement
of the output of the plant given by (3), which is when 7, =
0, the k-th agent transmits y;, and the current value of the

estimation state %, to its neighbors updating 7;;, impulsively
by

N =K (He@p—yr) +7(8:— 2x) = Gir (&4, T, yr)  (9)
for each i € N (k), where v € R, K;; € R™*"r«x define the
parameters of the observer. In this way, we can easily use
the properties of Kronecker products, bidirectional graphs
and Laplacian matrices to model the system.

1) Change of Coordinates: Inspired by [13], for each ¢ €
V and each k € N (i), consider the change of coordinates
€; = j?l — T,
(10)
Oi, = KipHyer + v(ei — ex) — nik-

Then, the continuous dynamics of e; are given by

é; = Ae; + Z (KixHrer +v(e; —ex) —6i)  (11)

kEN (i)
and, with e = (61,62,...,6]\/) and 6 = (91,92,...,9]\[),
implies that
ée=(I®A+Kg+yL®I)e—DO (12)

where D = diag(I ® 1; g I ® IJN ) with the in-degree
of the i-th agent d’,, Kg = (KH) G, and K € R"=NxnpN
is an N x N block matrix where the (, k)-th entry is given
by K € R™*"« for each i,k € V such that (i,k) € &
and a matrix full of zeros elsewhere with n, = >, .|, n,,,
and H = diag(Hl, HQ, ce ,HN).

Letn = (91,72, ...,nn) and, for each i € V, 6; (likewise,
7;) contains the states 6;; (1;x, respectively) states for each
(i,k) € £ in ascending order of the index k. Then. we have

0 = Kpe — 7 (13)
where Ky = KH + 51, and K =
(K11, Ki2,...,Kig, ..., Kyn) where, for each (i, k) € &,

K, = v @ Ky, I is a stack of matrices (v; — vg) ® I
for each i,k € V such that (i,k) € £ corresponds to the
ordering of the 6 states, and v; is the ith canonical vector.

During jumps, namely, if there exists £k € )V such that
7 = 0, then a jump occurs. At such points, the dynamics of
e; are given by

ef 14)

and, for each i € N(k), the definition of 6;; in (10) with
(9) lead to

:e’i

6, =0, (15)



otherwise, 9;; = 0;1.
In this following example, we consider the case of N = 3
and construct many of the matrices in (12) and (13).

Example 3.1: Consider the case N = 3, and

110
G=10 1 1|,
11 1

through the change in coordinates, we have that § =
(01,02,03), and 61 = (011,012), 02 = (Ba2,023),05
(031,032, 033). The matrix K in (12) is given by

K1 K2 0
K=|0 Ky Ko (16)
K31 K3 Kss

Noting from G, the in-degree of each agent is given by d}, =
2, d? =2,d. =3, which leads to

I I 00 0O0OU O
D=0 0 I I 0 0 O
00001111

From (13), the matriccs K is given by

(K117 Klg, KQQ, Kgg, Kgl, Kgg, K33) and the elements
of II are defined (v; — vg) ® I, namely, the matrices are
given by

(K11 0 0 ] 0 0 O

0 Kio 0 I -1 0

0 Ky 0 0 0 O
K=1|0 0 Ko, nm=|0 I -I
K31 0 0 -1 0 I

0 Ks 0 0 —-I I

0 0 Ks3] 0 0 0

2) Closed-loop Hybrid System: We define the hybrid
system H = (C, f,D,G) with state £ = (x,7) € X :=
R™ N x R™4 x T resulting from the change of coordinates
in (10) where d = S_N , di,, and x = (e,0). Recall that
7= (11,72, .,7N) €T = [0,T}] x [0, TZ] x - - - x [0, TH].
Then, the hybrid system H has data given by

[ =MAx,-1y) (eC:=X a7

and

G(&):={Gi(&):¢ e DyieV}y ¢eD=JD; (18)
S%

where D; :={{ € X : 7, =0} and

Gi(§) = {(676‘/’7-/) 1= (676‘77—)77—1'/ € [TliaT%]a

i =0Vk e N(i)}

Using the change of coordinates in (10) along with the
continuous-time dynamics in (12) and (8), the matrix Ay
in (17) is given by

_ Ag -D
" |KpAg —hKy h—KyD|’
Ag = I @A)+ Kg+~v( L&), Ko = KH + ~4II and
h = diag(h111n, h12ln, ..., hnnIn), where the subscripts
of h; are for each 4,k € V such that (i, k) € £.

Aj (19)

Remark 3.2: Note that C' and D are closed and that f
is continuous and G is outer semicontinuous and locally
bounded on D. Therefore, the hybrid system 7 satisfies the
hybrid basic conditions given in [9, Definition 6.5]. Note that
satisfying the hybrid basic conditions imply that the hybrid
system H is well-posed and with asymptotic stability of a
compact set is robust to small enough perturbations.

The objective of each agent in the hybrid system is to
estimate the state of the plant, i.e., to drive the difference
between the estimates and the plant to zero asymptotically.
The definition of 7 and 6 also imply that these states will
converge to zero as the error e converges to zero. Therefore,
in the (e, 6, 7) coordinates, the set to asymptotically stabilize
is given by

A={0,, N} X {Opn,a} X T.

In the following sections, we provide conditions guaranteeing
that this set is exponentially stable for the hybrid system H
with data in (17) and (18).

From the definition of this hybrid system, solutions to H
jump when there exist ¢ € V such that 7; = 0 as defined
below (18). Moreover, for each such point, 7; is updated to
a point within the interval [T}, T4],

(20)

Lemma 3.3: ([11, Lemma 3.5]) Given positive scalars Tli
and T% such that T < T4 for each i € V, every solution ¢
to ‘H with data in (17) and (18) satisfies the following

1) every maximal solution is complete, i.e., the domain of

every maximal solution is unbounded.

2) foreach (t,j) € dom¢, (& — 1) Tiin < ¢ < LTpmex

where T := min;cy T7 and T5"®* := max;ey 15

3) for all j € Z» such that (tyyn,(J +

)N), (tjn,jN) € dom¢, tginy — tin €
Iijﬂ’lﬂ'lll'l7 szax] .

We use this result to establish global exponential stability

of A for the hybrid system # in Theorem 3.4.

C. Main Results

With the change of coordinates in (10), we use the
Lyapunov function candidate

V(€)=e Pe+ 0" R(1)0 1)

for all ¢ € X, where P = P’ > 0 and 7 — R(7)
is continuously differentiable and positive definite for all
7 € T, see [14] for a similar construction. This choice
of V satisfies V() = 0 for each £ € A, and V(§) > 0
for every £ € X \ A and is continuously differentiable.
Therefore, V' is an appropriate Lyapunov function candidate,
as defined in [15, Definition 3.16]. Moreover, due to the
choice of the change of coordinates in (10), this function
satisfies, regardless of which timer 7;, expires, the property
that V(¢1) — V(&) is nonpositive for each ¢ € D. The
injection of 7;; in the flows of the local estimate in (6),
and the continuous dynamics of 7;; with flow map (8)
further permit a decrease of V' during flows. By virtue of
the aforementioned Lyapunov function candidate, we arrive
to the following result.



Theorem 3.4: Let 0 < T} < T4 for each i € V and a
directed graph T" be given. The hybrid system H with data
in (17) and (18) has the set A in (20) globally exponentially
stable if there exists scalars 0 > 0, v € R, hj € R and
matrices K;; € R™=>": for each i,k € V such that (i,k) €
&, and positive definite symmetric matrices P € RN >naN,
Ry, € R X" sych that M (v) < 0 for each v € T, where?

M) — He(PAy) —PD+ (KyAg —hKg)  R(v)
@ =" He(Rw)(h — KyD)) - oR(v)
(22)
R(v) = diag(Ri(v),Rae(v),...,Rn(V)), Ri(v) =
diag(exp(ov1)Ri1,exp(ova)Riz . .. exp(ovy)RiN).

Proof Sketch The property that A is globally exponentially
stable under condition (22) can be established by using the
Lyapunov function V' in (21). Due to the definition of 4 in
(20) there exist positive scalars o, as satisfying aq [€[4 <
V(&) < az|é[%. Moreover, in light of the strict inequality of
M in (22), there exists § > 0 such that, for each £ € C,
(VV(€), f(§)) < =ZV(€). For each ¢ € D, g € G(¢), it
can be seen that V(g) — V(£¢) < 0. Direct integration of V'
over a solution ¢ along with the properties in Lemma 3.3
lead to M (v) < 0 for all v € T. Moreover, by Lemma 3.3,
every maximal solution is complete implying that the set A
is globally exponentially stable for the hybrid system 7. B

Due to the fact that M (v) < 0 needs to be checked over an
infinite number of points in the compact set 7, the following
result provides relaxed conditions which ensure M (v) < 0
is satisfied for every v € T.

Proposition 3.5: Let Ti > 0 for each i € V be given. The
inequality M (v) < 0 in (22) with M defined in (22) holds
for each v € T if there exist ¢ > 0 and positive definite
symmetric matrices P, R;;, such that

M(0) <0, M(T) <0 (23)

where Ty = (T3, T2,...,T).

Remark 3.6: For the case when N = 1, the resulting
observer is a single Luenberger-like observer for the case
of intermittent measurements and the matrix inequality in
(23) reduces to the condition in Theorem 1 in [13].

Remark 3.7: Note that the off-diagonal block matrices in
(23) involve the multiplication of K Ay — hK, which contain
cross terms involving K, 7y, and h;i. The presence of these
terms makes the problem nonlinear and difficult to solve
numerically. However, LMI conditions can be established
following the ideas in [13].

Example 3.8: Consider a plant with system matrix

0 -1 0
A=1{1 0 0 24)
0 0 0

’In partitioned symmetric block matrices, the symbol % stands for
symmetric blocks in the matrix.

where the state z = (71,72,73) € R? has oscillatory
dynamics for (z1, 22) and trivial dynamics for z5. Note that
such a plant has eigenvalues at {414, 0} and, for every initial
condition outside of the origin, its states never converge to a
set point. In this example, we consider three scenarios which
show that the estimation states Z; converge to the state of the
plant exponentially: 1) the case of all-to-all network but each
agent cannot reconstruct the state individually; 2) a strongly
connected network with the same output matrices as in 1);
and, lastly, 3) an all-to-all connection, but the second agent
cannot measure the plant.

Consider the case of three agents that are all-to-all con-
nected, i.e.,
1 1 1
11 1§,
1 11

g:

and measure y; according to (3) with

le[l 1 0] ng[O 1 0} Hg,:[() 0 1}.
Since the pair (H;, A) is not observable for each i-th
agent, no single agent can estimate the full state of the
plant running an observer like that in [13]. However,
when communication between agents is allowed, our
observer is able to reconstruct the state of the plant z.
In fact, given 7} = 0.1 and T4 = 0.7 for each i € V,
by solving for the conditions in Theorem 3.4, we obtain

the following parameters Ky = [1.2 -09 0. 3]T
Kip=[0 —01 —03]" Klg_[ 0.1 —04 —0.1]"
Kyn=[-05 —01 -—0. 1] Kyp=[1 -01 —04]
Koz - (<03 —0.1 —03]", K -
<02 —05 —1]', Ksy = [-02 —01 —0.1]"
Kg = [04 =02 —0.1]", hyy = =1, hig = hyz =
h22 = h31 = h32 = h33 —0.1, hgl = —0.5, h23 = —0.4,
o = 0.3 and v = —0.2. The numerical solution shown in
Figure 2(a) indicates that the estimates Z; for each i € V
converge to the state of the plant z exponentially.

We can reduce the number of links between the agents
and still satisfy the conditions in Theorem 3.4 using the
same parameters K, h;;, and ~ previously proposed. In
Figure 2(b), we use the gains from the initial simulation in
(a) while forcing ga; = g32 = 0. In particular, when edges
(2,1) and (3,2) are removed from the edge set, each agent
has less information to use in their observer, which, as can
be seen in Figure 2(b), makes the estimate converge slower
to the state of the plant.’

More interestingly, due to the communication topology
between the agents under the previous network, the case
when a single agent may not receive any measurements, but
when it is connected to neighbors the consensus terms in
(9) allows the agent to reconstruct the state of the plant.
For instance, consider the previous system model but with
Hy = 0. Then, values of the gains K, h;x and ~ can be
found such that the conditions in Theorem 3.4 satisfied; see

3Code at https://github.com/HybridSystemsLab/EstimAsyncTrans
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(c) Completely connected graph as in (a), but Agent 2 does not receive
measurements of the output the plant. Convergence is still possible, however,
in this scenario the convergence is slower than (a) and (b).

Fig. 2. Numerical Simulation of three agents estimating a plant with oscil-
latory behavior in (z1,x2) and trivial dynamics in z3. In each simulation
case, even though each pair (H;, A) is not detectable individually, through
the interconnection, the estimates &; still converge to the state of the plant
z as indicated by |e| converging to zero.

Figure 2(c). Note that it is solely through communication
that reconstruction of the plant is achieved.

Remark 3.9: Due to form the memory states defined in
(9), as mentioned in Example 3.8, even though a single agent
in a network may not be able to measure the state directly, it
can still maintain an estimate of the plant using neighboring
information to reconstruct the state. More specifically, the
~v(x; — 1) component of (9), sometimes considered as a
consensus term, takes the difference between the estimates
of itself and its neighbors to drive its estimate to the true state
solely based on the estimates of its neighbors exponentially.

IV. CONCLUSION

In this paper, a distributed state observer was developed
to accurately reconstruct the state under intermittent com-
munication and measurement is proposed. At each agent,
the estimation algorithm stores information received using
multiple memory states, which are updated asynchronously
between agents. Sufficient conditions were presented in the
form of matrix inequalities which ensure global exponential
stability of the estimation error set. Future directions of
research include investigating nonlinear dynamics and mea-
surements, dynamic time varying network graphs, and delays
in the communication structure.
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