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Abstract. In this paper, we present an approach that detects the level
of food in store-bought containers using deep convolutional neural net-
works (CNNs) trained on RGB images captured using an off-the-shelf
camera. Our approach addresses three challenges—the diversity in con-
tainer geometry, the large variations in shapes and appearances of labels
on store-bought containers, and the variability in color of container con-
tents—by augmenting the data used to train the CNNs using printed la-
bels with synthetic textures attached to the training bottles, interchang-
ing the contents of the bottles of the training containers, and randomly
altering the intensities of blocks of pixels in the labels and at the bottle
borders. Our approach provides an average level detection accuracy of
92.4% using leave-one-out cross-validation on 10 store-bought bottles of
varying geometries, label appearances, label shapes, and content colors.

Keywords: food, level detection, deep convolutional neural networks,
training set augmentation

1 Introduction

The propagation of ubiquitous technologies in the consumer space has enabled a
wide range of applications in kitchen environments to provide user-centric smart
assistance [4, 34]. The pervasion of ubiquitous sensing devices and intelligent
monitoring of consumer activity has provided a further boost to smart kitchen
applications, motivated by the need to provide nutrition awareness [10]. Suc-
cessful monitoring of user food consumption in kitchens by understanding food
levels in containers, recognizing food item counts, and detecting the age of food
items has the potential to enhance intelligent kitchens by providing automatic
person-centric shopping lists, and recommending user-aware diet choices.
However, existing approaches to detect food quantity are largely contact-
based, making propagation of the approaches to average consumer spaces diffi-
cult. The approach of Chi et al. [10] requires weight sensors built into a coun-
tertop that sense weight change when the object makes contact with the coun-
tertop. Approaches that use capacitive sensors [5,32,37] only work with liquids,
and depend upon full immersion into the liquid, which can induce contamina-
tion. Work that detects content-based modulation of vibrational characteristics



of objects [12,40] requires installation of sensors on the surface of the container.
Non-contact approaches on food use character recognition to detect the expiry
date [29], which is rarely visible in frontal viewpoints of containers. They es-
timate quantities of plated food from top-down cameras [14, 38], which prove
infeasible to install in multi-shelf environments, or provide a binary response on
presence or absence of a food item [22,33] as opposed to estimating quantity.

In this paper, we provide the first approach to perform fully non-contact
detection of the level of food such as salad dressing in store-bought bottles using
deep convolutional neural networks (CNNs) on frontal images of the containers.
The input to the CNNs consists of images of bottles with labels of a variety of
shapes and appearances, while the output is one of four classes representing four
different levels per bottle. We use bottles made of clear glass or plastic to enable
visual level detection. While one method of level detection is to count the pixels
in an image segment representing food contents, traditional image segmentation
algorithms such as k-means clustering [30] or mean shift [11] yield incorrect
segment boundaries in the presence of soft edges typical of real-world lighting and
camera noise. While deep learning based segmentation algorithms show higher
accuracy [9,26], real-world containers contain highly textured labels in addition
to the food contents and may reveal various backgrounds, requiring a two-step
process to first segment the image, and then recognize which segment represents
food. Instead, our approach takes inspiration from at-a-glance approaches for
recognition [7,31] and identifies food level directly from the image in one step.

Our work addresses three challenges to estimate food level from store-bought
containers. First, store-bought containers show diversity in 3D geometry. Second,
labels affixed to store-bought containers show a large variability in shape and
appearance. Third, the contents of the containers demonstrate a range of color
variations. To address these challenges, we augment the training sets used in
learning the CNNs by (i) attaching physically printed labels with synthetic tex-
tures to the training bottles to provide invariance to label shape and texture, (ii)
interchanging the contents of the training bottles to strengthen the invariance
of the CNN to food color, and (iii) altering the intensities of images in random
blocks in regions of the label and bottle border to prevent overfitting to bottle
geometry, label shape, and label appearance. The random intensity alteration is
inspired by the work of [41] which reduces overfitting in CNNs by changing pixel
values in random rectangles in training images for object and person detection.

We use leave-one-out cross-validation on a set of 10 store-bought bottles with
varying geometries and textures, where the training set contains no label, bottle,
or food content from the test set. We use patches containing single containers
extracted from bottle line-ups typical of real-world shelves and countertops. Our
approach provides an average food level detection accuracy of 92.4%.

2 Related Work

Our work falls in the area of intelligent approaches to monitor food use and
human behavior in kitchens. One approach of monitoring usage of food items



is to use food identity recognition on an image of the item when a user scans
the item before a camera after removing it from a storage location. Recognizing
food identity requires pre-training of classification systems on a large group of
food items. The success of deep learning approaches has motivated a number
of approaches to perform food identity recognition with high accuracy. Liu et
al. [24] and Hassanejad et al. [13] use CNNs to classify food images for dietary
assessment. Kagaya et al. [17] use data expansion [21] to improve classification
of food images using deep CNNs. Since pre-trained neural networks may not be
tailored to food images, Martinel et al. [25] train deep residual networks and
obtain 90.27% accuracy on the Food-101 dataset. Kawano and Yanai [18] com-
bine features obtained from deep CNNs and conventional hand-crafted features.
The approach of Sandholm et al. [33] builds food identity recognition into a
cloud-based system to monitor food usage from a fridge. These identity recog-
nition approaches require external accounting mechanisms to keep track of food
counts, and do not inherently address level detection unlike our work.

To avoid external tracking of counts, several approaches perform holistic ‘at-
a-glance’ estimation of discrete object counts in an image. Regressors [6, 8, 20]
and CNNs [3,27,28,39] have been used to perform estimation of counts of peo-
ple [6,8,28,39] and animals [3,27]. The work of Chattopadhyay et al. [7] uses
CNNs trained on entire images and gridded cells in images to estimate dis-
crete object counts. The work of Laput et al. [22] uses support vector machines
(SVMs) trained on features obtained using correlation-based selection on sub-
regions from images in a kitchen environment. The SVMs are used to perform
classification of discrete quantities of objects in a sink, presence or absence of
a food item, and general clutter on a countertop. Unlike discrete quantity es-
timation, our task handles estimation of the quantity of continuously varying
food items. Approaches exist to use top-down cameras to estimate the volume
of plated solid food [14, 38] and the level of solid waste in trash cans [2]. Such
approaches are impractical for consumer estimation of food level in containers,
since the containers are required to be open, the camera may not be installable
directly above the container when the containers are in multi-level shelves, and
the approach may yield low accuracy for narrow-mouthed bottles which may oc-
cupy few pixels in the image space. In contrast to top-down camera approaches
where the contents are unobscured, our task is rendered challenging by the sig-
nificant obscuration of liquid content induced by the label, and the variation in
this obscuration due to differences in label shape and appearance.

There exist a number of contact-based approaches on detecting the quan-
tity of the contents in a container. Several approaches use capacitive sensors
immersed in liquids in containers to detect levels based on the differences in di-
electric constants of the liquid and the surrounding air [5,32,37]. Such immersive
sensors can prove intrusive, potentially unsafe, and impractical to detect con-
tent levels in large container line-ups typical of home and store environments.
Approaches also exist to measure the differences in vibrational characteristics of
containers due to the presence of varying quantities of contents. Zhao et al. [40]
induce physical vibrations of waste bins using a DC motor, and measure the



Fig. 1. Original images captured for a variety of bottle line-ups composed from the ten
bottles used in this work.

effect of vibration damping due to varying levels of garbage contents. Fan and
Khai [12] provide a device that emits a sine wave probe sound using a speaker
and classifies the impulse response received by a microphone to estimate food
quantity. Both approaches require installation of sensors in contact with the con-
tainer. Chi et al. [10] use a countertop-installed weight sensor in contact with a
container to measure weight changes due to content reduction. Unlike the capac-
itive, vibrational, and contact-based weight detection approaches discussed here,
our work provides fully non-contact level detection using an off-the-shelf RGB
camera, improving the portability of our system to consumer environments.

3 Data Collection

We use an off-the-shelf RGB camera of resolution 1920x1080 to capture an im-
age dataset of 10 store-bought bottles with six different geometries. The camera
is part of the Kinect sensor that flips images horizontally; however, to avoid
overhead of extra operations, we do not perform unflipping. Five of the geome-
tries correspond to bottles with salad dressings, while one corresponds to agave
syrup. One geometry represents Ken’s Steakhouse dressings, under which, we
capture one set of three dressing types—Country French, Honey Mustard and
Russian. Another geometry represents Kraft dressings, under which we capture
a second set of three dressing types, namely Thousand Island, Honey Mustard
and Italian. The remaining four geometries separately represent one bottle of
Wish-Bone Caesar Dressing, one bottle of Hidden Valley Farmhouse Originals,
one bottle of Southwest Chipotle Salad Dressing, and one bottle of Domino Light
Organic Agave Nectar. We pour out varying quantities of liquid and leave 25%
of liquid for Level 1, 50% for Level 2, 75% for Level 3, and 100% for Level 4.

To perform the capture, we place groupings of 3 or 4 of the 10 bottles at
various levels in rows on a wooden plank against a concrete wall with texture.
We perform between 15 to 21 small random real-world translations from left-to-
right and from front-to-back to represent minute changes in position that occur
when users have repeated interactions with containers on shelves or countertops.
We use the camera to capture one RGB image per real-world translation at a
resolution of 1920x1080. Figure 1 shows examples of images captured by the
HD camera demonstrating the groupings captured in our work.

While the image captured by the camera contains several bottles, our objec-
tive in this paper is to use CNNs to perform level detection on a bottle-by-bottle



Level I Level2 Level 3 Level 4
Fig. 2. Left: Four patches representing four different levels for a one bottle. Right:

patches for remaining nine bottles. Note the differences in geometry within the ‘Varied’
group, and with respect to the ‘Ken’s’ and ‘Kraft’ groups.

basis. We perform a manual extraction of image patches containing individual
bottles by specifying a region containing each bottle. While we do not perform
automatic bottle extraction in this work, our goal is to make our approach
directly pluggable into bottle extraction performed using off-the-shelf object de-
tection algorithms. Since off-the-shelf algorithms may yield bounding boxes that
are not perfectly centered around the bottle, we simulate offsets in bounding
boxes by sliding the manually specified region left-to-right and top-to-bottom
in the image to yield 36 translated patches per bottle instance. To ensure that
all patches provided to the CNNs are of the same size, we resize them to a low
resolution of 120 x 60, which accelerates training and prevents overfitting. Fig-
ure 2 shows examples of patches for four levels of one bottle on the left, and for
various levels for the remaining nine bottles on the right.

4 Classification using CNNs

Network Architecture. Figure 3 shows the architecture of the CNNs used in
our work. The network is made of three blocks. The first block includes two
repeated Conv-BN-ReLU layers, that perform convolution using 32 filters, batch
normalization (BN) of the feature maps [16], and activation of the normalized
feature maps using the rectified linear unit (ReLU). We compared the accuracies
of 3x3, 4x4, and 5x5 filters, and determined that filters of size 4x4 yielded
the highest accuracy. The second block consists of another set of two repeated
Conv-BN-ReLU layers where the number of 4 x 4 filters is doubled to 64 as
recommended in [21], [35], and [15]. The third block consists of two Conv-BN-
ReLU layers using 128 filters, the first of which performs 4x4 convolution, and
the second of which performs 1x1 convolution. The penultimate layer compresses
128 feature maps using four 1x1 convolutional filters for the four classes. At the
output layer, we use global average pooling (GAP) [23] to minimize overfitting by
reducing the number of parameters, and we use the softmax function to convert
the GAP pooling results into classification probabilities.

Training Data Augmentation. To improve the invariance of our work to dif-
ferences in bottle geometry, label shape, label appearance, and color of food
contents, we use three strategies to augment the data used to train the neural
network—expanding the label diversity by attaching new physically printed la-
bels with synthetic texture to the training bottles termed ‘Syn’, interchanging



Fig. 3. CNN architecture used in our work. ‘Conv’ represents convolution, ‘BN’ repre-
sents batch normalization, and ‘GAP’ represents global average pooling.

the contents in the training bottles termed ‘Int’, and performing random image-
based alterations to the training images termed ‘Ran’. For the ‘Int’ approach,
we interchange each liquid once to double the size of the training data, which
enables the CNNs to avoid overfitting to liquid color. For the ‘Syn’ approach,
we design and print 3 sets of labels for each bottle. The synthetic labels are of
different shapes and colors, which reduces overfitting of the CNNs to the labels.

For the ‘Ran’ training strategy, we randomly choose half of all the training
patches and augment each patch 20-fold by performing two types of transforma-
tions at random: domain-based transformations, including horizontal translation
up to 3 pixels, horizontal flip, and scaling up to £0.05, as recommended in [21]
and [35], intensity transformations by performing global shifting of each RGB
channel up to 30 in intensity values [35], and intensity alterations in random rect-
angles in half of the patches selected at random as suggested in [41]. Figure 4
shows examples of the training data augmented by the three strategies.

We train five CNNs using various combinations of the three training data aug-
mentation strategies—Int+Syn’ that uses interchanging and physically printed
labels with synthetic texture, ‘Ran’ that uses random intensity alterations only,
‘Ran+Syn’ that uses random intensity alterations with printed labels, ‘Ran-+Int’
that uses random intensity alterations with liquid interchanging, and ‘Ran-+
Int+Syn’ that combines all three augmentation strategies. We also train two
baseline CNNs for comparison—one based on the original training data without
any augmentation strategy termed ‘Orig’, and one with the labels peeled off the
bottles termed ‘Bare’ trained with the ‘Ran’ augmentation strategy.

Training and Testing. We generate train and test datasets by performing 1-
fold cross validation based on bottles. We train the CNNs using Adam [19] as the
adaptive gradient optimizer with cross entropy as the loss function. After each
max pooling layer, we include dropout [36] with probability of 25% to prevent
overfitting. We choose a batch size of 32 and train for 10 epochs. Our CNN
architecture is implemented using the Keras API platform wrapped around the
TensorFlow [1] library with GPU support. We perform training and testing using
an Asus ESC4000-G3 server containing a single Intel Xeon E5-2660 v3 2.6GHz
10-core processor, 256 GB of RAM, and two NVIDIA GeForce GTX 1080 Ti
GPUs. The training takes 1.5 hours per fold, while testing takes 0.24 milliseconds
per image. The small level detection runtime per image in comparison to 33.33



Fig. 4. Training data augmentation performed in this work. Top row: interchange of
liquids (bottles correspond to their original countertops in Figure 2), middle row: at-
tachment of printed labels with synthetic texture, last row: random image-based alter-
ations of intensities in randomly chosen rectangular patches in the images.

milliseconds for 30 fps frame-rate enables our work to be readily deployed into
real-time applications.

5 Results

Table 1 shows results of classification accuracies for all the CNNs. While the
‘Orig’ version receives an average accuracy of 69.9%, the various training aug-
mentation strategies provide improvements in accuracy to 77.1% for ‘Int+Syn’,
78.9% for ‘Ran’, 81.7% for ‘Ran+Syn’, 85.2% for ‘Ran+Int’, and 92.4% for the
combined ‘Ran+Int+Syn’ strategy. Figure 6 shows examples of the actual level
and predicted class probabilities for a variety of bottles using the training ap-
proaches ‘Ran+Int+Syn’, ‘Ran+Int’, ‘Int+Syn’, and ‘Orig’. As a baseline, the
‘Bare’ CNNs, where labels are peeled off the bottles in the training and testing
set, provide 100% classification when trained with the ‘Ran’ strategy. Figure 5
shows the overall confusion matrices for CNNs trained without augmentation,
and with the five augmentation approaches discussed in this work. Using ran-
domized intensity alterations provides a boost in performance in Level 1, while
improvement in classification of Level 2 to Level 4 is obtained using physical
interactions of liquid interchanging and printed labels. This may be attributed
to the ability of the synthetically printed labels placed in locations of the actual
labels to learn the label appearance distribution, and for interchanging to boost
invariance to color of the liquid behind the label.

For Bottles 3 and 5, the color similarity of the lower part of the label and the
liquid prevents the CNNs from performing correct level prediction, even when
trained with the ‘Ran’ strategy in the case of Bottle 5. The accuracy increases to
100% and 83.6% for Bottles 5 and 3 respectively when we train with ‘Ran+Syn’,
since the diverse array of synthetic labels used in our approach ensures that the



Table 1. Classification accuracy as percentages using CNNs trained with various com-
binations of augmentation strategies, as compared to CNNs trained with no augmen-
tation (‘Orig’) and CNNs trained on label-free bottles (‘Bare’).

ID 1 2 3 4 5 6 7 8 9 10 |[Mean
| nw--= W I E |
RESEEREREE
Orig 68.8 | 50.0 | 73.8 {100.0| 54.2 {100.0| 25.0 | 91.1 | 68.1 | 67.7 | 69.9
Bare 100.0{100.0|100.0{100.0{100.0|100.0{100.0/100.0{100.0{100.0{100.0
Int+Syn 31.9 | 81.6 | 75.0 {100.0| 88.8 {100.0| 39.6 | 91.8 | 81.3 | 81.2 | 77.1
Ran 72.9193.6 | 82.8 |100.0| 77.0 {100.0| 27.1 | 86.6 | 80.0 | 69.2 | 78.9
Ran+Syn 64.8 | 66.3 | 83.6 {100.0|100.0{100.0{ 30.9 | 99.0 | 73.1 | 99.3 | 81.7
Ran+Int 83.2 | 88.393.3 [100.0| 98.6 {100.0| 31.9 | 99.6 | 90.1 | 67.0 | 85.2
Ran+Int+Syn|| 79.9 | 92.8 | 98.9 [100.0| 97.3 {100.0| 60.1 {100.0| 96.3 | 98.9 | 92.4

color similarities are modeled by combinations of synthetic labels and training
bottles. For Bottle 2, although Bottles 1,2 and 3 have the same geometry, the
label of Bottle 2 shows higher differences in label location and logo appearance
compared to Bottles 1 and 3, due to which the ‘Orig’ strategy shows a low
performance on Bottle 2. When trained with the ‘Ran’ approach, label occlusion
improves the accuracy for Bottle 2 to 93.6%. For Bottles 4 and 6, similarity in
liquid color and geometry enables all CNNs to predict 100% despite differences
in label appearance.

In the combined augmentation strategy, i.e., ‘Ran+Syn+Int’, we observe a
mis-prediction of Level 2 as Levels 1 or 3, and of Level 3 as Levels 3 and 4, due to
the proximity of these levels. Our investigation reveals that 97.6% of the Level 3
mis-classifications as 2 or 4 and 56.1% of the Level 2 mis-classifications as Level
1 and 3 are due to Bottle 7, which shows a maximum of 60.1% correct average
prediction. A small amount of confusion is also observed between Levels 1 and
3. This is due to the fact that the viscosity of the liquid causes it to stick to the
container, inducing the appearance in moderate everyday lighting conditions at
lower levels to resemble the appearance at higher levels. In future work, we will
investigate the use of scene-specific illumination to resolve optical differences of
liquids sticking to container walls with respect to the rest of the contents.

The similarity between agave syrup color on the label and in the contents of
Bottle 10 influences level prediction in the ‘Orig’ strategy due to the closeness
of the liquid color to part of the label appearance. The ‘Ran+Syn’ strategy
improves the accuracy to 99.3% since synthetic labels enhance the invariance
of the CNNs to the label contents. However, while the performance is likewise
improved for Bottle 1 which shows color similarity within the white label writing
and the liquid, the accuracy of Bottle 1 reaches a maximum of 83.2% and drops
with synthetic label. As future work, we will investigate creating synthetic labels
that model color similarities to the bottle liquid.



Fig. 5. Confusion matrices for CNNs trained without augmentation (‘Orig’), and with
various combinations of the three augmentation strategies discussed in this work.

6 Discussion

We have presented an approach in this paper to detect the level of food in
store-bought food containers such as salad dressing bottles using convolutional
neural networks trained on RGB images. To enable the neural networks to obtain
invariance to bottle geometry, label shape, and label texture, we augment the
training sets used to train the neural networks using printed labels with synthetic
textures and random alteration of intensity blocks on the borders of the bottle,
and the interior of the label. Our approach provides an average accuracy of
92.4% using a leave-one-out cross-validation with bottles containing opaque and
semi-transparent liquids of several colors. While we have tested our approach
with liquids, it can be readily extended to containers with solid contents.

One limitation of our approach is that it requires the optical properties of the
container and food to be distinct, thereby preventing level detection in opaque
containers. However, a large category of household containers fall within the
realm of our approach, including translucent containers such as milk cans, and
containers with microscopic perforations in the label that arise due to the process
of printing label contents on plastic. While wrap-around labels preclude fine-
grained level detection in the region of the label, our method can still be used
to detect ‘near full’ if contents exist in the upper portion of the container above
the label, and ‘approaching empty’ if the region below the label shows depleting
contents. Another limitation is that while our approach handles bottles with
variations in geometric structure, it requires them to be nearly the same height
in order for consistent image sizes as input to the CNNs. In future work, we
will investigate image resizing combined with container category detection to
perform level percentage detection for containers of varying height.

Since our work performs food level detection on crops of containers from bot-
tle line-ups found in shelves and on countertops, it can be deployed into consumer



Fig. 6. Results using various training strategies in this work. Each row provides a
training strategy, each column of represents the actual level, while the number in each
image provides the predicted level.

systems by combining sliding-window bottle detection with food level detection
in the sliding window. As part of future work, we are expanding our dataset to
contain wider array of container geometries, and solid and liquid food items with
a range of opacities and mixture homogeneities, captured under varying illumi-
nation. We will also include slight rotations of containers which arise when users
interact with them. To eliminate training dependence on physical activities such
as attaching printed labels and interchanging liquids, we will investigate virtual
approaches to alter liquid color and label appearance in the training set.
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