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1 Introduction

As was discovered by Gafimann in 1926 [10], number fields are not uniquely determined
up to isomorphism by their zeta functions. A theorem of Tate [20] from 1966 implies
the same for global function fields. At the other end of the spectrum, results of Neukirch
and Uchida [15,21,22] around 1970 state that the absolute Galois group does uniquely
determine a global field. The better understood abelianized Galois group again does not
determine the field up to isomorphism at all, as follows from the description of its character
group by Kubota in 1957 ([13], compare [1,17]). Funakura ([9, § I], using [8, Thm. 5]) has
shown in 1980 that there exists a number field k (of degree 255! over Q) and two non-
isomorphic abelian extensions K/k and IL/k of degree 4 with a bijection between all Artin
L-series of K/k and L/k (or, equivalently, between the L-series of the four occurring
characters).

In this paper, we prove that two global fields K and I are isomorphic if and only if there
exists an isomorphism of groups of Dirichlet characters v (vv’%b = (vv’ib that preserves
L-series: Lg(x) = LL(}Z( x)) forall x € éﬁg’. A more detailed series of equivalences can
be found in the Main Theorem 3.1 below. To connect this theorem to the discussion in
the previous paragraph, observe that the existence of 1/vf without equality of L-series is
the same as K and LL having abelianized Galois groups that are isomorphic as topological
groups, and that for the trivial character xtriy, we have Lx (xtriv) = ¢K, so that preserving
L-series at xiriy is the same as K and L having the same zeta function. Contrary to the
result of Funakura, our characters do not factor over a fixed Galois group.

In global function fields we explicitly construct the isomorphism of function fields via
a map of kernels of reciprocity maps (much akin to the final step in Uchida’s proof [22]).
For number fields, we do not need the full hypothesis: we can prove the stronger result
that for every number field, there exists a character of any chosen order > 2 for which the
L-series does not equal any other Dirichlet L-series of any other field (see Theorem 10.1).
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The method here is not via the kernel of the reciprocity map, but rather via representation
theory.

We briefly indicate the relation of our work to previous results. The main result was first
stated in a 2010 preprint by two of the current authors, who discovered it through methods
from mathematical physics ([4], now split into two parts [5] and [6]). For function fields,
the main result was proven by one of the authors in [3], using dynamical systems, referring,
however, to [4] for some auxiliary results, of which we present the first published proofs
in the current paper. Sections 9 and 10 contain an independent proof for the number field
case that was found by the second author in 2011. The current paper not only presents full
and simplified proofs, but also uses only classical methods from number theory (class field
theory, Chebotarev, Grunwald-Wang, and inverse Galois theory). In [19], reconstruction
of field extensions of a fixed rational function field from relative L-series is treated from
the point of view of the method in Sects. 9 and 10 of this paper.

After some preliminaries in the first section, we state the main result in Sect. 3. The
next few sections outline the proof of the various equivalences in the main theorem, using
basic class field theory and work of Uchida and Hoshi. In the final sections, we deal with
number fields, and use representation theory to prove some stronger results.

2 Preliminaries
In this section, we set notation and introduce the main object of study.

A monoid is a semigroup with identity element. If R is a ring, we let R* denote its group
of invertible elements.

Given a global field K, we use the word prime to denote a non-zero prime ideal if K is a
number field, and to denote an irreducible effective divisor if K is a global function field.
Let Zk be the set of primes of K. If p € Pk, let v, be the normalized (additive) valuation
corresponding to p, Ky, the local field at p, and &), its ring of integers. Let Ak r be the finite
adele ring of K, Ok its ring of finite integral adeles and Aj f the group of ideles (invertible
finite adeles), all with their usual topology. Note that in the function field case, infinite
places do not exist, so that in that case, Ax s = A is the adele ring, Ok is the ring of
integral adeles and Aj F= A is the full group of ideles. If K is a number field, we denote
by Ok its ring of integers. If K is a global function field, we denote by g the cardinality of
the constant field.

Let Ik be the multiplicative monoid of non-zero integral ideals/effective divisors of our
global field K, so Ik is generated by #kx. We extend the valuation to ideals: if m € Ig
and p € P, we define vp(m) € Zxg by requiring m = Hpeﬂ'?K p"»(™). Let N be the
norm function on the monoid Ik: it is the multiplicative function defined on primes p by
N(p) := #0k /p if K is a number field and N (p) = ¢9¢8(® if K is a function field. Given two
global fields K and L, we call a monoid homomorphism ¢ : Ix — I, norm-preserving if
N(p(m)) = N(m) for allm € Ix.

We have a surjective monoid homomorphism

Ok : Ak y N Ok — T, (p)p = [ [ 970,
p

a restriction of the usual homomorphism from ideles to fractional ideals—we use the
monoid version in Sect. 6.1 and in the companion paper [6]. A split for (-)k is by definition
a monoid homomorphism sk : Ix — AE‘( f N ﬁK such that for every prime p, sg(p) =
(..., 1,mp, 1,...) for some uniformizer , € Kp. It follows that (-)k o sk = idy.



Cornelissen et al. Res. Number Theory (2019)5:7 Page3of15 7

Let G%b be the Galois group of a maximal abelian extension K" of K, a profinite topo-
logical group. There is an Artin reciprocity map Ay — Gﬁ‘gb. In the number field case, we
embed Aj f into the group of ideles Aj via Af FIx (1, %) € A, restrict the Artin
reciprocity map to Aj f and call this restriction recg. In the function field case, reck is
just the (full) Artin reciprocity map.

Let T denote the unit circle, equipped with the usual topology, and va’%b = Hom (G2, T)
the group of continuous linear characters of Gﬁ‘(b. Given x € é%b , we write

U(x) = [P € K Xlrecg(03) = 1]

for the set of primes where x is unramified. We denote by (LI ( X)) the submonoid of Ix
generated by U(x), i.e.,, m € Ik isin <L[(X)> ifand only if vy (m) = O forallp € Pk \ U(x).
Form € <L[ (x )), we set (in a well-defined way, as the choice of sk is up to an element of 5]1"():

x (m) := x (reck (sx(m))),

and form € IK\(U(X)) we set x(m) = 0.

Forany x € G2, the kernel ker  is an open subgroup of G]?(b. Therefore, the fixed field
of x, denoted K, is a finite abelian extension of K. Even more: as the extension is finite,
there is an 7 such that x” is the trivial character. It follows that im y is a subgroup of
the nt" roots of unity, hence cyclic. As we have an isomorphism im y => Gal(K, /K), we
obtain that K, /K is a finite cyclic extension. Conversely, for any finite cyclic extension K’
of K there exists a character y € éﬁ(b such that ker y = Gal(K2?/K).

The following two lemmas are easy, but we include a proof in the terminology of this
paper for lack of a suitable reference.

Lemma 2.1 Let x € Cv?%b. The primes in U(x) are exactly the primes that are unramified
in K,.

Proof The character x factors through the quotient map G%b — Gal(K, /K), giving an
injective character ¥ : Gal(K, /K) — T. Under the quotient map, the group recK(ﬁ;k )
is mapped surjectively to the inertia group I,(K, /K), hence we have x(recK(ﬁ;‘)) =
XU (K, /K)). As X is injective, this group is equal to {1} precisely when the inertia group

is trivial, i.e. when p is unramified in K, . O

Lemma 2.2 For any primep € Pk, set Ny := [  ker x. Then reck(0y) = Ny, and
x:pel(x)

the associated fixed field is equal to K"¥, the maximal abelian extension of K unramified

at p.

Proof By definition of U(y), for any x € é%b with p € U(x) we have recK(ﬁ;) C ker g,
hence recK(ﬁ;‘) C Np. As ﬁ;‘ is compact and reck is continuous, recK(ﬁ;) is compact,
and as G%b is Hausdorff, reCK(ﬁ;‘) is closed.

Let Koy denote the fixed field of reck(&y). Under the quotient map G%b —
Gal(K,j; /K), reCK(ﬁ;‘) is mapped to the inertia group I, (]K,;; /K) by class field theory,
but it is also mapped to {1} by definition. Hence the inertia group is trivial, and

(Kab)reCK((j;) — Ké’; g Kur}p‘

The extension associated to Ny, contains the composite of the extensions K, associated
to the individual x. The field K"** is a composite of finite cyclic extensions of K unramified
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at p. As mentioned, for any such a finite cyclic extension K’ there exists a x such that
ker x = Gal(K® /K’). Because this extension is unramified at p, the previous lemma
asserts that p € U(x). It follows that

Kuop C (Kab)Np'
Combining these two results, we obtain recK(ﬁ; ) 2 Np, and the result follows. m]

The (Dirichlet) L-function attached to a character x of K is the function of the complex
variable s:

L= [] A-xONG ™= Y xmNmw
pell(x) me(U(x))

(We drop the field K from the notation for the L-series unless confusion might arise.)

Let x be a character with associated extension K, . For the primes in U(x) we have
that reck (s (p)) mod ker x is independent of the choice of the split sk, and equal to the
Frobenius Froby, in Gal(K’/K); note that in a general extension, “the” Frobenius of an
unramified prime in K is a conjugacy class in the Galois group, but in our setting of
abelian extensions, it is an actual element. The L-series can thus be written as

[T @ = x(Froby)N(p)=*)~"

pel(x)

3 The main theorem
Theorem 3.1 Let K and L be two global fields. The following are equivalent:

(1) There exists

e a monoid isomorphism ¢ : Ix —> I,
e an isomorphism of topologlcal groups \r : G“‘b = Gab, and
o splitssg : Ix — A% fﬂﬁK,sL I, — AF fﬂﬁ’L

such that
w(recK(ﬁ*)) = rec, (O (p))for every prime p of K, (1)
Y (reck(sx(m))) = recr(sL(¢(m))) for all m € Ix. (2)

(ii) There exists

e a norm-preserving monoid isomorphism ¢ : Ix — I, and
e an isomorphism of topological groups r : Gﬁg’ = Gﬁb

such that for every finite abelian extension K' = (Kab) of K (N a subgroup in Gi b)

with corresponding field extension L' = (}Lab)w(m of L, ¢ is a bijection between the
unramified primes of K' /K and I /L such that

¥ (Froby) = Frobyp) in Gal(L'/L).
(iii) There exists an isomorphism of topological groups r : Gab Gib such that
L(x) = LG () for all x € G¥, 3)

where fﬁ is given by 1}()() =xoy L
(iv) KandLL are isomorphic as fields.
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We will refer to condition (i) as a reciprocity isomorphism, condition (ii) as a finite reci-
procity isomorphism, and condition (iii) as an L-isomorphism. We will prove the implica-
tion (i) = (ii) in Proposition 4.2, implication (ii) = (iii) in Proposition 5.1, and implication
(iif) = (i) in Proposition 6.1. The equivalence with (iv) is proven in 8.1 for function fields
and follows from 10.1 for number fields.

4 From reciprocity isomorphism to finite reciprocity isomorphism
Proposition 4.1 Assume 3.1(i). Then ¢ is norm-preserving, i.e.

N(p) = N(p(p)) forallp € Pk. (4)

Proof We have

ﬁ; = recK(ﬁ;) = reCL(ﬁ;(p)) = ﬁ;(p)

for all p € Pk as the local reciprocity map is injective. Thus, it suffices to find a way to
read off N (p) from the isomorphism type of . Let tors(A) be the torsion subgroup of an
abelian group 4, and let A, be the p-primary part of a finite abelian group A. Assume that
N(p) = p/ for some prime p and f > 1. The following facts follow from [16, Chapter II,
Proposition (5.7)]:

e p is uniquely determined by the property (ﬁ;‘/tors(ﬁ;))p # Oy [tors(OY),
o N(p) =p/ = |tors(0})/tors(O7}),| + 1.

So we indeed have (4). O
Proposition 4.2 Condition 3.1(i) implies condition 3.1(ii).

Proof A prime p of K is unramified in K’ if and only if reck(0;) < N. There-
fore, (1) implies that ¢(p) is unramified in L/, and the bijection follows by symmetry.
Also, reck (s (p)) mod N is independent of the choice of the split sk, and equal to the
Frobenius Froby in Gal(K'/K). Hence from (2) we obtain y(Froby) = Froby). This
proves (ii). O

5 From finite reciprocity isomorphism to L-isomorphism
Proposition 5.1 Assume 3.1(ii). Then L(x) = L(xZ(X))for all x € éﬁ‘é’,

Proof Letx € (v?%b, andletK, = (K2bYker X denote the fixed field of ker x. As mentioned
in Sect. 2, the associated L-series can be written as

Lix)= [] Q= x(Froby)N(p)~)~".
pel(x)

We have ¥ (ker x) = ker(l/vf(x)) by definition of 1\& Let LlZ(X) = (LabyVlkery) pet
p e Pxandq = pp) € P By assumption, p(U(x)) = UG, Np) = N(@)
and if p € U(y) then ¥ (Froby) = Froby and thus x(Froby) = v¥(x)(Frobg). It follows

that
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L(x)= [] (= x(Froby)N(p)~)~"
pel(x)
= I @-v9G)ErobN(@) ™)™
ael (W (x))

= LY (x)). O

6 From L-isomorphism to reciprocity isomorphism

Proposition 6.1 Assume that there exists an isomorphism of topological groups ¥ :
G2 = G2 with L(x) = LY (x)) for all x € GZ>. Then 3.1(i) holds.

Proof The idea of the proof is to construct a bijection of primes ¢ with the desired
properties via the use of a type of characters that have value 1 on all but one of the primes
of a certain norm.

For the proof, which will occupy this entire section, we will use the following notation.
Whenever an object has subscript N, < N, or > N, all associated sets of (prime) ideals are
restricted to (prime) ideals of norm N, < N or > N respectively. For example, Un(x) is
the set of primes of norm N at which y is unramified. We use the multiplicative form of
the L-series, i.e.

L) =[] Q= x(Froby)N(p) )"
pEU<N(X)

and Lx>n(yx) is defined similarly. |
Our approach is as follows: for every N € N we construct a bijection
¢N : RN —> PLN

such that x(p) = 1/vf(x)(q0N(p)) forall x € é%b and all p € Pk . That suffices to prove (i),
as we now first explain. We obtain a bijection

¢: Pg — P,

by setting ¢|», , = ¢n, so that ¢ satisfies x (p) = @(X)(go(p)), forall x € éﬁ‘(b and all
p € Pk. From this, the following sequence of equivalences follows:

pel(y) e x(p) #0 = F(x)@p) #0 < op) € UW(x))

Because ¢ is a bijection, we obtain (U (x)) = U (1;( x)). Certainly ¢ gives rise to a monoid
isomorphism Igx —> Ir,, and (1) follows from Lemma 2.2 combined with ¢(U(x)) =
U(I\/;(X)). Thus, for every p € Pk, x(p) = f/?(x)(go(p)) for all x € é%b with p € U(x)
implies that for any splits sk and sg,,

Y (reck (sk (p))) = recp(sL(¢(p))) mod recr(0,)).

Hence we can modify our splits to obtain (2), and this proves (i).
To construct gy, the strategy is to proceed inductively on N. For N = 1, the statement
is empty. Assume that we have constructed ¢, for all M < N. Let

PN : PR <N = PL<N
be the norm-preserving bijection obtained by combining the ¢,s. Since

UNG(0) = 9NUNGO) xB) =T () (@n (), and N(p) = Nlpn(p))
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it follows that

Lon(x) = Lon((x)).

~

Since L(x) = L(¥(x)) and L(x) = L<n(x)L>n(x) we also have

Lan(x) = Lan(W(x)).

We can apply this equality to prove the following lemma.

Lemma 6.2 For any character x € éﬁ‘(b, define

ING) = Y xp= Y x)

PEZKN peln(x)

Then Zn(x) = %N(J(X))forallx € é]"f(b As a result, | Px N| = | ZLN|-

Proof Let (3211(,21\1) be the submonoid of Ik generated by &k >n. We write L>n(x) in
additive form:

LonGO = Y, xmNm)~* =) oo xm) M
me(g?‘K,zN) M>N mE(L‘?K_ZN)ﬂIK‘M

~

As Lon(x) = L>n(¥(x)), the coefficients of N ~* in both sums are equal, hence
Yoo oxm= Y M),
m€<V]"K,2N>m[K,N ne(ﬂth)ﬂlLN
As <<@K,2N> NIgn = PxN and (WLZM NN = ZLN, the desired equality follows.
The final result is obtained by setting x = 1. ]

Definition 6.3 Let cx := | Pk n| = | PN |. For any character x € G2b, define

o un(x) = UnGOI
o Vn(x)=1{pelUn(x)| x(p) =1}, and
o ww(x) =Vl

If vy (x) = un(x) — 1, there exists a unique prime of norm N on which yx has a value of
neither 0 nor 1. We will denote this prime by p, . Lastly, we define the following sets of

characters:
Bl = {x €GP run(x) =vn(x) = CN]
g% = {x € G un(0) = cn, () =cn — 1, X(py) = é“}'

where ¢ = exp(27i/k) for some fixed integer k > 3.

Remark 6.4 Let x € (vy’%b.As |x(p)| = 1forallp € Un(x), we have Re(Zn(x)) < un(x).
Equality holds precisely when x (p) = 1 for allp € Un(x), i.e. un(x) = vn(x).

Lemma 6.5 J(Eﬁ() = Ei.

Proof From Lemma 6.2 we obtain y € Eﬁg = In() = v = %N(t/vf(x)) =
N = Y (x) € Ei. |
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Lemma 6.6 For k > 3, let ui denote the kth roots of unity and let ¢ = exp(2mwi/k).
Suppose we have ay, . . ., a, € ux U {0} such thata; + ---+a, = n— 1+ ¢. Then there is
ajsuchthata; =¢,anda; =1 foralli #j.

Proof If k = 3, then ¢ is the only possible value with a positive imaginary part. Hence
one of the a; equals ¢, and then a; = 1 for the remaining i # j, since they have to sum to
n — 1. For k > 3, let R := max Re(ug — {1}), and let f denote the number of 4; that are
not equal to 1. Since 0 < R = Re(¢) < 1, we find that

n—14+R=n—1+Re(l¢)=Re(a; +---+ay)
<n—f+fRe(t)=n+f(R-1),

SOR—1<f(R—1) hencef <1. O

Lemma 6.7 1/7(8%g = “i.

Proof For any character x € EH2< we have x¥ e Eﬁg. Thus, by Lemma 6.5, 1/v/(x)k € Ei.
Hence for any q € &7,y we have that f/?(x)(q) € ur U {0}. As %N(J(X)) = Zn(x) =
¢n —1+¢, by the previous lemma there exists a single prime 95 () such that J(x)(q]/v/(x)) =
¢, while 1/v/(X)(q) = 1forall q # 43 () Hence 1/7(3112() C Ei. By symmetry, we have
equality. ]

A character x in EHZ< has a special prime p, of norm N, and the corresponding character
1\&()() € Ei has a special prime 95 of norm N. We obtain a relation between primes

{(p)() qj,(x)) tX € Eﬂzg} C ZxN X LN

which we will now show is the graph {(p,, ¢n(p,)} of a bijection o : P n — F1,n With
the required property. The first step is to show that every prime of &k y is associated to
at least one prime of & .

Lemma 6.8 Foreveryp' € Pk there exists a character x € E% such thatp, =’

Proof The Grunwald-Wang Theorem [2, Ch. X, Thm. 5] guarantees that there exists a
character x € é%b such that x(p’) = ¢ and x(p) = 1 for all primes p # p’ of norm
N, because there exists a character of G]‘I‘g’p/ whose fixed field is the unique unramified
extension of degree k of K. ]

Lemma 6.9 The map ¢n : PxN — PLN: Py > 4 7 () s a well-defined bijection such
that for every y € éﬁ‘(b and p € Pg N we have x(p) = J(x)((pN(p))'

Proof Suppose we have x, x' € E% such that p, =p,  and 4% () # ChApY We have
InG-x)=en —1+7

while
ING G XN = 2NW00) - TN =en =2+ 20 #en — 1+,

which contradicts Lemma 6.2. We conclude that g T = 95y Using 1}‘1 instead of gvﬁ

provides a well-defined inverse <p;]1.
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Take x’ € EZ such that p,s = p. We have

NG X)) = 20 — x) + ex(p) = 2n(x) — (1 =) x(p).

Similarly,

AN 1)) = NG - () = v () — @ = v () (en (p)).

As we have both Zx(x) = ZNW(x)) and ZN(x - x') = N (x - x)), we conclude
that (1 — £)x(p) = (1 — &)V (x)(¢n(p)) and consequently x (p) = ¥ (x)(¢n (p))- O

This completes the proof of Proposition 6.1. O
7 Conditional reconstruction of global fields

Proposition 7.1 Assume the equivalent statements (i)—(iii) of Theorem 3.1. Then there
exists an isomorphism V such that

A%{fﬂﬁKLAELfﬂﬁL (5)

reck \L l recr,

14

ab ab
—_—
Gy Gy,
commutes.

Proof Define the homomorphism @I’g x g — A]’I‘(f N ﬁK by (u, m) — u - sg(m). It hasa
complete inverse A%f al ﬁK — ﬁﬁ‘% x Ig given by x = (x - sx((*)g) "L, (x)x). We obtain
an isomorphism A / N é’\K = ﬁﬂ*( x Ik (and similarly for IL).
As seen in the proof of Proposition 4.1,
14
ﬁ;‘ = recK(ﬁ;‘) = recL(ﬁ;(p)) = ﬁ;(p).

We obtain an isomorphism
Y *
Vp: Op = Oy ()

that fits into the following commutative diagram:

O* Yp o*
P Yo
recg l \L recy,
¥

As we have yr(reck(sx(m))) = recy(sL(¢(m))) for all m € Ix by assumption, the map
(ITWp) x ¢ fits in the commutative diagram

~ M¥s) ~
ﬁ%XIKMﬁEXIL

recKl recy, \L

ab ab
GK G]L

<

Using the aforementioned identifications A fﬂﬁK = ﬁﬂ*g xIg and A} fﬂ ﬁl = 5’\]?: 1,
we obtain the desired isomorphism W. O
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Corollary 7.2 Diagram (5) can be extended to a commutative diagram

Ay —Aj (7)
recyg l \L recy,

G

G
Proof The reciprocity map is already defined from Aj s to G%b , so this follows from (5)
by passing to the group of fractions Aj f of the monoid Aj 0 Ok. ]

We now turn to the reconstruction of isomorphism of fields from the equivalent con-
ditions in the Main Theorem 3.1. For this, we first quote a result about conditions under
which an isomorphism of multiplicative groups of fields can be extended to a field iso-
morphism. Let },) denote the local ring (of K) at the prime .

Lemma 7.3 (Uchida/Hoshi) An isomorphism F: K* — L* of multiplicative groups of
two global fields K and L is the restriction of an isomorphism of fields if and only if there
exists a bijection ¢: Px — P, such that for all p € Pk, both the following hold:

(i) F(A+pOp) =1+ @(p)Olyp) (as sets, or, equivalently, as subgroups),
(ii) Vo(p) © F = vp.

Proof This follows immediately by results of Uchida for global function fields [22, Lemma
8-11], as explained in the introduction of [12]) and by Hoshi for number fields [12, Thm.
D]. O

Theorem 7.4 Assume that V in (7) above satisfies V(K*) = L*. Then the extension of
that isomorphism to a map K — L by setting 0 — 0 is an isomorphism of fields.

Proof Fixp € Pk. Let I, : Ap ;= K} be the canonical projection, which we use to
project elements of K* (that are diagonally embedded in Aj f) into the completions K§.
By construction, there is an isomorphism Wy, : K;; = ]L;(p) such that

Mypy o W = Wy oI,
The one-units of the complete local ring are simply the (N (p) — 1)-th powers [16, Ch.
11, Prop. 5.7]:

1+ 1y 0p = (OpN®1, (8)

Since Wy, is multiplicative, and respects units by Eq. (6) we find
Setting F := W|g+: K* — L*, we conclude that for the local rings, we have

F(L+pOp) = WK NI N1+ poy))

W(K*) N Wo Tl (1+p0y)
N’

]
=My pyo¥e

)(1 + (p(p)ﬁga(p))

Tk -1
=L ﬂl‘[(p(p
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=14 @) Oy(p))-

This proves condition (i) in Lemma 7.3.

For condition (ii), observe that from the definition of W it follows that W(sk(p)) =
sL(¢(p)). Since Ty (sg(p)) = mp by definition of a split (for a chosen uniformizer my,), we
find that

Wy () = M) (SLI@(P))) =: Ty(p)

is a uniformizer at ¢(p). Thus, the multiplicative map F respects elements of valuation 0
(see again Eq. (6)) and 1, and hence (ii) holds. O

8 Reconstruction of global function fields
In function fields, we can immediately apply the results of the previous section:

Proposition 8.1 If one of the equivalent conditions (i)—(iii) of Theorem 3.1 holds for two
global function fields K and L, then they are isomorphic as fields.

Proof From the commutativity of diagram (7) we find that W (ker(reck)) = ker(recy,). For
a global function field K we have ker(reck) = K* and therefore the result follows from
Theorem 7.4. O

Remark 8.2 The equivalence of (iii) in Theorem 3.1 and field isomorphism in global func-
tion fields was also shown in [3] using dynamical systems, but referring to the unpublished
[4] for a proof of the result in Sect. 6 of this paper.

9 The number field case: an auxiliary result

In this section we prove the existence of certain Galois extensions of number fields with
prescribed Galois groups; a result that we will use in the next section to prove the recon-
struction of number fields from the consideration of specific induced representations.

Proposition 9.1 Let K be a number field of degree n contained in a finite Galois extension
N of Q, and let C be a finite cyclic group. Denote G = Gal(N/Q) and H = Gal(N/K)
and let C" x G be the semidirect product of C" and G, where the action of G on C" is by
permuting coordinates the same way G permutes the cosets G/H. By C" x H we denote
the subgroup of C" x G generated by C" and H. There exists a Galois extension M of Q
containing N such that

GalM/Q) = C" x G, GalM/K) = C" x H, and Gal(M/N) = C".

Remark 9.2 The semidirect product C” x G is also known as the wreath product of C and
the group G considered as a permutation group on G/H. For any extension LL of K with
Galois group C, the Galois group of the Galois closure of IL over Q is a subgroup of this
wreath product. The proposition asserts that the wreath product itself (i.e., the maximal
subgroup, which can be viewed as the ‘generic’ case), actually occurs for some L.

We give a self-contained proof, but the result also follows from [14, Thm. IV.2.2]; or,
for C of order 3 one can use the existence of a generic polynomial for C and apply [7,
Prop. 13.8.2].

Proof of Proposition 9.1 Let p # 2 be a prime that is totally split in N and denote by
PL ..., Py the primes in K lying above p. There exists a Galois extension ]K/ K with Galois
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group C in which the prime p; is inert, while py, .. ., p, are totally split (this follows, e.g.,
from the Grunwald-Wang theorem).

Let X be the set of field homomorphisms from K to N. Since G acts on N, we get an
action of G on X by composition. This action is transitive and the stabilizer of the inclusion
map ¢ € X is H, so X is isomorphic to G/H as a G-set. For each 0 € X we now consider
Ny == K ®K,o N, where N is viewed as a K-algebra through o: K — N. The C-action
on K induces a C-action on N, by N-algebra automorphisms. Setting P, to be the set of
primes of N that contain o (p;), we see that KL, is a Galois extension of N with Galois group
C for which the primes in P, are inert and all other primes of N over p are totally split.

The G-action on the set of primes of N over p is free and transitive, and P, consists of
a single H-orbit: the primes over p;. Since Py; = gP; it follows that as o ranges over X
the sets P, form a disjoint family. One deduces that the fields N, form a linearly disjoint
family of C-extensions of N and that the tensor product

M= Q) N,

oeX

over N of all N, with o € X is a field which is Galois over N with Galois group C" =
HO’EX C. - -

For g € G and 0 € X there is a natural field isomorphism g, : N, — Ngo given by
x®y > x ® gy that extends the map N — N given by y > gy. Combining these maps for
all o € X we obtain an automorphism of the tensor product M that permutes the factors
of the tensor product by the g-action on X. Thus, we have extended the G-action on N to
a G-action on M. Since each g, is C-equivariant, the subgroup of Aut (M) generated by
G and C” is the semidirect product C” x G. As the cardinality of this group is the field
degree of M over QQ we see that M is a Galois extension of Q with Galois group C" x G,
and that K is the invariant field of C" x H. ]

10 Characterization of number fields

Using the previous section we prove a stronger version of Proposition 8.1 for number
fields.

Theorem 10.1 Let K be a number field and let k > 3. Then there exists a character
X € éﬁ‘é’ of order k such that every number field 1L for which there is a character x' € éﬁb
with Ly (x") = Lx(x) is isomorphic to K.

We will use the following basic facts about Artin L-series of representations of the
absolute Galois group Gk := Gal(Q/K) for a number field K within a fixed algebraic
closure Q of Q.

Lemma 10.2 (a) For any two representations p and p’ of Gg, Lg(p) = Lo(p’) is equiv-
alentto p = p.
(b) For x € G2, we have Lr(x) = LQ(Indgg(X))‘
(c) For any two number fields K and 1L within Q and characters x € é%b and x' € va’fﬁb
with Lg (x) = L1.(x’) we have an isomorphism of representations of G

G, ~ G,
IndGE(X) = Inde(X’)

and the fixed fields K, of x and 1L,/ of x' have the same normal closure over Q.
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Proof Fact (a) follows from Chebotarev’s density theorem, comparing Euler factors. The
basic fact (b) is due to Artin, see [16, VIL.10.4.(iv)]. The isomorphism in (c) follows from
(a) and (b). The last statement follows from the fact that the normal closure of K, over Q
is the fixed field of the kernel of the representation Indgi( X)- O

By amonomial structure of arepresentation p ofa group G we mean a G-set .Z consisting
of 1-dimensional subspaces of p that is G-stable (i.e. gL € £ forallg € Gand L € .¥),
and such that as a vector space we have p = @@; . ,» L. By choosing a single nonzero vector
of L for each L € .Z one obtains a basis of p such that for every g € G the action of g on p
is given by a matrix with exactly one non-zero element in each row and in each column.
If H is a subgroup of G and x a linear character of H, then the induced representation
p= Indg( x) naturally produces a monomial structure .Z that is isomorphic to G/H as a
G-set.

Proof of Theorem 10.1 If Ly, (x') = Lk(x) for two characters x € G®, x' € G2, the
lemma implies that Indgﬁ( x) has two monomial structures, one arising from x and one
from x’. We see that K and L are isomorphic as number fields if and only if these two
monomial structures are isomorphic as Gg-sets (note that they are transitive Gg-sets).
In order to prove Theorem 10.1 it therefore suffices to choose x in such a way that the
representation Indgg (x) only has a single monomial structure.

In order to find such a character x we apply Proposition 9.1 to any finite Galois N/Q
containing K, and where C = (¢) is the subgroup of C* generated by { = exp(27i/k).
Welet n, G, H, and C” x G be as in the proposition, and get an extension M of K within
Q with Galois group Gal(M/Q) = C" x G. We order the coordinates of C” in such a way
that the action of H on C” fixes the first coordinate, so the map

Ga(M/K)=C"xH — C*: (a,...,anh) — @

is a group homomorphism, and extends to a character x € é&b The induced represen-
tation p = Indgg(x) factors over Gal(M/Q) = C” x G and it comes with a monomial
structure . = {L1, ..., L,} such that each element (4, ...,a,) € C" acts on L; as scalar
multiplication by ;. It follows that .Z is exactly the set of 1-dimensional C”-submodules
of p, the so-called character eigenspaces for the action of C” on p.

To finish the proof we will show that . is the unique monomial structure on the
representation p. Suppose that .# is another monomial structure on p. The trace of the
elementc = (¢, 1,...,1) € C" on p is equal to n — 1 4 ¢. On the other hand, ¢ permutes
the elements of .#, so the trace of ¢ on p is also equal to the sum of k-th roots of unity
{m € ik where M ranges over those lines M € .# with cM = M, and ¢y is the scalar by
which ¢ then acts on M. Since k > 3 and .Z and .Z have the same number of elements,
Lemma 6.6 implies that cM = M for all M € .. It follows that c acts trivially on the set
A . Since the G-conjugates of ¢ generate C” we deduce that C” acts trivially on the set
M . Thus, ./ consists of 1-dimensional C”-submodules of p. This implies that .# C .Z,
so A = £ for cardinality reasons.

Remark 10.3 Not every representation has a unique monomial structure: consider the
isometry group of a square, the dihedral group D, of order 8, with its standard 2-
dimensional representation. It has two distinct monomial structures (consisting of the
axes and the diagonals) and these are not isomorphic as Ds-sets.
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By realizing D4 as a Galois group over Q this gives rise to quadratic fields K and and
L with quadratic characters x € éﬁ*{b [2] and ¥’ € éﬁb[Z] that satisfy Lx(x) = Lr(x")
while K is not isomorphic to L. This shows that the method of proof of the theorem fails
without the assumption that kK > 3. Concretely, Gal(Q(v/2,i)/Q) => D,, and we find
Lr(x) = Lir(x') for K = Q(+/2), L = Q(iv/2) and x and x’ uniquely determined by
Ky = Q(V2) and L, = Q(iv2, (1 + )/2).

In [18, Thm. 3.2.2] it is shown that K = Q(~/5) provides a counterexample to the
statement of the theorem for k = 2. On the other hand, in [18, Thm. 2.2.2], a similar
method as in our proof is used to show that every number field is characterized uniquely
by the L-series of two suitable quadratic characters.

11 Comparison of different methods of proof

There is an interesting “incompatibility of proof techniques” between the case of global
function fields and that of number fields. Namely, the approach of the proof of Proposi-
tion 8.1 for function fields does not transfer in an obvious way to number fields. Indeed, for
a number field K, ker(reck) = K* - @, where @ is the closure of the totally positive
units (i.e., units of O that are positive in every real embedding of KK) in the finite ideles;
this follows from the description of the connected component of the idele class group by
Artin [2, Ch. IX]. Hence the method of proof of 8.1 transferred literally to number fields
yields the weaker conclusion that

V(K- OF ) =L Of .

It is unclear to us whether one can deduce that ¥(K*) = LL* from the conditions in
Theorem 3.1. The issue is similar to the one raised in [12, 3.3.2].

On the other hand, it is not possible to copy the proof of Theorem 10.1 for function
fields, as this would force fixing a rational subfield F, (¢) inside both K and IL (that plays the
role of Q in the number field proof), for which there are infinitely many, non-canonical,
choices. However, Theorem 10.1 does hold in the relative setting of separable geometric
extensions of a fixed rational function field of characteristic not equal to 2, compare [19].
It is unclear to us whether the analogue of Theorem 10.1 holds for a global function field
without fixing a rational subfield. It does seem that L-series of global function fields, as
polynomials in g%, contain less arithmetical information than their number field cousins
(compare [11]).
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