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1 Introduction
As was discovered by Gaßmann in 1926 [10], number fields are not uniquely determined
up to isomorphism by their zeta functions. A theorem of Tate [20] from 1966 implies
the same for global function fields. At the other end of the spectrum, results of Neukirch
and Uchida [15,21,22] around 1970 state that the absolute Galois group does uniquely
determine a global field. The better understood abelianized Galois group again does not
determine thefieldup to isomorphismat all, as follows from thedescriptionof its character
group by Kubota in 1957 ([13], compare [1,17]). Funakura ([9, § I], using [8, Thm. 5]) has
shown in 1980 that there exists a number field k (of degree 255! over Q) and two non-
isomorphic abelian extensionsK/k and L/k of degree 4 with a bijection between all Artin
L-series of K/k and L/k (or, equivalently, between the L-series of the four occurring
characters).
In this paper, we prove that two global fields K and L are isomorphic if and only if there

exists an isomorphism of groups of Dirichlet characters qψ : qGab
K

∼−→ qGab
L

that preserves
L-series: LK(χ ) = LL(qψ(χ )) for all χ ∈ qGab

K
. A more detailed series of equivalences can

be found in the Main Theorem 3.1 below. To connect this theorem to the discussion in
the previous paragraph, observe that the existence of qψ without equality of L-series is
the same as K and L having abelianized Galois groups that are isomorphic as topological
groups, and that for the trivial character χtriv, we have LK(χtriv) = ζK, so that preserving
L-series at χtriv is the same as K and L having the same zeta function. Contrary to the
result of Funakura, our characters do not factor over a fixed Galois group.
In global function fields we explicitly construct the isomorphism of function fields via

a map of kernels of reciprocity maps (much akin to the final step in Uchida’s proof [22]).
For number fields, we do not need the full hypothesis: we can prove the stronger result
that for every number field, there exists a character of any chosen order> 2 for which the
L-series does not equal any other Dirichlet L-series of any other field (see Theorem 10.1).
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Themethod here is not via the kernel of the reciprocity map, but rather via representation
theory.
We briefly indicate the relation of our work to previous results. Themain result was first

stated in a 2010 preprint by two of the current authors, who discovered it throughmethods
from mathematical physics ([4], now split into two parts [5] and [6]). For function fields,
themain result was proven by one of the authors in [3], using dynamical systems, referring,
however, to [4] for some auxiliary results, of which we present the first published proofs
in the current paper. Sections 9 and 10 contain an independent proof for the number field
case that was found by the second author in 2011. The current paper not only presents full
and simplified proofs, but also uses only classical methods from number theory (class field
theory, Chebotarev, Grunwald-Wang, and inverse Galois theory). In [19], reconstruction
of field extensions of a fixed rational function field from relative L-series is treated from
the point of view of the method in Sects. 9 and 10 of this paper.
After some preliminaries in the first section, we state the main result in Sect. 3. The

next few sections outline the proof of the various equivalences in the main theorem, using
basic class field theory and work of Uchida and Hoshi. In the final sections, we deal with
number fields, and use representation theory to prove some stronger results.

2 Preliminaries
In this section, we set notation and introduce the main object of study.
A monoid is a semigroup with identity element. If R is a ring, we let R∗ denote its group

of invertible elements.
Given a global field K, we use the word prime to denote a non-zero prime ideal if K is a

number field, and to denote an irreducible effective divisor if K is a global function field.
LetPK be the set of primes of K. If p ∈ PK, let vp be the normalized (additive) valuation
corresponding to p,Kp the local field at p, andOp its ring of integers. LetAK,f be the finite
adele ring of K, ̂OK its ring of finite integral adeles and A∗

K,f the group of ideles (invertible
finite adeles), all with their usual topology. Note that in the function field case, infinite
places do not exist, so that in that case, AK,f = AK is the adele ring, ̂OK is the ring of
integral adeles and A∗

K,f = A∗
K
is the full group of ideles. If K is a number field, we denote

by OK its ring of integers. If K is a global function field, we denote by q the cardinality of
the constant field.
Let IK be the multiplicative monoid of non-zero integral ideals/effective divisors of our

global field K, so IK is generated by PK. We extend the valuation to ideals: if m ∈ IK
and p ∈ PK, we define vp(m) ∈ Z≥0 by requiring m = ∏

p∈PK
pvp(m). Let N be the

norm function on the monoid IK: it is the multiplicative function defined on primes p by
N (p) := #OK/p ifK is a number field andN (p) = qdeg(p) ifK is a function field. Given two
global fields K and L, we call a monoid homomorphism ϕ : IK → IL norm-preserving if
N (ϕ(m)) = N (m) for all m ∈ IK.
We have a surjective monoid homomorphism

(·)K : A∗
K,f ∩ ̂OK → IK, (xp)p �→

∏

p

pvp(xp),

a restriction of the usual homomorphism from ideles to fractional ideals—we use the
monoid version in Sect. 6.1 and in the companion paper [6]. A split for (·)K is by definition
a monoid homomorphism sK : IK → A∗

K,f ∩ ̂OK such that for every prime p, sK(p) =
(. . . , 1,πp, 1, . . .) for some uniformizer πp ∈ Kp. It follows that (·)K ◦ sK = idIK .
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Let Gab
K

be the Galois group of a maximal abelian extension Kab of K, a profinite topo-
logical group. There is an Artin reciprocity map A∗

K
→ Gab

K
. In the number field case, we

embed A∗
K,f into the group of ideles A∗

K
via A∗

K,f 
 x �→ (1, x) ∈ A∗
K
, restrict the Artin

reciprocity map to A∗
K,f and call this restriction recK. In the function field case, recK is

just the (full) Artin reciprocity map.
LetT denote the unit circle, equipped with the usual topology, and qGab

K
= Hom (Gab

K
,T)

the group of continuous linear characters of Gab
K
. Given χ ∈ qGab

K
, we write

U (χ ) :=
{

p ∈ PK: χ |recK(O ∗
p) = 1

}

for the set of primes where χ is unramified. We denote by
〈

U (χ )
〉

the submonoid of IK
generated byU (χ ), i.e.,m ∈ IK is in

〈

U (χ )
〉

if and only if vp(m) = 0 for all p ∈ PK \U (χ ).
Form ∈ 〈

U (χ )
〉

, we set (in awell-definedway, as the choice of sK is up to an element of ̂O∗
K
):

χ (m) := χ (recK(sK(m))),

and for m ∈ IK\ 〈

U (χ )
〉

we set χ (m) = 0.
For any χ ∈ qGab

K
, the kernel ker χ is an open subgroup of Gab

K
. Therefore, the fixed field

of χ , denoted Kχ , is a finite abelian extension of K. Even more: as the extension is finite,
there is an n such that χn is the trivial character. It follows that imχ is a subgroup of
the nth roots of unity, hence cyclic. As we have an isomorphism imχ ∼−→ Gal(Kχ/K), we
obtain that Kχ/K is a finite cyclic extension. Conversely, for any finite cyclic extensionK′

of K there exists a character χ ∈ qGab
K

such that ker χ = Gal(Kab/K′).
The following two lemmas are easy, but we include a proof in the terminology of this

paper for lack of a suitable reference.

Lemma 2.1 Let χ ∈ qGab
K
. The primes in U (χ ) are exactly the primes that are unramified

in Kχ .

Proof The character χ factors through the quotient map Gab
K

� Gal(Kχ/K), giving an
injective character χ : Gal(Kχ/K) → T. Under the quotient map, the group recK(O∗

p)
is mapped surjectively to the inertia group Ip(Kχ/K), hence we have χ (recK(O∗

p)) =
χ (Ip(Kχ/K)). As χ is injective, this group is equal to {1} precisely when the inertia group
is trivial, i.e. when p is unramified in Kχ . �


Lemma 2.2 For any prime p ∈ PK, set Np := ⋂

χ : p∈U (χ )
ker χ . Then recK(O∗

p) = Np, and

the associated fixed field is equal to Kur,p, the maximal abelian extension of K unramified
at p.

Proof By definition of U (χ ), for any χ ∈ qGab
K

with p ∈ U (χ ) we have recK(O∗
p) ⊆ ker χ ,

hence recK(O∗
p) ⊆ Np. As O∗

p is compact and recK is continuous, recK(O∗
p) is compact,

and as Gab
K

is Hausdorff, recK(O∗
p) is closed.

Let KO ∗
p

denote the fixed field of recK(O∗
p). Under the quotient map Gab

K
�

Gal(KO ∗
p
/K), recK(O∗

p) is mapped to the inertia group Ip(KO ∗
p
/K) by class field theory,

but it is also mapped to {1} by definition. Hence the inertia group is trivial, and

(Kab)recK(O
∗
p) = KO ∗

p
⊆ Kur,p.

The extension associated toNp contains the composite of the extensions Kχ associated
to the individualχ . ThefieldKur,p is a composite of finite cyclic extensions ofKunramified
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at p. As mentioned, for any such a finite cyclic extension K′ there exists a χ such that
ker χ = Gal(Kab/K′). Because this extension is unramified at p, the previous lemma
asserts that p ∈ U (χ ). It follows that

Kur,p ⊆ (Kab)Np .

Combining these two results, we obtain recK(O∗
p) ⊇ Np, and the result follows. �


The (Dirichlet) L-function attached to a character χ of K is the function of the complex
variable s:

LK(χ ) =
∏

p∈U (χ )
(1 − χ (p)N (p)−s)−1 =

∑

m∈〈U (χ )〉
χ (m)N (m)−s.

(We drop the field K from the notation for the L-series unless confusion might arise.)
Let χ be a character with associated extension Kχ . For the primes in U (χ ) we have

that recK(sK(p)) mod ker χ is independent of the choice of the split sK, and equal to the
Frobenius Frobp in Gal(K′/K); note that in a general extension, “the” Frobenius of an
unramified prime in K is a conjugacy class in the Galois group, but in our setting of
abelian extensions, it is an actual element. The L-series can thus be written as

L(χ ) =
∏

p∈U (χ )
(1 − χ (Frobp)N (p)−s)−1.

3 Themain theorem
Theorem 3.1 Let K and L be two global fields. The following are equivalent:

(i) There exists

• a monoid isomorphism ϕ : IK ∼−→ IL,
• an isomorphism of topological groups ψ : Gab

K

∼−→ Gab
L
, and

• splits sK : IK → A∗
K,f ∩ ̂OK, sL : IL → A∗

L,f ∩ ̂OL

such that

ψ(recK(O∗
p)) = recL(O∗

ϕ(p)) for every prime p of K, (1)

ψ(recK(sK(m))) = recL(sL(ϕ(m))) for all m ∈ IK. (2)

(ii) There exists

• a norm-preserving monoid isomorphism ϕ : IK ∼−→ IL, and
• an isomorphism of topological groups ψ : Gab

K

∼−→ Gab
L

such that for every finite abelian extension K′ = (

Kab)N of K (N a subgroup in Gab
K
)

with corresponding field extension L′ = (

Lab)ψ(N ) of L, ϕ is a bijection between the
unramified primes of K′/K and L′/L such that

ψ(Frobp) = Frobϕ(p) in Gal(L′/L).

(iii) There exists an isomorphism of topological groups ψ : Gab
K

∼−→ Gab
L

such that

L(χ ) = L(qψ(χ )) for all χ ∈ qGab
K
, (3)

where qψ is given by qψ(χ ) = χ ◦ ψ−1.
(iv) K and L are isomorphic as fields.
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We will refer to condition (i) as a reciprocity isomorphism, condition (ii) as a finite reci-
procity isomorphism, and condition (iii) as an L-isomorphism. We will prove the implica-
tion (i)⇒ (ii) in Proposition 4.2, implication (ii)⇒ (iii) in Proposition 5.1, and implication
(iii) ⇒ (i) in Proposition 6.1. The equivalence with (iv) is proven in 8.1 for function fields
and follows from 10.1 for number fields.

4 From reciprocity isomorphism to finite reciprocity isomorphism
Proposition 4.1 Assume 3.1(i). Then ϕ is norm-preserving, i.e.

N (p) = N (ϕ(p)) for all p ∈ PK. (4)

Proof We have

O∗
p

∼−→ recK(O∗
p)

∼−→ recL(O∗
ϕ(p))

∼−→ O∗
ϕ(p)

for all p ∈ PK as the local reciprocity map is injective. Thus, it suffices to find a way to
read offN (p) from the isomorphism type ofO∗

p . Let tors(A) be the torsion subgroup of an
abelian group A, and let Ap be the p-primary part of a finite abelian group A. Assume that
N (p) = pf for some prime p and f ≥ 1. The following facts follow from [16, Chapter II,
Proposition (5.7)]:

• p is uniquely determined by the property
(

O∗
p/tors(O∗

p)
)p �= O∗

p/tors(O∗
p),

• N (p) = pf = |tors(O∗
p)/tors(O∗

p)p| + 1.

So we indeed have (4). �


Proposition 4.2 Condition 3.1(i) implies condition 3.1(ii).

Proof A prime p of K is unramified in K′ if and only if recK(O∗
p) ⊆ N . There-

fore, (1) implies that ϕ(p) is unramified in L′, and the bijection follows by symmetry.
Also, recK(sK(p)) mod N is independent of the choice of the split sK, and equal to the
Frobenius Frobp in Gal(K′/K). Hence from (2) we obtain ψ(Frobp) = Frobϕ(p). This
proves (ii). �


5 From finite reciprocity isomorphism to L-isomorphism
Proposition 5.1 Assume 3.1(ii). Then L(χ ) = L(qψ(χ )) for all χ ∈ qGab

K
.

Proof Let χ ∈ qGab
K
, and let Kχ = (Kab)ker χ denote the fixed field of ker χ . As mentioned

in Sect. 2, the associated L-series can be written as

L(χ ) =
∏

p∈U (χ )
(1 − χ (Frobp)N (p)−s)−1.

We have ψ(ker χ ) = ker(qψ(χ )) by definition of qψ . Let L
qψ(χ ) = (Lab)ψ(ker χ ). Let

p ∈ PK and q := ϕ(p) ∈ PL. By assumption, ϕ(U (χ )) = U (qψ(χ )), N (p) = N (q)
and if p ∈ U (χ ) then ψ(Frobp) = Frobq and thus χ (Frobp) = qψ(χ )(Frobq). It follows
that



    7 Page 6 of 15 Cornelissen et al. Res. Number Theory            (2019) 5:7 

L(χ ) =
∏

p∈U (χ )
(1 − χ (Frobp)N (p)−s)−1

=
∏

q∈U (qψ(χ ))

(1 − qψ(χ )(Frobq)N (q)−s)−1

= L(qψ(χ )). �


6 From L-isomorphism to reciprocity isomorphism
Proposition 6.1 Assume that there exists an isomorphism of topological groups ψ :
Gab
K

∼−→ Gab
L

with L(χ ) = L(qψ(χ )) for all χ ∈ qGab
K
. Then 3.1(i) holds.

Proof The idea of the proof is to construct a bijection of primes ϕ with the desired
properties via the use of a type of characters that have value 1 on all but one of the primes
of a certain norm.
For the proof, which will occupy this entire section, we will use the following notation.

Whenever an object has subscriptN,< N , or ≥ N , all associated sets of (prime) ideals are
restricted to (prime) ideals of norm N,< N or ≥ N respectively. For example, UN (χ ) is
the set of primes of norm N at which χ is unramified. We use the multiplicative form of
the L-series, i.e.

L<N (χ ) =
∏

p∈U<N (χ )
(1 − χ (Frobp)N (p)−s)−1

and L≥N (χ ) is defined similarly. �

Our approach is as follows: for every N ∈ N we construct a bijection

ϕN : PK,N → PL,N

such that χ (p) = qψ(χ )(ϕN (p)) for all χ ∈ qGab
K

and all p ∈ PK,N . That suffices to prove (i),
as we now first explain. We obtain a bijection

ϕ : PK → PL

by setting ϕ|PK,N := ϕN , so that ϕ satisfies χ (p) = qψ(χ )(ϕ(p)), for all χ ∈ qGab
K

and all
p ∈ PK. From this, the following sequence of equivalences follows:

p ∈ U (χ ) ⇐⇒ χ (p) �= 0 ⇐⇒ qψ(χ )(ϕ(p)) �= 0 ⇐⇒ ϕ(p) ∈ U (qψ(χ )).

Because ϕ is a bijection, we obtain ϕ(U (χ )) = U (qψ(χ )). Certainly ϕ gives rise to a monoid
isomorphism IK ∼−→ IL, and (1) follows from Lemma 2.2 combined with ϕ(U (χ )) =
U (qψ(χ )). Thus, for every p ∈ PK, χ (p) = qψ(χ )(ϕ(p)) for all χ ∈ qGab

K
with p ∈ U (χ )

implies that for any splits sK and sL,

ψ(recK(sK(p))) ≡ recL(sL(ϕ(p))) mod recL(O∗
ϕ(p)).

Hence we can modify our splits to obtain (2), and this proves (i).
To construct ϕN , the strategy is to proceed inductively on N . For N = 1, the statement

is empty. Assume that we have constructed ϕM for allM < N . Let

ϕ<N : PK,<N → PL,<N

be the norm-preserving bijection obtained by combining the ϕM . Since

U<N (qψ(χ )) = ϕ<N (U<N (χ )), χ (p) = qψ(χ )(ϕ<N (p)), and N (p) = N (ϕ<N (p)),
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it follows that

L<N (χ ) = L<N (qψ(χ )).

Since L(χ ) = L(qψ(χ )) and L(χ ) = L<N (χ )L≥N (χ ) we also have

L≥N (χ ) = L≥N (qψ(χ )).

We can apply this equality to prove the following lemma.

Lemma 6.2 For any character χ ∈ qGab
K
, define

XN (χ ) :=
∑

p∈PK,N

χ (p) =
∑

p∈UN (χ )
χ (p).

ThenXN (χ ) = XN (qψ(χ )) for all χ ∈ qGab
K
. As a result, |PK,N | = |PL,N |.

Proof Let
〈

PK,≥N
〉

be the submonoid of IK generated by PK,≥N . We write L≥N (χ ) in
additive form:

L≥N (χ ) =
∑

m∈〈PK,≥N 〉
χ (m)N (m)−s =

∑

M≥N

⎛

⎝

∑

m∈〈PK,≥N 〉∩IK,M

χ (m)

⎞

⎠M−s.

As L≥N (χ ) = L≥N (qψ(χ )), the coefficients of N−s in both sums are equal, hence
∑

m∈〈PK,≥N 〉∩IK,N

χ (m) =
∑

n∈〈PL,≥N 〉∩IL,N
qψ(χ )(n).

As
〈

PK,≥N
〉 ∩ IK,N = PK,N and

〈

PL,≥N
〉 ∩ IL,N = PL,N , the desired equality follows.

The final result is obtained by setting χ = 1. �


Definition 6.3 Let cN := |PK,N | = |PL,N |. For any character χ ∈ qGab
K
, define

• uN (χ ) = |UN (χ )|,
• VN (χ ) = {p ∈ UN (χ ) | χ (p) = 1}, and
• vN (χ ) = |VN (χ )|.

If vN (χ ) = uN (χ ) − 1, there exists a unique prime of norm N on which χ has a value of
neither 0 nor 1. We will denote this prime by pχ . Lastly, we define the following sets of
characters:

�1
K
:=

{

χ ∈ qGab
K

: uN (χ ) = vN (χ ) = cN
}

�2
K
:=

{

χ ∈ qGab
K

: uN (χ ) = cN , vN (χ ) = cN − 1, χ (pχ ) = ζ
}

,

where ζ = exp(2π i/k) for some fixed integer k ≥ 3.

Remark 6.4 Let χ ∈ qGab
K
. As |χ (p)| = 1 for all p ∈ UN (χ ), we have Re(XN (χ )) ≤ uN (χ ).

Equality holds precisely when χ (p) = 1 for all p ∈ UN (χ ), i.e. uN (χ ) = vN (χ ).

Lemma 6.5 qψ(�1
K
) = �1

L
.

Proof From Lemma 6.2 we obtain χ ∈ �1
K

⇐⇒ XN (χ ) = cN ⇐⇒ XN (qψ(χ )) =
cN ⇐⇒ qψ(χ ) ∈ �1

L
. �
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Lemma 6.6 For k ≥ 3, let μk denote the kth roots of unity and let ζ = exp(2π i/k).
Suppose we have a1, . . . , an ∈ μk ∪ {0} such that a1 + · · · + an = n − 1 + ζ . Then there is
a j such that aj = ζ , and ai = 1 for all i �= j.

Proof If k = 3, then ζ is the only possible value with a positive imaginary part. Hence
one of the aj equals ζ , and then ai = 1 for the remaining i �= j, since they have to sum to
n − 1. For k > 3, let R := max Re(μk − {1}), and let f denote the number of ai that are
not equal to 1. Since 0 ≤ R = Re(ζ ) < 1, we find that

n − 1 + R = n − 1 + Re(ζ ) = Re(a1 + · · · + an)

≤ n − f + f Re(ζ ) = n + f (R − 1),

so R − 1 ≤ f (R − 1), hence f ≤ 1. �


Lemma 6.7 qψ(�2
K
) = �2

L
.

Proof For any character χ ∈ �2
K
we have χk ∈ �1

K
. Thus, by Lemma 6.5, qψ(χ )k ∈ �1

L
.

Hence for any q ∈ PL,N we have that qψ(χ )(q) ∈ μk ∪ {0}. As XN (qψ(χ )) = XN (χ ) =
cN −1+ζ , by the previous lemma there exists a single prime q

qψ(χ ) such that qψ(χ )(q
qψ(χ )) =

ζ , while qψ(χ )(q) = 1 for all q �= q
qψ(χ ). Hence qψ(�2

K
) ⊆ �2

L
. By symmetry, we have

equality. �


A character χ in�2
K
has a special prime pχ of normN , and the corresponding character

qψ(χ ) ∈ �2
L
has a special prime q

qψ(χ ) of norm N . We obtain a relation between primes

{(pχ , qqψ(χ )) : χ ∈ �2
K
} ⊆ PK,N × PL,N

whichwewill now show is the graph {(pχ ,ϕN (pχ )} of a bijection ϕN : PK,N → PL,N with
the required property. The first step is to show that every prime ofPK,N is associated to
at least one prime ofPL,N .

Lemma 6.8 For every p′ ∈ PK,N there exists a character χ ∈ �2
K
such that pχ = p′.

Proof The Grunwald-Wang Theorem [2, Ch. X, Thm. 5] guarantees that there exists a
character χ ∈ qGab

K
such that χ (p′) = ζ and χ (p) = 1 for all primes p �= p′ of norm

N , because there exists a character of Gab
Kp′ whose fixed field is the unique unramified

extension of degree k of Kp′ . �


Lemma 6.9 The map ϕN : PK,N → PL,N : pχ �→ q
qψ(χ ) is a well-defined bijection such

that for every χ ∈ qGab
K

and p ∈ PK,N we have χ (p) = qψ(χ )(ϕN (p)).

Proof Suppose we have χ ,χ ′ ∈ �2
K
such that pχ = pχ ′ and q

qψ(χ ) �= q
qψ(χ ′). We have

XN (χ · χ ′) = cN − 1 + ζ 2,

while

XN (qψ(χ · χ ′)) = XN (qψ(χ ) · qψ(χ ′)) = cN − 2 + 2ζ �= cN − 1 + ζ 2,

which contradicts Lemma 6.2. We conclude that q
qψ(χ ) = q

qψ(χ ′). Using qψ−1 instead of qψ
provides a well-defined inverse ϕ−1

N .
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Take χ ′ ∈ �2
K
such that pχ ′ = p. We have

XN (χ · χ ′) = XN (χ ) − χ (p) + ζχ (p) = XN (χ ) − (1 − ζ )χ (p).

Similarly,

XN (qψ(χ · χ ′)) = XN (qψ(χ ) · qψ(χ ′)) = XN (qψ(χ )) − (1 − ζ )qψ(χ )(ϕN (p)).

As we have both XN (χ ) = XN (qψ(χ )) and XN (χ · χ ′) = XN (qψ(χ · χ ′)), we conclude
that (1 − ζ )χ (p) = (1 − ζ )qψ(χ )(ϕN (p)) and consequently χ (p) = qψ(χ )(ϕN (p)). �

This completes the proof of Proposition 6.1. �


7 Conditional reconstruction of global fields
Proposition 7.1 Assume the equivalent statements (i)–(iii) of Theorem 3.1. Then there
exists an isomorphism � such that

A∗
K,f ∩ ̂OK

recK

�
A∗
L,f ∩ ̂OL

recL

Gab
K

ψ
Gab
L

(5)

commutes.

Proof Define the homomorphism ̂O∗
K

× IK → A∗
K,f ∩ ̂OK by (u,m) �→ u · sK(m). It has a

complete inverse A∗
K,f ∩ ̂OK → ̂O∗

K
× IK given by x �→ (x · sK((x)K)−1, (x)K). We obtain

an isomorphism A∗
K,f ∩ ̂OK

∼−→ ̂O∗
K

× IK (and similarly for L).
As seen in the proof of Proposition 4.1,

O∗
p

∼−→ recK(O∗
p)

ψ∼−→ recL(O∗
ϕ(p))

∼−→ O∗
ϕ(p).

We obtain an isomorphism

�p : O∗
p

∼−→ O∗
ϕ(p) (6)

that fits into the following commutative diagram:

O∗
p

recK

�p
O∗

ϕ(p)

recL

Gab
K

ψ
Gab
L

As we have ψ(recK(sK(m))) = recL(sL(ϕ(m))) for all m ∈ IK by assumption, the map
(
∏

�p) × ϕ fits in the commutative diagram

̂O∗
K

× IK

recK

(
∏

�p)×ϕ
̂O∗
L

× IL

recL

Gab
K

ψ
Gab
L

Using the aforementioned identificationsA∗
K,f ∩ ̂OK

∼−→ ̂O∗
K
×IK andA∗

L,f ∩ ̂OL
∼−→ ̂O∗

L
×IL

we obtain the desired isomorphism � . �
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Corollary 7.2 Diagram (5) can be extended to a commutative diagram

A∗
K,f

recK

�
A∗
L,f

recL

Gab
K

ψ
Gab
L

(7)

Proof The reciprocity map is already defined from A∗
K,f to Gab

K
, so this follows from (5)

by passing to the group of fractions A∗
K,f of the monoid A∗

K,f ∩ ̂OK. �


We now turn to the reconstruction of isomorphism of fields from the equivalent con-
ditions in the Main Theorem 3.1. For this, we first quote a result about conditions under
which an isomorphism of multiplicative groups of fields can be extended to a field iso-
morphism. Let O[p] denote the local ring (of K) at the prime p.

Lemma 7.3 (Uchida/Hoshi) An isomorphism F : K∗ → L∗ of multiplicative groups of
two global fields K and L is the restriction of an isomorphism of fields if and only if there
exists a bijection ϕ : PK → PL such that for all p ∈ PK, both the following hold:

(i) F (1 + pO[p]) = 1 + ϕ(p)O[ϕ(p)] (as sets, or, equivalently, as subgroups),
(ii) vϕ(p) ◦ F = vp.

Proof This follows immediately by results of Uchida for global function fields [22, Lemma
8–11], as explained in the introduction of [12]) and by Hoshi for number fields [12, Thm.
D]. �


Theorem 7.4 Assume that � in (7) above satisfies �(K∗) = L∗. Then the extension of
that isomorphism to a map K → L by setting 0 �→ 0 is an isomorphism of fields.

Proof Fix p ∈ PK. Let 	p : A∗
K,f � K∗

p be the canonical projection, which we use to
project elements of K∗ (that are diagonally embedded in A∗

K,f ) into the completions K∗
p.

By construction, there is an isomorphism �p : K∗
p

∼−→ L∗
ϕ(p) such that

	ϕ(p) ◦ � = �p ◦ 	p.

The one-units of the complete local ring are simply the (N (p) − 1)-th powers [16, Ch.
II, Prop. 5.7]:

1 + πpOp = (O∗
p)N (p)−1. (8)

Since �p is multiplicative, and respects units by Eq. (6) we find

�p(1 + pOp) = 1 + ϕ(p)Oϕ(p).

Setting F := �|K∗ : K∗ → L∗, we conclude that for the local rings, we have

F (1 + pO[p]) = �(K∗ ∩ 	−1
p (1 + pOp))

= �(K∗) ∩ � ◦ 	−1
p

︸ ︷︷ ︸

=	−1
ϕ(p)◦�p

(1 + pOp)

= L∗ ∩ 	−1
ϕ(p)(1 + ϕ(p)Oϕ(p))
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= 1 + ϕ(p)O[ϕ(p)].

This proves condition (i) in Lemma 7.3.
For condition (ii), observe that from the definition of � it follows that �(sK(p)) =

sL(ϕ(p)). Since 	p(sK(p)) = πp by definition of a split (for a chosen uniformizer πp), we
find that

�p(πp) = 	φ(p)(sL(ϕ(p))) =: πϕ(p)

is a uniformizer at ϕ(p). Thus, the multiplicative map F respects elements of valuation 0
(see again Eq. (6)) and 1, and hence (ii) holds. �


8 Reconstruction of global function fields
In function fields, we can immediately apply the results of the previous section:

Proposition 8.1 If one of the equivalent conditions (i)–(iii) of Theorem 3.1 holds for two
global function fields K and L, then they are isomorphic as fields.

Proof From the commutativity of diagram (7) we find that�(ker(recK)) = ker(recL). For
a global function field K we have ker(recK) = K∗ and therefore the result follows from
Theorem 7.4. �

Remark 8.2 The equivalence of (iii) in Theorem 3.1 and field isomorphism in global func-
tion fields was also shown in [3] using dynamical systems, but referring to the unpublished
[4] for a proof of the result in Sect. 6 of this paper.

9 The number field case: an auxiliary result
In this section we prove the existence of certain Galois extensions of number fields with
prescribed Galois groups; a result that we will use in the next section to prove the recon-
struction of number fields from the consideration of specific induced representations.

Proposition 9.1 LetK be a number field of degree n contained in a finite Galois extension
N of Q, and let C be a finite cyclic group. Denote G = Gal(N/Q) and H = Gal(N/K)
and let Cn � G be the semidirect product of Cn and G, where the action of G on Cn is by
permuting coordinates the same way G permutes the cosets G/H. By Cn � H we denote
the subgroup of Cn � G generated by Cn and H. There exists a Galois extension M of Q

containing N such that

Gal(M/Q) = Cn � G, Gal(M/K) = Cn � H, and Gal(M/N) = Cn.

Remark 9.2 The semidirect productCn �G is also known as thewreath product ofC and
the group G considered as a permutation group on G/H . For any extension L of K with
Galois group C , the Galois group of the Galois closure of L over Q is a subgroup of this
wreath product. The proposition asserts that the wreath product itself (i.e., the maximal
subgroup, which can be viewed as the ‘generic’ case), actually occurs for some L.
We give a self-contained proof, but the result also follows from [14, Thm. IV.2.2]; or,

for C of order 3 one can use the existence of a generic polynomial for C and apply [7,
Prop. 13.8.2].

Proof of Proposition 9.1 Let p �= 2 be a prime that is totally split in N and denote by
p1, . . . , pn the primes in K lying above p. There exists a Galois extension ˜K/K with Galois
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group C in which the prime p1 is inert, while p2, . . . , pn are totally split (this follows, e.g.,
from the Grunwald-Wang theorem).
Let X be the set of field homomorphisms from K to N. Since G acts on N, we get an

action ofG onX by composition. This action is transitive and the stabilizer of the inclusion
map ι ∈ X is H , so X is isomorphic to G/H as a G-set. For each σ ∈ X we now consider
˜Nσ := ˜K ⊗K,σ N, where N is viewed as a K-algebra through σ : K → N. The C-action
on ˜K induces a C-action on ˜Nσ by N-algebra automorphisms. Setting Pσ to be the set of
primes ofN that contain σ (p1), we see that˜Nσ is a Galois extension ofNwith Galois group
C for which the primes in Pσ are inert and all other primes of N over p are totally split.
The G-action on the set of primes of N over p is free and transitive, and Pι consists of

a single H-orbit: the primes over p1. Since Pgσ = gPσ it follows that as σ ranges over X
the sets Pσ form a disjoint family. One deduces that the fields ˜Nσ form a linearly disjoint
family of C-extensions of N and that the tensor product

M =
⊗

σ∈X
˜Nσ

over N of all ˜Nσ with σ ∈ X is a field which is Galois over N with Galois group Cn =
∏

σ∈X C .
For g ∈ G and σ ∈ X there is a natural field isomorphism g̃σ : ˜Nσ → ˜Ngσ given by

x⊗ y �→ x⊗ gy that extends the map N → N given by y �→ gy. Combining these maps for
all σ ∈ X we obtain an automorphism of the tensor product M that permutes the factors
of the tensor product by the g-action on X . Thus, we have extended the G-action on N to
a G-action on M. Since each g̃σ is C-equivariant, the subgroup of Aut (M) generated by
G and Cn is the semidirect product Cn � G. As the cardinality of this group is the field
degree of M over Q we see that M is a Galois extension of Q with Galois group Cn � G,
and that K is the invariant field of Cn � H . �


10 Characterization of number fields
Using the previous section we prove a stronger version of Proposition 8.1 for number
fields.

Theorem 10.1 Let K be a number field and let k ≥ 3. Then there exists a character
χ ∈ qGab

K
of order k such that every number field L for which there is a character χ ′ ∈ qGab

L

with LL(χ ′) = LK(χ ) is isomorphic to K.

We will use the following basic facts about Artin L-series of representations of the
absolute Galois group GK := Gal(�Q/K) for a number field K within a fixed algebraic
closure �Q of Q.

Lemma 10.2 (a) For any two representations ρ and ρ′ of GQ, LQ(ρ) = LQ(ρ′) is equiv-
alent to ρ ∼−→ ρ′.

(b) For χ ∈ qGab
K
, we have LK(χ ) = LQ(Ind

GQ

GK
(χ )).

(c) For any two number fields K and L within �Q and characters χ ∈ qGab
K

and χ ′ ∈ qGab
L

with LK(χ ) = LL(χ ′) we have an isomorphism of representations of GQ

IndGQ

GK
(χ ) ∼−→ IndGQ

GL
(χ ′)

and the fixed fields Kχ of χ and Lχ ′ of χ ′ have the same normal closure over Q.
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Proof Fact (a) follows from Chebotarev’s density theorem, comparing Euler factors. The
basic fact (b) is due to Artin, see [16, VII.10.4.(iv)]. The isomorphism in (c) follows from
(a) and (b). The last statement follows from the fact that the normal closure of Kχ over Q

is the fixed field of the kernel of the representation IndGQ

GK
(χ ). �


Byamonomial structureof a representationρ of a groupGwemeanaG-setL consisting
of 1-dimensional subspaces of ρ that is G-stable (i.e. gL ∈ L for all g ∈ G and L ∈ L ),
and such that as a vector space we have ρ = ⊕

L∈L L. By choosing a single nonzero vector
of L for each L ∈ L one obtains a basis of ρ such that for every g ∈ G the action of g on ρ

is given by a matrix with exactly one non-zero element in each row and in each column.
If H is a subgroup of G and χ a linear character of H , then the induced representation
ρ = IndGH (χ ) naturally produces a monomial structureL that is isomorphic to G/H as a
G-set.

Proof of Theorem 10.1 If LL(χ ′) = LK(χ ) for two characters χ ∈ qGab
K
,χ ′ ∈ qGab

L
, the

lemma implies that IndGQ

GK
(χ ) has two monomial structures, one arising from χ and one

from χ ′. We see that K and L are isomorphic as number fields if and only if these two
monomial structures are isomorphic as GQ-sets (note that they are transitive GQ-sets).
In order to prove Theorem 10.1 it therefore suffices to choose χ in such a way that the
representation IndGQ

GK
(χ ) only has a singlemonomial structure.

In order to find such a character χ we apply Proposition 9.1 to any finite Galois N/Q

containing K, and where C = 〈ζ 〉 is the subgroup of C× generated by ζ = exp(2π i/k).
We let n, G, H , and Cn � G be as in the proposition, and get an extension M of K within
�Q with Galois group Gal(M/Q) = Cn �G. We order the coordinates of Cn in such a way
that the action of H on Cn fixes the first coordinate, so the map

Gal(M/K) = Cn � H → C× : (a1, . . . , an, h) �→ a1

is a group homomorphism, and extends to a character χ ∈ qGab
K
. The induced represen-

tation ρ = IndGQ

GK
(χ ) factors over Gal(M/Q) = Cn � G and it comes with a monomial

structure L = {L1, . . . , Ln} such that each element (a1, . . . , an) ∈ Cn acts on Li as scalar
multiplication by ai. It follows thatL is exactly the set of 1-dimensional Cn-submodules
of ρ, the so-called character eigenspaces for the action of Cn on ρ.
To finish the proof we will show that L is the unique monomial structure on the

representation ρ. Suppose that M is another monomial structure on ρ. The trace of the
element c = (ζ , 1, . . . , 1) ∈ Cn on ρ is equal to n − 1 + ζ . On the other hand, c permutes
the elements of M , so the trace of c on ρ is also equal to the sum of k-th roots of unity
ζM ∈ μk whereM ranges over those linesM ∈ M with cM = M, and ζM is the scalar by
which c then acts on M. Since k ≥ 3 and L and M have the same number of elements,
Lemma 6.6 implies that cM = M for allM ∈ M . It follows that c acts trivially on the set
M . Since the G-conjugates of c generate Cn we deduce that Cn acts trivially on the set
M . Thus,M consists of 1-dimensional Cn-submodules of ρ. This implies thatM ⊂ L ,
soM = L for cardinality reasons.

Remark 10.3 Not every representation has a unique monomial structure: consider the
isometry group of a square, the dihedral group D4 of order 8, with its standard 2-
dimensional representation. It has two distinct monomial structures (consisting of the
axes and the diagonals) and these are not isomorphic as D4-sets.
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By realizing D4 as a Galois group over Q this gives rise to quadratic fields K and and
L with quadratic characters χ ∈ qGab

K
[2] and χ ′ ∈ qGab

L
[2] that satisfy LK(χ ) = LL(χ ′)

while K is not isomorphic to L. This shows that the method of proof of the theorem fails
without the assumption that k ≥ 3. Concretely, Gal(Q( 4√2, i)/Q) ∼−→ D4, and we find
LK(χ ) = LL(χ ′) for K = Q(

√
2), L = Q(i

√
2) and χ and χ ′ uniquely determined by

Kχ = Q( 4√2) and Lχ ′ = Q(i
√
2, (1 + i) 4√2).

In [18, Thm. 3.2.2] it is shown that K = Q( 8√5) provides a counterexample to the
statement of the theorem for k = 2. On the other hand, in [18, Thm. 2.2.2], a similar
method as in our proof is used to show that every number field is characterized uniquely
by the L-series of two suitable quadratic characters.

11 Comparison of different methods of proof
There is an interesting “incompatibility of proof techniques” between the case of global
function fields and that of number fields. Namely, the approach of the proof of Proposi-
tion 8.1 for function fields does not transfer in an obviousway to number fields. Indeed, for
a number field K, ker(recK) = K∗ ·O∗

K,+, whereO
∗
K,+ is the closure of the totally positive

units (i.e., units of OK that are positive in every real embedding of K) in the finite ideles;
this follows from the description of the connected component of the idele class group by
Artin [2, Ch. IX]. Hence the method of proof of 8.1 transferred literally to number fields
yields the weaker conclusion that

�(K∗ · O∗
K,+) = L∗ · O∗

L,+.

It is unclear to us whether one can deduce that �(K∗) = L∗ from the conditions in
Theorem 3.1. The issue is similar to the one raised in [12, 3.3.2].
On the other hand, it is not possible to copy the proof of Theorem 10.1 for function

fields, as this would force fixing a rational subfieldFq(t) inside bothK andL (that plays the
role of Q in the number field proof), for which there are infinitely many, non-canonical,
choices. However, Theorem 10.1 does hold in the relative setting of separable geometric
extensions of a fixed rational function field of characteristic not equal to 2, compare [19].
It is unclear to us whether the analogue of Theorem 10.1 holds for a global function field
without fixing a rational subfield. It does seem that L-series of global function fields, as
polynomials in q−s, contain less arithmetical information than their number field cousins
(compare [11]).
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