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Abstract

We study a dynamical system induced by the Artin reciprocity map for a global
field. We translate the conjugacy of such dynamical systems into various arithmetical
properties that are equivalent to field isomorphism, relating it to anabelian geometry.
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1 Introduction

In this paper, we look at the main constructions of class field theory from the point of
view of topological dynamical systems. If K is a global field, the finite ideles Ak pact
on the abelianized absolute Galois group G%b through multiplication with their image
under the reciprocity map. Hence the group of fractional ideals (finite ideles modulo
idelic units Oy), and also the monoid /x of integral ideals, act on a topological monoid
XK, defined as the quotient of G%b X ﬁK by the subgroup {(rec(u)_l, u)lu € ﬁ\ﬁ%},

where ﬁK is the set of integral adeles (cf. Definition 2.1). It is the action Ix C X that
we study. Our main result says that natural equivalences of such dynamical systems
for different fields (orbit equivalence, topological conjugacy) have a purely number
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theoretical meaning, called a “reciprocity isomorphism”. Referring to the companion
paper [8], this is equivalent to equality of Dirichlet L-series, and isomorphism of fields.
The main result is Theorem 3.1 below.

We believe our study sheds some new light on the anabelian geometry of global
fields, as we now briefly explain. The anabelian philosophy is, in the words of
Grothendieck ([11], footnote (3)) “a construction which pretends to ignore [...] the
algebraic equations which traditionally serve to describe schemes, [...] to be able to
hope to reconstitute a scheme [...] from [...] a purely topological invariant [...]”. In the
zero-dimensional case, the fundamental group plays no rdle, only the absolute Galois
group, and we arrive at the famous result of Neukirch and Uchida that the existence
of an isomorphism of absolute Galois groups of global fields implies the existence of
an isomorphism of those fields (In [23], Neukirch proved this for number fields that
are Galois over Q; in [30], Uchida proved it for general number fields and in [31], he
proved it for function fields, cf. also [25] 12.2, Ikeda [13] and unpublished work of
Iwasawa).

Individually, neither the Dedekind zeta function (i.e., the Dirichlet L-series for the
trivial character), nor the adele ring, nor the abelianized Galois groups of a global field
determine that field uniquely up to isomorphism:

o Q(¥3) and (@(«/8 3-2%) have the same zeta function, but non-isomorphic adele
rings ([10,16,27]);

e Q(v/2-9) and Q(«/8 25 . 9) have isomorphic adele rings ([17]);

e Q(+/—3) and Q(+/—7) have isomorphic abelianized Galois groups ( [1,18,26]);

e Equality of zeta functions for global function fields is the same as isomorphism of

their adele rings, which is the same as the corresponding curves having isogenous
Jacobians ([28,29]).

The dynamical system I C X that we consider (which, after all, is a topological
space with a monoid action) can be considered as some kind of substitute for the abso-
lute Galois group. It involves the abelianized Galois group and the adeles, but not the
absolute Galois group. In this sense, it is “not anabelian”. Our main result in this paper
and [8] says that consideration of this system cancels out the “defects” of the above
individual examples in exactly the right way: it determines the field up to isomorphism.
In the spirit of Kronecker’s programme, one wants to characterize a number field by
structure that is “internal” to it (i.e., not using extensions of the field): this is the case
for the dynamical system, since class field theory realizes Kronecker’s programme
for abelian extensions. On the other hand, anabelian geometry characterizes a number
field by its absolute Galois group, an object whose “internal” understanding remains
largely elusive and belongs to the Langlands programme.

We end this introduction with a brief discussion of related work and open problems.
For the field of rational numbers, the dynamical system Ip C X was introduced and
studied by Bost and Connes in [3] (in which N C 7 is the action given by multiplication
by positive integers in the profinite integers). The construction for a general field was
given by Ha and Paugam in [12] and clarified in [20,21]. All of those references take the
point of view of noncommutative geometry (specifically, C*-algebras and quantum
statistical mechanical systems). We describe the link between the noncommutative
point of view and our work by considering algebraic crossed product algebras in
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Sect. 9. In this context, Kubota and Takeishi [19] have used K -theoretic methods to
show that the statements in our Main Theorem 3.1 and Remark 3.2 are equivalent to
an isomorphism of the associated C*-algebras.

In [32], Prop. 8.2, the space Xk was identified with the so-called Deligne-Ribet
monoid from [9].

In [6], two of us have shown that such quantum statistical mechanical systems
are isomorphic if and only if the corresponding number fields are isomorphic, if the
number fields are Galois over Q (analogue of the original theorem of Neukirch),
essentially because their partition function is the Dedekind zeta function. In [7], the
first named author has proven that a global function field isomorphism is determined
by an isomorphism of dynamical systems for such fields; a result which is reproven
here in a more general context.

Following the philosophy of the Langlands programme, one may replace the con-
sideration of (n-dimensional linear representations of) the absolute Galois group G
by that of (modules over) a Hecke algebra (for GL,). In [4], it is shown that forn > 2,
an isomorphism of adelic Hecke algebras for two number fields, that respects the L'-
norm, is the same as an isomorphism of their adele rings. The local case is treated in
[14].

We believe the following questions are interesting to pursue. Firstly, is there a
“Hom-form” of our main theorem, in which field homomorphisms correspond in a
precise way to topological conjugacies of the dynamical systems? Secondly, in the
style of Mochizuki’s absolute version of anabelian geometry (cf. [22]), one may ask
how to reconstruct a number field from its associated dynamical system (or L-series),
rather than the relative result about reconstructing an isomorphism of fields from an
isomorphism of their dynamical systems (or L-series).

2 Preliminaries

In this section, we set notation and introduce the main object of study.

A monoid is a semigroup with identity element. If R is a ring, we let R* denote its
group of invertible elements.

Given a global field K, we use the word prime to denote a prime ideal if K is a
number field, and to denote an irreducible effective divisor if K is a global function
field. Let Pk be the set of primes of K. If p € %k, let vy be the normalized (additive)
valuation corresponding to p, Ky, the local field at p, and O, its ring of integers.

Let Ak, s be the finite adele ring of K, J its ring of finite integral adeles and
A]}k(, 7 the group of ideles (invertible finite adeles), all with their usual topology. Note
that in the function field case, we do  not single out infinite places, so that in that
case, Ag r = Ag is the adele ring, Ok is the ring of integral adeles and A]’f@ =

A is the full group of ideles. If K is a number field, we denote by Ok its ring of
integers. If K is a global function field, we denote by ¢ the cardinality of the residue
field.

Let Ik be the monoid of non-zero integral ideals/effective divisors of our global
field K, so Ik is generated by Z7x. We extend the valuation to ideals: if m € Ix and
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p € Pk, we define vy(m) € Z>o by requiring m = [[,c 5, p* (M) Let N be the
norm function on the monoid /I : it is the multiplicative function defined on primes p
by N(p) := #0x /p if K is a number field and N (p) = ¢9°€® if K is a function field.
Given two global fields K and L, we call a monoid homomorphism ¢ : Ix — I,
norm-preserving if N(p(m)) = N(m) for all m € Ig.

We have a canonical projection

() N A]}E,f N 5]K — IK» (xp)p — l_[pvp(xp)_
P

A split for (-) is by definition a monoid homomorphism sx : Ix — A} K0 5’\]1(
with the property that (-) o sg = idp, and such that for every prime p, sg(p) =
(..., 1,7y, 1,...) for some uniformizer 7, € Ky with vy (7p) = 1.

Let GH‘%’ be the Galois group of a maximal abelian extension of K, as profinite
topological group. There is an Artin reciprocity map Ay — Gﬂag. In the number field
case, we embed Ak ¥ into the group of ideles Aﬁkg via Ak fI3x (1,x) € A%,
restrict the Artin reciprocity map to Aﬁ‘g‘ and call this restriction reck. In the function
field case, reci is just the (full) Artin reciprocity map.

Definition 2.1 We define the fopological monoid X = G]%b X g 5% as the quotient

of G]%b X 5]1& by the subgroup {(recK(u)_l, u):u € 5’\%} Fora € G]‘kb and n € 5’\]1@
we write [«, n] for the equivalence class of (¢, 1) in Xk. Given a split sg, we embed
Ik as a monoid into X via

Ix > m > [recg (sg(m) "L, sg(m)] € Xk.

This embedding does not depend on the choice of the split, as this choice is up to
units in 0. We obtain a dynamical system Ix C Xk, where m € Ik acts on X via
XgoxH—>m-x € Xk.

Proposition 2.2 The space Xk is Hausdorff.

Proof By combining Proposition 1 of Paragraph 4.1 and Proposition 3 of Paragraph
4.2 of [2], we obtain that it suffices to prove that ﬁﬂz is compact and that the action

ﬁ O (Gab X ﬁK) is continuous. The former is clear: for any p € 7k the unit group
ﬁ’* is compact, hence the product ﬁﬁg is compact as well. To prove the latter it is
sufﬁment that the maps O T Gab G]Iaé’ and O 0% x ﬁK — ﬁK are continuous.
The map ﬁ* X Galb — Gﬂag is given by (u,0) +— recg(u)'o. As the Artin
reciprocity map is continuous and Gﬂag is a topological group, this map is continuous.
The map ﬁ* x Ox — Ok is given by (u,a) —~ ua. The topology on ﬁf& is finer
than the subspace topology obtained from ﬁK, which causes the inclusion O 0% <> ﬁK

to be continuous, which, combined with the fact that ﬁK is a topological group, proves
that (u, a) > ua is continuous.
All the necessary conditions are met: we conclude that Xk is Hausdorff. O
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3 The main theorem

Theorem 3.1 Let K and L be two global fields. The following are equivalent:

(i) Ix C Xk and I, C X1, are orbit equivalent, i.e., there exists a homeomorphism
D Xg = X with ®(Ig - x) = I, - P(x) for every x € Xxk.

(1) Ix C Xk and I, C X1, are conjugate, i.e., there exists a homeomorphism ® :
Xk = X1, and a monoid isomorphism ¢ : Ix = I, with ®(m-x) = ¢p(m) - D (x)
for everym € I and x € Xk.

(iii) There exists an isomorphism of topological monoids ® : Xk = Xy, which
restricts to a monoid isomorphism Ix = I

(iv) There exists a monoid isomorphism ¢ : Ix = I, an isomorphism of topological

groups s - Gﬁ“g = G];ib and splits s : Ix — Ak / N @\K, s c I — A]’L / N é’i
such that ' ‘
Y (reck (Oy)) = recL(Oyy,)) for every prime p of K, (1)
¥ (recg (sx (m))) = recy (sL(p(m))) for allm € Ik. ()

Remark 3.2 The main result of [8] (proven in a purely number theoretical way) implies
that the statements in Theorem 3.1 are equivalent to

(iV)fin There exists

e a norm-preserving monoid isomorphism ¢ : Ig = Iy, that restricts to a
bijection between the unramified primes of K and L, and
e an isomorphism of topological groups r : G]"I‘é’ = Gﬁb,

such that for every finite abelian extension K/ = (Kab) N /K (with N a subgroup
in Gﬁ‘é3 ) and every prime p of K unramified in K/, we have

) (Frobp) = Froby ).

(v) There exists an isomorphism of topological groups ¥ : G2 = G2 such that
P polog group K L
there is an equality of associated Dirichlet L-series:

L(x,s) = L(J(x), s) forall x € Cv}ﬁg, where 1; is given by J(X) =xo 1//’1.

(vi) The fields K and 1L are isomorphic.

Remark 3.3 In order to explain our strategy to prove the theorem, consider the follow-
ing additional statements:

(in) Ix C Xk and Iy, C X1, are orbit equivalent in a norm-preserving way, i.e., there
exists a homeomorphism & : Xx = Xy, with ®(Ik - x) = I, - ®(x) for every
x € Xk. In addition, for every m € Ik and x € Xy there exists n € I, with
Nm)=Nm)and P(m-x) =n- d(x).
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(iin) Ik C Xk and I, C X1, are conjugate in a norm-preserving way, i.e., there exist
ahomeomorphism ® : Xg = Xy, and a norm-preserving monoid isomorphism
¢ Igxg = Ig with®d(m-x) = p(m) - ©(x) forallm € Ig, x € Xk.

(iiin) There exists an isomorphism of topological monoids ® : Xk = Xy which
restricts to a norm-preserving monoid isomorphism Ix = Ir..

The proof of the theorem proceeds as follows: (i) = (ii) is the content of
Proposition 5.1, and (ii) = (iii) follows from Lemma 6.1. We get (iii) = (iv) by
combining Lemma 7.1, Corollary 7.6 and Lemma 7.9. Proposition 8.1 together with
Remark 8.2 and Proposition 8.3 show (iv) = (iiin), and (iiin) = (iin) = (in) = (1) is
obvious.

4 Ideals are dense

To simplify notation, we drop the index K in this section, i.e., we write X for X, G2
for Gfl‘é’ and so on.

Lemma 4.1 The monoid {[rec(s(m))~", s(m)]: m € I} is dense in X = G* x z. 0.

Proof For a prime p and a finite abelian extension L/K unramified at p with corre-
sponding projection map 7z, : G Gal(L/K) we have ry (rec(s(p))) = Froby,. By
Chebotarev’s Density Theorem ([24], 13.4) for every element o € Gal(L/K) there
are infinitely many primes p such that Frob, = o. Hence, for any subset S C & such
that £\ S is finite, the composition 7, orec o s : § — Gal(L/K) is surjective, thus
rec(s(S)) is dense in G?.

As aconsequence, we show that the set Um el { [o, s(M)]: x € Gab} isin the closure
of the image of / in X.

Choose @ € G*® and m € [ arbitrary and enumerate the primes in &2 by py, pa, . . ..
Set & = {pi, Pi+1,---}. Moreover, let Hf C Hy C --- be an increasing chain of
quotient groups of G2 that gives rise to an identification G* = 1(&1 H;. Denote the
corresponding quotient map G® — H; by ;. As seen before, 77; (rec(s (% i) = H;
for all j € N. Specifically, for every i € N we can find n; € &; with

mi(rec(s(n;)) ") = mi (a rec(s (m))).

Hence m; := mn; satisfy lim;_, o rec(s (mi))_1 = o. By construction, lim;_, o, s(m;) =
s(m). We are left to show that |, { o, s(m)]: o € Gab} is dense in X. Let [«, n]
be an arbitrary element of X, where n = (np)p. Write n = u - 6, where u € ﬁ *
0= (0p)p € O such that 0y is either 0 or an integer power of the uniformizer.

Define

J

min(vp (0y),i)

m; ::Hpi PR
i=1
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where min(oco,i) = i for all i. Then s(m;), converges to 6, for all p, hence
lim;_, o s(m;) = 6. It follows that

lim [arec(u), s(m;)] = [arec(u), 0] = [arec(u), u_ln] = [, n].
Jj—00

This concludes the proof. O

5 From orbit equivalence to conjugacy

Let K and L be two global fields.
Proposition 5.1 The following are equivalent:

(a) Ix C Xk and Iy, C X1, are orbit equivalent.
(b) Ix C Xk and I, C X1, are conjugate.

If, in addition to (a), for every m € Ix and x € Xk, we can always choose n € I, so
that N(n) = N(m) and ®(m-x) = n- P (x), then we can also find a norm-preserving
monoid isomorphism in (b).

Proof It obviously suffices to show “(a) = (b)”.

In order to construct a monoid isomorphism I = I, it suffices to obtain a bijection
Ix = I, which preserves partial orders as both Ik and I, are isomorphic to @,fil Z=g
as abstract monoids. However, we also have to take the dynamics into account. More
precisely, we proceed as follows:

First of all, let 1 = [1, 1] € Xk be the unit of Xk. We claim that ® (1) is invertible
in the monoid Xt.. Indeed, since Ix = Ik - 1 is dense in X, we know that I, - ®(1) =
®(Ik - 1) is dense in X7,. Now assume that ® (1) is not invertible in X7,. This means
that ®(1) = [, 0], and there exists a prime q of IL. with vq(nq) > 1. But then, every
[B,&] € IL - ©(1) satisfies vgq(&q) > 1. This contradicts I, - ®(1) = Xr. So ®(1)
must be invertible in X7..

By (a), we know that for every m € I, there existsn € I, with ®(m-1) = n-d(1).
Since ®(1) is invertible, n is uniquely determined. In other words, if nj,ny, € I
both satisfy ®(m - 1) = ny - &(1) and ®(m - 1) = ny - &(1), then this implies
ny - (1) = ny - (1) and hence n; = ny. Let ¢ : Ix — I, be the map with
Dd(m - 1) = p(m) - ©(1) for every m € Ik. Similarly, let ¢ : I, — Ix be the map
uniquely determined by >l o)) = ¢ (n) for all n € Ir.. It is obvious that

¢pop=idy, and @o¢ =idy .
So ¢ = ¢~ !, and in particular, ¢ is a bijection.
Our first step is to show that for every prime p of K and m € [k, there exists a

prime g of LL such that ¢(p - m) = q - ¢(m). At this point, it might be that q depends
on m, but we will see later on that this is not the case, i.e., that ¢ = ¢(p). Looking at

pp-m)- &) =@(p-m) €Iy Pm) = I - (m) - (1),
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we conclude ¢(p - m) € I, - ¢(m) since ® (1) is invertible. So there exists a € I, with
@(p-m) = a-@(m). If a is not prime, then there exist b, ¢ € I, with b % 07, ¢ # 01,
and a = b - ¢. Because of orbit equivalence, we must have

p-m=>(pp-m) - &) =0 (@ pm) ®1) = '(b-c pm)- d(1))
=b- 0 (c-p(m) - ®(1) =b-T- 0 (p(m) (1) =b-T-m

for some b, ¢ € Ix. Let
x=® e pm) ®(1)andy = ®(x) = ¢ - g(m) - d(1).

Lety = [B,&]. As b # O, there exists a prime q of L. with vq(b) > 1. Obviously,
vg(§q) # 00, and we conclude that vq(sp(b)g - &q) # vq(§q), hence b -y # y.
Therefore, x # b- x, and thus b # Ok. Similarly, ¢ # Ok. But then, it is impossible
to have p - m = b -¢-min Ix. Hence, a must be prime. In particular, ¢ induces a
bijective map on the set of primes.

Our next step is to show ¢(p”) = ¢(p)" for every prime p of K and n € N. By our
previous step, there exist primes qq, . . ., q, of L such that ¢(p") = q; - - - q,. Thus

I - o(") - (1) S I, - g - P(1)

for every 1 < i < n. Applying ®~!, this implies that I - p” € Ixe~'(q;). But the
only prime p of K with I - p" C Ik - p is p. We therefore conclude that q; = ¢(p)
forall1 <i <n.

Let us now show that for every m € I, we have vyp) (@(m)) = vp(m). Itis clear
that vy(p) (@(m)) is the unique v € N with the properties

IL-@m) CIL- o)’ = I -@(pY) and I -@(m) € I, - ()" = I, - p(p**h.

Here we used the previous step. Multiplying the equations with & (1) and applying
®~!, these two properties transform into

Ix -mClIg-p¥' and IK'mgzIK'p““.

Thus v = vy (m). In particular, this shows that ¢ is a monoid isomorphism.
We can now finish the proof for “(a) = (b)”: For every m, n € I, we have

P(m-n) =gm-n) - O() =gm)-pn) - (1) = p(m) - P(n).

As I is dense in Xk, we conclude that ®(m - x) = ¢p(m) - ®(x) for every m € I
and x € Xk.

Let us now assume that, in addition to (a), we can, for every m € Ik and x € Xk,
choose n € I, so that N(n) = N(m) and P(m - x) = n- & (x). Taking x = 1, we see
that N(p(m)) = N(m). O
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6 From conjugacy to isomorphism of topological monoids

Lemma 6.1 ~Assume that Ix C Xk and I, C X1, are conjugate. Then ® (1) is invertible
in Xi, and ® : Xg — Xp, x > @(x) - @ (1)~ is an isomorphism of topological
monoids satisfying ®(m) = ¢(m) for every m € Ik.

Proof In the proof of the previous proposition, we have already seen that o (1) is invert-
ible in X7,. Obviously, ® defined by ®(x) = O (x)- P (D) isstilla homeomorphism.
Moreover, for every m, n € I, we have

dm-n) = dm-n)d()~!
= p(m) - pn) - (1) - d(1)~!

= (p(m) - d(1) - (D) - (pm) - (1) - &)™)
= ®(m) - P(n).

As I is dense in X, we conclude that ® is a monoid homomorphism. Finally, we
have for every m € Ik:

dm) = d(m-1)- ()~ = p@m) - &(1) - &(1)~! = p(m). o

Remark 6.2 Note that in Lemma 6.1, the monoid isomorphism ¢ stays the same. In
particular, if it was norm-preserving, then we will keep that property.

7 From conjugacy to reciprocity isomorphism

Lemma 7.1 Let ® be an isomorphism of topological monoids ® : Xxg = Xy.. Then
® restricts to an isomorphism of topological groups Gﬂg = Gﬁb.

Proof This is clear as Gﬁa(b is the group of invertible elements in X. O

Notation 7.2 Let us denote the restriction of ® to Gﬁa(b again by ®. For m € I, let
P(m) = {p € Pk: plm}.Given § C H, let 15 be the element of ﬁK with (1g)p =1
ifp € Sand (1s)p, = 0ifp ¢ §. Also, let e be the identity in GE‘{b. We do not distinguish
in our notation between e € G%b and e € Gﬁb since the meaning becomes clear from
the context.

Lemma 7.3 Assume that ® is an isomorphism of topological monoids ® : X = X,
which restricts to an isomorphism ¢ . Ig = I1,. We denote the bijection Px = A,
that ¢ induces also by ¢. Then, for every S € Pk, we have ®([e, 15]) = [e, Lys)].

Proof Applying @ to both sides of the equation

[e, 15] - Xk = N m- Xk,
melg, Z(m)NS=yY
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we obtain

®(le, 15]) - X, = N p(m) - X, = [e, 1y(5)] - XL.
melg, Z(m)NS=y

It follows that if ®([e, 1s]) = [B.&], then & = 0if q ¢ ¢(S), and &g € O if

q € ¢(S5). As [e, 151* = [e, 15] and since ® is a monoid homomorphism, we must
have

®([e, 1s])* = @([e, 15]).

Thus there exists u € ﬁfj with g2 = Brecy,(u)~" and €2 = u&. We deduce that
B =recr(u)" ! and £ = u - 1,(s). Hence

®(le, 1s]) = [B, &1 = [rec ()", u - 1y5)] = [e, 1y(s)]- .
Notation 7.4 With the same notation as above, define for § € Sk the subgroup
Ng = recg 1_[ ﬁ; - Gﬁag.
peS

We view HpeS O as a subgroup of ﬁﬁg via the embedding v +— (..., 1,v,1,...).

Lemma 7.5 Let ® be an isomorphism of topological monoids ® : Xx = Xy, which
restricts to a isomorphism ¢ : Ix = I. Then ®(Ng) = Ny(s).

Proof Let S¢ = 9Pk\ S and write pge for the monoid homomorphism
pse: GR — X - [e, 1sc], a > a - [e, 1gc].

Define j1y(s)c in an analogous way. Because of the previous two lemmas, ® restricts
to isomorphisms G]"I‘g = Gﬁb and X -[e, 1sc] = XL -[e, 1y(s)c] such that the diagram

Hse

G® Xk - [e, 1sc]

[ \L = = o
Hyp(s)e

G " = X e, lyes)]
commutes. Hence it follows that

D ((se) " (le, 1seD) = (pesye) " (le, Lyes)eD).
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Now [e, 1] € G¥ lies in (use) ™! ([e, 15¢]) if and only if [a, 15¢] = [e, 1] if and
only if there exists u € ﬁ’* with @ = recg (1) "' and u - 1 gc = 1g¢. The latter equation
means thatu, = 1ifp € SC or in other words, u € HpeS p- Thus,

(se)™ " (le. Lse]) = Ns.
In an entirely analogous way, we see that (e (s)c) ™ (e, Lys)e]) = Ny(s). O

Corollary 7.6 We have an identification d>(recK(ﬁ*)) = recr,(0* (p)) O

Notation7.7 For p € Pk, let mp, € Oy be such that (mp)q = 1if q # p and

Lemma 7.8 Assume that ® is an isomorphism of topological monoids ® : Xg = X,
which restricts to a isomorphism ¢ @ Ix = Iy.. Then for every p € Pk there exists
an element mypy € O1, with

(Tpp))e = Lift # ¢(p),
Vy(p) (Typ(py) = 1,
®([e, mp]) = [e, Ty(p)]-

Proof We have
O ({[er, n]: vp(mp) > 0} = {[B. £ vy(p) Ep(p)) > 0}
The reason is that for [a, n] € Xk,
vp(np) =0 np € ﬁ; & o, n]- e, Iipy] - Xr = [e, 1py] - Xk.

The latter condition is equivalent to ®([a, n]) - [e, Ligpy] - XL = [e, 1{ppy] - XL,

and this in turn means that we can write ® ([, n]) = [B, &] for some & € aL with
Vo(p) Ep(p)) = 0. Here we used Lemma 7.3.
As we obviously have [e, mp] - Xk = {[e, n]: vp(np) > 0}, we conclude that

®([e, mp]) - XL = {[B, £ vp(p) Gppy) > O} -
So we can write ®([e, mp]) = [B, &] for some & € @L with vy ) Epp)) = 1.

Moreover, we have [e, mp] - [e, Ijp)c] = [e, 1{p)c]. Hence, by Lemma 7.3, we
conclude that

[B.& - Lyl = [B. ] [e, Ligpyye] = e, Lig(pyel-

Therefore, there exists u € é’\ﬂ”i with B = recy,(u) ! and £ - Lippyye = U - Lippyye- The
latter equation implies that & = u. € O} if v # ¢(p). As we have shown above that
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Vo(p) Eg(p)) = 1, we conclude that 7,y) = u~'£ satisfies (7y(p))e = 1if v # @(p)
and vy (p) (Ty(p)) = 1. Also,

D(le, wp]) = [B, &1 = [recL(w) ™", umyp)] = [e, Tyip)],

as desired. O

Lemma 7.9 Assume that ® is an isomorphism of topological monoids ® : Xk = X,
which restricts to a isomorphism ¢ : Ix = I. Given p € Pk, let mty be defined as
above, and choose 1w,y € O, as in Lemma 7.8. Then ® (reck (p)) = recL(7y(p))-

Proof We know that ® sends p € Xk to ¢(p) € X1. At the same time,
p = [reck () ™", 7p] = [reck (7rp) ', 1] - [e, mp .

Let B € G satisfy ®([reck(rp)~ ', 1]) = [B, 1]. Then, by Lemma 7.8, ®(p) =

[B, Ty ]- HenceAgo(p) = [recL(mp(p))_l, Ty(py] 1 equal to [B, wy(p)]. Therefore,
there exists u € O with recy,(7my(p)) ' = Brecr.(u) ™! and my(p) = Uy (p). But the

latter equality implies u = 1. Hence 8 = recy, (n(p(p))_l. We conclude that

@ (reck ()~ =@ ([reck () ", 1) =[B, 11=[rect (Typ) s 11 = recL, (Typ) ',

and thus ® (reci (7)) = recL(Ty(p))- O

8 From reciprocity isomorphism to isomorphism of topological
monoids
In this section, we start by assuming condition (iv) from the main Theorem 3.1.

Proposition 8.1 Assume (iv). Then there exists an isomorphism of topological monoids
® : Xx = X1, which restricts to the monoid isomorphism ¢ : Ig = I,

Proof For m € Ik, define the embedding
tm: G® — Xk, o > [, sg(m)].

Form; # my, itis obvious that (,, and (1, have disjoint images. Define ® on Lm(G]"g)
by

P ([er, sx(M)]) := [V (@), sL@(m))].

Let us show that ® has a unique continuous extension to Xx. Uniqueness is clear as
UmeIK Lm(Gﬂg) is dense in X (see Sect. 4.1).

For [a, n] € Xk, let (¢;); and (m;); be sequences in Gﬁa(b and I, respectively, such
that lim; _, oo [0, sk (m;)] = [, n]. Given p € H, either n, = 0, in which case

lim vp(m;) = lim; ., oo Up(S]K(mi)p) = o0,
11— 00
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or np # 0, which implies that vy (m;) = vp (sSk(M;)p) = vy (np) for sufficiently large
i. The latter equality means that sg(m;)p, = sg(p"* (”p))p for sufficiently largg\ i, or
in other words, sk (m;), is eventually constant. Therefore, if we define n € Ok by
setting

To = L sw (e ), if ny # 0,
then lim; _, o sg(m;) = n’. Thus, for q € 2},
e cither Ne-1(q) = 0, in which case lim vq(sp(@(m;))q) = oo,
11— 00

® OI7),-1(q) # 0,in which case vg (sL(¢(m;)) ) is eventually constant, namely equal
0 Vg1 (g) (M1 (q))-

Therefore, defining & € é’\L by setting

fq = {O’ if 7y1q) =0,
T sn(@h) g with & := vym1(q) (g-1q))s if m-1q) # O,

we see that lim s1,(p(m;)) =§.
1—> 00

Set S := {p € Pginp = 0} and define v = (vp)p € npeSC 0O, by the equation
Ny = vp - np forp € S°.

Let N be the subgroup N := recK(]_[pes ﬁ;) of G]‘kb. Let us show that («;);
converges in Gﬁ“g /N.Let (o;, )k be a convergent subsequence of (;); with klgglo o, =

o’. Then
lim [« , sg(mi)] = [o, n'] = [, ).
k—o00

So there exists u € ﬁf& with o' = « - recg (1) "' and ' = un. The latter equation
implies up, = vp for all p € S, and thus o' = « - reck (v) ! in GE‘é’/N. As our
convergent subsequence («;, )¢ was arbitrary, we indeed have

lim o; = o -recg(v) " in GX/N.

11— 00
Hence

lim (o) = ¥ (@) - (e )" in GI/y (W),

Thus

l_l_i)Igo[lﬁ(ai), sL(p(m))] = [¥(@) - ¥ (recx (v) 1), £1.
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Namely, if (¥ («;, )« is a convergent subsequence of (¥ (¢;));, then
lim (i) = ¥ (@) - Y (recg (v) ") - recp, (u) in G,
k— 00
for some u € quw(S) 03, by (1). So

il_ifgo[lﬁ(oti), sL(pmi))] = [¥ (@) - ¥ (recg (v) ) - recy, (u), €]

= [ (@) - ¥(recg (v) 1), ué]
= [ () - ¥(recg(v) 1), £].

This shows that ® extends continuously to a continuous map Xk — X, again denoted
by ®. Note that continuity of our new map @ makes use of the fact that Xx and X,
are metric spaces.

The same construction as for & gives rise to a continous map ¥ : Xy — Xk
uniquely determined by

W(B, sLmD = [¥ 1 (B), sk (e~ ()]
forall B € G?Lb and n € I,. Obviously,
®oW =idy, and W o ® = idy,.

Also, it is clear that ® and W are monoid homomorphisms. Finally, for every m € I,
we have, because of (2):

®(m) = O ([reck (sg(m)) !, sg(m)] = [ (reck (sx (M) 1), s1.(p(m))]
= [recy,(sL(e(m) L, s (p(m)] = p(m). a

Remark 8.2 Note that in Proposition 8.1, the monoid isomorphism ¢ in (iv) and the
conclusion is the same. In particular, if it was norm-preserving, then we will keep that

property.

Proposition 8.3 ([8], 4.1) Assume (iv). Then N(p) = N(p(p)) forallp € Px. O

9 Algebraic crossed products and orbit equivalence

In this section, we study the relationship between the notions of equivalence used
for the dynamical systems in Theorem 3.1 and isomorphisms of the corresponding
algebraic crossed product algebras. We will prove our result in a more general context
and then formulate the conclusion for our specific system. After that, we discuss the
relation to quantum statistical mechanical systems such as the Bost—-Connes system.
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Let P é X be an action (from the left) of amonoid P on alocally compact Hausdorff
space X. This defines a dynamical system (X, P, «). Two such dynamical systems
(Xi, Pi, ;) (i = 1, 2) are called orbit equivalent if there exists a homeomorphism
® : X; — X, with the property that for every x, y € X1, x € P -y & ®(x) €
P> - ®(y). Here we write P; - y for {otp(y): p e P }

Assume that o has the property that a;’;(f) = foapfor f € Co(X) defines a
right action (called «*) of P on Cyp(X) by endomorphisms of C*-algebras. (This is for
example the case if all the o), are proper.) From now on, all our dynamical systems are
assumed to have this property. We form the algebraic crossed product Co(X) xilf P
of (X, P, ), as follows: As a complex vector space,

1 ~
Co(X) 358 P = @ Co(X).
peP

A typical element of Co(X) xgl*g P is of the form ) » Pfp- Here the sum is finite, and
pfp stands for the vector in P ,c p Co(X) whose p-th coordinate is f, € Co(X) and
whose remaining coordinates are zero. To define a structure of a complex algebra on

Co(X) x™¢ P, we define

(Z pfp> (Z ng> =Y (pg) (e} (fp)8q)-
p q p.q

In other words, we impose the commutation relation fp = p(x;‘,( f) for p € P and
f € Co(X). Obviously, Co(X) embeds into Cy(X) >4al*g

o+ P as asubalgebra via

Co(X) 5 f > epf € Co(X) x22 P,

where ep is the identity element of P.
The vanishing ideal I, corresponding to x € X is the ideal I, = {f € Co(X):
f(x) = 0}in Co(X).

Lemma 9.1 Let (X, P, o) be a system as above. For x and y in X, we have
x = a,(y) ifand only if o, (1) € 1.
Proof “=": 1f x = a,(y), then every f € I, satisfies a;(f)(y) = flap(y) =
f(x) =0, and hence a;‘,(f) € l,.
“«<": To show that x = «(y), it suffices to show that every f € I, satisfies

f(ap(y)) = 0. But for arbitrary f € Iy, a;",(lx) C I, implies that a;(f) € Iy, sowe
get f(ap(y) = a’(f)(y) = 0. o

Given a subspace V of Cy(X) milf Pandp € P,letV, :={f € Co(X): pf € V}.
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Proposition 9.2 Let (X, P, ) be a system as above, and let A = Cy(X) lef P. For
x, yin X and p € P, we have

x = ap(y) if and only if (span(I, A + Aly)), # Co(X).
Proof A straightforward computation shows
(span(I A + Aly)), = span(a:(IX)Co(X)) + 1.
Since I is a maximal (algebraic) ideal of Cy(X), it follows that
(span(LyA + AlLy), # Co(X) = span(es(1)Co(X)) € Iy <= (L) C 1.

By the previous lemma, the latter is equivalent to x = a,(y). O

Corollary 9.3 Let (X;, P;, ;) (i = 1,2) be two systems as above. If there exists an
isomorphism of complex algebras Co(X1) xf}‘}i? P = Cy(X») milzf P> which identifies
the subalgebra Co(X1) with Cy(X3), then (X1, P1, 1) and (X2, P2, ap) are orbit
equivalent. O

For a global field K, let C(Xx) x®¢ Iy be the algebraic crossed product corre-
sponding to Ix C Xk.

Corollary 9.4 The statements in Theorem 3.1 are equivalent to:

(%) There exists an isomorphism of C-algebras C(Xx) x™¢€ Ix =N C(Xy) xe 1,
which restricts to an isomorphism C(Xg) — C(XL).

Proof 1t follows from Corollary 9.3 that (x) implies Theorem 3.1 (i). Conversely,
Theorem 3.1 (ii) clearly implies (). m]

Remark 9.5 The (reduced) C*-algebraic crossed product algebra Ag := C(Xk) % Ix
has a continuous one-parameter group of automorphism

ok: R — Aut (Ag): t — oK
given by extending to the entire algebra the map
ok (f) = f for f € C(Xx) and o ;(p) = N(p)"' forall p € Py.

In this way, the pair (Ak, o) becomes a quantum statistical mechanical system in the
sense of the first section of [3]. For K = Q, this is the famous Bost—Connes system.
For general number fields, it was introduced and studied in [12,20], and for function
fields, in [21]. In [6], the first and last author proved that if two number fields K and
L have isomorphic quantum statistical mechanical systems (in the obvious sense of
isomorphism), then the number fields are arithmetically equivalent, i.e., they have the
same Dedekind zeta function; essentially because this is their partition function. By the
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theory of GaBmann ([15]), this implies in particular that two such number fields that are
Galois over QQ are isomorphic (without the need for any assumption on a subalgebra
or of restricting to an algebraic crossed product, but making use of intertwining of
the time evolution). It was recently established by Kubota and Takeishi [19] that the
existence of a C*-algebra isomorphism Ag = Ap is the same as isomorphism of
number fields K = L in full generality.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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