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Abstract
We study a dynamical system induced by the Artin reciprocity map for a global
field. We translate the conjugacy of such dynamical systems into various arithmetical
properties that are equivalent to field isomorphism, relating it to anabelian geometry.
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1 Introduction

In this paper, we look at the main constructions of class field theory from the point of
view of topological dynamical systems. IfK is a global field, the finite ideles A

∗
K, f act

on the abelianized absolute Galois group Gab
K
through multiplication with their image

under the reciprocity map. Hence the group of fractional ideals (finite ideles modulo
idelic units ̂O∗

K
), and also themonoid IK of integral ideals, act on a topological monoid

XK, defined as the quotient of Gab
K

× ̂OK by the subgroup {(rec(u)−1, u)|u ∈ ̂O∗
K
},

where ̂OK is the set of integral adeles (cf. Definition 2.1). It is the action IK

�

XK that
we study. Our main result says that natural equivalences of such dynamical systems
for different fields (orbit equivalence, topological conjugacy) have a purely number
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theoretical meaning, called a “reciprocity isomorphism”. Referring to the companion
paper [8], this is equivalent to equality ofDirichlet L-series, and isomorphism of fields.
The main result is Theorem 3.1 below.

We believe our study sheds some new light on the anabelian geometry of global
fields, as we now briefly explain. The anabelian philosophy is, in the words of
Grothendieck ([11], footnote (3)) “a construction which pretends to ignore […] the
algebraic equations which traditionally serve to describe schemes, […] to be able to
hope to reconstitute a scheme […] from […] a purely topological invariant […]”. In the
zero-dimensional case, the fundamental group plays no rôle, only the absolute Galois
group, and we arrive at the famous result of Neukirch and Uchida that the existence
of an isomorphism of absolute Galois groups of global fields implies the existence of
an isomorphism of those fields (In [23], Neukirch proved this for number fields that
are Galois over Q; in [30], Uchida proved it for general number fields and in [31], he
proved it for function fields, cf. also [25] 12.2, Ikeda [13] and unpublished work of
Iwasawa).

Individually, neither the Dedekind zeta function (i.e., the Dirichlet L-series for the
trivial character), nor the adele ring, nor the abelianized Galois groups of a global field
determine that field uniquely up to isomorphism:

• Q(
8
√
3) and Q(

8
√
3 · 24) have the same zeta function, but non-isomorphic adele

rings ([10,16,27]);
• Q(

8
√
2 · 9) and Q(

8√
25 · 9) have isomorphic adele rings ([17]);

• Q(
√−3) and Q(

√−7) have isomorphic abelianized Galois groups ( [1,18,26]);
• Equality of zeta functions for global function fields is the same as isomorphism of
their adele rings, which is the same as the corresponding curves having isogenous
Jacobians ([28,29]).

The dynamical system IK

�

XK that we consider (which, after all, is a topological
space with a monoid action) can be considered as some kind of substitute for the abso-
lute Galois group. It involves the abelianized Galois group and the adeles, but not the
absolute Galois group. In this sense, it is “not anabelian”. Our main result in this paper
and [8] says that consideration of this system cancels out the “defects” of the above
individual examples in exactly the right way: it determines the field up to isomorphism.
In the spirit of Kronecker’s programme, one wants to characterize a number field by
structure that is “internal” to it (i.e., not using extensions of the field): this is the case
for the dynamical system, since class field theory realizes Kronecker’s programme
for abelian extensions. On the other hand, anabelian geometry characterizes a number
field by its absolute Galois group, an object whose “internal” understanding remains
largely elusive and belongs to the Langlands programme.

We end this introduction with a brief discussion of related work and open problems.
For the field of rational numbers, the dynamical system IQ

�

XQ was introduced and
studied byBost andConnes in [3] (inwhichN

�

Ẑ is the action given bymultiplication
by positive integers in the profinite integers). The construction for a general field was
given byHa and Paugam in [12] and clarified in [20,21]. All of those references take the
point of view of noncommutative geometry (specifically, C∗-algebras and quantum
statistical mechanical systems). We describe the link between the noncommutative
point of view and our work by considering algebraic crossed product algebras in
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Sect. 9. In this context, Kubota and Takeishi [19] have used K -theoretic methods to
show that the statements in our Main Theorem 3.1 and Remark 3.2 are equivalent to
an isomorphism of the associated C∗-algebras.

In [32], Prop. 8.2, the space XK was identified with the so-called Deligne-Ribet
monoid from [9].

In [6], two of us have shown that such quantum statistical mechanical systems
are isomorphic if and only if the corresponding number fields are isomorphic, if the
number fields are Galois over Q (analogue of the original theorem of Neukirch),
essentially because their partition function is the Dedekind zeta function. In [7], the
first named author has proven that a global function field isomorphism is determined
by an isomorphism of dynamical systems for such fields; a result which is reproven
here in a more general context.

Following the philosophy of the Langlands programme, one may replace the con-
sideration of (n-dimensional linear representations of) the absolute Galois group GK

by that of (modules over) a Hecke algebra (for GLn). In [4], it is shown that for n ≥ 2,
an isomorphism of adelic Hecke algebras for two number fields, that respects the L1-
norm, is the same as an isomorphism of their adele rings. The local case is treated in
[14].

We believe the following questions are interesting to pursue. Firstly, is there a
“Hom-form” of our main theorem, in which field homomorphisms correspond in a
precise way to topological conjugacies of the dynamical systems? Secondly, in the
style of Mochizuki’s absolute version of anabelian geometry (cf. [22]), one may ask
how to reconstruct a number field from its associated dynamical system (or L-series),
rather than the relative result about reconstructing an isomorphism of fields from an
isomorphism of their dynamical systems (or L-series).

2 Preliminaries

In this section, we set notation and introduce the main object of study.
A monoid is a semigroup with identity element. If R is a ring, we let R∗ denote its

group of invertible elements.
Given a global field K, we use the word prime to denote a prime ideal if K is a

number field, and to denote an irreducible effective divisor if K is a global function
field. LetPK be the set of primes of K. If p ∈ PK, let vp be the normalized (additive)
valuation corresponding to p, Kp the local field at p, and Op its ring of integers.

Let AK, f be the finite adele ring of K, ̂OK its ring of finite integral adeles and
A

∗
K, f the group of ideles (invertible finite adeles), all with their usual topology. Note

that in the function field case, we do not single out infinite places, so that in that
case, AK, f = AK is the adele ring, ̂OK is the ring of integral adeles and A

∗
K, f =

A
∗
K
is the full group of ideles. If K is a number field, we denote by OK its ring of

integers. If K is a global function field, we denote by q the cardinality of the residue
field.

Let IK be the monoid of non-zero integral ideals/effective divisors of our global
field K, so IK is generated by PK. We extend the valuation to ideals: if m ∈ IK and
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p ∈ PK, we define vp(m) ∈ Z≥0 by requiring m = ∏

p∈PK
pvp(m). Let N be the

norm function on the monoid IK: it is the multiplicative function defined on primes p
by N (p) := #OK/p if K is a number field and N (p) = qdeg(p) if K is a function field.
Given two global fields K and L, we call a monoid homomorphism ϕ : IK → IL
norm-preserving if N (ϕ(m)) = N (m) for all m ∈ IK.

We have a canonical projection

(·) : A
∗
K, f ∩ ̂OK → IK, (xp)p �→

∏

p

pvp(xp).

A split for (·) is by definition a monoid homomorphism sK : IK → A
∗
K, f ∩ ̂OK

with the property that (·) ◦ sK = idIK , and such that for every prime p, sK(p) =
(. . . , 1, πp, 1, . . .) for some uniformizer πp ∈ Kp with vp(πp) = 1.

Let Gab
K

be the Galois group of a maximal abelian extension of K, as profinite
topological group. There is an Artin reciprocity map A

∗
K

→ Gab
K
. In the number field

case, we embed A
∗
K, f into the group of ideles A

∗
K
via A

∗
K, f 
 x �→ (1, x) ∈ A

∗
K
,

restrict the Artin reciprocity map to A
∗
K, f and call this restriction recK. In the function

field case, recK is just the (full) Artin reciprocity map.

Definition 2.1 We define the topological monoid XK := Gab
K

×
̂O∗
K

̂OK as the quotient

of Gab
K

× ̂OK by the subgroup
{

(recK(u)−1, u): u ∈ ̂O∗
K

}

. For α ∈ Gab
K

and η ∈ ̂OK,
we write [α, η] for the equivalence class of (α, η) in XK. Given a split sK, we embed
IK as a monoid into XK via

IK 
 m �→ [recK(sK(m))−1, sK(m)] ∈ XK.

This embedding does not depend on the choice of the split, as this choice is up to
units in ̂OK. We obtain a dynamical system IK

�

XK, where m ∈ IK acts on XK via
XK 
 x �→ m · x ∈ XK.

Proposition 2.2 The space XK is Hausdorff.

Proof By combining Proposition 1 of Paragraph 4.1 and Proposition 3 of Paragraph
4.2 of [2], we obtain that it suffices to prove that ̂O∗

K
is compact and that the action

̂O∗
K

�

(Gab
K

× ̂OK) is continuous. The former is clear: for any p ∈ PK the unit group
O∗
p is compact, hence the product ̂O∗

K
is compact as well. To prove the latter it is

sufficient that the maps ̂O∗
K

× Gab
K

→ Gab
K

and ̂O∗
K

× ̂OK → ̂OK are continuous.
The map ̂O∗

K
× Gab

K
→ Gab

K
is given by (u, σ ) �→ recK(u)−1σ . As the Artin

reciprocity map is continuous and Gab
K

is a topological group, this map is continuous.
The map ̂O∗

K
× ̂OK → ̂OK is given by (u, a) �→ ua. The topology on ̂O∗

K
is finer

than the subspace topology obtained from ̂OK, which causes the inclusion ̂O∗
K

↪→ ̂OK

to be continuous, which, combined with the fact that ̂OK is a topological group, proves
that (u, a) �→ ua is continuous.

All the necessary conditions are met: we conclude that XK is Hausdorff. ��
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3 Themain theorem

Theorem 3.1 Let K and L be two global fields. The following are equivalent:

(i) IK

�

XK and IL

�

XL are orbit equivalent, i.e., there exists a homeomorphism

� : XK
∼= XL with �(IK · x) = IL · �(x) for every x ∈ XK.

(ii) IK

�

XK and IL

�

XL are conjugate, i.e., there exists a homeomorphism � :
XK

∼= XL and a monoid isomorphism ϕ : IK ∼= IL with�(m · x) = ϕ(m) ·�(x)
for every m ∈ IK and x ∈ XK.

(iii) There exists an isomorphism of topological monoids � : XK
∼= XL which

restricts to a monoid isomorphism IK ∼= IL.
(iv) There exists a monoid isomorphism ϕ : IK ∼= IL, an isomorphism of topological

groupsψ : Gab
K

∼= Gab
L
and splits sK : IK → A

∗
K, f ∩ ̂OK, sL : IL → A

∗
L, f ∩ ̂OL

such that

ψ(recK(O∗
p)) = recL(O∗

ϕ(p)) for every prime p of K, (1)

ψ(recK(sK(m))) = recL(sL(ϕ(m))) for all m ∈ IK. (2)

Remark 3.2 Themain result of [8] (proven in a purely number theoretical way) implies
that the statements in Theorem 3.1 are equivalent to

(iv)fin There exists

• a norm-preserving monoid isomorphism ϕ : IK ∼= IL that restricts to a
bijection between the unramified primes of K and L, and

• an isomorphism of topological groups ψ : Gab
K

∼= Gab
L
,

such that for every finite abelian extensionK
′ = (

K
ab

)N
/K (with N a subgroup

in Gab
K
) and every prime p of K unramified in K

′, we have

ψ
(

Frobp
) = Frobϕ(p).

(v) There exists an isomorphism of topological groups ψ : Gab
K

∼= Gab
L

such that
there is an equality of associated Dirichlet L-series:

L(χ, s) = L(qψ(χ), s) for all χ ∈ qGab
K

, where qψ is given by qψ(χ) = χ ◦ ψ−1.

(vi) The fields K and L are isomorphic.

Remark 3.3 In order to explain our strategy to prove the theorem, consider the follow-
ing additional statements:

(iN) IK

�

XK and IL

�

XL are orbit equivalent in a norm-preserving way, i.e., there
exists a homeomorphism � : XK

∼= XL with �(IK · x) = IL · �(x) for every
x ∈ XK. In addition, for every m ∈ IK and x ∈ XK there exists n ∈ IL with
N (m) = N (n) and �(m · x) = n · �(x).
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(iiN) IK

�

XK and IL

�

XL are conjugate in a norm-preserving way, i.e., there exist
a homeomorphism� : XK

∼= XL and a norm-preserving monoid isomorphism
ϕ : IK ∼= IK with �(m · x) = ϕ(m) · �(x) for all m ∈ IK, x ∈ XK.

(iiiN) There exists an isomorphism of topological monoids � : XK
∼= XL which

restricts to a norm-preserving monoid isomorphism IK ∼= IL.

The proof of the theorem proceeds as follows: (i) ⇒ (ii) is the content of
Proposition 5.1, and (ii) ⇒ (iii) follows from Lemma 6.1. We get (iii) ⇒ (iv) by
combining Lemma 7.1, Corollary 7.6 and Lemma 7.9. Proposition 8.1 together with
Remark 8.2 and Proposition 8.3 show (iv) ⇒ (iiiN), and (iiiN)⇒ (iiN) ⇒ (iN) ⇒ (i) is
obvious.

4 Ideals are dense

To simplify notation, we drop the index K in this section, i.e., we write X for XK, Gab

for Gab
K

and so on.

Lemma 4.1 The monoid
{[rec(s(m))−1, s(m)]: m ∈ I

}

is dense in X = Gab ×
̂O∗ ̂O .

Proof For a prime p and a finite abelian extension L/K unramified at p with corre-
sponding projection map πL : Gab � Gal(L/K )we have πL(rec(s(p))) = Frobp. By
Chebotarev’s Density Theorem ([24], 13.4) for every element σ ∈ Gal(L/K ) there
are infinitely many primes p such that Frobp = σ . Hence, for any subset S ⊂ P such
that P\S is finite, the composition πL ◦ rec ◦ s : S → Gal(L/K ) is surjective, thus
rec(s(S)) is dense in Gab.

As a consequence,we show that the set
⋃

m∈I
{[α, s(m)]: α ∈ Gab

}

is in the closure
of the image of I in X .

Choose α ∈ Gab andm ∈ I arbitrary and enumerate the primes inP by p1, p2, . . ..
Set Pi = {pi , pi+1, . . .}. Moreover, let H1 ⊂ H2 ⊂ · · · be an increasing chain of
quotient groups of Gab that gives rise to an identification Gab = lim←− Hi . Denote the

corresponding quotient map Gab � Hi by πi . As seen before, πi (rec(s(P j ))) = Hj

for all j ∈ N. Specifically, for every i ∈ N we can find ni ∈ Pi with

πi (rec(s(ni ))
−1) = πi (α rec(s(m))).

Hencemi := mni satisfy limi→∞ rec(s(mi ))
−1 = α. By construction, limi→∞ s(mi ) =

s(m). We are left to show that
⋃

m∈I
{[α, s(m)]: α ∈ Gab

}

is dense in X . Let [α, η]
be an arbitrary element of X , where η = (ηp)p. Write η = u · θ , where u ∈ ̂O∗,
θ = (θp)p ∈ ̂O such that θp is either 0 or an integer power of the uniformizer.

Define

m j :=
j

∏

i=1

p
min(vp(θp),i)
i ,
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where min(∞, i) = i for all i . Then s(m j )p converges to θp for all p, hence
lim j→∞ s(m j ) = θ . It follows that

lim
j→∞[α rec(u), s(m j )] = [α rec(u), θ ] = [α rec(u), u−1η] = [α, η].

This concludes the proof. ��

5 From orbit equivalence to conjugacy

Let K and L be two global fields.

Proposition 5.1 The following are equivalent:

(a) IK

�

XK and IL

�

XL are orbit equivalent.
(b) IK

�

XK and IL

�

XL are conjugate.

If, in addition to (a), for every m ∈ IK and x ∈ XK, we can always choose n ∈ IL so
that N (n) = N (m) and �(m · x) = n ·�(x), then we can also find a norm-preserving
monoid isomorphism in (b).

Proof It obviously suffices to show “(a) ⇒ (b)”.
In order to construct amonoid isomorphism IK ∼= IL, it suffices to obtain a bijection

IK ∼= IL which preserves partial orders as both IK and IL are isomorphic to
⊕∞

k=1 Z≥0
as abstract monoids. However, we also have to take the dynamics into account. More
precisely, we proceed as follows:

First of all, let 1 = [1, 1] ∈ XK be the unit of XK. We claim that �(1) is invertible
in the monoid XL. Indeed, since IK = IK ·1 is dense in XK, we know that IL ·�(1) =
�(IK · 1) is dense in XL. Now assume that �(1) is not invertible in XL. This means
that �(1) = [α, η], and there exists a prime q of L with vq(ηq) ≥ 1. But then, every
[β, ξ ] ∈ IL · �(1) satisfies vq(ξq) ≥ 1. This contradicts IL · �(1) = XL. So �(1)
must be invertible in XL.

By (a), we know that for everym ∈ IK, there exists n ∈ IL with�(m·1) = n·�(1).
Since �(1) is invertible, n is uniquely determined. In other words, if n1, n2 ∈ IL
both satisfy �(m · 1) = n1 · �(1) and �(m · 1) = n2 · �(1), then this implies
n1 · �(1) = n2 · �(1) and hence n1 = n2. Let ϕ : IK → IL be the map with
�(m · 1) = ϕ(m) · �(1) for every m ∈ IK. Similarly, let φ : IL → IK be the map
uniquely determined by �−1(n · �(1)) = φ(n) for all n ∈ IL. It is obvious that

φ ◦ ϕ = idIK and ϕ ◦ φ = idIL .

So φ = ϕ−1, and in particular, ϕ is a bijection.
Our first step is to show that for every prime p of K and m ∈ IK, there exists a

prime q of L such that ϕ(p · m) = q · ϕ(m). At this point, it might be that q depends
on m, but we will see later on that this is not the case, i.e., that q = ϕ(p). Looking at

ϕ(p · m) · �(1) = �(p · m) ∈ IL · �(m) = IL · ϕ(m) · �(1),
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we conclude ϕ(p ·m) ∈ IL ·ϕ(m) since �(1) is invertible. So there exists a ∈ IL with
ϕ(p ·m) = a · ϕ(m). If a is not prime, then there exist b, c ∈ IL with b �= OL, c �= OL

and a = b · c. Because of orbit equivalence, we must have

p · m = �−1(ϕ(p · m) · �(1)) = �−1(a · ϕ(m) · �(1)) = �−1(b · c · ϕ(m) · �(1))

= b̃ · �−1(c · ϕ(m) · �(1)) = b̃ · c̃ · �−1(ϕ(m) · �(1)) = b̃ · c̃ · m

for some b̃, c̃ ∈ IK. Let

x = �−1(c · ϕ(m) · �(1)) and y = �(x) = c · ϕ(m) · �(1).

Let y = [β, ξ ]. As b �= OL, there exists a prime q of L with vq(b) ≥ 1. Obviously,
vq(ξq) �= ∞, and we conclude that vq(sL(b)q · ξq) �= vq(ξq), hence b · y �= y.
Therefore, x �= b̃ · x , and thus b̃ �= OK. Similarly, c̃ �= OK. But then, it is impossible
to have p · m = b̃ · c̃ · m in IK. Hence, a must be prime. In particular, ϕ induces a
bijective map on the set of primes.

Our next step is to show ϕ(pn) = ϕ(p)n for every prime p of K and n ∈ N. By our
previous step, there exist primes q1, . . . , qn of L such that ϕ(pn) = q1 · · · qn . Thus

IL · ϕ(pn) · �(1) ⊆ IL · qi · �(1)

for every 1 ≤ i ≤ n. Applying �−1, this implies that IK · pn ⊆ IKϕ−1(qi ). But the
only prime p̃ of K with IK · pn ⊆ IK · p̃ is p. We therefore conclude that qi = ϕ(p)
for all 1 ≤ i ≤ n.

Let us now show that for every m ∈ IK, we have vϕ(p)(ϕ(m)) = vp(m). It is clear
that vϕ(p)(ϕ(m)) is the unique v ∈ N with the properties

IL · ϕ(m) ⊆ IL · ϕ(p)v = IL · ϕ(pv) and IL · ϕ(m) � IL · ϕ(p)v+1 = IL · ϕ(pv+1).

Here we used the previous step. Multiplying the equations with �(1) and applying
�−1, these two properties transform into

IK · m ⊆ IK · pv and IK · m � IK · pv+1.

Thus v = vp(m). In particular, this shows that ϕ is a monoid isomorphism.
We can now finish the proof for “(a) ⇒ (b)”: For every m, n ∈ IK, we have

�(m · n) = ϕ(m · n) · �(1) = ϕ(m) · ϕ(n) · �(1) = ϕ(m) · �(n).

As IK is dense in XK, we conclude that �(m · x) = ϕ(m) · �(x) for every m ∈ IK
and x ∈ XK.

Let us now assume that, in addition to (a), we can, for every m ∈ IK and x ∈ XK,
choose n ∈ IL so that N (n) = N (m) and �(m · x) = n · �(x). Taking x = 1, we see
that N (ϕ(m)) = N (m). ��
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6 From conjugacy to isomorphism of topological monoids

Lemma 6.1 Assume that IK

�

XK and IL

�

XL are conjugate. Then�(1) is invertible
in XL and �̃ : XK → XL, x �→ �(x) · �(1)−1 is an isomorphism of topological
monoids satisfying �̃(m) = ϕ(m) for every m ∈ IK.

Proof In the proof of the previous proposition,we have already seen that�(1) is invert-
ible in XL. Obviously, �̃ defined by �̃(x) = �(x) ·�(1)−1 is still a homeomorphism.
Moreover, for every m, n ∈ IK , we have

�̃(m · n) = �(m · n)�(1)−1

= ϕ(m) · ϕ(n) · �(1) · �(1)−1

= (ϕ(m) · �(1) · �(1)−1) · (ϕ(n) · �(1) · �(1)−1)

= �̃(m) · �̃(n).

As IK is dense in XK, we conclude that �̃ is a monoid homomorphism. Finally, we
have for every m ∈ IK:

�̃(m) = �(m · 1) · �(1)−1 = ϕ(m) · �(1) · �(1)−1 = ϕ(m). ��
Remark 6.2 Note that in Lemma 6.1, the monoid isomorphism ϕ stays the same. In
particular, if it was norm-preserving, then we will keep that property.

7 From conjugacy to reciprocity isomorphism

Lemma 7.1 Let � be an isomorphism of topological monoids � : XK
∼= XL. Then

� restricts to an isomorphism of topological groups Gab
K

∼= Gab
L
.

Proof This is clear as Gab
K

is the group of invertible elements in XK. ��
Notation 7.2 Let us denote the restriction of � to Gab

K
again by �. For m ∈ IK, let

P(m) = {p ∈ PK: p|m}. Given S ⊆ PK, let 1S be the element of ̂OK with (1S)p = 1
if p ∈ S and (1S)p = 0 if p /∈ S. Also, let e be the identity inGab

K
.We do not distinguish

in our notation between e ∈ Gab
K

and e ∈ Gab
L

since the meaning becomes clear from
the context.

Lemma 7.3 Assume that � is an isomorphism of topological monoids � : XK
∼= XL

which restricts to an isomorphism ϕ : IK ∼= IL. We denote the bijection PK
∼= PL

that ϕ induces also by ϕ. Then, for every S ⊆ PK, we have �([e, 1S]) = [e, 1ϕ(S)].
Proof Applying � to both sides of the equation

[e, 1S] · XK =
⋂

m∈IK,P(m)∩S=∅
m · XK,
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we obtain

�([e, 1S]) · XL =
⋂

m∈IK,P(m)∩S=∅
ϕ(m) · XL = [e, 1ϕ(S)] · XL.

It follows that if �([e, 1S]) = [β, ξ ], then ξq = 0 if q /∈ ϕ(S), and ξq ∈ ̂O∗
q if

q ∈ ϕ(S). As [e, 1S]2 = [e, 1S] and since � is a monoid homomorphism, we must
have

�([e, 1S])2 = �([e, 1S]).

Thus there exists u ∈ ̂O∗
L
with β2 = β recL(u)−1 and ξ2 = uξ . We deduce that

β = recL(u)−1 and ξ = u · 1ϕ(S). Hence

�([e, 1S]) = [β, ξ ] = [recL(u)−1, u · 1ϕ(S)] = [e, 1ϕ(S)]. ��
Notation 7.4 With the same notation as above, define for S ⊆ PK the subgroup

NS = recK

⎛

⎝

∏

p∈S
O∗
p

⎞

⎠ ⊆ Gab
K

.

We view
∏

p∈S O∗
p as a subgroup of ̂O∗

K
via the embedding v �→ (. . . , 1, v, 1, . . . ).

Lemma 7.5 Let � be an isomorphism of topological monoids � : XK
∼= XL which

restricts to a isomorphism ϕ : IK ∼= IL. Then �(NS) = Nϕ(S).

Proof Let Sc = PK\S and write μSc for the monoid homomorphism

μSc : Gab
K

→ XK · [e, 1Sc ], α �→ α · [e, 1Sc ].

Define μϕ(S)c in an analogous way. Because of the previous two lemmas, � restricts
to isomorphismsGab

K
∼= Gab

L
and XK · [e, 1Sc ] ∼= XL · [e, 1ϕ(S)c ] such that the diagram

Gab
K

∼=�

μSc
XK · [e, 1Sc ]

�∼=

Gab
L

μϕ(S)c

XL · [e, 1ϕ(S)c ]

commutes. Hence it follows that

�((μSc )
−1([e, 1Sc ])) = (μϕ(S)c )

−1([e, 1ϕ(S)c ]).
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Now [α, 1] ∈ Gab
K

lies in (μSc )
−1([e, 1Sc ]) if and only if [α, 1Sc ] = [e, 1Sc ] if and

only if there exists u ∈ ̂O∗
K
with α = recK(u)−1 and u ·1Sc = 1Sc . The latter equation

means that up = 1 if p ∈ Sc, or in other words, u ∈ ∏

p∈S O∗
p. Thus,

(μSc )
−1([e, 1Sc ]) = NS .

In an entirely analogous way, we see that (μϕ(S)c )
−1([e, 1ϕ(S)c ]) = Nϕ(S). ��

Corollary 7.6 We have an identification �(recK(O∗
p)) = recL(O∗

ϕ(p)). ��

Notation 7.7 For p ∈ PK, let πp ∈ ̂OK be such that (πp)q = 1 if q �= p and
vp(πp) = 1.

Lemma 7.8 Assume that � is an isomorphism of topological monoids � : XK
∼= XL

which restricts to a isomorphism ϕ : IK ∼= IL. Then for every p ∈ PK there exists
an element πϕ(p) ∈ ̂OL with

⎧

⎨

⎩

(πϕ(p))r = 1 if r �= ϕ(p),
vϕ(p)(πϕ(p)) = 1,
�([e, πp]) = [e, πϕ(p)].

Proof We have

�(
{[α, η]: vp(ηp) > 0

}

) = {[β, ξ ]: vϕ(p)(ξϕ(p)) > 0
}

.

The reason is that for [α, η] ∈ XK,

vp(ηp) = 0 ⇔ ηp ∈ O∗
p ⇔ [α, η] · [e, 1{p}] · XK = [e, 1{p}] · XK.

The latter condition is equivalent to �([α, η]) · [e, 1{ϕ(p)}] · XL = [e, 1{ϕ(p)}] · XL,

and this in turn means that we can write �([α, η]) = [β, ξ ] for some ξ ∈ ̂OL with
vϕ(p)(ξϕ(p)) = 0. Here we used Lemma 7.3.

As we obviously have [e, πp] · XK = {[α, η]: vp(ηp) > 0
}

, we conclude that

�([e, πp]) · XL = {[β, ξ ]: vϕ(p)(ξϕ(p)) > 0
}

.

So we can write �([e, πp]) = [β, ξ ] for some ξ ∈ ̂OL with vϕ(p)(ξϕ(p)) = 1.
Moreover, we have [e, πp] · [e, 1{p}c ] = [e, 1{p}c ]. Hence, by Lemma 7.3, we

conclude that

[β, ξ · 1{ϕ(p)}c ] = [β, ξ ] · [e, 1{ϕ(p)}c ] = [e, 1{ϕ(p)}c ].

Therefore, there exists u ∈ ̂O∗
L
with β = recL(u)−1 and ξ · 1{ϕ(p)}c = u · 1{ϕ(p)}c . The

latter equation implies that ξr = ur ∈ ̂O∗
r if r �= ϕ(p). As we have shown above that
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vϕ(p)(ξϕ(p)) = 1, we conclude that πϕ(p) = u−1ξ satisfies (πϕ(p))r = 1 if r �= ϕ(p)
and vϕ(p)(πϕ(p)) = 1. Also,

�([e, πp]) = [β, ξ ] = [recL(u)−1, uπϕ(p)] = [e, πϕ(p)],

as desired. ��
Lemma 7.9 Assume that � is an isomorphism of topological monoids � : XK

∼= XL

which restricts to a isomorphism ϕ : IK ∼= IL. Given p ∈ PK, let πp be defined as
above, and choose πϕ(p) ∈ ̂OL as in Lemma 7.8. Then �(recK(πp)) = recL(πϕ(p)).

Proof We know that � sends p ∈ XK to ϕ(p) ∈ XL. At the same time,

p = [recK(πp)
−1, πp] = [recK(πp)

−1, 1] · [e, πp].

Let β ∈ Gab
L

satisfy �([recK(πp)
−1, 1]) = [β, 1]. Then, by Lemma 7.8, �(p) =

[β, πϕ(p)]. Hence ϕ(p) = [recL(πϕ(p))
−1, πϕ(p)] is equal to [β, πϕ(p)]. Therefore,

there exists u ∈ ̂O∗
L
with recL(πϕ(p))

−1 = βrecL(u)−1 and πϕ(p) = uπϕ(p). But the
latter equality implies u = 1. Hence β = recL(πϕ(p))

−1. We conclude that

�(recK(πp)
−1)=�([recK(πp)

−1, 1])=[β, 1]=[recL(πϕ(p))
−1, 1] = recL(πϕ(p))

−1,

and thus �(recK(πp)) = recL(πϕ(p)). ��

8 From reciprocity isomorphism to isomorphism of topological
monoids

In this section, we start by assuming condition (iv) from the main Theorem 3.1.

Proposition 8.1 Assume (iv). Then there exists an isomorphism of topologicalmonoids
� : XK

∼= XL which restricts to the monoid isomorphism ϕ : IK ∼= IL.

Proof For m ∈ IK, define the embedding

ιm : Gab
K

→ XK, α �→ [α, sK (m)].

Form1 �= m2, it is obvious that ιm1 and ιm2 have disjoint images. Define� on ιm(Gab
K

)

by

�([α, sK(m)]) := [ψ(α), sL(ϕ(m))].

Let us show that � has a unique continuous extension to XK. Uniqueness is clear as
⋃

m∈IK ιm(Gab
K

) is dense in XK (see Sect. 4.1).
For [α, η] ∈ XK, let (αi )i and (mi )i be sequences in Gab

K
and IK, respectively, such

that limi→∞[αi , sK (mi )] = [α, η]. Given p ∈ PK, either ηp = 0, in which case

lim
i→∞ vp(mi ) = limi→∞ vp(sK(mi )p) = ∞,
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or ηp �= 0, which implies that vp(mi ) = vp(sK(mi )p) = vp(ηp) for sufficiently large
i . The latter equality means that sK(mi )p = sK(pvp(ηp))p for sufficiently large i , or
in other words, sK(mi )p is eventually constant. Therefore, if we define η′ ∈ ̂OK by
setting

η′
p =

{

0 if ηp = 0;
sK(pvp(ηp))p if ηp �= 0,

then limi→∞ sK(mi ) = η′. Thus, for q ∈ PL ,

• either ηϕ−1(q) = 0, in which case lim
i→∞ vq(sL(ϕ(mi ))q) = ∞,

• or ηϕ−1(q) �= 0, in which case vq(sL(ϕ(mi ))q) is eventually constant, namely equal
to vϕ−1(q)(ηϕ−1(q)).

Therefore, defining ξ ∈ ̂OL by setting

ξq =
{

0, if ηϕ−1(q) = 0,
sL(qλ)q with λ := vϕ−1(q)(ηϕ−1(q)), if ηϕ−1(q) �= 0,

we see that lim
i→∞ sL(ϕ(mi )) = ξ .

Set S := {

p ∈ PK : ηp = 0
}

and define v = (vp)p ∈ ∏

p∈Sc O∗
p by the equation

η′
p = vp · ηp for p ∈ Sc.
Let N be the subgroup N := recK(

∏

p∈S O∗
p) of Gab

K
. Let us show that (αi )i

converges in Gab
K

/N . Let (αik )k be a convergent subsequence of (αi )i with lim
k→∞ αik =

α′. Then

lim
k→∞[αik , sK(mik )] = [α′, η′] = [α, η].

So there exists u ∈ ̂O∗
K
with α′ = α · recK(u)−1 and η′ = uη. The latter equation

implies up = vp for all p ∈ Sc, and thus α′ = α · recK(v)−1 in Gab
K

/N . As our
convergent subsequence (αik )k was arbitrary, we indeed have

lim
i→∞ αi = α · recK(v)−1 in Gab

K
/N .

Hence

lim
i→∞ ψ(αi ) = ψ(α) · ψ(recK(v)−1) in Gab

L
/ψ(N ).

Thus

lim
i→∞[ψ(αi ), sL(ϕ(mi ))] = [ψ(α) · ψ(recK(v)−1), ξ ].
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Namely, if (ψ(αik ))k is a convergent subsequence of (ψ(αi ))i , then

lim
k→∞ ψ(αik ) = ψ(α) · ψ(recK(v)−1) · recL(u) in Gab

L
,

for some u ∈ ∏

q∈ϕ(S) O
∗
q , by (1). So

lim
i→∞[ψ(αi ), sL(ϕ(mi ))] = [ψ(α) · ψ(recK(v)−1) · recL(u), ξ ]

= [ψ(α) · ψ(recK(v)−1), uξ ]
= [ψ(α) · ψ(recK(v)−1), ξ ].

This shows that� extends continuously to a continuousmap XK → XL, again denoted
by �. Note that continuity of our new map � makes use of the fact that XK and XL

are metric spaces.
The same construction as for � gives rise to a continous map � : XL → XK

uniquely determined by

�([β, sL(n)]) = [ψ−1(β), sK(ϕ−1(n))]

for all β ∈ Gab
L

and n ∈ IL. Obviously,

� ◦ � = idXL
and � ◦ � = idXK

.

Also, it is clear that � and � are monoid homomorphisms. Finally, for everym ∈ IK,
we have, because of (2):

�(m) = �([recK(sK(m))−1, sK(m)] = [ψ(recK(sK(m)−1)), sL(ϕ(m))]
= [recL(sL(ϕ(m)))−1, sL(ϕ(m))] = ϕ(m). ��

Remark 8.2 Note that in Proposition 8.1, the monoid isomorphism ϕ in (iv) and the
conclusion is the same. In particular, if it was norm-preserving, then we will keep that
property.

Proposition 8.3 ([8], 4.1) Assume (iv). Then N (p) = N (ϕ(p)) for all p ∈ PK. ��

9 Algebraic crossed products and orbit equivalence

In this section, we study the relationship between the notions of equivalence used
for the dynamical systems in Theorem 3.1 and isomorphisms of the corresponding
algebraic crossed product algebras. We will prove our result in a more general context
and then formulate the conclusion for our specific system. After that, we discuss the
relation to quantum statistical mechanical systems such as the Bost–Connes system.
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Let P
α�

X be an action (from the left) of amonoid P on a locally compactHausdorff
space X . This defines a dynamical system (X , P, α). Two such dynamical systems
(Xi , Pi , αi ) (i = 1, 2) are called orbit equivalent if there exists a homeomorphism
� : X1 → X2 with the property that for every x, y ∈ X1, x ∈ P1 · y ⇔ �(x) ∈
P2 · �(y). Here we write P1 · y for {

αp(y): p ∈ P1
}

.
Assume that α has the property that α∗

p( f ) := f ◦ αp for f ∈ C0(X) defines a
right action (called α∗) of P on C0(X) by endomorphisms of C*-algebras. (This is for
example the case if all the αp are proper.) From now on, all our dynamical systems are

assumed to have this property. We form the algebraic crossed product C0(X) �
alg
α∗ P

of (X , P, α), as follows: As a complex vector space,

C0(X) �
alg
α∗ P ∼=

⊕

p∈P

C0(X).

A typical element of C0(X) �
alg
α∗ P is of the form

∑

p p f p. Here the sum is finite, and
p f p stands for the vector in

⊕

p∈P C0(X) whose p-th coordinate is f p ∈ C0(X) and
whose remaining coordinates are zero. To define a structure of a complex algebra on
C0(X) �

alg
α∗ P , we define

(

∑

p

p f p

)(

∑

q

qgq

)

:=
∑

p,q

(pq)(α∗
q( f p)gq).

In other words, we impose the commutation relation f p = pα∗
p( f ) for p ∈ P and

f ∈ C0(X). Obviously, C0(X) embeds into C0(X) �
alg
α∗ P as a subalgebra via

C0(X) 
 f �→ eP f ∈ C0(X) �
alg
α∗ P,

where eP is the identity element of P .
The vanishing ideal Ix corresponding to x ∈ X is the ideal Ix = { f ∈ C0(X) :

f (x) = 0} in C0(X).

Lemma 9.1 Let (X , P, α) be a system as above. For x and y in X, we have

x = αp(y) if and only if α∗
p(Ix ) ⊆ Iy .

Proof “⇒”: If x = αp(y), then every f ∈ Ix satisfies α∗
p( f )(y) = f (αp(y)) =

f (x) = 0, and hence α∗
p( f ) ∈ Iy .

“⇐”: To show that x = αp(y), it suffices to show that every f ∈ Ix satisfies
f (αp(y)) = 0. But for arbitrary f ∈ Ix , α∗

p(Ix ) ⊆ Iy implies that α∗
p( f ) ∈ Iy , so we

get f (αp(y)) = α∗
p( f )(y) = 0. ��

Given a subspace V of C0(X)�
alg
α∗ P and p ∈ P , let Vp := { f ∈ C0(X): p f ∈ V }.
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Proposition 9.2 Let (X , P, α) be a system as above, and let A = C0(X) �
alg
α∗ P. For

x, y in X and p ∈ P, we have

x = αp(y) if and only if (span(Ix A + AIy))p �= C0(X).

Proof A straightforward computation shows

(span(Ix A + AIy))p = span(α∗
p(Ix )C0(X)) + Iy .

Since Iy is a maximal (algebraic) ideal of C0(X), it follows that

(span(Ix A + AIy))p �= C0(X) ⇐⇒ span(α∗
p(Ix )C0(X)) ⊆ Iy ⇐⇒ α∗

p(Ix ) ⊆ Iy .

By the previous lemma, the latter is equivalent to x = αp(y). ��
Corollary 9.3 Let (Xi , Pi , αi ) (i = 1, 2) be two systems as above. If there exists an
isomorphism of complex algebras C0(X1) �

alg
α∗
1
P1 ∼= C0(X2) �

alg
α∗
2
P2 which identifies

the subalgebra C0(X1) with C0(X2), then (X1, P1, α1) and (X2, P2, α2) are orbit
equivalent. ��

For a global field K, let C(XK) �
alg IK be the algebraic crossed product corre-

sponding to IK
�

XK.

Corollary 9.4 The statements in Theorem 3.1 are equivalent to:

(∗) There exists an isomorphism of C-algebras C(XK) �
alg IK

∼=−→ C(XL) �
alg IL

which restricts to an isomorphism C(XK)
∼=−→ C(XL).

Proof It follows from Corollary 9.3 that (∗) implies Theorem 3.1 (i). Conversely,
Theorem 3.1 (ii) clearly implies (∗). ��
Remark 9.5 The (reduced) C∗-algebraic crossed product algebra AK := C(XK) � IK
has a continuous one-parameter group of automorphism

σK : R → Aut (AK) : t �→ σK,t

given by extending to the entire algebra the map

σK,t ( f ) = f for f ∈ C(XK) and σK,t (p) = N (p)i t for all p ∈ PK.

In this way, the pair (AK, σK) becomes a quantum statistical mechanical system in the
sense of the first section of [3]. For K = Q, this is the famous Bost–Connes system.
For general number fields, it was introduced and studied in [12,20], and for function
fields, in [21]. In [6], the first and last author proved that if two number fields K and
L have isomorphic quantum statistical mechanical systems (in the obvious sense of
isomorphism), then the number fields are arithmetically equivalent, i.e., they have the
sameDedekind zeta function; essentially because this is their partition function. By the
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theory ofGaßmann ([15]), this implies in particular that two such number fields that are
Galois over Q are isomorphic (without the need for any assumption on a subalgebra
or of restricting to an algebraic crossed product, but making use of intertwining of
the time evolution). It was recently established by Kubota and Takeishi [19] that the
existence of a C∗-algebra isomorphism AK

∼= AL is the same as isomorphism of
number fields K ∼= L in full generality.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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