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Abstract
We introduce notions of information/entropy and information loss associated to exponen-
tiable motivic measures. We show that they satisfy appropriate analogs to the Khinchin-type
properties that characterize information loss in the context of measures on finite sets.

1 Introduction

I was invited to contribute a paper to a volume of the Bulletin of the Italian Mathematical
Society dedicated to the memory of Paolo de Bartolomeis. I met Paolo during my postdoc
years at MIT, while he was visiting Gang Tian. Since that time, he has always been a nice
and generous friend, and I regret the fact that we no longer had occasions to see each other
in recent years: after the main focus of my own research shifted away from the area of
differential geometry we no longer frequented the same conferences and the occasions to
meet professionally became much more sporadic. I was deeply saddened by the news of his
untimely death this year. In thinking about a possible contribution to this volume, I decided
to avoid the typically more formal style of mathematical papers, which seemed to me a bit
too dry for the occasion, and I settled instead for a more freely flowing collection of thoughts,
somewhat speculative in nature, revolving around the ideas of entropy and information loss,
revisited in the context of motivic measures.

1.1 Entropy and information

The relation between Entropy and Information is one of the fundamental ideas of contem-
porary science, introduced by Shannon in the first extensive mathematical account of the
theory of information and communication [27]. The Shannon entropy detects the informa-
tion content of a probability measure and constrains the amount of information that can be
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transmitted on a channel, in terms of a bound on data compression. In the simplest case of a
probability measure P = (Pi ) on a finite set of cardinality n, the Shannon entropy is given
by

S(P) = −
n∑

i=1

Pi log Pi . (1.1)

There is an axiomatic characterization of the Shannon entropy given by the Khinchin axioms
[15], reformulated in a more coincise way by Faddeev [9]: continuity with a maximum at
equidistribution, additivity over subsystems S(A∪B) = S(A)+S(B|A), and expansibility (a
compatibility for changing n by restriction to the faces of the simplex of probabilitymeasures)
suffice to characterize S(P) completely up to a multiplicative constant C > 0.

Recently, the axiomatic characterization of the Shannon entropy was reinterpreted in
modern categorical terms in [2,17,20,21]. In particular, we are interested here in the notion
of information loss for morphisms of finite sets with probability measures and its axiomatic
characterization discussed in [2], which we will review briefly in Sect. 4.1.

1.2 Information loss in the Grothendieck ring of varieties

Our goal in this paper is to propose an information theoretic point of view in the context of
motivic measures, where we are interested in quantifying phenomena of “information loss”,
associated to morphisms of algebraic varieties. Motivic measures are meant here as ring
homomorphism from the Grothendieck ring of varieties to various other rings (the integers
in the case of the Euler characteristic, or a polynomial ring in the case of the Poincaré
polynomial, etc.). In particular, the motivic Euler characteristic is the ring homomorphism
of Gillet–Soulé [10] mapping the Grothendieck ring of varieties to the Grothendieck ring of
Chow motives.

The structure of the Grothendieck ring of varieties is very subtle, with phenomena such
as the existence of zero-divisors, including the Lefschetz motive, [5,22,24] only recently
uncovered. Motivic measures can be seen as ways to probe the structure of the Grothendieck
ring, by mapping it to various kinds of “Euler characteristic type” invariants.

Within this general framework we think it is interesting to consider possible notions of
information associated to the evaluation of a motivic measure on a given variety or motive
and information loss associated to morphisms.

2 Motivic measures andmotivic information

2.1 Hasse–Weil information function

For a variety X over a finite fieldFq , theHasse–Weil zeta function is given by the (exponential)
generating function for the number of points of X over the field extensions Fqm ,

Z(X , t) = exp

⎛

⎝
∑

m≥1

#X(Fqm )

m
tm

⎞

⎠ .

123



Motivic information

For a variety X defined over Z with reductions X p at the primes p, the associated L-function
is defined as

L(X , s) =
∏

p

Z(X p, p−s).

It is convenient to write the Hasse–Weil zeta function in the equivalent form

Z(X , t) =
∏

x

(
1 − tdeg(x)

)−1
,

where the product is over the set of closed points of X and deg(x) = [k(x) : Fq ] with k(x)

the residue field of the local ring OX ,x at x . Indeed, by writing #X(Fqm ) = ∑
r |m r ar with

ar = #{x : [k(x) : Fq ] = r}, one obtains
Z(X , t) =

∏

r≥1

(1 − tr )−ar .

Equivalently, for α = ∑
i ni xi effective zero-cycles with ni ∈ Z≥0 and xi closed points of

X , one can write

Z(X , t) =
∑

α

tdeg(α),

where deg(α) = ∑
i ni deg(xi ).

It is natural, if one regards the Hasse–Weil zeta function as a motivic measure, as in
[25,26], to associate to it an information function of the form

H(X , t) := −
∑

α

tdeg(α) log(tdeg(α)). (2.1)

This expression occurs naturally if we write the Shannon entropy for a distribution of the
form

P(α) := tdeg(α)

Z(X , t)
, (2.2)

over the set of degree zero effective cycles α in X , that is, the quantity tdeg(α)/Z(X , t) is the
relative weight assigned by the zeta function to a degree zero effective cycle α in X .

Definition 2.1 For a variety X over a finite field Fq , the local Hasse–Weil entropy is defined
as the Shannon entropy of the distribution P = (P(α)) of (2.2) on degree zero effective
cycles,

S(X) := −
∑

α

P(α) log(P(α)) = log Z(X , t) + Z(X , t)−1H(X , t). (2.3)

In the classical Shannon entropy case, for a product distribution P Q one has

S(P Q) = −
∑

i

∑

j

Pi Q j log(Pi Q j ) = −
∑

i

Pi log(Pi ) −
∑

j

Q j log(Q j ),

that is, the usual additivity property for independent systems.
Thus, in the case of a variety X over Z one can consider the reductions X p at the various

primes,with the correspondingHasse–Weil zeta functions, as independent systems and assign
to X an information function of the form

HZ(X , s) :=
∑

p

Z(X p, p−s)−1H(X p, p−s). (2.4)
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This corresponds to a distribution P(α) = ∏
p P(αp) with

P(αp) = p−s deg(αp)

Z(X p, p−s)
. (2.5)

Definition 2.2 For a variety X over Z, the global Hasse–Weil entropy is the Shannon entropy
of the distribution (2.5),

S(X) :=
∑

p

Z(X p, p−s)−1H(X p, p−s) +
∑

p

log Z(X p, p−s) = HZ(X , s) + log L(x, s). (2.6)

In both (2.3) and (2.6) we see that the Shannon entropy consists of a term of the form
log Z(X , t) or log L(X , s) and a term of the form H(X , t) normalized by the zeta function.
In fact, the Hasse–Weil entropy can be completely described in a simple form in terms of the
logarithm of the arithmetic L-function.

Proposition 2.3 The Hasse–Weil entropy (2.6) is given by

S(X) = log L(X , s) + s
∑

p

log(p)
∑

m≥1

#X p(Fpm )p−sm .

The latter term can be equivalently written as s d
ds log L(X , s), so that

S(X) =
(
1 − s

d

ds

)
log L(X , s). (2.7)

Proof The term H(X p, p−s) is simply

H(X p, p−s) = s log(p)
∑

α

p−s deg(α) deg(α) = s log(p)

(
t

d

dt
Z(X p, t)

) ∣∣∣
t=p−s

Z(X p, p−s)−1H(X p, p−s) = s log(p)(t Z(X p, t)−1 d

dt
Z(X p, t))|t=p−s .

For a generating function G(t) = exp(
∑

r cr
tr

r ) in exponential form, one has t 1
G

dG
dt =

t d logG
dt = ∑

r cr tr . This operation corresponds to passing to ghost components in the Witt
ring, as we discuss below. Thus, we obtain

Z(X p, p−s)−1H(X p, p−s) = s log(p)
∑

m≥1

#X p(Fpm )p−sm .

We have

d

ds
L(X , s) = d

ds

∏

p
Z(X p, p−s ) =

∑

p

d

ds
Z(X p, p−s ) ·

∏

��=p

Z(X�, �
−s )

=
∑

p
Z(X p, p−s )−1 d

ds
Z(X p, p−s ) · L(X , s) = L(X , s) ·

∑

p

d

ds
log Z(X p, p−s ).

This gives

d

ds
log L(X , s) =

∑

p

d

ds
log Z(X p, p−s) = −

∑

p

log(p)t
d

dt
log Z(X p, t)|t=p−s .
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Thus, we obtain

Z(X p, p−s)−1H(X p, p−s) = −s
d

ds
log L(X , s)

Thus, we obtain the simpler expression for the Hasse–Weil entropy of the form (2.7). ��
The explicit log(p) factors can be absorbed into a change of basis, using base p logarithm

in the expression for the entropy local factor H(X p, p−s).

2.1.1 Hasse–Weil entropy of a point

Example 2.4 For X p = Spec(Fp) the Hasse–Weil entropy (2.6) is given by

S(Spec(Fp)) =
(
1 − s

d

ds

)
log ζ(s), (2.8)

where ζ(s) is the Riemann zeta function.

Proof This is immediate from Proposition 2.3. It can also be seen by direct computation as
follows. For X p = Spec(Fp) we have Z(Spec(Fp), p−s) = (1 − p−s)−1 and L(X , s) =
ζ(s) = ∏

p(1 − p−s)−1. Thus we have

Z(Spec(Fp), p−s)−1H(Spec(Fp), p−s) = s log(p)p−s

(1 − p−s)
.

Thus, in this case the first term in the Shannon entropy (2.6) is given by

∑

p

Z(X p, p−s)−1H(X p, p−s) = s
∑

p

log(p)p−s

(1 − p−s)

= s
∑

p

log(p)
∑

k≥1

p−ks = s
∑

n

�(n)n−s

where �(n) is the von Mangoldt function

�(n) =
{
log(p) n = pk, k > 0
0 otherwise.

Thus, we have

∑

p

Z(X p, p−s)−1H(X p, p−s) = −s
ζ ′(s)
ζ(s)

,

where ζ(s) is the Riemann zeta function. The second term in (2.6) is simply given by
log L(X , s) = log ζ(s). Thus, the Hasse–Weil entropy in this case is given by log ζ(s) −
s(log ζ(s))′. ��

In quantum statistical mechanics, given a system with partition function Z(β) =
Tr(e−β H ), the entropy can be computed as the function S = ∂

∂T (T log Z), where T = 1/β
is the temperature parameter. This is the same as

S =
(
1 − β

∂

∂β

)
log Z(β),

expressed in terms of the inverse temperature β. Thus, we see that the computation of the
Hasse–Weil entropy of a point given in Lemma 2.4 is exactly the thermodynamical entropy
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of a quantum statistical mechanical system that has the Riemann zeta function as partition
function. It is well known that the Riemann zeta function admits an interpretation as partition
function in Quantum Statistical Mechanics, either in terms of the simpler “Riemann gas”
system of [13,29], or in terms of the more refined Bost–Connes system [6] (see also [7]).

2.1.2 Hasse–Weil entropy of affine spaces

Example 2.5 For X = A
n the Hasse–Weil entropy is given by

S(An) = log ζ(s − n) + s
∑

p

log(p)
p−(s−n)

1 − p−(s−n)
=

(
1 − s

d

ds

)
log ζ(s − n). (2.9)

Proof For X = A
n we have Z(XFq , t) = (1−qnt)−1 and L(An, s) = ∏

p(1− p−s+n)−1 =
ζ(s − n). Thus, the Hasse–Weil entropy is given by (2.9). ��

Thus, the effect of passing from a point to an affine spaceA
n is simply a shift in the inverse

temperature variable β 	→ β − n of the quantum statistical mechanical system, namely one
obtains the entropy of a system with partition function Zn(β) = Z(β −n). As n grows large,
this system captures the thermodynamical properties of the original systems at increasingly
low temperatures, that is, for inverse temperatures β > n.

2.1.3 Hasse–Weil entropy of projective spaces

Example 2.6 For X = P
n the Hasse–Weil entropy is given by

S(Pn) =
(
1 − s

d

ds

) n∏

m=0

ζ(s − m). (2.10)

Proof For X = P
n we have

Z
(
P

n
Fq

, t
)

= 1

(1 − t)(1 − qt) · · · (1 − qnt)

hence the L-function is given by

L(Pn, s) =
n∏

m=0

ζ(s − m).

The expression (2.10) is then immediate from Proposition 2.3. ��
The expression (2.10) also agrees with the thermodynamical entropy of a known quantum

statistical mechanical system. Indeed, the GLn generalizations of the Bost–Connes system
considered in [28] (see also the “determinant part” considered in [8]) have partition function
Z(β) = ∏n

m=0 ζ(β − m) and entropy (2.10).

2.2 Exponentiable motivic measures and zeta functions

TheGrothendieck ring K0(VK) of varieties over a fieldK is generated by isomorphism classes
[X ] of varieties with the inclusion-exclusion relation [X ] = [Y ]+[X�Y ] for Y ⊂ X a closed
subvariety and with the product given by [X ] · [Y ] = [X × Y ], the class of the product over
Spec(K). The Lefschetz motive L = [A1] is the class of the affine line.
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We follow the terminology used for instance in [26] and we call motivic measure any ring
homomorphisms μ : K0(VK) → R, where R is a commutative ring.

When one interprets the classes [X ] in the Grothendieck ring as a universal Euler charac-
teristic (see [3]) a motivic measure in the sense specified above is determined by (and in turn
determines) an invariant of algebraic varieties that satisfies the twomain properties of anEuler
characteristic, namely inclusion–exclusion μ(X) = μ(Y ) + μ(X�Y ) and multiplicativity
under products μ(X × Y ) = μ(X)μ(Y ).

As shown in [14,25,26], to any motivic measure μ : K0(VK) → R one can associate the
Kapranov zeta function, which can be seen as a map ζμ(·, t) : K0(VK) → W (R) with values
in the big Witt ring W (R) of R, and is defined as

ζμ(X , t) :=
∞∑

n=0

μ([Sn(X)]) tn, (2.11)

where Sn(X) is the n-fold symmetric product of X , given by the quotient Sn(X) = Xn/Sn

of the n-fold product by the action of the symmetric group Sn of permutations. This can be
regarded as an exponentiated version of the original measure μ, by interpreting the terms
μ([Sn(X)]) as analogs of the terms μ(X)n/n! in an exponential series [25].

Here we view the left-hand-side of (2.11) as an element in (1 + R[[t]])∗ and we identify
the big Witt ring W (R), as an additive group, with ((1+ R[[t]])∗,×) with the usual product
of formal series, which is the addition +W of the Witt ring, while the product � of the Witt
ring is uniquely determined by setting

(1 − at)−1�(1 − bt)−1 = (1 − abt)−1 (2.12)

for all a, b ∈ R, see [1,4]. In general, the zeta function (2.11) defines a group homomorphism
ζμ(·, t) : K0(VK) → W (R) but not necessarily a ring homomorphism.

A motivic measure μ : K0(VK) → R is called exponentiable (see [26]) if the associated
Kapranov zeta function ζμ(·, t) : K0(VK) → W (R) is a ring homomorphism, that is, if the
zeta function is itself a motivic measure.

The motivic measure given by the counting of points over finite fields is exponen-
tiable [25], and the Gillet–Soulé motivic measure of [10] (the motivic Euler characteristic)
μGS : K0(VK) → K0(Chow(K)Q) is also exponentiable [26]. Several motivic measures
that factor through μGS , like the topological Euler characteristic, the Hodge and Poincaré
polynomials, are also exponentiable (see [26]), while the Larsen–Lunts motivic measure [16]
is not exponentiable. Indeed, as shown in Proposition 4.3 of [26] in the exponentiable case
if the zeta functions of two varieties are rational then the zeta function of the product also
is, while the Larsen–Lunts motivic measure provides an example where zeta functions of
curves are rational but the zeta function of a product of two positive genus curves is not.

The exponentiable property of motivic measures is related to λ-ring structures. A λ-ring R
is a commutative ring endowed with maps λn : R → R satisfying λ0(a) = 1, λ1(a) = a and
λn(a + b) = ∑

i+ j=n λi (a)λ j (b), so that λt (a) = ∑
n λn(a)tn is a group homomorphism

λt : R → W (R). Assume that R is a λ-ring such that the group homomorphism σt : R →
W (R) given by σt (a) = λ−t (a)−1 (the opposite λ-structure) is a ring homomorphism. Then
as shown in [25,26], the exponentiable condition for a motivic measure μ : K0(VK) → R
can be phrased as the property that

μ([Sn(X)]) = σ n(μ([X ])), (2.13)

where σt (a) = ∑
n σ n(a)tn .

In the following we will restrict our attention to motivic measures that are exponentiable.
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2.3 Amotivic entropy function

Given an exponentiable motivic measure μ : K0(VK) → R and an associated motivic zeta
function ζμ(X , t), we consider an associated Shannon type entropy function, which general-
izes the Hasse–Weil entropy described in the previous sections. By analogy to Definition 2.1
we expect an expression of the form

Sμ(X) := log ζμ(X , t) + ζμ(X , t)−1Hμ(X , t), (2.14)

where we need to specify more precisely what the terms mean in the context of motivic
zeta functions with values in the Witt ring W (R). As in the Hasse–Weil case discussed
above, we expect the term ζμ(X , t)−1Hμ(X , t) to take the form of a logarithmic derivative.
Thus, a candidate definition for a motivic entropy of an exponentiable motivic measure
μ : K0(VK) → R would be given by

Sμ(X) := (1 − s
d

ds
) log ζμ(X , λ−s), (2.15)

where λ is a parameter in R
∗+ and the change of variables t = λ−s is meant to interpret the

s variable as an inverse temperature thermodynamic parameter. This means interpreting the
motivic zeta function ζμ(X , λ−s) as a partition function and (2.15) as its thermodynamical
entropy.

In terms of the t variable, this means defining the entropy function as

Sμ(X) =
(
1 − t log(t)

d

dt

)
log ζμ(X , t). (2.16)

2.3.1 Lambda ring structure and Adams operations

The term t d
dt log ζμ(X , t) in (2.16) has a natural interpretation in terms of lambda ring

structures and the associatedAdams operations. Indeed, one defines the n-thAdams operation
�n(a) on the λ-ring R as the n-th ghost component of the opposite λ-structure σt (a), that is,

t
d

dt
log σt (a) = ψt (a) =

∑

n≥1

�n(a)tn . (2.17)

(Here we follow the sign convention as in [12] for �n(a) rather than as in [25].) These are
ring homomorphisms �n : R → R, satisfying �n ◦ �m = �nm .

Lemma 2.7 Let R be a commutative ring with no Z-torsion and with opposite λ-ring structure
σt . The motivic entropy (2.15) of an exponentiable motivic measure μ : K0(VK) → R is
given by

Sμ(X) =
(
1 − t log(t)

d

dt

)
log σt (μ([X ]))

=
∑

n≥1

�n(μ([X ]))
n

tn −
∑

n≥1

�n(μ([X ])) tn log(t). (2.18)
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Fig. 1 The motivic entropy of the Euler characteristic

2.3.2 Motivic entropy of the Euler characteristics

As shown in [25], theMacdonald formula for the Euler characteristics of symmetric products

∞∑

n=0

χ(Sn(X))tn = (1 − t)−χ(X) = exp

(
∑

r>0

χ(X)
tr

r

)
(2.19)

implies that the motivic measure on K0(VC) given by the Euler characteristic can be expo-
nentiated. We can also read directly the value of the associated entropy function from (2.19).
We obtain the following.

Example 2.8 The motivic entropy of the motivic measure χ : K0(VC) → Z given by the
Euler characteristics is given by

Sχ (X) =
(
1 − t log(t)

d

dt

)
log(1 − t)−χ(X)

= χ(X)
S(t, 1 − t)

(1 − t)
= χ(X) ζχ (Spec(K), t) S(t, 1 − t), (2.20)

where S(t, 1 − t) = −t log(t) − (1 − t) log(1 − t) is the binary Shannon entropy function
and ζχ (Spec(K), t) = (1 − t)−1 is the zeta function of a point.
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We should regard the dependence of the entropy on the variable t as a thermodynamic
parameter, namely after a change of variable t = e−β we can think of the zeta function

∞∑

n=0

χ(Sn(X))e−nβ

as a partition function, where (at least in the case of non-negative Euler characteristics) the
coefficient χ(Sn(X)) represents the degeneracy of the n-th energy level. In this view, the
behavior of the function (2.19) with respect to t , shown in Fig. 1 for a value χ(X) = 1,
corresponds near t = 0 (large β → ∞) to the low temperature T → 0 behavior of the
system, while the behavior near t = 1 (near β = 0) corresponds to the high temperature
T → ∞ limit.

2.3.3 Motivic entropy of Poincaré polynomials

Similarly, the Mcdonald formula for the Poincaré polynomials,

∞∑

n=0

P(Sn(X), z)tn =
2n∏

j=0

(1 − z j t)(−1) j+1b j (X) = exp

(
∑

r>0

P(X , zr )
tr

r

)
, (2.21)

used in [25] to show that the associated motivic measure is exponentiable, gives the value of
the motivic entropy.

Example 2.9 Themotivic entropy of the motivic measure defined by the Poincaré polynomial
is given by

SP (X) =
2n∑

j=0

(−1) j b j (X)τ (z j ) (S(z j t, 1 − z j t) + z j t log(z j )), (2.22)

where τ : Z[z] → W (Z[z]) is the Teichmüller character to the Witt ring and S(u, 1 − u) =
−u log(u) − (1 − u) log(1 − u) is the binary Shannon entropy.

Proof We have

SP (X) =
(
1 − t log(t)

d

dt

)
log ζP (X , t) =

(
1 − t log(t)

d

dt

) 2n∑

j=0

(−1) j+1b j (X) log(1 − z j t)

=
∑

j

(−1) j+1b j (X)

(
log(1 − z j t) + z j t log(t)

1 − z j t

)

=
∑

j

(−1) j b j (X)

1 − z j t
(−(1 − z j t) log(1 − z j t) − z j t log(z j t) + z j t log(z j ))

=
∑

j

(−1) j b j (X)

1 − z j t
(S(z j t, 1 − z j t) + z j t log(z j )),

where (1 − z j t)−1 = τ(z j ) is the image in the Witt ring W (Z[z]) of the element z j ∈ Z[z]
under the Teichmüller character τ : R → W (R) mapping R � a 	→ τ(a) = (1 − at)−1 ∈
W (R). ��
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Note that the shift in the binary Shannon entropy S(z j t, 1− z j t) + z j t log(z j ) is similar
to the shift of the Shannon entropy one usually encounters in coding theory, where the q-ary
Shannon entropy is defined as

Sq(δ, 1 − δ) = S(δ, 1 − δ) + δ logq(q − 1)

= −δ logq δ − (1 − δ) logq(1 − δ) + δ logq(q − 1).

This is the form of the Shannon entropy that describes the asymptotic behavior of the volume
of the Hamming balls (see for instance [30]).

3 Khinchin properties of motivic entropy

The classical Shannon entropy is characterized in terms of the Khinchin axioms [15]. It is
natural to consider the question of what formal properties, analogous in some sense to the
Khinchin characterization of entropy, are satisfied by the motivic version described above.

3.1 Extensivity of motivic entropy

The main property of the Shannon entropy is the extensivity property, namely its additive
behavior on subsystems. The extensivity property is usually expressed as the relation

S(A ∪ B) = S(A) + S(B|A) = S(B) + S(A|B).

We show here that the analogous property satisfied by the motivic entropy is the inclusion–
exclusion property, where we think of subvarieties of a given ambient variety as subsystems
and we identify the conditional entropy with the difference

Sμ(B|A) = Sμ(B) − Sμ(A ∩ B).

The case of additivity over independent subsystems then becomes just the scissor-congruence
relation [X ] = [Y ] + [X�Y ] in the Grothendieck ring inherited by the entropy function Sμ.

Proposition 3.1 The motivic entropy Sμ(X) of an exponentiable motivic measure μ :
K0(VK) → R satisfies

• Additivity over independent subsystems: for closed embeddings Y ↪→ X

Sμ(X) = Sμ(Y ) + Sμ(X�Y ). (3.1)

• Extensivity over subsystems: inclusion–exclusion

Sμ(X1 ∪ X2) = Sμ(X1) + Sμ(X2) − Sμ(X1 ∩ X2). (3.2)

Proof A motivic measure μ : K0(VK) → R is a ring homomorphism. In particular, the
Grothendieck group relations [X ] = [Y ] + [X�Y ] for closed embeddings Y ↪→ X imply
that μ(X) = μ(Y ) + μ(X�Y ), which in turn implies the more general inclusion–exclusion
property μ(X1 ∪ X2) = μ(X1) + μ(X2) − μ(X1 ∩ X2).

The motivic zeta function ζμ(X , t) in turn satisfies the relation

ζμ(X , t) = ζμ(Y , t)ζμ(X�Y , t) = ζμ(Y , t) +W ζμ(X�Y , t), (3.3)

123



M. Marcolli

where the addition +W in the Witt ring is the multiplication of power series. More generally,
for X = X1 ∪ X2, one has

ζμ(X , t) = ζμ(X1, t)ζμ(X2, t)

ζμ(X1 ∩ X2, t)
= ζμ(X1, t) +W ζμ(X2, t) −W ζμ(X1 ∩ X2, t). (3.4)

Thus, the motivic entropy satisfies (3.2). ��

3.2 Mutual motivic information

In information theory the mutual information of two systems is defined as

I(X , Y ) = S(X) + S(Y ) − S(X ∩ Y ),

or equivalently

I(X , Y ) =
∑

x,y

P(x, y) log
P(x, y)

P(x)P(y)

= −
∑

x

P(x) log P(x) −
∑

y

P(y) log P(y) +
∑

x,y

P(x, y) log P(x, y),

which is the expression above. Thus, the mutual information is directly defined in terms of
an inclusion-exclusion form, where one interprets I(X , Y ) as the information of X ∪ Y .

Thus, in our interpretation of the extensivity of the motivic entropy, given two subvarieties
X , Y of some ambient variety, we can interpret as mutual information the quantity

Iμ(X , Y ) = Sμ(X ∪ Y ) = Sμ(X) + Sμ(Y ) − Sμ(X ∩ Y ).

3.3 Zeros

Another of the formal Khinchin properties of the Shannon entropy is the fact that it is
stationary (and in fact maximal) at the uniform distribution and it is zero at the most non-
uniform distributions P = (Pi ) where one of the Pi = 1 and all others are zero. We discuss
here the meaning of the vanishing of the motivic entropy.

So far we have treated the motivic entropy function purely formally, without defining
precisely in what ring of functions it is taking values. Because of the presence of the log(t)
term, we cannot just view this function as an element of a power series ring (1 + t R[[t]])∗
or a Witt ring W (R). It is better to think of Sμ(X) as an element of a ring L(R, t) of formal
power series of logarithmic type, in the sense of [18].

We can describe the motivic entropy as follows.

Lemma 3.2 The motivic entropy Sμ is the group homomorphism that fits in the commutative
diagram

R
σt �� W (R) = (1 + t R[[t]])∗

L
��

K0(VK)
Sμ ��

μ

��
ζμ

���������������
L(R, t)

where μ is an exponentiable motivic measure, σt is the opposite λ-ring structure, L(R, t)
is the ring of formal power series of logarithmic type, and L : W (R) → L(R, t) given by
L( f ) = (1 − t log(t) d

dt ) log( f ) is a group homomorphism.
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Proof The fact that the composition σt ◦ μ = ζμ is the motivic zeta function is the condition
of exponentiability of the motivic measure μ, see [25,26]. The map homomorphism L( f ) =
(1− t log(t) d

dt ) log( f ) satisfies the logarithmic functional equationL( f +W g) = L( f ·g) =
L( f ) + L(g), hence it defines a group homomorphism L : W (R) → L(R, t).

Lemma 3.3 The kernel of the motivic entropy Sμ is the same as the kernel of the motivic
measure ζμ.

Proof It suffices to show that the kernel ofL is trivial. An element f ∈ W (R) = (1+t R[[t]])∗
of the form f (t) = exp(

∑
n≥1

an
n tn) is in the Kernel of L if log( f ) = t log(t) d

dt log( f ),
which is verified as an identity in L(R, t) only if log( f ) = 0, that is, if f = 1 is the additive
unit of W (R). Thus, a class A = ∑

i ni [Xi ] ∈ K0(VK) is in the kernel of Sμ iff it is in the
kernel of the exponentiated motivic measure, ζμ(A) = 1. ��

Thus, we can see the elements X in the kernel of the motivic measure as corresponding to
the distributions with least information, or in other words they are the source of information
loss in the motivic measure.

3.4 Functoriality

The remaining Khinchin axioms for the Shannon entropy are continuity over the simplex of
measures P = (Pi ) and a consistence condition when viewing an n-dimensional simplex as
a face of an (n + 1)-dimensional simplex,

Sn+1(P1, . . . , Pn, 0) = Sn(P1, . . . , Pn),

together with the symmetry of S under permutations of its arguments. We can view this
requirement as a kind of functoriality requirement, when we consider the inclusion of faces
as morphisms. Thus, the analogous property we require for the entropy function defined in
the motivic setting is to satisfy a functoriality property induced by the funtoriality of Witt
rings.

Lemma 3.4 The motivic entropy is functorial. Namely, if μ : K0(VK) → R and μ′ :
K0(VK) → R′ are exponentiable motivic measures related by a (pre)-λ-ring homomor-
phism φ : R → R′, so that μ′ = φ ◦ μ, then there exists a group homomorphism
S : L(R, t) → L(R′, t) such that Sμ′ = S(φ) ◦ Sμ.

Proof The Witt rings are functorial, in the sense that a ring homomorphism φ : R → R′
induces a ring homomorphism W (φ) : W (R) → W (R′). A morphism of (pre)-λ-rings is a
ring homomorphism φ : R → R′ for which one has a commutative diagram

R

φ

��

σt �� �(R)

�(φ)

��
R′ σ ′

t �� �(R′),
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with �(R) = (1 + t R[[t]])∗. The ghost map gh : W (R) → t R[[t]] is also functorial, and
so is the ring of formal power series of logarithmic type. Thus, we obtain a diagram

R
σt ��

φ

��

�(R)

�(φ)

��

L �� L(R, t)

S(φ)

��

K0(VK)

μ

�����������

μ′

���
��

��
��

��

R′ σ ′
t �� �(R′) L �� L(R′, t).

��

4 Motivic entropy as information loss

The proposal discussed above for a notion of Entropy/Information in the setting of motivic
measures is based on our initial observation that we can interpret the Hasse–Weil zeta func-
tion, when written in terms of effective zero-cycles, as a distribution as in (2.2) for which we
formally compute the ordinary Shannon entropy. The resulting expression was then general-
ized in the form (2.15) for an arbitrary exponentiable motivic measure.

This proposal, however, has the drawback that it does not lend itself easily to a relative
form, a motivic version of a Kullback–Leibler divergence, or better a measure of information
loss associated to morphisms, which would provide a motivic analog of the characterization
of information loss of [2].

We discuss here how one can modify the original proposal so as to accommodate a notion
of information loss.

4.1 Information loss on finite sets

In the usual setting of probability measures on finite sets and classical information theory,
given a morphism f : (�, P) → (�′, Q), where �,�′ are finite sets and P, Q are proba-
bility measures, one counts the information loss of f as a Kullback–Leibler divergence

I( f ) = S(P) − S(Q) =
∑

s∈�

Ps log
Q f (s)

Ps
= KL(P||Q). (4.1)

The second equality follows by a simple calculation, see [2], using the assumption that
morphisms are measure preserving, namely that

Q j =
∑

i∈ f −1( j)

Pi . (4.2)

In our setting we will need to consider more general morphisms, which do not necessar-
ily satisfy the condition (4.2), hence we will consider the Kullback–Leibler divergence

KL(P||Q) = ∑
s∈� Ps log

Q f (s)
Ps

as our model of information loss, even when this does
not necessarily agree with the difference S(P) − S(Q).

The function I( f ) of (4.1) satisfies an axiomatic characterization (up to a constant
multiplicative factor), which follows from the Khinchin axioms of the Shannon entropy
(reformulated as in [9]):
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• Additivity under composition of morphisms: I( f ◦ g) = I( f ) + I(g);
• Additivity under direct sums: I( f ⊕ g) = I( f ) + I(g);
• Homogeneity under scaling: I(λ f ) = λI( f ), for λ ∈ R

∗+.
The last two properties are replaced by the single additivity over convex combinations

I(λ f ⊕ (1 − λ)g) = λI( f ) + (1 − λ)I(g), (4.3)

for λ ∈ [0, 1], if the normalization of measures is preserved, see [2]. Additivity under
composition plays the role of a functoriality property in the framework of [2].

4.2 Sources of information loss

We are interested here in a similar counting of information loss associated to motivic mea-
sures. As we discussed above, the kernel of an exponentiated motivic measure can be viewed
as the amount of information contained in the Grothendieck ring of varieties that is lost when
seen through the given motivic measure. It is also the kernel of the motivic entropy reflecting
this interpretation as information loss.

If we want to make this idea of information loss in the motivic context more precise, we
can identify two different possible sources of information loss:

• Ring homomorphisms φ : R → R′
• Morphisms of varieties f : X → Y (or correspondences of motives).

The first case corresponds to modifying the motivic measure μ : K0(VK) → R by compo-
sition with a ring homomorphism φ : R → R′, while keeping the variety it is evaluated on
unchanged,while the second case corresponds tomaintaining themotivicmeasure unchanged
while modifying the varieties through morphisms f : X → Y of algebraic varieties, for
motivic measures defined on the Grothendieck ring of varieties K0(VK), or correspondences
α : h(X) → h(Y ) of Chow motives, for motivic measures on K0(Chow(K)).

4.3 Power structures

In the next section we introduce an information loss function associated to a triple (φ, μ,μ′)
consisting of motivic measures μ : K0(VK) → R and μ′ : K0(VK) → R′ and a ring
homomorphism φ : R → R′.

In order to discuss an analog of the convex combination property (4.3) of information
loss, we need to first recall the notion of a power structure, see [11].

Definition 4.1 A power structure on a ring R is a map (1 + R[[t]]) × R → 1 + R[[t]],
( f (t), a) 	→ f (t)a , with the properties that

• f (t)0 = 1, for all f ∈ 1 + R[[t]],
• f (t)1 = f (t), for all f ∈ 1 + R[[t]],
• ( f (t) · g(t))a = f (t)a · g(t)a , for all f , g ∈ 1 + R[[t]], a ∈ R,
• f (t)a+b = f (t)a · f (t)b, for all f ∈ 1 + R[[t]], a, b ∈ R,
• f (t)ab = ( f (t)a)b, for all f ∈ 1 + R[[t]], a, b ∈ R.

Example 4.2 As shown in [11], there exists a power structure on the Grothendieck ring of
varieties K0(VC) such that the universal motivic zeta function

ζμu (X , t) =
∞∑

n=0

[Sn(X)] tn,
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which is the exponentiation of μu = id : K0(VC) → K0(VC), satisfies

(1 − t)−[X ] = ζμu (X , t). (4.4)

It is obtained by setting

f (t)[X ] := 1 +
∞∑

k=1

∑
∑

iki =k

[(
∏

i

Xki ��

)
×

∏

i

Xki
i

/∏

i

Ski

]
tk,

for f (t) = 1 + ∑
i [Xi ] t i with [Xi ] ∈ K0(VC), see [11] for more details.

4.4 Information loss from ring homomorphisms

A measure of information loss associated to a ring homomorphism φ : R → R′ and a pair
of given exponentiable motivic measures μ : K0(VK) → R and μ′ : K0(VK) → R′ can be
obtained simply by the difference of the motivic entropies

IX (φ, μ,μ′) = Sφ◦μ(X) − Sμ′(X) =
(
1 − t log(t)

d

dt

)
log

ζφ◦μ(X , t)

ζμ′(X , t)
, (4.5)

where Sφ◦μ(X) = S(φ) ◦ Sμ(X) and ζφ◦μ(X , t) = �(φ)ζμ(X , t), by Lemma 3.4.
This measure of information loss satisfies an analog of the properties of information loss

described in [2].

Lemma 4.3 Let φ : R → R′ be a morphism of commutative rings and let μ : K0(VK) → R
and μ′ : K0(VK) → R′ be exponentiable motivic measures. Then the information loss
function IX (φ, μ,μ′) of (4.5) satisfies

1. Additivity under composition R
ψ→ R′ φ→ R′′:

IX (φ ◦ ψ,μ,μ′′) = IX (φ, μ′, μ′′) + S(φ) ◦ IX (ψ,μ,μ′). (4.6)

2. Additivity under combination: for φ1, φ2 : R → R′ ring homomorphisms, where the
ring R′ has a power structure,

IX (λφ1 + (1 − λ)φ2, μ, μ′) = λ IX (φ1, μ, μ′) + (1 − λ) IX (φ2, μ, μ′), (4.7)

where

IX (λφ1 + (1 − λ)φ2, μ, μ′) :=
(
1 − t log(t)

d

dt

)
log

ζφ1◦μ(X , t)λ · ζφ2◦μ(X , t)1−λ

ζμ′ (X , t)
. (4.8)

Proof For the composition φ ◦ ψ : R → R′′, by Lemma 3.4 we have

S(φ◦ψ)◦μ(X) − Sμ′′(X) = S(φ ◦ ψ) ◦ Sμ(X) − Sμ′′(X)

= S(φ) ◦ Sψ◦μ(X) − S(φ) ◦ Sμ′(X) + Sφ◦μ′(X) − Sμ′′(X)

= S(φ)(Sψ◦μ(X) − Sμ′(X)) + Sφ◦μ′(X) − Sμ′′(X),

hence we obtain (4.6).
For λ ∈ R′, consider the element

ζ(λφ1+(1−λ)φ2)◦μ(X , t) := ζφ1◦μ(X , t)λ · ζφ2◦μ(X , t)1−λ, (4.9)
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where the product as power series is the addition in the Witt ring and the powers, for λ and
1 − λ ∈ R′, are determined by the power structure of R′, so that (4.9) is clearly the analog
of a convex combination in W (R′). We have

IX (λφ1 + (1 − λ)φ2, μ, μ′) = (1 − t log(t)
d

dt
) log

ζ(λφ1+(1−λ)φ2)◦μ(X , t)

ζμ′ (X , t)

= (1 − t log(t)
d

dt
) log

ζφ1◦μ(X , t)λ · ζφ2◦μ(X , t)1−λ

ζμ′ (X , t)λ · ζμ′ (X , t)1−λ

= λ(Sφ1◦μ(X) − Sμ′ (X)) + (1 − λ)(Sφ2◦μ(X) − Sμ′ (X)),

so that we obtain (4.7). ��

4.5 Hasse–Weil information loss

We then consider the question of how to construct an information loss function associated
to morphisms of varieties. To this purpose we analyze again the case of the Hasse–Weil zeta
function and the motivic measure given by the counting measure for varieties over finite
fields.

As we have seen before, when we describe the Hasse–Weil zeta function as a generating
function for effective 0-cycles, we can associate to it the distribution P(α) = tdeg(α)/Z(X , t),
for α = ∑

i ni xi a 0-cycle on X , with deg(α) = ∑
i ni deg(xi ).

Using the Kullback–Leibler divergence point of view on how tomeasure information loss,
we aim at computing a relative entropy of the distribution P = (P(α)) on 0-cycles on X
and the corresponding distribution for 0-cycles on Y , by comparing them via the morphism
f : X → Y .
Cycles push forward under proper morphisms and pull back under flat morphisms. Thus,

we can consider two different information loss functions for these two classes of morphisms.

4.5.1 Hasse–Weil information loss for proper morphisms

Given a proper morphism f : X → Y of algebraic varieties, for a subvariety V ⊂ X ,
one defines the pushforward f∗(V ) as zero if dim f (V ) < dim V and as f∗(V ) =
deg(V / f (V )) f (V ) if dim f (V ) = dim V , where deg(V / f (V )) is the degree [K(V ) :
K( f (V ))] of the finite field extension K(V ) of K( f (V )). The definition is then extended
by linearity to combinations

∑
i ni Vi . In particular, for a 0-cycle α = ∑

i ni xi in X , the
pushforward under a proper morphism f : X → Y is given by

f∗(α) =
∑

i

ni deg(xi/ f (xi )) deg( f (xi )), (4.10)

where deg(x/ f (x)) = [K(x) : K( f (x))].
Over the field of complex numbers the degree deg(x/ f (x)) represents geometrically

the number of points of the fiber # f −1(y) for y = f (x) (counted with the appropriate
multiplicity in the case of ramification). However, this is not necessarily the case in positive
characteristics, where for example the map induced by K[t p] → K[t] has degree p but is
one-to-one on points.

Definition 4.4 The Hasse–Weil information loss of a proper morphism f : X → Y is given
by

IH W ( f∗) :=
∑

α∈Z0
eff (X)

P(α) log
Q( f∗(α))

P(α)
, (4.11)
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where P(α) is defined as in (2.2), Z0
eff (X) is the set of zero-dimensional effective cycles on

X , and Q is the analogous distribution on Y ,

Q(γ ) = tdeg(γ )

Z(Y , t)
, for γ ∈ Z0

eff (Y ).

4.5.2 Hasse–Weil information loss for flat morphisms

Let f : X → Y be a flat morphism of relative dimension n. For an irreducible subvariety
V ⊂ Y the pullback f ∗(V ) is defined as the f −1(V ) and extended by linearity.

Definition 4.5 The Hasse–Weil information loss of a flat morphism f : X → Y is given by

IH W ( f ∗) :=
∑

γ∈Z0
eff (Y )

Q(γ ) log
P( f ∗(γ ))

Q(γ )
. (4.12)

4.6 Proper morphisms

The case of proper morphisms, defined in (4.11), is the one that most closely resembles the
definition of information loss for finite sets that we recalled above from [2]. However, because
of the behavior of degrees of cycles under pushfoward, it turns out that the information loss
function IH W ( f∗) of Definition 4.4 is simply a logarithmic difference of zeta function.

Lemma 4.6 The Hasse–Weil information loss (4.11) is given by

IH W ( f∗) = log
Z(X , t)

Z(Y , t)
. (4.13)

Proof By proceeding as in our previous discussion of the Hasse–Weil entropy, we can equiv-
alently write the expression (4.11) as

IH W ( f∗) = log
Z(X , t)

Z(Y , t)
− Z(X , t)−1H( f∗, t), (4.14)

where the term H( f , t) is given by

H( f∗, t) = −
∑

α∈Z0
eff (X)

tdeg(α) log
(

tdeg( f∗(α))−deg(α)
)

. (4.15)

We have deg(x) = [K(x) : K] and similarly deg( f (x)) = [K( f (x)) : K], hence these
degrees are related by

deg(x) = [K(x) : K] = [K(x) : K( f (x))] · [K( f (x)) : K] = deg(x/ f (x)) · deg( f (x)),

hence deg( f∗(α)) = ∑
i ni d f (xi ) deg( f (xi )) = ∑

i ni deg(xi ) = deg(α). Thus, the term
H( f∗, t) of (4.15) vanishes and one is left with (4.13). ��

We check that this notion of information loss satisfies properties of additivity under com-
position and combination. In order to formulate the appropriate condition of additivity under
combination, we consider a decomposition X = X1 ∪ X2 as a disjoint union, and a cor-
responding decomposition Y = Y1 ∪ Y2 with the property that fi = f |Xi : Xi → Yi .
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We write f = f1 ⊕ f2 to refer to such data. We generalize this to weighted combinations
λ f1 ⊕ (1 − λ) f2, by considering the distribution, for α = (α1, α2) with αi ∈ Z0

eff (Xi ),

Qλ(α) = Q((λ f1 ⊕ (1 − λ) f2)∗(α) := Q1(( f1)∗(α1))
λ · Q2(( f2)∗(α2))

1−λ, (4.16)

where for γi ∈ Z0
eff (Yi ), we have Qi (γi ) := tdeg(γi )/Z(Yi , t). Similarly, we also consider

the distribution Pi (αi ) := tdeg(αi )/Z(Xi , t) and the distribution

Pλ(α) = P1(α1)
λ · P2(α2)

1−λ. (4.17)

Proposition 4.7 The Hasse–Weil information loss (4.11) satisfies additivity under composi-
tion

IH W ((g ◦ f )∗) = IH W ( f∗) + IH W (g∗)

and additivity under combination

IH W ((λ f1 ⊕ (1 − λ) f2))∗) = λIH W (( f1)∗) + (1 − λ)IH W (( f2)∗).
Proof Clearly the function IH W ( f∗) of (4.14) satisfies additivity under composition since

IH W ((g ◦ f )∗) = log
Z(X , t)

Z(W , t)
= log

Z(X , t)

Z(Y , t)
+ log

Z(Y , t)

Z(W , t)
= IH W ( f∗) + IH W (g∗)

for proper morphisms f : X → Y and g : Y → W .
For a decomposition fi : Xi → Yi and f = f1 ⊕ f2 as above, we have

IH W (( fi )∗) = log
Z(Xi , t)

Z(Yi , t)
.

Since Z(X , t) = Z(X1, t) · Z(X2, t) and Z(Y , t) = Z(Y1, t) · Z(Y2, t), we have additivity

IH W ( f∗) = log
Z(X , t)

Z(Y , t)
= log

Z(X1, t)

Z(Y1, t)
+ log

Z(X2, t)

Z(Y2, t)
= IH W (( f1)∗) + IH W (( f2)∗).

In the case of weighted combinations the information loss is computed by the Kullback–
Leibler divergence

∑

α

Pλ(α) log
Qλ(α)

Pλ(α)
, (4.18)

where

Qλ((α1, α2)) = tλ deg(( f1)∗(α1))

Z(Y1, t)λ
· t (1−λ) deg(( f2)∗(α2))

Z(Y2, t)1−λ

Arguing as in Lemma 4.6 above, we see that this gives

IH W ((λ f1 ⊕ (1 − λ) f2))∗) = log
Z(X1, t)λ · Z(X2, t)1−λ

Z(Y1, t)λ · Z(Y2, t)1−λ
,

which gives the additivity property. ��

4.7 Finite surjective flat morphisms

We consider then the case of flat morphisms and we focus on the simpler case of finite
flat surjective morphisms f : X → Y of smooth quasi-projective varieties, with constant
degree δ = deg( f ). In this case the pullback of effective zero-cycles is given by f ∗(γ ) =∑

i ni
∑

xi, j ∈ f −1(yi )
xi, j , for γ = ∑

i ni yi an effective zero-cycle in Y , with deg( f ∗(γ )) =
deg( f ) · deg(γ ).
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Lemma 4.8 Let f : X → Y be a finite flat surjective morphism, with constant degree
δ = deg( f ). Then the information loss function IH W ( f ∗) of (4.12) is given by

IH W ( f ∗) = log
Z(Y , t)

Z(X , t)
+ (δ − 1) t log(t)

d

dt
log Z(Y , t). (4.19)

Proof We have

∑

γ

tdeg(γ ) Z(Y , t) log
Z(Y , t)

tdeg(γ )

tdeg( f ∗(γ ))

Z(X , t)

= log
Z(Y , t)

Z(X , t)
−

∑

γ

tdeg(γ ) log t (deg( f )−1) deg(γ ).

As in Sect. 2.3 we see that this equals (4.19). ��
We can use this description of the information loss function to give a more general defi-

nition for an arbitrary exponentiable motivic measure.

Definition 4.9 Let μ : K0(VK) → R be an exponentiable motivic measure and let f : X →
Y be a finite flat surjective morphism, with constant degree δ = deg( f ). The information
loss is given by

Iμ( f ∗) := log
ζμ(Y , t)

ζμ(X , t)
+ (δ − 1)t log(t)

d

dt
log ζμ(Y , t). (4.20)

4.8 Information loss of the Euler characteristics

We consider again the example of the motivic measure given by the Euler characteristics.

Proposition 4.10 For K = C andχ : K0(VC) → Z the Euler characteristics, the information
loss of a finite flat surjective morphism f : X → Y of degree δ = deg( f ) is given by

Iχ ( f ∗) = Sχ (Y ) − Sχ (X) + (χ( f −1(S)) − δ · χ(S)) ζχ (Spec(K), t) t log(t) (4.21)

where Sχ (X) is the motivic information of the Euler characteristics as in (2.20) and S ⊂ Y
is the locus such that f is étale over Y � S. If the morphism f : X → Y is étale, then
Iχ ( f ∗) = Sχ (Y ) − Sχ (X).

Proof By the Macdonald formula we have ζχ (X , t) = (1 − t)−χ(X). Thus, we obtain

Iχ ( f ∗) = log
(1 − t)−χ(Y )

(1 − t)−χ(X)
+ (δ − 1)t log(t)

d

dt
log(1 − t)−χ(Y )

= −1

1 − t
((χ(Y ) − χ(X))(1 − t) log(1 − t) − (δ · χ(Y ) − χ(Y ))t log(t)) .

For a finite flat surjective morphism f : X → Y with degree δ = deg( f ), the Euler
characteristics satisfies the Riemann–Hurwitz relation

χ(X) = δ · χ(Y ) + χ( f −1(S)) − δ · χ(S),

where f is étale over Y � S. Thus, we can write the above as

Iχ ( f ∗) = S(t, 1 − t)

1 − t
(χ(Y ) − χ(X)) + (χ( f −1(S)) − δ · χ(S))

t log(t)

1 − t

= ζχ (Spec(K), t)
(
(χ(X) − χ(Y ))S(t, 1 − t) + (χ( f −1(S)) − δ · χ(S)) t log(t)

)
.

123



Motivic information

In the case where the morphism f : X → Y is étale, we have χ(X) = δ · χ(Y ) and we
obtain simply the difference of the entropies

Iχ ( f ∗) = ζχ (Spec(K), t) (χ(Y ) − χ(X)) S(t, 1 − t) = Sχ (Y ) − Sχ (X).

��
In the case of the Euler characteristics, the class of étale coverings appears to be the

suitable class of morphisms for which the information loss function behaves as in the case of
finite sets and agrees with the difference of entropies. However, this is not necessarily the case
for arbitrary motivic measures. Indeed, unlike the case of Zariski locally trivial fibrations,
in general if f : X → Y is an étale covering, the class [X ] in the Grothendieck ring does
not necessarily factor as a multiple of the class [Y ]. Indeed, by [16] in characteristic zero the
quotient of the Grothendieck ring by imposing the relation [X ] = δ ·[Y ] for étale coverings of
degree δ is isomorphic toZ via the Euler characteristics. Thus, one does not expect in general
to have Iμ( f ∗) = Sμ(Y ) − Sμ(X) for étale coverings for an arbitrary motivic measure μ.

4.9 Additivity properties

For a decomposition X = X1 ∪ X2 and Y = Y1 ∪ Y2 with fi = f |Xi : Xi → Yi , and
an exponentiable motivic measure μ : K0(VK) → R where R has a power structure, we
consider the information loss function

Iμ((λ f1 ⊕ (1 − λ) f2)∗) = log
ζμ(Y1, t)λ · ζμ(Y2, t)1−λ

ζμ(X1, t)λ · ζμ(X2, t)1−λ

− (deg( f ) − 1)t log(t)
d

dt
log(ζμ(Y1, t)λ · ζμ(Y2, t)1−λ).

(4.22)
In the Hasse–Weil case, this corresponds to considering the distributions

Pλ(γ ) = P1( f ∗
1 (γ1))

λ P2( f ∗
2 (γ2))

1−λ and Qλ(γ ) = Q1(γ1)
λQ2(γ2)

1−λ,

with γ = (γ1, γ2) with γi ∈ Z0
eff (Yi ) and computing the Kullback–Leibler divergence

∑

γ

Qλ(γ ) log
Pλ(γ )

Qλ(γ )
.

Since deg( f ) = deg( fi ) the information loss (4.22) satisfies the additivity property

Iμ((λ f1 ⊕ (1 − λ) f2)
∗) = λIμ( f ∗

1 ) + (1 − λ)Iμ( f ∗
2 ).

The question of additivity under composition of morphisms is more delicate, because of
the observation mentioned at the end of the previous section on the behavior under étale
coverings (and more generally under flat surjective morphisms of constant degree). A simple
example where one recovers the behavior of information loss for finite sets is given by the
following class of varieties and morphisms.

Example 4.11 Given a variety Y over K consider the set of X = Y × S where S is a zero-
dimensional variety of the form S = Spec(⊕N

i=1K), for some N . Let πS : X → Y be the
projection map πS(s, y) = y. For this set of varieties and maps the information loss satisfies

Iμ(π∗
S ) = Sμ(Y ) − Sμ(X). (4.23)

In particular, Iμ(π∗
S ) satisfies both additivity under composition Iμ((πS ◦πS′)∗) = Iμ(π∗

S )+
Iμ(π∗

S′) and additivity under combination (4.22).
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Proof For an exponentiablemeasureμ : K0(VK) → R, the zeta function of a product satisfies
ζμ(X , t) = ζ(Y , t)�W (R) Z(S, t), where �W (R) is the product in theWitt ring.Moreover, since
S is a union of N copies of Spec(K) we have ζμ(S, t) = (1 − t)−N = (1 − t)−1 +W (R)

· · · +W (R) (1 − t)−1. Thus, since (1 − t)−1 is the multiplicative unit of W (R), we obtain

ζμ(X , t) = ζ(Y , t)�W (R)

(
(1 − t)−1 +W (R) · · · +W (R) (1 − t)−1)

= ζ(Y , t) +W (R) · · · +W (R) ζ(Y , t) = ζμ(Y , t)N .

Thus, we have

Iμ(π∗
S ) = log

ζμ(Y , t)

ζμ(X , t)
+ (N − 1)t log(t)

d

dt
log ζμ(Y , t)

=
(
1 − t log(t)

d

dt

)
log ζμ(Y , t) − log ζμ(X , t) + Nt log(t)

d

dt
log ζμ(Y , t)

=
(
1 − t log(t)

d

dt

)
log ζμ(Y , t) −

(
1 − t log(t)

d

dt

)
log ζμ(X , t).

It is then clear that this difference satisfies the required additivity properties. ��
Acknowledgements The author is partially supported by NSF Grant DMS-1707882 and NSERC Grants
RGPIN-2018-04937 and RGPAS-2018-522593 and by the Perimeter Institute for Theoretical Physics.

References

1. Almkvist, G.: Endomorphisms of finitely generated projective modules over a commutative ring. Ark.
Mat. 11, 263–301 (1973)

2. Baez, J.C., Fritz, T., Leinster, T.: A characterization of entropy in terms of information loss. Entropy
13(11), 1945–1957 (2011)

3. Bittner, F.: The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140(4),
1011–1032 (2004)

4. Bloch, S.: Algebraic K-theory and crystalline cohomology. Inst. Hautes Études Sci. Publ.Math. 47(1977),
187–268 (1978)

5. Borisov, L.: The class of the affine line is a zero divisor in the Grothendieck ring (2014). arXiv:1412.6194
(preprint)

6. Bost, J.B., Connes, A.: Hecke algebras, Type III factors and phase transitions with spontaneous symmetry
breaking in number theory. Sel. Math. 1(3), 411–457 (1995)

7. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives, Colloquium Publi-
cations, vol. 55. American Mathematical Society, Providence (2008)

8. Connes, A., Marcolli, M.: Quantum statistical mechanics of Q -lattices. In: Frontiers in Number Theory,
Physics, and Geometry, I,. Springer, New York, pp. 269–347 (2006)

9. Faddeev, D.K.: On the concept of entropy of a finite probabilistic scheme. Uspehi Mat. Nauk 11(1),
227–231 (1956)

10. Gillet, H., Soulé, C.: Descent, motives and K-theory. J. Reine Angew. Math. 478, 127–176 (1996)
11. Gusein-Zade, S.M., Luego, I., Melle-Hernández, A.: A power structure over the Grothendieck ring of

varieties. Math. Res. Lett. 11, 49–57 (2004)
12. Hesselholt, L.: The big de Rham-Witt complex. Acta Math. 214, 135–207 (2015)
13. Julia, B.: Statistical theory of numbers. In: Luck, J.M., Moussa, P., Waldschmidt, M. (eds.) Number

Theory and Physics, pp. 276–293. Springer, New York (1990)
14. Kapranov, M.: The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups.

arXiv:math/0001005
15. Khinchin, A.I.: Mathematical Foundations of Information Theory. Dover, New York (1957)
16. Larsen, M., Lunts, V.: Rationality criteria for motivic zeta functions. Compos. Math. 140(6), 1537–1560

(2004)

123

http://arxiv.org/abs/1412.6194
http://arxiv.org/abs/math/0001005


Motivic information

17. Leinster, T.: The categorical origins of entropy, lecture at “Topological and Geometric Structures of Infor-
mation”. CIRM, Luminy (2017). http://forum.cs-dc.org/topic/575/tom-leinster-the-categorical-origins-
of-entropy

18. Loeb, D.E., Rota, G.C.: Formal power series of logarithmic type. Adv. Math. 75(1), 1–118 (1989)
19. Looijenga, E.: Motivic measures, Séminaire Bourbaki, vol. 1999/2000. Astérisque 276, 267–297 (2002)
20. Marcolli,M., Thorngren, R.: Thermodynamic semirings. J. NoncommutativeGeom. 8(2), 337–392 (2014)
21. Marcolli, M.: Information algebras and their applications. In: Nielsen, F., Barbaresco, F. (eds.) Geometric

Science of Information, Lecture Notes in Computer Science, vol. 9389. Springer, New York, pp. 271–276
(2015)

22. Martin, N.: The class of the affine line is a zero divisor in the Grothendieck ring: an improvement. C. R.
Math. Acad. Sci. Paris 354(9), 936–939 (2016)
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