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Abstract We show that, when considering the anisotropic scaling factors and their
derivatives as affine variables, the coefficients of the heat-kernel expansion of the
Dirac—Laplacian on SU (2) Bianchi IX metrics are algebro-geometric periods of
motives of complements in affine spaces of unions of quadrics and hyperplanes. We
show that the motives are mixed Tate and we provide an explicit computation of their
Grothendieck classes.
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1 Introduction

In this paper we continue our investigation of arithmetic structures arising in models
of Euclidean gravity based on the spectral action functional of [4]. More specifically,
here by “arithmetic structures” we mean the occurrence of algebro-geometric peri-
ods of mixed motives of algebraic varieties defined over number fields. In [11] we
showed that the heat-kernel Seeley—deWitt coefficients for the Dirac—Laplacian of the
Robertson—Walker metrics can be expressed as periods of mixed Tate motives given
by affine complements of unions of quadrics and hyperplanes. In the present paper, we
extend the result of [11] on the homogeneous and isotropic Robertson—Walker metrics
to the case of the homogeneous but nonisotropic Bianchi IX metrics. Although the
argument used in [11] does not immediately apply to the anisotropic case, we provide
adifferent parameterization of the integrals computing the Seeley—deWitt coefficients,
for which we can derive a very similar statement about expressing these integrals as
periods of certain mixed Tate motives given by complements of unions of quadrics
and hyperplanes.

The occurrence of arithmetic structures involving periods and motives has been a
focus of investigation in theoretical physics over the past decade. In particular, inter-
esting motivic structures have been uncovered in the context of perturbative quantum
field theory (see [20] for an introductory overview). Some examples of occurrences
of motives and periods in models of quantum gravity have also been identified, see
for example [15]. However, the extent to which algebro-geometric and arithmetic
structures play a role in models of gravity remains very much open to investigation.
In this and other related papers [7,8,11], we began a systematic study of the role
of arithmetic structures in models of gravity based on the spectral action functional.
Our focus in this paper is on the case of the Euclidean SU (2)-Bianchi IX models of
gravity.

The Bianchi IX metrics play an important role in Euclidean quantum gravity and
quantum cosmology in the form of minisuperspace models in Hartle—Hawking gravity,
see [9]. In view of a similar approach to quantum cosmology based on the spectral
action, currently being developed (see [21]), it is interesting to investigate what role
of arithmetic structures will play in such gravity models. The Bianchi IX metrics
are closely related to the mixmaster cosmological models of [13]. These have been
widely studied (see for instance [6,22,24]) and are known to have very interesting
relations for number theory, see [16—19]. In [7] we proved a rationality result for the
Seeley—deWitt coefficients of the Bianchi IX metrics, which generalizes an analogous
rationality result for the Robertson—Walker case conjectured in [3] and proved in [10].
In [8] we proved that, in the case of the two-parameter family of [1] of Bianchi IX
gravitational instantons, the Seeley—deWitt coefficients for the Dirac—Laplacian are
vector-valued modular forms. We expect that, in addition to these occurrences of
motives, periods, and modular forms, a broader range of interesting relations between
gravity models based on spectral action and heat kernel and number theory remains
to be uncovered.
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Motives and periods in Bianchi IX gravity models 2731

2 Bianchi IX metrics and Dirac operators
We consider here SU (2)-Bianchi IX metrics of the form

wa(t) wa(t) ,
—————0

ds?® = wy (1) wat) wa(t) dt* + ;

w1 (1)
waOwi®) 5 WO WO o @1
wo (1) w3 (1)

where the o; are left-invariant 1-forms on SU (2)-orbits satisfying the relations
doy = oy A o3, doy, =03 Aoy, do3y = o1 A os.

This metric can be written locally as ds?> = ) guv dx"dx", in the set of local coordi-
nates x = (x*),=1,...4 = (¢, 1, ¢, ¥), where the 3-dimensional sphere S3 ~ SUQ2)
is parameterized by the map

(1.9, 9) > (cos(n/2) @72 sinG2) €/ 0=1).

Here the parameters have the ranges 0 < n < 7,0 < ¢ < 27,0 < ¥ < 4m. The
local formula of the Dirac operator D of the metric in this coordinate system and its
pseudodifferential symbol op can be computed as in [7].

We recall that given a spin bundle S on a Riemannian manifold M, the Dirac
operator D is a differential operator of order 1 acting on the smooth spinors (sections
of §) defined as the composition of the following maps:

S
D=cot#oVS:C¥WS) 15 CT*M®S) 5> CTM® S) S C2(5).

Here, the spin connection V* is obtained by lifting the Levi-Civita connection from the
tangent bundle to S, the musical isomorphism # identifies the cotangent and tangent
bundles, and ¢ denotes the action of the Clifford algebra of the metric on the spinors.
Writing the formula for D, one finds that if {6} is a local orthonormal frame, then

S
D=3 60uV,:
m

in the local coordinates.
By using the local formula for D one can derive its pseudodifferential symbol
o (D)(x, &). That is, one can locally write the action of D on a spinor s as

Ds(x) = (2m)~dim(0/2 / ¢ 6 (D)(x, £) 3(5) di

= (27r)~4im®D) / / ¢ TV 5(D)(x, £) s(y) dy dE, (2.2)
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where § denotes the component-wise Fourier transform of s. In this formula & is in fact
an element of the cotangent fiber at the point x, which is identified with the Euclidean
space of the same dimension as the manifold M. The Fourier transform is understood
here in the usual sense of pseudodifferential operators (Y DOs) on manifolds. The
WDOs on manifolds are defined in terms of local coordinates, and invariance of results
with respect to coordinate changes is proved (see [26]). Coordinate-free approaches
have also been proposed, see for instance [23].

The pseudodifferential symbol op of the Dirac operator D of the Bianchi IX metric
given by (2.1) was derived in [7] by explicit calculations. The result is that

o(D)(x,8) = qi1(x,§) + qo(x, §),
where

_iy?/wi (esc(n) cos(¥) (64 cos(n) — &3) + &2 sin(y))

qi(x,£) = NN
+iV3Jw_2 (sin(¥) (&3 cse(n) — &4 cot(n)) + & cos(¥))
NOIWER
iv'& +w4s4¢— 23)
BN
qo(x, &) = 4«/W <w‘ + 2 wy + z—z) y!

Jwiwows (1 L—i-L 2.3 4
2 ) w2 w2 Yyvy.
1 2 3

Here the y' are 4 x 4 matrices such that (y?)> = —J and y'y/ +yJ/y’ = 0fori # j.
Correspondingly, for the Dirac—Laplacian D? we have

o (D*)(x, &) = pa(x, &) + p1(x, &) + polx, &),

where the homogeneous terms are given by

pa(x, &) = q1(x, £)%,
P1(x, &) = qo(x, £) q1(x, &) + q1(x, &) qo(x, )

4
+ ) (=i 0g0)(x. £) (9y;91)(x, £)) . (2.4)

j=1

4
Po(x. &) = qo(x, £)* + Y (—i(0;q1)(x. ) (9x;q0) (x. £)) .

j=1
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In particular, for later use, note that we can write the degree-two homogeneous term
in the form

4
p2(x, &) = Z glwsuév I,

n,v=1

where the matrix (g"") is the inverse of the symmetric matrix (g,.) formed by the
components of the metric tensor.

3 Seeley—deWitt coefficients and periods

The spectral action functional of Euclidean gravity, introduced in [4], is defined as
a trace Tr(f(D/A)) of the Dirac operator regularized by an even rapidly decaying
function f approximating a cutoff function on the Dirac spectrum, with A an energy
scale. It can be viewed as a modified gravity model, since the leading terms in the large
A expansion include the Einstein—Hilbert action of gravity with cosmological term, as
well as some higher derivative terms that include conformal gravity and Gauss—Bonnet
gravity. Overviews of applications of the spectral action functional to cosmology and
particle physics can be found in [21] and [29].

The Seeley—deWitt coefficients ao, (D?) appearing in the heat-kernel expansion of
the Dirac—Laplacian

o0
Tr(e ™) ~pge T MMD2 Y gy, (DY),
n=0

determine the coefficients of the large energy asymptotic expansion of the spectral
action functional, see [4] and §1 of [5] for more details. The meaning of this expansion
is that for any nonnegative integer N and for small positive T we have

N
Tr(ef‘[Dz) — _Efdim(M)/Z Z azn(DZ)T}’l + O(deim(M)/2+N+1 )
n=0
Thus, our approach to investigating the arithmetic properties of the spectral action

models of gravity is based on identifying arithmetic structures in the Seeley—deWitt
coefficients of the heat-kernel expansion of the Dirac—Laplacian.

3.1 The Seeley—deWitt coefficients as residues

For any n € Z>1, the Seeley—deWitt coefficients ay, can be computed as a noncom-
mutative residue (see [7])

1 _
oy = m—nHRes(AMI), (3.1
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where
Ay =D*@1+1Q Aqai-a,

with Ap2.—2 the Laplacian of the flat metric on an auxiliary (2n — 2)-dimensional
torus T2"~2 = (R/Z)*"~2. Since the operator A,, is acting on the smooth sections
of a vector bundle on a (2n+2)-dimensional manifold, in order to calculate Res(Az_n1 ),
we need the term that is positively homogeneous of order —2n — 2 in the asymptotic
expansion of the symbol of Az_nl. We write

-2
(A E) ~eo Y om(A)(x, 6),

m=—0oQ

where each oy, (Az_nl) is (positively) homogeneous of order m in §.
By definition (see [31,32])

-1\ _
Res <A2n> = /Mxﬂl‘?”ﬁ (flél—l tr (0—2n-2(x, §)) |0¢, 2n+1 |>

ldx! A oo A dx?T2, (3.2)

in which o¢ 2,41 is the volume form of the unit sphere |£| = 1 in the cotangent fiber
R2"+2 ~ T*(M x T?"~2), given by

2n+2

e ompi = Y (=1)/T'E dE A AdEj A A dErnsn. (3.3)
j=1

Remark 3.1 Because of the homogeneity degree of o_3,_>(x, &) in (3.2) and the
Stokes theorem, the integration over the sphere |§| = 1 can be replaced with integration
over the unit sphere of the metric or any other similar locus that is homologous to the
sphere as a closed cycle, see Proposition 7.3 on page 265 of [12].

The om(Agnl) satisfy the recursive relations (see [7])

-1
0283 6 8) = (m. &, e+ (84 +80)1) . G
and, form < -3,

om(Ay)) (x,8)

(_i)a1+a2+a4 (

- Z oplan! ay!

o1,00,04€L>0
m<j<-2, 0<k<2
j—a1—ax—ast+k=m+2

o_2(A51). (3.5)

o 0G5 oy (030) (0555295 )
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Note that in this expression we have considered the fact that the symbol of the Dirac
operator D given by (2.3) is independent of the coordinate ¢.

3.2 Seeley—deWitt coefficients as period integrals

We focus here on the Seeley—deWitt coefficient before time integration, treating the
anisotropy coefficients w; and their derivatives as affine variables. We show that for
algebraic values of these variables the resulting coefficient is a period integral in the
algebro-geometric sense (see [14]), that is, an integral of an algebraic differential form
on a semi-algebraic set in an algebraic variety.

Remark 3.2 In the following we use the notation o, for the Seeley—deWitt coefficient
prior to integration in the time variable, namely

axp = /(in(t)dl, (3.6)

where the 7-dependence of oy, is through the cosmic expansion factors (anisotropy
coefficients) w; (¢) of the Bianchi IX metric, for i = 1, 2, 3, and their derivatives,

@2 (1) = 2 (w; (1), Wi (1), W/ (1), ..., w3 (1)) (3.7)

Proposition 3.3 Introducing new variables

Wi = ! Wy = Ywi@®
VwiO)vwa (Vw3 @)’ Vwr (v w3 @)’
Wy = YW@ o vws®) 3.8)
VwiOvws @)’ NONONIHON '
and the change of coordinates
&1 = &1,
o = &4.cot(n) cos(¥) — &3 csc(n) cos(Y) + &2 sin(Y),
3 = —&4 cot(n) sin(yr) + &3 cse(n) sin(yr) + &2 cos(Y)
Ca=684, C5=85, ... Lmt2=Emy2,
the expression tr (0_o,—2) is given by
M,
r(0—2n-2) = ) 1 ¢jn (sin )1 (cos )02 (sin )11 (cos )12
j=1
é_/31./'4_/32,]' L PPury 3
1 %2 - 2n42 lelfi(,)o,j wl{ff,ll,j B wlklzz’:,, } ’ 3.9)
QW,:2n i=1 ' ’ '
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where

cjon € Q,

Bo.1,j» Bo2,j» Bi1,js B1.2,j, kio,j € Z,

Bl,js--s Bont2,js Pjons kit j, oo kion,j € Zxo,
where

OQwan(C1, ..., Cong2) = WEEE + W23 + Wig3
FWECE+ 3+ + Loy (3.10)

with the variables w; j associated with the cosmic expansion factors w1 (t), wa(t), w3 ()
given by

wio=wit), @ =w), ... o=w’"0. (3.11)

Proof This is a direct consequence of (3.4), (3.5), the explicit formulas provided in
[7] for the homogeneous symbols p2, p1, po (Which were calculated using (2.4)), and
the fact that

Pr(x, E1 . E) FEE ézz,ﬂrz = OQw.ou(1, ..., Lont2).

O
We can then compute the Seeley—deWitt coefficient ap, of (3.6) as follows.
Proposition 3.4 The Seeley—deWitt coefficient is given by the integral

1 /2 /2

o =gz [ s [y oo, O o521 B.12)
Proof By (3.2) and Remark 3.1 we have

1 b4 2 4
W = o3 /0 dﬁ/O d¢/0 dyr - tr (0_2,-2) 0%, 2n+1
1 /2 72
= W/(; dU/O dyr o tr (0_2,-2) O, 2n41, (3.13)

where |£], = Zi,v:l ghvELE, + 552 + 4+ 522n+2- Note that for the second identity
in (3.13), we used the fact that

1
sin(n) wy (1) wa () wa(t) Jig|,=1

tr (0_2,-2) O¢,2n+1
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is independent of the variables 7, ¢, 1. This fact is indeed associated with the sym-
metries of the Bianchi IX metric and was proved in [7]. Next observe that the sphere
|é]; = 1 determined by the metric g is homologous to the sphere defined by

2n+2
Z §i2 =2 +E+ cscz(n)$32 + csc(n)€?

i=1

—2cot(n) csc(n&séa + 624 -+ &30 = 1,

since the matrix

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 csc?(n) —cot(n)csc(n) 0 0 0
0 0 —cot(n)csc(n) csc2(n) 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 00 --- 1

is positive definite. By direct calculations one can also see that in the { coordinates
one has

2n+2
ot = (=D dE A AdE A AdErny
j=1
2n+2

=sin() Y (=17 da A Adg A Nd G
j=1

= sin(n) o7, 2041
Therefore, considering Remark 3.1, we can write the Seeley—deWitt coefficient in

form (3.12). O

Moreover, we need the following observation for the purpose of our description of
the Seeley—deWitt coefficients as periods.

Lemma 3.5 Only the terms with Bo1,j, Bo2,j. B1,1,j. B1,2,j € 2Z in (3.9) contribute
nontrivially to the calculation of ooy, in (3.12).

Proof This follows from the fact that the integral

1
sin(n) Jig|,=1

tr(0-2,-2) 0t 2n+1 = / tr(0-2,-2) 07, 2n+1
Qanl

is independent of the variables 1 and . Indeed, this implies that the terms in (3.9)
where at least one of the integers Bo.1,j, Bo,2,j. B1,1,j. B1,2,; is odd cancel each other
out after the integration over
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2n+2

4
Q2n = Z W,-Zg“l-z + Z ;.i2 =1.
i=1 i=5

The terms where all the exponents are even, after the same integration, add up to an
expression that is independent of the variables 1 and . O

We introduce new coordinates, (1 and u, defined by

p1 = —cos(n)cos(y), 2 =sin(y),

and we denote by b_j,_» the expression obtained from tr(o_3,_) by removing all
the terms for which at least one of the Bo 1, Bo.2,j. B1,1,j, B1,2,j is an odd integer.
Our argument above shows that the following holds.

Corollary 3.6 The density b_y,—» is a rational expression in the variables (|, |2,
$1, &2, - Cont2 and in the affine variables w; j, i € {1,2,3}, j € {1,2,...,2n}
determined by (3.11).

Proof This follows directly from the previous arguments and the identities

sin®(Y) = p3,  cos’(Y) =1—p3,

. 1—pt — 3
s = L
)
2
7
cosz(n) = 1 5
1 — 3

O

For the Seeley—deWitt coefficients this then gives the following expression as a
period in the algebro-geometric sense.

Theorem 3.7 Forw; ; € @ the Seeley—deWitt coefficient az, (w;, ;) is a period in the
algebro-geometric sense, given by the integral

1 b2
oy = diuy Nduy Ao 3.14
w= 7 /Azn =2 My A dpa Ao ongd (3.14)

of an algebraic differential form

b_on2

! 5 dur Adpa A og ony,
l—p
2

AZn +4

defined on the complement in of the union of two hyperplanes

Hy = {(1t1, 12, C1s -y Con) € AP 1y = £1)
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and the quadric defined by the vanishing of the quadratic form Qw 2,(C1, ..., {on),
integrated over the semi-algebraic set

2n+2
Agn = { (U1, 102. 81, 020 Gong2) € ATTAR): 0 <y pp <1 and Y g =1

i=1

(3.15)

Proof This follows from the previous results, using Corollary 3.6 and the fact that

5 duy Adps.

sin(n)dn ANdyr =
1 2

By Proposition 3.3, the algebraic differential form bl‘_z—’;;%z dpi Adpa A og onyr is

defined on the complement in A?**# of a hypersurface given by the union of two
hyperplanes H+ and the quadric {Qw 2, = 0}. O

In the following section we describe the motives underlying these periods, and we
show that they are mixed Tate.

4 The motives

The category of mixed Tate motives is the best understood subcategory of the more
general and more mysterious category of mixed motives. Motives are a universal coho-
mology theory for algebraic varieties. While the case of smooth projective varieties
leads to the theory of pure motives, which is better understood, modulo certain fun-
damental conjectures about algebraic cycles, the more general “noncompact” case of
mixed motives is less well behaved in terms of categorical properties. Typically the
motives that arise in physics are motives of complements of certain hypersurfaces
inside an ambient algebraic variety and are therefore mixed motives. The fundamental
relation between motives and periods, from the physics perspective, lies in the fact
that the types of numbers that can occur as values of period integrals are strongly con-
strained by the nature of the motive of the algebraic variety. In particular, it is known
that all periods of mixed Tate motives over Z are Q[(27i )~1]-linear combinations
of multiple zeta values, [2]. While early conjectures that the periods and motives of
perturbative quantum field theory would always be mixed Tate have been disproved,
we show here that in this gravity model, all the coefficients of the spectral action
expansion remain periods of mixed Tate motives, by explicitly computing the motive
underlying the period integrals described in the previous section.

The explicit computation of the motive can be obtained in a way that is similar to
the argument in the Robertson—Walker case of [11]. Due to the different choice of
parameterization, the ambient space and the resulting motive are slightly different,
although the main result about the mixed Tate nature of the motive is unchanged. The
construction given here provides an alternative argument for the Robertson—Walker
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2740 W. Fan et al.

case as a particular case. We treat the variables W; fori = 1, ..., 4 as parameters
W; € G, (F;), where F; are number fields. We also consider a number field F that
contains the Fj.

As in [11] we adopt the following notation: we denote by Zw 2, C P2+l the
projective quadric determined by the quadratic form

4 2n+2
Qwan(Cr, . tnt2) = Y W2+ Y ¢, .1
i=l1 (=5
for W = (W, ..., Wa) € G, (F)*,
Zwon = {15 Gng2) € P Qwoan(ly, ..., Cang2) = O).

We also denote by C2Zy , the projective cone of Zy 2, in P?**3 and we denote by

7z w.2n the affine cone in A?"*2 and by C2Zy , the affine cone of C%Zyy 5, in A>" 4,
We are interested in the mixed motive

mAZ (Hy U H_ U C2Zy2), 2), 42)
where H are the hyperplanes
He = {(u1, 12,81, -, Con2) € AP0 pp = £1) 43)
and ¥ is the divisor in A*"** given by
¥ =UL, U}:o H; j,
where H; ; are the hyperplanes
Hij={(1, 12, €1, oo Sonsg) € AP0 py = ).
We first give an explicit computation of the class
[A2  (Hy U H- U C2Zy 2] 4.4)

in the Grothendieck ring of varieties Ko(Vr) with F an extension of the F; that also
contains the number field Q(+/—1), and then we prove that motive (4.2) is mixed Tate
(as a motive over F).

@ Springer
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4.1 The quadratic form and field extensions

Let F be a number field that contains the fields F;, fori = 1,...,4 and Q(+/—1).
Over F consider the change of variables

X1 =Wig1 +iWat, Y =Wig —iWais,

Xo =i(W3i3 +iWals), Yo = i(W3i3 —iWaly). (4.5)
In these variables the quadratic form Qw > becomes the quadratic form
XY — XY,
hence the projective quadric Zy » C IP3 is the Segre quadric
Zwa ={X1Y] — XpY> =0} ~ P! x P!
Moreover, over the same field F the further changes of coordinates
Xn =Cn-1+1iln, Yn=2~0m—1— il (4.6)
transform the quadratic form Qw 2, into the form
Ow, 2121, ..., Son) + Xn Y. 4.7)

4.2 The Grothendieck class

The Grothendieck ring of varieties Ko()VF) is generated by isomorphism classes [ X]
of varieties over F with the inclusion—exclusion relation [X] = [Y] + [X \ Y] for
closed subvarieties Y < X and the product relation [X] - [Y] = [X x Y]. In order to
compute Grothendieck class (4.4), we use the following facts, which are a variant of
Lemma 4.1 of [11].

Lemma 4.1 Let Z C P! is a projective hypersurface and let C*Z < P>'+3,
7 C A?2 qpnd €27 A be the projective and affine cones as above. Also let

Hy be two hyperplanes in A¥"* with H,. \"H_ = @ and with intersections Hy NC2Z
given by sections of the cone. Then the Grothendieck classes satisfy

o [A21H4 C27Z] = L2 _13[Z] + 12([Z] - 1),
o [AYH < (C2ZUH, UH_)] = L2+ _ 212043 _ 13[7] 4 3L2[Z] — 2L[Z] —
L2+ 2L.

Proof LetlL = [Al lbe the Lefschetz motive, the Grthendieck class of the affine line.
We have [AZ' 12\ Z] = (L — D)[P?**! < Z] since [Z] = (L — 1)[Z] + 1. Moreover,
we have [CZ] = LL[Z] + 1, since the projective cone is the union of a copy of Z and a
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2742 W. Fan et al.

copy of the affine cone Z. Similarly, we have [C2Z] = L[CZ]+ 1 = L2[Z] + L+ 1.
We then have

[A2n+4 N EZ\Z] — (L _ 1)[P2n+3 N CZZ] — L2n+4 — 1= (]L _ 1)[C2z]
L2 (L= DIAZ]+ L+ 1) = L2 L3 2]+ L2([Z] - D).

By inclusion—exclusion we have

[C2ZUHs UH_] = [C2Z] + [H_ U H.] — [C?Z N (H, U H_)]
= [C2Z] + 2123 _2[C 7],

where [C2Z] = (L — D[C2Z] + 1 = L3[Z] + L2 — L2[Z] = L3[Z] - LA({Z] - 1)
and[CZ]= (L — D[CZ]+1=1%Z]—- LL([Z] — 1), so that we obtain

[C2Z U HyUH_1=1°[Z] - L*((Z] = 1) + 212" —2(L2[Z] = L([Z] — 1))
= 212" 4 1L*[Z] - 3L%[Z] + 2L[Z] + L? — 2L.

O

Proposition 4.2 Let Qw 2, be quadratic form (4.1) and Zy 2, C P2+ the projective
quadric defined by the vanishing of Qw an. Let Cop = [A2n+2 Zw.on] be the
Grothendieck class in Ko(Vr) of the affine hypersurface complement. This is given
by

C2n — ]L2n+2 _ L2n+1 _ ]LYH-l + Ln. (48)

Similarly, we have [Zw on] = 14+ L+ - + L' 2" + L 4.0 4 L2 and

(A2 C2Zyy 5] = L2 — 203 _ 3 4 2, (4.9)
[AZ1F4 (52\ZW,2,, UH.UH_)] =L 312+
4oL 2 3 32 gt (4.10)

for Hy = {up = £1} C A?+4,

Proof We first show that the classes C»;, satisfy the recursive formula

Coyp = L2222 4 12" 4 LCyys. (4.11)
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To see this, consider the condition that Qw 2, # 0. By (4.7), using the change of
variables (4.6) over F, this is equivalent to

Ow,2n—2(C1, ... Lon) + Xn Y # 0.

Suppose X;,, = 0. Then ¥, € Al and Ow.2n—2(81, ... ¢2n) # 0. Thus, this case
contributes a term I - Co,,—7 to the class C»,,. The case X,, # 0 gives

Ow,2n—2(81, ... Son)
X,

Yn #

’

which gives (¢1,...,) € A* and ¥, € G,, with X,, € G,,. Thus, this case con-
tributes a term [G,,]?L?* = L>*(L. — 1)2. This gives Cp, = L2*+2 — 212"+ 4
L?" + L - Cy,—>. We can then verify (4.8) by induction. When n = 1, we know from
Sect. 4.1 that the change of variables (4.5) over F transforms the quadric Qw > into
the quadric X1Y; — X»Y», hence [Zw 2] = [P! x P'] = L2 + 2L + 1 in Ko(Vr).
Thus we have [Zw,z] = L-DZwad+1 =L - DI2+2L+1)+1 =
L3 42124+ L—-L2—2L—-1+1=0L3+1L?—-1L,hence C; =L* - L> —L? + L.
Then suppose that Cp,,—o = L2 — 121 _n 4 17~1 We obtain Cp, = L2112 —
2L2n+l + L2n + L(LG _ LZn—l —Lr+ ]Ln—l) — ]L2n+2 _ ]L2n+l — L+l +1L". We
also have [Zw 2,] = L2 4 L2 — 17 and [Zw 2] = (Zwan] — DL — D! =
L2t - D@L -1 ' =14+L+---+L* +1L", hence

[AZHC2Zwan] = L2 — L[ Zw o] + L2 Zw2n] — 1)
:]L2n+4_L3(1 +]L++]L2n +Ln)

+L2(1 + L+ -+ L2 + L") — L2
— ]L2n+4 _ L2n+3 _ Ln+3 4 }Ln+27

as the other terms cancel in a telescopic sum. Similarly, we have

[A2H (C2Z 00 U Ha U HO)] = L2 = 212 — L3 Zyy 5,1+ 3L Zw,24]
—2L[Zwon) — L2 4 2L = L2 2123 _L3(1 4L 4.  + L2 41"
+3L2A +L+ -+ L4+ L") —2L(1 +L+--- +L* + L") — L2 4+ 2L

— L2n+4 _ 3L2n+3 + 2L2n+2 _ Ln+3 + 3Ln+2 _ 2Ln+l.

4.3 The mixed motive

The result of Proposition 4.2 shows that the Grothendieck classes in Ko(VF) of the

complements A2 T4\ C2Zy 5, and A2+ < (C2Zy 2, U Hy U H_) are in the Tate
subring Z[L] C Ko(Vr). We now consider mixed motive (4.2), as an element in
the Voevodsky triangulated category of mixed motives, [30], and we show that it is
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in the triangulated subcategory of mixed Tate motives. The argument is analogous to
Theorem 4.3 and Proposition 4.5 of [ 11]. We present it here explicitly for completeness.
Here, as above, we consider a number field F that contains the number fields F; with
W; € G,,(F;) and also contains Q(y/—1).

Theorem 4.3 The mixed motive m(A?"+* < (Hy U H_ U C2Zw.,), X) over the
number field F is a mixed Tate motive.

Proof Using the change of variables (4.6) we see that over the field extension F the
quadratic form becomes isotropic, namely Qw 2,|r = (n 4+ 1)H, where H = (1, —1)
is the hyperbolic quadratic form. This implies that, over F, the motive m(Zw 2,) is
given by (see [28])

n(Zw,2) = Z(n)[2n] & Z(n)[2n] & @ Z(k)[2k].
k=0,....n—1,n+1,....2n

This motivic decomposition of the motive corresponds to the expression [Zw 2,] =
1+L+4-- 4L 421" + L7 ... 4 L2 for the Grothendieck class. The Gysin
distinguished triangle in the Voevodsky category gives

mP N Zw2n) & @) - m(Zw2a) (DI2] > m@ TN Zy2a)[1].

Since two of the three terms, m(P?**!) and m(Z w.2n) (1)[2], are mixed Tate, the third
term m(P>" ! \_ Zy 2,) is also mixed Tate. Note then that, when taking a projective
cone, the map P*'*2 \ CZw, — P>\ Zy.,, is an Al-fibration, and so is
the map P> 3 <\ C?Zy., — P¥'*2 < CZy.,. By homotopy invariance of the
Voevodsky motive, we then have m(P?"+3 < C?Zy 2,) =~ m(P?"*+! < Zy 5,). Thus,
the motive m(P?*13 < C%Z w.2n) is also mixed Tate. The relation between the motive
m(P>" 3\ C?Zw.2,) and the motive m(A%"+*~ C2Zyy »,) is obtained by considering
the G,,-bundle 7 = A?"** \ C2Zy 2, — P?"*3 <\ C?Zy 2, and the associated P!-
bundle P and the Gysin distinguished triangle of [30], p. 197,

m(7) — m(P) - m(P \ T)*(D[2] - m(D[1].

The motive of a P!-bundle over a base X satisfies m(P) = m(X)@®m(X)(1)[2]; hence,
it is mixed Tate if m(X) is mixed Tate. The motive m(P ~. 7) is mixed Tate because it
consists of two copies of X. Thus, in the above triangle both m(P) and m(P \ 7)) are

mixed Tate; hence, the third term m(7) = m(A2"*+* < C2Zy »,) is also mixed Tate.

Next we show that the motive m(A"** < (C2Zy 2, U Hy U H_)) is mixed Tate as
well. We use the Mayer—Vietoris distinguished triangle in the Voevodsky category

mUNV)y->mU)dem(V) > m(UUV) - m((UNV)[1],

applied to the open sets U = A?"t* <\ C2Zy 5, and V = A2\ (H} U H_), with
UUV = A" (C2Zw o N(Hy UH ) and UNV = A4 (C2Zw 2, UH U
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H_). We want to show that m(U N V) is mixed Tate. By the Mayer—Vietoris triangle
it suffices to show that m(U), m(V), and m(U U V) are all mixed Tate. We know that
m(U) is mixed Tate by the previous argument. To see that m(V') is mixed Tate observe
that m(H4 U H_) certainly is; hence, the Gysin triangle ensures that m(V) is also

mixed Tate. In the case of m(U U V), the intersection C VA w.2n N (Hy U H_) consists

of two sections of the cone, isomorphic to CcZ Zw,2n, hence m(CZZ wonN(HLUH_)) =
m(CZW 2m) P m(CZW 2n). The motive m(CZW o) 1s mixed Tate because the motive
of the complement is by the previous argument about homotopy invariants and the

Gysin triangle. Thus, the motive of the complement m(A?"** < (C2Zw 2, N (Hy U
H_)) is also mixed Tate, again by an application of the Gysin triangle. Thus, by

Mayer—Vietoris we have obtained that m(A%"** < (C2Z .2, U Hy U H_)) is mixed
Tate. Finally, motive (4.2) also fits in a distinguished triangle where two of the terms,

m(AZ (CZZW’Qn UH, UH_))and m(X), are mixed Tate; hence, it is also mixed
Tate. O

Remark 4.4 Assuming for simplicity that W; € G,,(Q), the motive m(Z 2,) over Q,
where the quadratic form Qw 2, is not isotropic, can be expressed in terms of “forms
of Tate motives,” which become Tate motives after passing to a field extension. These
are the Rost motives of quadrics, see [25,27,28], and §4.6 of [11].

Remark 4.5 In [8] we proved that, for Bianchi IX metrics that are gravitational instan-
tons (Einstein and self-dual), the heat-kernel coefficients are vector-valued modular
forms. Thus, we see two different arithmetic structures associated with these heat-
kernel coefficients: as we have shown here, if one fixes an algebraic value of the
anisotropy coefficients w; (hence of the coefficients W;), then the corresponding
Seeley—deWitt coefficients are periods of mixed Tate motives; on the other hand, if one
considers the w; and an overall conformal factor F' as functions of the cosmological
time p and the two parameters (p, g) determining the family of solutions of the grav-
itational instanton equations, then the Seeley—deWitt coefficients are vector-valued
(meromorphic) modular forms in the variable i i in the upper half plane.

Finally, it is worth pointing out that the spectral action is a model of Euclidean
gravity, since its construction and properties rely essentially on the analytic proper-
ties of the spectrum of the Dirac operators on compact Riemannian manifolds. While
some results exist that relate the spectral action formalism to Lorentzian geometry,
there is no good general framework to translate results about the spectral action to
the indefinite signature case. It is often the case that the local expressions involved in
the asymptotic expansion of the spectral action continue to make sense when Wick
rotated to Euclidean signature. This fact is used frequently, for example, in cosmo-
logical applications of the spectral action (see [21]). However, while there are many
interesting examples of Lorentzian nonisotropic spacetimes (Kasner metrics, mixmas-
ter universe models), the Bianchi IX gravitational instantons that we consider in this
paper are also specific to Euclidean signature and especially relevant in the context of
Euclidean quantum gravity and quantum cosmology. It is possible that certain classes
of Lorentzian spacetimes may also have interesting arithmetic structures related to the
heat-kernel expansion of specific geometric differential operators.
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