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1 Introduction

In this paper we prove that each Seeley-deWitt coefficient in the full heat kernel expan-
sion for the Dirac-Laplacian on the Bianchi IX gravitational instantons is a vector-valued
modular form, and we illustrate how they can be related to well known modular forms.
The general form of the instantons involves a conformal factor that is a function of the
cosmic time p [4, 25, 39]. Thus, in section 2, we start by presenting an explicit formula
for the Dirac operator D of the Bianchi IX metrics with general cosmic expansion factors



wi (), wa(p), ws(p) and with a general conformal factor F'(p). We then prove a rational-
ity result for the recursive structure of the Seeley-deWitt coefficients associated with D2,
which illuminates the arithmetic nature of the coefficients, and stimulates the search for
more explicit arithmetic structures in the expansion. The rationality result generalizes the
analogous rationality results for Robertson-Walker metrics [8, 19], and for the Bianchi IX
case without a conformal factor [16]. We also recall the explicit Babich-Korotkin param-
eterization [4] of the Bianchi IX gravitational instantons in terms of theta functions with
characteristics, which we shall use throughout the paper.

In section 3 we provide the necessary background material from the theory of mod-
ular forms that we will need for presenting our main results. Moreover, in order to pre-
pare the ground for discovering the modular properties of the Seeley-deWitt coefficients of
the Bianchi IX gravitational instantons, we identify the transformation properties of the
anisotropy coefficients wy (@), wa (1), w3(p) and the conformal factor F'(u) of the instantons.
Since these functions are given in terms of theta functions, it makes sense to analytically
continue the cosmic time variable y to be a point in the right half-plane {z € C: R(z) > 0}
so that the point iu in the upper half-plane H = {z € C : ¥(z) > 0} is acted upon by the
modular group PSLo(Z) = SLa(Z)/{£1}, by linear fractional transformations. It suffices
to check the modular property with respect to the two generators of the modular group,
commonly denoted by 71" and S, whose corresponding actions on ¢ € H are iy — tp + 1
and ip — —1/(ip), respectively. We comment briefly in section 1.1 on the role of this
complexified time variable in physical models.

In section 4 we first derive the modular properties of the first two Seeley-deWitt coef-
ficients, denoted by &gy and &, by performing explicit calculations. A general conceptual
understanding of these modular properties, observed initially in the first two coefficients,
is then achieved by showing that a particular modular action on the parameters of the
Bianchi IX gravitational instantons gives rise to isospectral Dirac operators. We show that
the isospectrality of the Dirac operators is indeed responsible for the modular properties
of all the Seeley-deWitt coefficients in the full heat kernel expansion. In section 5 we prove
that, for rational values of the parameters in the two-parameter family of Bianchi IX so-
lutions, the Seeley-deWitt coefficients are vector-valued modular forms. We discuss the
associated (meromorphic) modular form obtained by averaging over the orbit of the pa-
rameters, and we analyze its zeros and poles. Then, we illustrate in explicit examples how
the resulting modular forms can be computed explicitly in terms of well known modular
forms, namely the modular discriminant and Eisenstein series.

Finally, in section 6 we summarize our conclusions about the appearance of explicit
arithmetic structures in spectral models of gravity and our approach to a conceptual un-
derstanding of the modularity of the Seeley-deWitt coefficients in the full expansion of the
spectral action.

The modular properties presented in this article were initially identified through a series
of lengthy explicit calculations of the first few Seeley-deWitt coefficients. This provided
a clear picture of the overall pattern, on the basis of which we then derived the general
proof of modularity presented in this paper. While we have not included here the explicit
lengthy computations of the first few terms of the expansion, they remain available to the
interested reader in the arXiv version of this article.



1.1 Modularity in physics

The focus of this paper is primarily on deriving an explicit form of the Seeley-deWitt
coefficients for the heat kernel expansion of the Dirac Laplacian on Bianchi IX gravitational
instantons and identifying the modular properties of these expressions in terms of vector-
valued modular forms. We will discuss briefly in the Conclusions section the relevance of
these Seeley-deWitt coefficients in the asymptotic expansion of the spectral action, which
is an action functional for a model of modified (Euclidean) gravity, where the terms of
the expansion represent higher derivative corrections to the usual Einstein-Hilbert gravity
with cosmological term. A detailed treatment of models for gravity and gravity coupled to
matter based on the spectral action functional can be found in [12, 32, 41].

We comment here briefly on the relevance of modularity properties in the context of var-
ious kinds of physical models. Some of the best known occurrences of modularity in physics
include elliptic functions, modular forms and quasi-modular forms that arise as characters
and partition functions associated to vertex operator algebras; generating functions in 4D
gauge theory; modular forms occurring in parametric Feynman integrals in perturbative
quantum field theory; various moonshine phenomena in String Theory; generating functions
associated to mirror symmetry, Gromov-Witten invariants, and Eynard-Orantin recursion
formulas; quantum degeneracies of black holes as Fourier coefficients of mock Jacobi forms.

The modular phenomena in physics most relevant for the topic discussed in this paper
are those that arise in special solutions of the Einstein equations. A general introduction to
modularity in the Einstein equations is given in Part II of [26]. A review including recent re-
sults on (quasi)modularity in the Einstein equations and in gravitational instantons is given
in [36]: in this overview the relevance of modularity to String Theory is explained through
the role of certain classes of gravitational instantons in compactifications of superstring
models, or through dynamics of moduli of Supergravity and String Theory as sigma mod-
els with target a gravitational instanton. Physical applications of the modularity properties
of gravitational instantons discussed in [36] include monopole scattering, Ricci flows, non-
perturbative instanton corrections to string moduli spaces, and perturbative expansions.

As we discuss in detail in the following sections, the modularity that we analyze in the
coefficients of the heat kernel expansion on Bianchi IX gravitational instantons corresponds
to modular transformations of the time coordinate. The fact that this can be viewed as
a complexified coordinate reflects the fact that the Euclidean Bianchi IX metrics can be
seen as Wick rotations of Lorentzian signature metrics. The use of a complexified time
coordinate in Bianchi IX metrics, which appears as a mathematical artifact, is in fact used
for example in the context of tunneling geometries and caustics of classical solutions (see
for instance [6]), or when considering complex-time contours in a minisuperspace approx-
imation for convergence of Hartle-Hawking path integrals (see [35] for an overview), in
topological effects on solutions of the Yang-Mills-Einstein equations, where the complexi-
fied time variable has a finite temperature interpretation [11]. A discussion of complexified
time for gravitational instanton geometries in a different setting is also given in [30, 31].

The physical context where we expect the modularity properties analyzed in this paper
to play a role is mainly the setting of a Hartle-Hawking type quantum cosmology, based



on the spectral action functional for gravity rather than the Einstein-Hilbert action. A
general setup for such a model is introduced in section 9 of [32]. In this setting the
complexification of the time variable plays a role analogous to the original Hartle-Hawking
setting (see [23, 24, 35]). The role of modularity in this setting can be investigated along
similar lines as in [36], though adapted to a setting where the action functional for gravity
is given by the spectral action. We will return to a more thorough discussion of these
physical aspects in forthcoming work.

2 Bianchi IX gravitational instantons

This section covers necessary background material. We first present the explicit form of
the Dirac operator on the Bianchi IX metrics with a time dependent conformal factor.
We then extend to the case with non-trivial conformal factor the rationality result of [16]
for the recursive form of the heat kernel Seeley-deWitt coefficients, originally obtained for
Bianchi IX metrics with a trivial conformal factor. We also recall the Babich-Korotkin
parameterization [4] of the Bianchi IX gravitational instantons in terms of theta functions,
which we will be using throughout the paper.

The general form of the triaxial Euclidean Bianchi IX metrics that we consider in
article is given by

_ wows waw wyws
ds®* = Fds®* = F <w1w2w3 du? + " oF + o3 + a%) ,

(2.1)
1 w2

where the cosmic expansion factors (anisotropy coefficients) wq, wg, w3 are functions of the
cosmic time p and the conformal factor F' is also a function of u. The o; are left-invariant
1-forms on SU(2)-orbits satisfying

do1 = o9 N\ 03, doy = o3 N\ 071, dog = o1 N 09.

The Bianchi IX gravitational instantons were discovered by first finding solutions for the
expansion factors wi, wo, ws that make the Weyl tensor of the metric self-dual. Exploiting
the fact that the Weyl tensor is conformally invariant, it was then discovered that a suitable
choice of the conformal factor F' can be used to obtain an Einstein metric [4, 25, 39].

2.1 The Dirac operator

Given a spin bundle S and a spin connection V¥ on a Riemannian manifold M, the Dirac
operator D acting on the smooth sections C*°(S) of S is, by definition, the operator

D=co#oVS:0%(S) Y0 0T M®8) L 0=(TM® S) S 0(S).

Here, the second arrow # is essentially the musical isomorphism identifying the cotangent
and tangent bundles using the Riemannian metric, and the third arrow ¢ is obtained by
considering the Clifford action of the tangent bundle TM on S. The spin connection V*
is a connection on the Spin(m)-principal bundle associated with S, which is obtained by



lifting the Levi-Civita connection V seen as a connection on the SO(m)-principal bundle
of TM [29].
The calculation of the Levi-Civita connection and the Dirac operator D of the Bianchi
IX metric with a trivial conformal factor,
waws o2 w3wy o ~ W1W2 o

ds® = du? , 2.2
s wiwaws dp” + wr o] + oo o5 + w5 o3 (2.2)

was performed in [16]. The explicit local formula for D, when the 3-dimensional sphere S?

is parametrized by

(1,6,0) = (cos(n/2)e 72 sin(n/2)"#~/2)

with the parameter ranges 0 <7 < 7,0 < ¢ < 27,0 < < 4m, is written as

D = 1/w2w300t77cos¢ A 61/1
1/ COtT]SlIlI/J v? 8¢ 1/ cscnsmw 2 8¢ ,/ cos - 2 3

R — A + — | v
Jwiwows - Op w1w2 41/w1w2w w3
1
2
1

4/ W1WaWs3 1 1
Y ( i 2) SRR (2:3)
wy  Wws

0
- 1
cscncosd} A qﬁ s inty -~y 8

The gamma matrices 79, 4%, +2, 7> are explicitly given by

0040 0 001 000 —i 0010
. loooi ) 0 010 , 00i0 , 0 00-1
T 000”7 T o 100”7 “loioo " T =1000
0400 1000 —i00 0 0100

Since the general form of the Bianchi IX gravitational instantons given by (2.1) involves
a time dependent conformal factor F'(u), after performing calculations for the Levi-Civita
connection and the Dirac operator D of the metric (2.1), we find that:

!

~ 1 3F
D=—=D+— 7Y, (2.4)
VI 4F 2w wows

where D is given by (2.3). The Dirac-Laplacian D? is a Laplace-type operator and iden-
tification of the arithmetic structures hidden in the Seeley-deWitt Coefficients asg,(D?)
associated with D? is the main focus of the present paper.

2.1.1 The heat kernel of the Dirac-Laplacian

We consider the Dirac-Laplacian D? for the 4-dimensional geometry (2.1). The Seeley-
deWitt coefficients as,(D?) appear in the small time heat kernel expansion of this operator.



Namely, as ¢t — 0", the trace of the heat operator exp(—t]jQ) admits an asymptotic
expansion of the from

Trace (exp(—t[)z)) ~ 12 Z aon(D?) 7, (2.5)
n=0

which means that for small ¢ > 0, the trace goes to infinity in a controlled manner: for any
non-negative integer N, we have

N
Trace <exp(—tl~?2)) —t2 Z aon (DA " = OtV 1.
n=0

As we shall explain in more detail, there are densities ag,(z, ﬁQ) d*z on the manifold M,
which can be obtained in theory from the Riemann curvature tensor and its contractions
and covariant derivatives [12, 22], such that

aon(D?) = / agn(z, D?) d*x, n € Zxo. (2.6)
M

Intuitively, this is related to the fact that, long before reaching equilibrium, the diffusion
of heat on a curved manifold depends heavily on the local curvature. Note that this type
of result holds in any dimension. However, we write them for dimension 4 because of the
focus of the present paper on the 4-dimensional Bianchi IX spacetimes.

We now explain how the asymptotic expansion (2.5) can be derived by making use of
parametric pseudodifferential calculus. This is explained in full detail in [22]. The starting
point is the use of the Cauchy integral formula to write

- 1 -
exp(—tD?) = 5 / e~ A(D? — X\)7hd),
Y

where the integration is over a contour « in the complex plane that goes clockwise around
the non-negative real numbers, where the eigenvalues of D? are located. Since D? is
an elliptic differential operator, the operator (l~)2 — A)~! in the integrand can be well
approximated by pseudodifferential operators. The idea is to pass to Fourier modes and to
represent the operator D? by its pseudodifferential symbol 0 p2(x,§). For each coordinate
2 on the manifold and frequency &, the symbol is a 4 x 4 matrix whose entries are complex
numbers. The explicit formula, for any spinor s, is

D2s(z) = (27)2 /R T (2,€) 5(€) '€,

where § is the component-wise Fourier transform of s. Since D? is a differential operator
of order 2, we have 0, (z, &) = pa(x,§) +p1(x, &) +po(z, §), where each py is homogeneous
of order k£ in &. Therefore the approximation of (]_T)2 — A)~! reduces to finding pseudod-
ifferential symbols 7;(z,&, X) of order —2 — j, j = 0,1,2,..., such that the operator Ry
with symbol or, = Z;io rj is the inverse of D? — X in the algebra of pseudodifferential
operators, modulo infinitely smoothing operators. In fact one finds recursively that

To(x7§7)\) = (p2 (3775) _)‘)_17 (27)



and for any n > 1,

al

—)lal
ro(x,€,0) = — (Z (=) 08T (w,€,\) a;;pk(x,g)> ro(z, €, \), (2.8)

with the summations over all 4-tuples of non-negative integers «, and integers 0 < j < n
and 0 < k < 2 with |a] + j + 2 — k = n. More importantly, the densities that integrate to
the Seeley-deWitt coefficients as in (2.6), can be expressed by the formula

ot
aon(z, D?) = 27”,/R‘lfye Atr(rgn(a:,f,)\)) d\d*¢. (2.9)

The integrals in the latter can be calculated in theory using complex analysis and ordinary
integration methods. However, due to the very rapid growth in the length of the expressions
for the r,(x,&, A), even with computer assistance one can only calculate the first few terms.
Moreover, it is nearly impossible to prove conceptual results about the densities in the full
expansion directly from the recursion formula above.

2.1.2 A rationality result for the Seeley-deWitt coefficients

A rationality phenomenon for the coefficients of the heat kernel expansion was first observed
computationally in [8] in the case of Robertson-Walker metrics, and proved rigorously
n [19]. A rigorous rationality result was then proved in [16] for the Bianchi IX metrics of
the form (2.2) (without a conformal factor). The proof for the Bianchi IX case required
the devising of a new method in [16] for calculating the Seeley-deWitt coefficients, which
is based on considering auxiliary flat tori and making use of the Wodzicki residue and its
properties [43, 44]. In this subsection we show that a similar rationality result holds for
the general form of the Bianchi IX gravitational instantons given by (2.1). This rationality
property is a consequence of the symmetries of the Robertson-Walker and the Bianchi
IX metrics, which have the effect of cancelling out (additively) the terms with irrational
coefficients in the calculation of the Seeley-deWitt coefficients. These rationality results
are also a strong indication of existence of richer arithmetically representable structures in
the coefficients. Indeed, the same rationality property for the Robertson-Walker metrics
was shown in [21] to be part of a deeper arithmetic structure formulated as a realization
of the coefficients of the heat kernel expansion as periods of mixed Tate motives. More
importantly, it was shown in [20] that the coefficients of the heat kernel expansion in the
Robertson-Walker case can be written explicitly in terms of Bell polynomials and Brownian
bridge integrals, extending the results of [8]. A motivic interpretation of the coefficients in
the Bianchi IX case is presented in [17].

In order to state the rationality result in the case of Bianchi IX metrics with confor-
mal factor, it is convenient to introduce a notation &s,(u) for the time dependent terms.
These are obtained by integrating each density coefficient agy, (x, Dz) of the Seeley-deWitt
coefficient given by (2.6), where x = (i1, y) with y € S3, over the 3-dimensional sphere:

dign (1) = /SS asn ((u,y),fﬁ) d*y. (2.10)



As we shall mention in the proof of Proposition 2.1, due to the spatial symmetries of the
Bianchi IX metric, ag, ((,u, Y), D2) is independent of y € S® and the above integration just
gives a multiplicative volume factor in the calculation. We now state the rationality result.

Proposition 2.1. For each n =0,1,2,..., the term &a,(1) is of the form
QZn (wh w2, ws, F7 wlla w/27 wéa Fl? s 7w§2n)7w§2n)7 w§2n)7 F<2n)>

F2n(w1,u]2w3)3n71 )

(2.11)

d2n =

where an is a polynomial with rational coefficients, an € Qu, ..., usnta.

Proof. The argument is similar to the proof of Theorem 5.1 in [16], so we only outline its
main steps briefly. One can exploit the SU(2)-invariance of the 1-forms o; appearing in the
metric (2.1) to show that functions of the type (2.9), whose integrals give the Seeley-deWitt
coefficients as,, have no spatial dependence when computed with respect to this metric.
Then, one uses the Wodzicki residue method as in Theorem 4.1 of [16] for the computation
of the heat kernel coefficients, which gives

1

N2\ / 2n+1¢1 74
azn (D7) = W’/S*(qur?n—%tr (a1, —on—s(z,&)) & d*a.

Here A~! denotes the parametrix of the elliptic differential operator
A=D?>@1+1® Aqan—s,

OA-1,_9n—2 is the homogeneous component of its symbol of order —2n—2, and Ag2n-2 is the
flat Laplacian on an auxiliary (2n — 2)-dimensional torus T2"~2 = (R/Z)*""2. Considering
the explicit form of the pseudodifferential symbol of D2, which can be computed from the
symbol for D? of appendix A of [16] and the relation between D? and D? using (2.4), it
can be checked inductively that

(wywawg) =3

Qon = o+l 2n

[ P,

s2n+1

where tr(P»,(¢)) depends polynomially on the variables ¢ = (1. .., Cony2) € S?**! with
coefficients in the algebra over Q generated by trigonometric functions of the spatial coor-
dinates and the functions w,(f), for k € {1,2,3} and ¢ € {0,...,2n}. Using the fact that
the terms do, have no dependence on the spatial S3-coordinates, and the explicit form
in terms of Gamma functions of the integration on S***1 of monomials ¢* - - 5273:227 one
arrives at (2.11). O

It is indeed surprising that only rational numbers occur in the coefficients of the terms
Qiop, expressed as a function of wq, we, w3, I, and their derivatives. Usually such rationality
results point to the existence of an underlying arithmetic structure. In this paper we show
that for the Bianchi IX gravitational instantons the arithmetic structure is related to the
occurrence of modular forms.



2.2 Theta function parameterization of Bianchi IX gravitational instantons

The Bianchi IX gravitational instantons are metrics of the form (2.1) that are self-dual and
Einstein, that is, they satisfy the self-duality of the Weyl tensor and the proportionality
between the Ricci tensor and the metric.

An especially interesting property of these metrics is the fact that the self-duality
and Einstein equations reduce to a classical system of ordinary differential equations with
singularities, the Painlevé VI equation [4, 25, 39]. In turn, solving these equations in
terms of elliptic theta functions [4, 25, 39|, and using the formula for the 7-function of the
Schlesinger equation [27] one obtains explicit parameterizations of the Bianchi IX gravita-
tional instantons in terms of theta functions [4].

The resulting parameterization of [4] of the Bianchi IX gravitational instantons pro-
vides two classes of solutions: a two-parameter family of solutions that correspond to the
case with non-vanishing cosmological constant, and a one-parameter family which gives
the vanishing cosmological constant case.

2.2.1 Two-parameter family of gravitational instantons
We follow the same notation as in [4] for the theta functions with characteristics. Namely,

for p,q,z € C,ip € H, we let

I[p,q)(zip) = D exp (—w(m +p)*p + 2mi(m + p)(z + q)) ,
meZ

Ip, ql(ip) = Ip, d)(z,ip)|==o- (2.12)

We also write

Oa(ip) =9 [;70} (ip) = exp{ -7 (m + ;>2u} = ‘31””@<2”L\w>,

meZ
Dy(ise) = 0[0,0)(im) = 3" exp{—mm?u} = O(0]is),
meZ
Va(ip) =0 [O, ;} (ip) = Z exp{—mm?u + mim} = @(;\z’u), (2.13)
meZ

where ©(z|7) is the Jacobi theta function defined by

O(z|T) = Z eI 2mimz z € C, T e H.
mez

The two-parameter family of solutions of [4] (Bianchi IX gravitational instantons with
non-vanishing cosmological constant A) with parameters p, ¢ € C is obtained by substitut-



ing in the metric (2.1) the functions

d9p, q + 3) (i)

e™PYp, q|(ip)
O9lp+ 5,q+ 35)(in)

e™Py[p, q] (i)
d9lp + 5,4l (ip)

Ip, ql(ip)
. 2 1 2 Ip, q|(ip 2

Fipdlin) = % oGP = o o () @19

2.2.2 One-parameter family of gravitational instantons

wilp,q)(in) = — Ds(ipn) (i)

wlp,ql(in) = 02 (ip)a(ip)

walp,al(in) = —3 920195 in)

The one-parameter family of [4] (Bianchi IX gravitational instantons with vanishing cos-
mological constant) with parameter ¢y € R is obtain by substituting in the metric (2.1)
the functions

1 d d
w i) = + 2— log o (ip), w i) = + 2— log v3(ip),
1[qo] (ipe) o T Zans 2(ip) 2[qo] (ipt) o T Zans 3(ip)
1 d
LN 2% Nog ¥4(ip), Flool(in) = C 2 2.15
wsqo] (i) PR + a8 a(ip) [qo] (ip) (1 =+ qo) (2.15)

where C' is an arbitrary positive constant.

2.2.3 Asymptotics and singularities

It is shown in [30] that the Bianchi IX solutions of the gravitational instanton equations
approximate for large p gravitational instantons of Eguchi-Hanson type with wy # we =
w3, [13]. Moreover, it was already observed in [25] that these manifolds have singularities for
certain special values of p. In terms of the explicit parameterization of [4] the singularities
can occur where at least one of the functions 9[p, q], 949[p, q], 049[p, ¢ + %], 0gV[p + %,q]
and 9,0[p + %, q + 3] vanish.

Since we are looking at the properties of the Seeley-deWitt coefficients &a, (1) given
by (2.10), our arguments will apply as long as p is away from the singularities of the
Bianchi IX gravitational instantons and we work with an interval of values around p which
also does not contain any singularities. We will discuss this more in detail in section 4.
We will see that the modular forms we obtain by working on such a domain then extend
meromorphically.

3 Modular forms and modular action on the Bianchi IX parameters

In this section we provide some background material from the theory of modular forms.
We will also investigate the basic properties of the functions wy, we, w3, F' given by (2.14)
and (2.15) under the action of the modular group PSLy(Z) = SL2(Z)/{+£1} on any i in the
upper half-plane Hl, by linear fractional transformations. Modular forms appear in many
areas of mathematical physics, see [45]. One of their main advantages of modular forms
is that, once the modularity property is detected, one can use algorithms to write them
explicitly in terms of well known modular forms whose properties are well understood [38].

,10,



3.1 Modular forms, Eisenstein series Gs; and the modular discriminant A

This subsection is dedicated to providing from [37] the basic definitions, properties, and
explicit examples of modular forms that we will need in the sequel to present our results.

Consider the action of g = “ Z € SLo(Z)on z€ Hby g2 = (az+b)/(cz+d). For an
c

integer k € Z, a function f : H — C is a modular function of weight 2k if it is meromorphic
and satisfies the condition

F (az + b> — (cz+ d)?* f(2), <CL b> € SLy(Z), z € H. (3.1)

cz+d cd
In order to illuminate the geometric nature of this definition, we point out that, since

ad—bc=1 for g= <a b) € SLy(2),
cd

one has d(g - z)/dz = (cz + d) =2, and one can equivalently write (3.1) as

flg-2)d(g-2)" = f(2)d".
This means that the equation is representing an invariant differential form of weight k.

T = (1 1) and S = (O _1>
01 10

generate SLia(Z), in order to show that a meromorphic function f : H — C is modular of
weight 2k, it suffices to check that

Since the matrices

fz+1) = f(2) and f <—i> =22k f(2), z € H. (3.2)

A modular function is a modular form if it is holomorphic on H and holomorphic at
infinity. The latter needs an explanation. The condition f(z) = f(z+1) in (3.2) is clearly
showing that a modular function is defined by its values on the strip

{z=2x4+1yeC:0<z <1,y >0}

Therefore, using the transformation Q = e?™* = e~?™e?™® any modular function f can

be identified with a meromorphic function f : D* = D\ {0} — C defined on the unit disk
D = {z € C: |z| < 1} with the origin removed, by f(Q) = f(e***). It is customary

2miz - In this context, however, in order to avoid confusion

to use the small letter ¢ for e
with the parameter ¢ used in the two parameter family of gravitational instantons given
by (2.14), we use the capital letter Q for e>™*. Note that Q = e2™* = ¢~ 2™ _ () as
y — 00. Therefore a modular function f is said to be holomorphic at infinity if its associated
function f is holomorphic at Q = 0. This makes it clear how to define meromorhphicity

of f at infinity as well. To summarize, one can say that a modular form of weight 2k is a
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function f : H — C defined on the upper half-plane by a convergent series of the following
form with coefficients a,, € C,

f(z) = ZanQ” = Zane%im, (3.3)
n=0 n=0

that satisfies f(—1/z) = 2% f(2),z € H. A modular form is called a cusp form if ag =
f(oo) = f(O) = 0. We denote the linear space of modular forms of weight 2k by Moy.
Note that the cusp forms of weight 2k form a linear subspace, denoted by Mgk, of Moyy.
In fact, Mgk is the kernel of the linear functional on My that sends any f as in (3.3)
to ag = f(00). Therefore, in general, My = M20k or My, is the direct sum of Mgk and a
1-dimensional linear space. We will indicate shortly that the Eisenstein series (3.4) and the
modular discriminant (3.5) are the explicit tools that one can use to provide a generator
for the remaining 1-dimensional space in My, and to map onto ]\420k7 respectively.

The FEisenstein series Gk, which is defined for any integer £ > 2, is a modular form
of weight 2k and it is given by

1
Gar(z) = Z ) z € H. (3.4)
(m,n)€Z?
(m,n)#(0,0)

It is also known that Gar(co) = 2¢(2k) # 0, where ¢ is the Riemann zeta function ((s) =
>°o¢  1/n, therefore Gay, € Moy \ M3, The modular discriminant is a cusp form of weight
12 and it is given by

A =QJJa-om*, Q="
n=1

or, equivalently by
A(z) = (60G4(2))® — 27 (140G4(2))?, =z e H. (3.5)

Now that we have explained rigorously how the holomorphic and meromorphic be-
havior of the modular functions at infinity are described, we can review a fundamental
formula, called the wvalence formula, which we use crucially in this work. The formula is
quite important for understanding the structure of the modular forms and thereby finding
algorithms for identifying them. Before stating the formula, note that for any meromorphic
function f defined on the upper half-plane H and P € H, we denote the order of zero of f
at P by vp(f). Therefore vp(f) is 0 if f is neither 0 nor has a pole at P, it is the positive
integer equal to the order of 0 if f(P) = 0, and it is the negative integer equal to minus
the order of the pole if f has a pole at P. For a modular function f : H — C of weight 2k,
the valence formula gives an important relation between the order of its zeros (and poles)

2mi/3 on the

and its weight. Due to the special orbifold nature of the points ¢ and p = e
modular curve, the zeros occurring at these two points are singled out from the remaining

zeros (and poles) in the fundamental domain H/PSLy(Z) and counted with the appropriate
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fractional multiplicity. The resulting valence formula for a modular function of weight 2k
is written as

1 1 k
voo(f) + ilf) + gvp(f) + > welf) = % (3.6)
PH/PSLo(2)

Using this formula, one can readily see that there are no modular form of weight 2k
when k is a negative integer and when k£ = 1. Further arguments based on the above facts
yield the following facts. First, for & = 0,2, 3,4, 5, the space My of modular form of weight
2k is 1-dimensional with the basis 1 for k = 0 and Go, for k = 2,3,4,5. Second, for k > 2,
we have My, = Mgk & CGop. Third, multiplication by the modular discriminant A defines
an isomorphism from My to Mgk 412+ Finally, the space My is generated linearly by the
monomials GZ‘Gg where a and [ are non-negative integers such that 4a + 68 = 2k. A
practical advantage that makes modular forms very useful objects is that there are explicit
algorithms for writing them in terms of monomials of the Eisenstein series G4 and Gg.

We end this subsection by providing the definition of a more general type of modular
forms called vector-valued modular forms, which have been the subject of intensive research
because of their appearance and applications in a number of fields [5, 14, 28, 34]. One of the
main results of the present paper is that each Seeley-deWitt coefficient in the expansion of
the spectral action for the Bianchi IX gravitational instantons is a vector-valued modular
function of weight 2. For the general definition one has to consider a representation 7 :
SL2(Z) — GL(V) on a finite dimensional vector space V. A vector-valued modular function
of weight 2k with respect to mp is a meromorphic function f: H — V such that

f (Zjig) = (cz+d)*mo(9)(f(2), 9= (Z Z) €SLy(Z), zeH. (3.7

The function is a vector-valued modular form of weight 2k if it is holomorphic everywhere
including at infinity. In section 5, we will show that the Seeley-deWitt coefficients of
the Bianchi IX gravitational instantons are vector-valued modular forms with respect to
an explicit representation. Note that it is common to use the terminology meromorphic
modular form for modular functions. In this paper, we clearly point to any existing poles
in our functions to avoid any confusion.

3.2 Modular action on the Bianchi IX parameters

In order to investigate the modularity properties of the heat kernel Seeley-deWitt coeffi-
cients awy, given by (2.10), we first need to compute explicitly how the anisotropic scaling
factors w1, we, w3, and the conformal factor F' of the Bianchi IX gravitational instantons
behave under the action of the group SLy(Z) acting on the variable iy in the upper half-
plane H by linear fractional transformations.

3.2.1 The two-parameter family

In the case of the two-parameter family (2.14), the anisotropic scaling factors wg[p, q](in),
k =1,2,3, and the conformal factor F[p,q](in) of the Bianchi IX gravitational instantons
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transform in the following way under the action of the generators 7" and S of the modular
group. We recall that T'(ip) =ip+ 1 and S(ip) = i/p (we are assuming iy € H).

Theorem 3.1. The functions wj[p,q| and F' of (2.14) transform under T as

wilpdllin+ ) = wr [poa-+ o+ | 0. walpdllin+ 1) = wa g+ o+ 5] )
(3.8)

ws[p, q](ip + 1) = wo {p,q+p+;] (ip),  Flpgllin+1)=F [p,q+p+ ﬂ (i),

with their derivatives with respect to p satisfying the same relations. The transformation
under S of the wy, ' and their derivatives is given by

wi(p, q] (;) = pPw3[—q,p|(in),  walp,dq] (;) = pwal—q, p)(ip),

‘ . (3.9)
ws|[p, q| (;) = —pPwi[—q,pl(ip), Flp.q] <;> = —p *Fl—q,p(ip),
and
w) [p, q] > = —ptws[—q, p)(in) — 21 ws[—q, p)(ip)
) = —p'wy[—q,p)(ip) — 2 wa[—q, p)(ips),
(3.10)

> = [~ q, pl(in) + 201 [—q, D) (ip),

g
S ~
=y
7~ N/ N7 NN

T T T T

) = i) - 20 Pl plin)
Proof. The functions J[p, q] are holomorphic in the half-plane R(x) > 0 and satisfy the
transformation properties
oplp.a + 1)(in) = P, ql(in). Op0y9lp.q + (i) = TPI0,0lp. ) (i),
Oulp + 1, q)(ip) = 9;9p, q)(ip), 95,040[p + 1, ] (1p) = 0;,049[p, q](ip).

Moreover, for p a complex number in the right half-plane R(px) > 0, the functions ¥[p, q]

(3.11)

also satisfy

. —T n 1 .
Oolp.al(ip+1) = e PG {p, a+p+ 2} (in).

: —T n 1 :
0p0 . i+ 1) = V90,0 |pg-+p+ 3 G

n i ) . . n-+5—jan—j .
ilp,q (M) = iy Ojlan) 99 g pl(ip),

=0
7 ; - . n+32—jan—j ;
o10,90p,q (H) — S Cjlan + 1)t oI 0,0(—q, pl (i),
=0
where we set (i)t
) —1)"n/!
C(jln) =

27(n — 2j)! - (2
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All these identities follow directly from the explicit expressions (2.12), (2.13), the identity

/df . 627T’L"§I(€ + p)ne—%(§+p)2+2ﬂ'i(f+p)q
27ripq€—7ru(—z—q)2+27rip(—w—q) /dé- . (5 + ’L,UJ(QT i q))ne_;§2

/2] e 0i el
_ 627ripq€—7ru(—a:—q)2+27rip(—z—q) Z i" J:un ‘2 J 77,' : (iL' + q)n—2j'
= 2m)i  (n—24)!- (25)!

and the Poisson summation formula, which gives

— = (m+p)2+2mi(m+p)q

D (mtp)en

meZ
[n/2] n 2j nt+i—j |
27rzpq Bz n 2j —mp(m—q)?>42mip(m—q)
Z 27T (n—25)! ! Z m=q) ¢ )-

We recall that the Poisson summation formula asserts that the sum on the integral lattice
of the values of any rapidly decaying function is equal to the sum of the values of its Fourier

transform on the lattice.
For example, in the case of the last identity above one has

oo 19[ ,q] <Z> — Qi(_l)nﬂ_n+1 Z(m+p)2n+1 ) e—ﬁ(m+p) +27i(m+p)
a meZ
— 2mipg 2n+*—j _.( 1)n<2n+1>| 2 (—1)"I gr—i+1
Z” (1) e YT

x 37 (m — q)2n=i)+1 g=mtm—+2xip(m—a)

meZ
\2n+1
27rzpq§ : on+3 —j ) (2n+1) n—j .
e 2n +1-25)!- (2])”6“ Opl=a.pl(in)

2P Z C(j|2n + 1)M2n+%_j82_j8p19[_q7p} (ip).
=0

The other cases are similar. We also see that the functions o, 93,94, of (2.13) satisfy the

transformation rules
s (ipt + 1) = €T O (i ords (L) = 3™ iy s -ionso,i
L 02(ip+ 1) = e 4 902 (ip), w2 | = C(j2n)p® 2T T4 (ip),
J=0

o9 (ia + 1) = O (in), ) S Cl2n)u g 0y i),

. e " i . om0
Osin+1) = PIs(in),  On0s (M) = S C(2mP s i).
=0

,15,



We then obtain

0y9p, q + 5)(in+1)
e™J[p, q)(ip + 1)

e ™I, g + 5 + p + 5(in)
e~ emirg[p, q + p + 3] (ip)

wilp, q|(ip+1) = —%193(2# + D)4 (ip +1)

= — 105(in)Pa(in)

1

= wp [p,q+p+ 2} (ip),

b ()40 () ()

dg9[—q + 3,1) <w)>

1
2 . .
= p° | —5Us(ip)V2(ip :
( 3 V) )
= pPws[—q,p)(ip).
The remaining cases are analogous and the relations for the derivatives are obtained
directly by differentiating with respect to pu. ]

3.2.2 The one-parameter family

The argument for the one parameter case is analogous. The resulting transformation
relations for the anisotropic scaling factors wy, k = 1,2,3, the conformal factor F', and
their derivatives are as follows.

Proposition 3.1. The functions wi[qo], k = 1,2,3, and Flqo] transform under T as

w1 [qo] (ip + 1) = wi[go — i](ip), walgo](ip + 1) = wslgo — i|(in), (3.12)
ws[qo] (i + 1) = wa[qo — 1] (i),  Flgol(ip + 1) = Flgo — i](in). l

The derivatives with respect to u satisfy the same transformation relation. The transfor-
mation under S is given by

wila] () = =sa | | ), o] (£) = e |

wnla (%) =~ | G, Pl () = au?r | =] i)

(3.13)

with derivatives transforming as

)| }(i)— ! {1} (ip) + 20w {1} (i), wil ](i)— ! [1} (ip) + 20w [1} (i)
1(10’u—,u 3q0 K MBqO ), 2(1011—,u 2q0 H quo M),
’ Z / 1 . ‘ 1 . / Z _ / 1 .

wifa (£) =t || sz | 2. ol (£) =P | L. a9)

4 TIsospectral Dirac operators and modularity

Using the transformation properties of the functions wi, wo, w3, F' under the generators S
and T' of SLa(Z), and explicit computation of the first two coefficients &g and &z of the
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heat kernel expansion, we first identify the modularity property that the as, are expected
to satisfy. We then prove it by a comparison of the Dirac operators and an isospectrality
argument, which again relies directly on the transformation properties of the wy, wo, ws, F,
which were discussed in section 3.2.

4.1 Modularity of the volume term &y and the scalar curvature term as

We compute here explicitly the transformation of the first two heat kernel Seeley-deWitt
coefficients &gy and as of the Bianchi IX gravitational instantons under the action of the
generators 1" and S of the modular group.

Lemma 4.1. For an arbitrary Bianchi IX metric of the form (2.1), the first two Seeley-
deWitt coefficients ao(p) and do(p) introduced by (2.10) are given by

5(0 = 4F2w1w2w3, (41)
5 F F(ww? — w2 w?w? —w?  wiw? — w?
g = —— w%+w§+w§ + — ! 22 ! 32 2 32 !
3 6 w4 wh wy
F [ ww. whw- whw- F/w —w, ws F'2 1
D (Wt Wy Wols ) LWy Wy W3\ ST, g (4.2)
3 wi1w9 wi1ws Woaws 3 w1 w9 ws 2F

Proof. These coefficients can be computed directly using either the parametrix method
explained in section 2.1.1 or the method based on the Wodzicki residue which we elaborated
on in section 2.1.2. The result is well known: the &g term is the volume form and the &g
term is the Einstein-Hilbert action. ]

The a4 coefficient, which contains the Gauss-Bonnet and Weyl curvature terms, can
also be computed explicitly, but the resulting expression is lengthier, so we do not report
it here.

Proposition 4.1. In the case of the two-parameter family of Bianchi IX gravitational
instantons, the coefficients &g and &y of (4.1) and (4.2) transform under the generators
T(ip) =ip+ 1 and S(ip) =i/ of the modular group as

Golpalie+ 1) = o a4+ 3| i), (4.9)

aolp, d <M> — aol—q,pl(in), (d)

Galp.al(ie 1) = a4+ 3| i), (45)
dalpa] () = ~sdal-aupltn). (4.6)

for u a complex number in the right half-plane R(p) > 0. Similarly, in the one-parameter
- 1]
) = —qou’do [] (in),
40

) = qop’ay [qﬂ (ipa).

case the transformation under T and S is given by

olao] (ip + 1) = Golo — 11(ip), Giolao <

T Tl

aolao) (i + 1) = anlao — il (in), s lao] <
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Proof. The relations (3.8) and (3.12) are satisfied by the derivatives w,(gn) and F(") with
respect to p of arbitrary order n > 0. Explicit transformation relations under S can be
computed for the derivatives w,(gn) and F( directly by differentiation. For the second
derivatives we have, for the two-parameter and the one-parameter cases, respectively

wy [p, q] <u> = pOwy [—q, pl(ip) + 61 wy[—q, p)(ip) + 6ptws[—q, p](ip),

wlp.q (M) — (i [, (i) + 6% unl—a, l(in) + 6utunl—g, p)(in), .

wilpnal (&) = ~suil-a.pln) — 00wl -, pln) — Sutunl-.plG).

F'[p,q] <;> = — 12 F[=q,pl(ip) + 2uF [—q, p)(ip) — 2F[—q, p](ips),

and o o o

wilan) (1) == | ) = onsy | - o) ot | ] i)
wy g0 <;> = —pSw, qlo (i) — 61wy qlo (ip) — 64" wy qlo (i), (4.8)
wilao (1) = =i | L] 60wt | | ) - ot | L] i,

while in the one-parameter case the second derivative of I’ is constant. Similar explicit
computation of the transformation relations under S up to the fourth derivative can be
done by direct calculations.

Using (3.8), (3.12), (3.9), (3.13), (3.10), (3.14), (4.7) and (4.8) in the expressions (4.1)
and (4.2) we find the transformation relations listed in the statement of this proposition.
For example, for the transformation of &s[p, ¢] under S we find:

aalpal (£) = fﬂ‘qgj’“”‘)(w%[—q,p]um+w%[—q,p1<w>+w§[—q,p1<w>)

(w —q,p) (ip)ws[—q,p](ip) +w%[—q,p](w)w%[—q,p](iu)

wi[- ](w) — wila.pl(in)
L wil=a, ]([w ;]%([Wq),p](w)> Fl- Z,p](w)< 2[[ ]](('))
e o ) ¥ (s
+2w2[[ ](( )+2w1[ ]](%)>+2F[—q,p](w>
T R O &7 7 v e s
e ﬁ et} ot (el
i+ i) ) 47 sl
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PP [=q,p)(ip) (wi[=q,pl(ip) | wyl—q,pl(in)  wi[—q,p](ip)
3 (wg[—q,pwm T wa—apllm) wl[—q,pm))

P g (i [ 20al=apIin) | 2wsl—g,pl(ip) | 2w [—qp](ip)

HEa.pl ‘”( wsl—a. i) |+ wal—apl (i) T wil—g.p](i) )

, F2[—q.pl(ip) 5, .
—6F[—q,p|(ip)+ RIS 1F < Al e O —q,p|(i
[—q.pl(ip) +p T [—a,p)(in)
= —pPaa[—q,p)(ip).
The other cases are obtained in a similar way. O

A lengthier computation confirms that, in the two-parameter case, the term a4 also
satisfies the same transformation relations as &y and ao, while in the one-parameter case

it satisfies d[qo] (i + 1) = dulgo — i)(ip) and aylqo](i/pn) = —p2aall/qo](ip).
4.2 Isospectrality of the Dirac operators under the modular action

The result of Proposition 4.1 suggests the modularity property that we should expect to
hold for each term o, in the full expansion of the heat kernel. In principle, one could
analyze inductively the Seeley-deWitt coefficients &s,, using (2.9), (2.7) and (2.8), but
such an approach would be computationally cumbersome and less transparent in meaning.
We use a different method, based on comparing directly the Dirac-Laplacians D? [p, ql,
D2[p, q+p+ %] and D?[—q, p], for the two-parameter case, and the Dirac-Laplacians D?[qp),
D?[qo — i] and —q621~72[qi0] for the one-parameter case.

Given two points a, b in the upper half-plane H with R(b) > R(a) and (a) = I(b),
let I(qyp) denote the straight horizontal path with endpoints a,b. Consider the manifold
M =TIy X S3. Let D be the Dirac operator for a general Bianchi IX metric (2.1) acting
on the spinor bundle S restricted to M = I(43) x S3. Let y(v) = vHn,, with n, the inward

normal. The boundary chirality operator x on S|gys defined by

Vh
X = —?6“’”%%%,

with v/A the volume element on dM, satisfies v5 = x(v), with x2 = 1 and xv5 +5x =0
and determines local elliptic boundary conditions B = %(1 F X), see [9, 18, 42]. The
Dirac operator D with a boundary condition B as above has discrete real spectrum {An},
unbounded above and below, and an orthonormal basis of eigenspinors u,, = u, (i, n, ¢, 1),
with u, € C*(S), for the L?-completion of the space of u € C°°(S) with B(u|gy) = 0 and
B((Du)|anr) = 0, see [18] for an elementary proof based on the Weitzenbéck formula, which
does not require pseudodifferential arguments, or [7] for a proof based on pseudodifferential
calculus.

The use of APS boundary conditions also leads to the aforementioned properties of
the Dirac operator and Dirac-Laplacian. However, the local elliptic boundary conditions
determined by boundary chirality operators are more suitable for applications to spectral
action models of gravity, see [9], hence it is more natural in our setting to use those.

We can then compare the spectral decomposition of the Dirac-Laplacians bz[ .q),
bZ[p, q+p+ %] and DQ[—q,p}. For this two-parametric family of metrics, suppose
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Un (1, m, @, 1) is a section of the spin bundle S on M, satisfying the boundary condition B
as above, such that

D[pv Q]un(:uv 7, G, ¢) = )\nun(ﬂv n, G, ¢)

For simplicity, we suppress writing the dependence of u,, on the spatial coordinates 7, ¢,
and 1 on S3, since those will not be directly affected by the transformations we consider,
and we assume it understood.

Theorem 4.1. For fized (p,q), consider a choice of a,b € H as above, such that the
horizontal paths I(qp), I(atipri) and 1(1 do not contain any singularities of the Bianchi

IX metrics (2.14) with parameters (p, q), (p, q—l—p—{—§) and (—q,p). We write M = I, ) xS3,
My = Iigyipis X S?, and Mg = Ii11) X S3. The operators D?[p,q], D*[p,q+ p+ 3] and
_ ’ b’a

D?[—q,p|, with the boundary conditions B described above, are isospectral on the spinor

bundles over M, My and Mg, respectively.

Proof. We show that, under the transformations (p, q) — (p, q—i—p—l—%) and (p,q) — (—q,p),
an eigenspinor u, (1) corresponding to a particular eigenvalue A [p, q] of D?[p, q] transforms
as up(p) = up(p — 1) and u, () — —fyoun(%), respectively. The spatial dependence of w,,
is invariant, hence we do not write it explicitly. These transformations of the eigenspinors
define a bijection between the spaces of eigenspinors of the corresponding operators.
Using the transformations (3.9) and (3.10) of the functions wg[p, ¢](in) and Fp, q] (i)
under the modular generator S in the explicit expression (2.4) for the Dirac operator, we see
that, if u, (1) is a section of the spin bundle S on M that is an eigenspinor D[p, qlt, = Antn
for D[p, q] with eigenvalue ), then the spinor —'youn(i) is an eigenspinor of —D[—g, p] on
Mg, with the same eigenvalue \,,. Conversely, the same transformation of the Dirac opera-
tors shows that if u,(x) is an eigenspinor of —D[—gq, p|] with eigenvalue A, then the spinor
’youn(%) is an eigenspinor of D[p, q] with the same eigenvalue \,, hence there is a bijection
An — —Ap between the eigenvalues of D[p, ] and those of —D[—g, p]. Since the eigenspinors
of D? are exactly the eigenspinors of D with the corresponding eigenvalues squared, it fol-
lows that D2[p, q] and D?[—q,p| are isospectral. This can be seen by explicitly by writing

(—ﬁ[—q,p] (—Voun (;) >) |u=po=
(o ()i (1)

1

Nl=

(o2 (o (2

. (FLp,q]u;)ZzlL; (21(&)) 3@,(,](;0))—27% 0, < O <;>) -
_Cosw(ﬂ (= >z::2[[ ,Z]f( 0)) alp.al (= >>2V 0a, ( o (;»'
L mn_(ﬂz», a(E >z:21[;q]]<( >)w3[p G >> iwm( o (i))'—
e <F[ ,qKM)Z{[ ,ﬁ}((;;))wd ,quz;,))% 020, (_70% (i)) -
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+«Ds¢ann-<FT’”(w)wﬂ’QKﬂﬁ“B[’““w>>%yfyqﬂap(—ywhl(;))|u_w

o al ()
7°7?7°8y (—Woun (;)) lu=so

(F[p ) (i walpal (55 )wslp,a)(55)
F s w1 2 2
< Pl )wn gl (o @dgg) Wﬁw%<fﬁmgﬁ)nﬂo

+siny cotn-

v
|
[

walpra) ()
walp,)(+)

_wslrallg) |y wlralp) o wibal) s gF i) o
1 wslpdl(Gs) Mo walpd(Gh) ko wilpadl(Gs)  Ho T Flpal(G5) HOVO(—O (1))
Ho

Flp.a)(5)wrlp.a) (5)wslp,a) (5 )wslp.al(5) )

+<m@d<>w@m<>wﬂﬂmp>?< I S )
Flp.ql() a5 wBlpal(E)  wdlpal(E)

1 1
x 77 (—Woun ())
Ho

B

= —° (D[p,Q]un(M)) =t =An (‘70“71 (;)) lu=po -

In a similar way, using the transformation (3.8) of wg[p, ¢|(in) and Fp, ¢](ip) under
the modular generator 7' in the expression (2.4) for the Dirac operator, we see that, if
D(p, qtin, = Ay, then

~ 1 ) .
D [t 5|l i) = Al =),

which implies that the operators [)Z[p, qg+p+ %] and DQ[ ,q] are also isospectral. Finally,
it is easy to see that the transformations wu,(u) — wu,(p + i) and w,(p) — 'youn(i)
are two-sided inverses of the two eigenspinor transformations considered above, so the

eigenspinor transformations are indeed bijections between the sets of eigenspinors. ]

In the case of the one-parameter family of Bianchi IX gravitational instantons we have
a similar result.

Theorem 4.2. For the one-parameter family of metrics characterized by qo, the operators
D?[qo), D?*[q0 — i, —Q()_2D2[q%] are 1sospectral.

Proof. The argument is similar to the two-parameter case, using the transforma-
tions (3.12), (3.13), and (3.14) in the expression (2.4) of the Dirac operator. O

4.3 Modularity of the heat kernel and the Seeley-deWitt coefficients as,

The heat kernel K; of the operator exp (—tDQ) can be written as a sum that involves its
eigenvalues and their corresponding eigenspinors. Thus, it follows immediately from The-
orem 4.1 that the heat kernel for the Bianchi IX gravitational instantons with parameters
(p, q) satisfies modular transformation properties. More precisely, we have the following
result, where again we write explicitly only the dependence on the p-coordinate and we
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suppress the dependence on the spatial coordinates in S3. We use the same notation M,
My, and Mg for the manifolds considered in Theorem 4.1.

Proposition 4.2. In the case of the two-parameter family of Bianchi IX gravitational
instantons, the heat kernel K;[p,q|(ipy1,iu2) of the operator D?[p,q] satisfies the modular
transformations

. . 1y, .
Kt[paQ](Z:ul + 1,1#2—’-1) — Kt |:paq+p+ 2:| (lula““LZ)v

) s £ N )

Proof. Recall that the defining equation for the heat kernel is
[ Kilpalisnins (o) = e o),
M

for any eigenspinor w, (i) of D?[p,q] on M. As a result, for (ju1, u2) € My x My, we have
(Nl—i,ﬂQ—i) € MXMa 50

e_tAE“UJn(/JJl - Z) = / Kt[pa Q] (llul + 1’ ZMQ + 1)un(lu’2 - 7’) deZ(:U’Q - 7’)
M

= Kilp, q)(ip1 + 1,ipo 4+ 1)uy (2 — i) dvol (ps),
M~

where w,(u — i) is the general form of an eigenspinor of DQ[]% q+p+ %] acting on M,
according to Theorem 4.1. Similarly, for (u1, us) € Mg x Mg, we have (-, L) € M x M, so

P’ p2
ot (_,youn <1>> _ —yoe*M%un (1>
M1 2
- () (o () e (2
M 1 2 H2 H2
1 1 1 1
= / <— — Ki[p, q] (—.,—.> ) (—voun <>> dvol(p2),
Mg /12 1 tH2 H2
1

where (—’youn(p)) is the general form of an eigenspinor of DQ[—q, p] acting on Mg accord-

ing to Theorem 4.1. Thus, we see that Ki[p, q](iu1+1,ipu2+1) and —ﬁKt[ , q}(—lﬂ%, _w%)
2

satisfy the defining equations of Ki[p,q + p + %](i,ul,i,uz) and K;[—q,p|(ip1,ip2) respec-

tively. The uniqueness of the heat kernel then implies that the modularity relations in the

statement are satisfied. ]

Having established the modular transformation properties for the heat kernel Ky[p, ¢,
we can now show that all of the Seeley-deWitt coefficients &a, [p, ¢] inherit the same trans-
formation properties.

Before stating the next theorem we recall from section 3.1 the notation vp(f) for the
order of the zero of a function f at a point P (which is an integer).
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Theorem 4.3. For the two-parameter family of Bianchi IX gravitational instantons, and
for any non-negative integer n, the Seeley-de Witt coefficients of the Dirac-Laplacian heat
kernel satisfy

- . - 11 . N l 9~ .
Gl 1) = [+ 3] 0 b (1) = sl
Moreover, with Q = 2™(i) — =271y hape

vp(Gznlp, 4(Q)) = vp(Kilp, q(Q)),

where
Kilp, q)(Q) = /S o {Kalp,al (i i)} dool’

In particular, all the Seeley-de Witt coefficients have the same zeros and poles with the same
orders in H.

Proof. The Seeley-deWitt coefficients &gy, [p, ¢](ip) are uniquely determined by the asymp-
totic expansion

Kilp, q)(Q) ~ 72 danlp, g (Q)t",
n=0

or equivalently,

/3 tr{ K¢[p, q)(ip,ipe) } dvol® ~ t72 Z aonlp, ql(ip)t".

S n=0

Thus, using Proposition 4.2, we have

1
/ tr{Kt[p, q)ip+ 1,ip + 1)} dvol® = / tr{Kt [p, qg+p+ 2] (i,u,i,u)} dvol®.
S3 S3

Since the left and the right hand side of the latter have the following small time asymptotic
expansions respectively,

o0 o0
_ - . _ - 1.
72> Goulp.q(ip+ D", 2 Gan [p,q+p+ 2] (ip)t",
n=0 n=0
it follows from the uniqueness of the asymptotic expansion that

1

Qon(p, q)(ip + 1) = agy [p, q+p+ 2} (ip), n € Z>o.

Also, in a similar manner, we can write

forf v (<) ot~ S ()¢
~ (i [ (Kl plGi i)y dvor

~ Y (ip)?don g, PI(i)t",

n=0
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which implies that

- { 2~ .
nlpa] (L) = Pam-a i), neZon
If v is the order of zero in @ of the function K¢[p, ¢](Q) at Qo, then

Qli}m (Q QO) UKt[p’ Q](Q) = Ct[pa Q]v

for t € (0,1) and some finite Cy[p,q] # 0. On the other hand, the asymptotic expansion
means that for any integer k there is some N (k) such that

N (k)

Kilp, q)(Q —tQZOQn[Pq t"

< Cyt*, 0<t<l.

00,k

See sections 1.1 and 1.7 of [22] for the latter inequality and the definition of the norm
| Joo,k- So it follows that

mn

Gonlpr (@) = — T (2K, [p, (@),

n! o+ dt”

where the convergence is uniform. Consequently, suppose that

lim (Q — Qo) ™" dznp, dl(Q) = Culp.dl,

Q—Q
for some finite C,+[p,q] # 0. Then we can switch the order of the two limits below and
obtain

Cnlp,q] = th (@ — Qo)™ azalp, 4)(Q))
=Lt tim L (20— Qo) Kilp. (@)

n! Q—Qo t—0+ dt™ H

L lin 2 (2l Jim @- Q0
= im 1m no.

n! =0+ di® tp-q 0
As a result, for Cy[p,q] to be finite and nonzero, we need to have v, = v, which proves
that the Seeley-deWitt coefficients have the same zeros and poles of the same orders. [

The case of the one-parameter family of Bianchi IX gravitational instantons can be
approached similarly, using Theorem 4.2. We obtain the following modularity property for
the Seeley-deWitt coefficients.

Theorem 4.4. For the one-parameter family of Bianchi IX gravitational instantons, and
for any non-negative integer n, the Seeley-de Witt coefficients of the heat kernel expansion
of the Dirac-Laplacian satisfy

Gsalao] i1+ 1) = Ganla — (i),
Gernlo] (;) (g %uﬂoen[;j (in).
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Proof. Since the operators D?[qq], D?[qo — i] and —anﬁQ[q%] are isospectral by Theo-
rem 4.2, they have the same small time heat kernel expansions. Namely, for all non-negative
integers n we have

~ n_4-—2n ~ 1 ~ .
donlqo] = (—1)"ga " agn [qJ = aon[qo — 1.

Therefore, for arbitrary real numbers a and b, such that the interval (a, b) does not contain
any singularity of the metric, we have

[ v = / a1 || (4)

b

_ / " au. <(—1)”+1u‘2QS2nd2" [qlo] <;>>

b+
- /* d(p+ i) - danlao — (i + )

b
— [ dn- Gaalan = (s~ D).

This show that

- . 9 4 op~ 1 { - /e
Ganlao)(ips) = (— 1)~ 2g4 2, [q] (M) — Gianlao — (i — 1),
which is equivalent to the statement of this theorem. ]

5 Modular forms in the full expansion of the spectral action

In order to properly interpret the modularity conditions for the Seeley-deWitt coefficients
aonlp, q)(1) and afgo)(p) of Theorem 4.3 and 4.4, we show here that, for rational values
of the parameters (p,q) the Seeley-deWitt coefficients aoy,[p, q] give rise to vector-valued
modular functions, in the sense of [14].

We then show that, by summation over a finite orbit of the parameters, these vector-
valued modular functions give rise to ordinary modular functions, and we investigate their
relation to well known modular forms. In particular, we discuss two specific examples, one
with poles at infinity and the other with no poles at infinity, where the modular functions
corresponding to the Seeley-deWitt coefficients belong to the space of modular forms of
weight 14 and to the cusp forms of weight 18, respectively.

5.1 The Seeley-deWitt coefficients as vector-valued modular forms

The following lemma shows the periodicity of all Seeley-deWitt coefficients aoy,[p, g in
both of the parameters of the metric with period 1. This is a crucial step for showing
that each as, is defining a vector-valued modular form with respect to a finite dimensional
representation of the group SLo(Z). More importantly, it also allows one to construct
ordinary modular functions from each &ay,[p, ¢], which can then be related to well known
modular forms.
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Lemma 5.1. For any non-negative integer n and any parameters (p,q) of the Bianchi IX
gravitational instantons we have

aonlp + 1, 4] = aonlp, ¢ + 1] = aanlp, ql.

Proof. We know from the explicit form of the metric (2.14) and the transformations (3.11)
that all the involved functions are invariant under p — p+ 1, so the periodicity in p follows
trivially. In addition, we have

' i ¥ p, q + 3] (i)
wy [p7 q + 1] (Z,"L) = —5193 (Z/,L)ﬁ4 (ZN) 627Tipiﬂ-ip79[pa q]Q(zH)

~> 0,00 + b.q + 3](in)

= w1[p, q(ip),

walp. -+ 1)) = (i) gt L 2B — i),
_e2mip 1 i
wnlpoq-+ 1)) = 3 0a(in) i)~ ol 2L il i),

2 < 2™ PY[p, q](ip)

2
WiA 6271'1'176(119[ ’q](zu)> = F[p, q](/LM)'

Flp,q+1)(ip) =
Consequently, we see from the equations above that the metric (2.1), for the two-parameter
family of Bianchi IX gravitational instantons is invariant under ¢ — g+ 1, so the periodicity
in ¢ also follows. O

Consider the action of SLy(Z) on the set of pairs (p,q) € [0,1)? = (R/Z)? generated
by
S(p,q) = (—a,p), mod 77,

1
T(p,q) = (p,q+p+ 2) mod Z°.

(5.1)

For (p,q) € Q2N [0,1)? there is a common multiple N of 2 and the denominators of p and
q, such that the orbit O, oy of (p, ¢) under the action of SLa(Z) consists of those pairs (p, )
with p,qg € N =1{0,2/N,...,(N —1)/N}. Namely,

O(pg) CN? C[0,1)%

Thus, the orbit O, is finite, with any element of SLy(Z) acting as a permutation on
O(p,q)- We can now show that each Seeley-deWitt coefficient is a vector-valued modular
function as in the definition given by (3.7).

Theorem 5.1. Let (p,q) be a pair in Q* N [0,1)2. For any non-negative integer n, the
Seeley-deWitt coefficient aon[p', ¢'](ip), with (p',q') € O q), determines a vector-valued
modular function of weight 2 for the representation of SLa(Z) on the finite dimensional
vector space of complex-valued functions on the finite set Oy, ), induced by (5.1).

Proof. Since the orbit O, 4 is finite in this case, we can arrange the functions aan [p', ¢'](in)

with (p/,q') € O(p,q) Into a finite column vector Aoy, (iu; O( )> of some dimension d. Since

P,
any M € SLy(Z) acts as a permutation on O, ), we may denote by p : Sq = GL(p,C)
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the natural permutation representation of Sy which acts on As, <z',u; O(pg)) by permuting
its components in the corresponding way. The statement of Theorem 4.3 can then be

“ b) € SLy(Z), as

rephrased as the transformation of this vector by any M = ( J
c

Ao (M - (i12); O ) ) = (elige) + d)* Gan [M - (p, )] (i)
= (clim) + )" p(M) - (Aoal(p. 0))(in)

where on the left-hand-side M is acting on ¢u by linear fractional transformations and on
the right-hand-side M is acting on the parameters (p,q) according to the representation
of (5.1). Therefore, by definition, &a,[p,¢](ip) is a vector-valued modular function of
weight 2. ]

Since the orbit is finite for a rational choice of parameters, by a summation over the
orbit we obtain ordinary modular functions as follows. Recall that modular forms of weight
2 are meromorphic differentials on H/PSLy(Z). As we will discuss more in detail below,
the modular forms we obtain in this way are indeed meromorphic and we provide more
information later about their zeros and poles.

Corollary 5.1. For any pair of rational number (p,q), and any non-negative integer n,
the sum
aon (i1 0pg)) = > daalp,d(ip)
(p/vq/)eo(p,q)

is a modular function of weight 2 for the modular group PSLo(Z).

Proof. Summing the components of the column vector As, (z',u; O(pyq)) in Theorem 5.1, we
find that the sum o, (i,u; O(p,q)) satisfies

Qiop (M(le’)v O(p,q)) = Z (C i+ d)2d2n [M(p/, q/)] (Z:U’)
(p,aq,)eo(p,q)

ST (eriptd) e[, ¢)(in)
(p/’q/)eo(p,q)

= (c-ip+d)aa (i1; Opg));

for any M € PSLy(Z) which acts on the variable ip as a linear fractional transformation,
and on (p, q) as defined previously. OJ

In the following we refer to the functions oy, (ip; Oy q)) as averaged Seeley-de Witt

coefficients.

5.2 Zeros and poles of the modular Seeley-deWitt coefficients

We have seen in Corollary 5.1 that, when the parameters (p, q) of the metric are rational,
each aoy, (i,u; O(WJ)) satisfies the transformation properties of a modular function of weight
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2. Since there are no non-trivial holomorphic modular forms of weight 2, it is necessary
for o, (z',u; O(p,q)) to have poles in the variable ip.

By Theorem 4.3, in order to find the locations and multiplicities of the zeros of
aonlp, q](ip), it is enough for us to investigate the poles of aglp, q](in), and the result
would apply to all &ay,[p, ¢](ip). Recall that

dolp, q) = 4F*wiwows
2 V393039(p, q10,9[p. ¢ + 510,90 + 5,0+ 510,9[p + 5. d]
m2A? (9,9[p, q])*

Since all the theta functions and theta derivatives are holomorphic for i € H, the singu-
larities of
Qop (’L:ua O(p,q)) = Z Q2n [p,7 q,} (Z/'L)
(plaql)eo(p,q)

may appear only at the zeros of the function J,9[p, ¢](ip). In addition, because of the
modular properties, it would be enough for us to look for poles in the fundamental domain
H/PSL2(Z) and at infinity.

Consequently, in principle, we only need to know the locations and multiplicities of
the zeros of 9,9[p, ¢|(ip) in order to figure out the space of modular forms that can be con-
structed from aoy, (iu; O(p,q)) by removing the poles. So we proceed by proving the following
lemmas concerning the zeros of ¥[p, q](iu) and 9,9[p, q](ip) with parameters (p, q) € [0, 1)2.

Lemma 5.2. For the order of zero at infinity of the functions 02,93, 9(p, ql, 049[p, q|, we
have:
(p)?

vl = g0 vm0) = () =0, v (lpia) = B

+oo ifp=0,q€{0,3},
+oo ifp=73,4=0,
: ifp=0,q¢{0,3},

2
% otherwise,

Voo (aqﬁ[pv Q]) =

).

N[ —

where (p) is the number (p) = p mod 1 such that (p) € [—3,
Proof. This follows directly from the leading order terms in (2.12) and its ¢ derivative. [

Lemma 5.2 can be used to obtain information about the order of zero of aglp,q| at
infinity as follows.

Corollary 5.2. For (p,q) € {(0,0), (0, 3),(3,0),(3,3)} we have

ol =|p- 320 it p 20

'Uoo(&()[ 7Q]) =-1 if p=0.
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Proof. Both of the above statements can be proved by the substitution of the identities
given in Lemma 5.2 into the formula

Voo (Q0[Ps q]) = 2000 (92) + 2000 (93) + 2000 (94) + Voo (I[P, q]) + Voo [p + %’ q}

1 1 1
+Uoo |:p+ 27C]+2] +UOO |:p’q+ 2:| *41)00[29,(]],

where we used the notation v [p, q] for v (949p, q]) for simplicity. This gives

Voo (G0[p, q)) = (0)* + (p + %)2 + %(p>2 = 'p —~ ;’ >0, if p#0

1 1 1 1
Uoo(do[p,q]):*—FQXg—{— 4)(52—1, lf pZO

4 2

O

Since we already used the simpler notation v [p, q| for v (949[p, ¢]) for simplicity,

in the sequel as well, we will write vp[p, q] to denote the order of zero of the function
049[p, q|(ip) at a point P = ip in H. We now have the following result.

Lemma 5.3. Let n be the number of points in the orbit O, o) where O, o # {(3,3)} and
Otp,q) # 1(0,0), (3,0),(0,3)}. Then n is necessarily even. Moreover, the orders v;[p, q|
satisfy the equation

1 I 1 ro * o\ N no
Z <2vi[p7Q]+3vp[p,q]+ Z vplp',q'] =15 5
(#",4")€0 ;¢ PEH/PSL2(Z)

where p = e%, ng is the number of points (p',q') € Oy q) such that p' =0, and the starred
summation excludes the points v and p.

Proof. First notice that if (p,q) and (—p, —q) correspond to the same point in [0, 1)? then
we have p = —pmod 1 and ¢ = —¢ mod 1, i.e., p = 0 mod % and ¢ = 0 mod % Thus, in
[0,1)2 the only possibility is that

oefon(62)-(2) (:4))

Thus, if O(p,q) # {(%7%)} and O(p,q) # {(070)7(%>0)a(07%)}7 then (p, Q) and (—p, _Q)
correspond to different points in [0,1)2.

Also if (p',¢') € O, 4, then (—¢',p') € Op4 and thus (—p',—¢') € Op4. Thus, when
O # {(3.3)} and O, # {(0,0),(3,0),(0,1)}, for any (p'.¢') € O,y there is a
partner (—p',—¢') # (p',¢') in [0,1)? that is also in the orbit. It is evident that only
identical points in [0,1)? can have the same partner, so it follows that in this case n is
necessarily even.

Using the transformation rules for J[p, ¢] and 939[p, | as in the proof of Theorem 3.1,
we obtain

9gV[p, a)(ip+1) _ 949Ip, gl (in) 99, dl(=5) . 9,9[p, q(ip)
Jlp, q)(ip +1) Ilp, ql(ip) Op, al(—7,)

= —il - .
L I, al(in)
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Then the function

. 00 lp. al(ip)
fan =11 5, aw

(p:Q) E(9(;n,q)

transforms like

1

Fnt1) = flm),  f <M) — (1)) i) = (i) (i),

where n is an even number, hence, f(iu) is a modular function of weight n. Therefore
using the valence formula (3.6) we can write

voolF) + gl + 3o+ 3 wp(f) =

2 3 12
PeH/PSLo(Z)

Recall that the zeros of J[p, q](ip) satisfy the equation

L )iptg— k=0
P=3 pta—g

$.3), Y[p,q)(ip) does not have any zeros (or

for some m, k € Z. So, for any real (p,q) # (
poles) in H. Moreover, notice that the theta functions and the theta derivatives are all
holomorphic in ip € H. So it follows that the function f(ix) has no pole away from infinity,
and for P € H we have exactly vp(f) = E(p’,q’)eo(p,q) vp[p', ¢'], with vp[p’,¢'] > 0 at any

P in the fundamental domain. At infinity, we know from Lemma 5.2 that

)= D (erld) - vl )

(plfq/)eo(p,q)
= > (vl ) - v D)
(plfql)eo(p,q)

p'#0

3 (orl0,d) - s (900,0))

(0,4)€0p,q)
_ )? @) 1O
= 2 (2 “ 2 )7 2 2 2
(p/vq/)eo(p,q) (O’q/)GO(Pa‘Z)

p'#0
_ o
= 3

where ng is the number of points in the orbit whose first coordinates are zero, p’ = 0.
Finally it follows from the valence formula for f that

1 /o 1 A, * ;o n no
> <2’Ui[Paq]+3%[p,q]+ Y. wrldl) =5 -5
(#",4")€0p,q) PEH/PSLy(Z)
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Corollary 5.3. Let n and ng be defined as in Lemma 5.3. Then, we have n > 6ng, and

the equality holds if and only if 0,9[p, q|(ip) has no zeros in the upper half-plane for any
(p,q) in the orbit.

Proof. This follows directly from the non-negativity of vp[p, q]. O

When n is small, for instance when n = ng, one can solve for all the vp[p’, ¢] by simple
arithmetic arguments. For example, when n = 8, one has

Z <;U¢[p/, q/] + é%[ﬁla q/] + Z* Up[p/7q/]) _ %
(r",4")€O0,q) PEH/PSLy(Z)

Thus, since ao[p’,¢'] = ao[—p', —¢'], we have vp[p',q'] = vp[—p', —¢'] where (p/,q’) and

(—p', —¢') correspond to different points in [0, 1)2. Therefore, the only non-negative solution

is given by v,[po, qo]= vp[—Ppo, —qo] = 1 for some (po, q0) € O q), and vp[p', ¢'] = 0 for any

other P in the fundamental domain and (p', ¢") € O, 4). We discuss some explicit examples

that can be described in terms of well known modular forms in the next subsection.

5.3 Averaged Seeley-deWitt coefficients expressed by well known modular
forms

Consider the orbit generated by (p,q) = (0, %), which consists of

ou={(3) () G () (0) (4 () (o) (20
EEDEDEEICDED 0
(2)-(40) 62)-(2).62) (1)}

For this case we have the following statement.

Theorem 5.2. For any non-negative integer n, the averaged Seeley-de Witt coefficient
Qo (iu; (’)(0%)) is in the one-dimensional space spanned by Gi4(ipn)/A(ip), where Gy is
the Fisenstein series of weight 14 introduced by (3.4) and A is the modular discriminant
given by (3.5).

Proof. From the orbit above one observes that n = 24 = 6ng, hence Corollary 5.3 shows
that 0,9[p, ¢](ip) has no zeros in the upper half-plane H, for any (p, g) in the orbit. There-
fore, ag (z’,u; 0(07 1 )), hence also @y, (i,u; (’)(07 1 )), are holomorphic on H as we have previously
argued. Moreover, either by Corollary 5.2 or by direct inspection of the ()-expansion in
Q = e 7™ we see that g (i,u; (’)(0’%)) has a simple pole at infinity, that is, at Q = 0.
Since the modular discriminant A has a zero of order 1 at iy = oo, it follows that
Aip) - o (ip; (’)(0%)) is a modular function holomorphic on H as well as at ip = oo.
Namely, A(ip) - ap (i,u; (9(0,%)) is a modular form of weight 12 + 2 = 14. Since the space of
modular forms of weight 14 is a one-dimensional space generated by the Eisenstein series
(14, the result follows. ]

— 31 —



In this example, we can also compute the Q-expansions explicitly for the first few
averaged coefficients, and we see that we indeed have

4—1 171950080
Go (i O 1) = —3Q7" +262512Q + 250 Q% + 3457199880Q° + - - -
0\ 215 (075) 7T3A2
6081075 Gha(ip)
TTA2 A(ip)
Q1 —262512Q — 1TIB0080 )2 3457199880Q° + - - -

82 O 1)) = A
6081075 Ga(ip)
T aBA A(ip)
o —%Qfl + 87?04Q+ 343990016Q2 +230479992Q3 4.
aua (ip; O(o,é)) = 170
405405  G14(ip)
a3 A

We consider then the case of the orbit generated by (p,q) = (%, %) consisting of the 8
points

o . Ly (51N 55\ (5 1\ 15y 15y [1 1y (11
G~ 1\2°6/)'\6°2)'\6°6)'\66) \226)\66) \62)\66)

In this case, the statement is as follows, where G denotes the Eisenstein series of weight
6.

Theorem 5.3. For any non-negative integer n, oy, (m; (’)(; §)) 15 in the one-dimensional
6’6

space spanned by A(ip)Ge(ip)/Ga(ip)t.

Proof. Since O( 15) has 8 points, we know from our analysis following Corollary 5.3 that
Vp[Po, @] = vpl—po, —qo] = 1 for some (po,qo) € (9(; 5y, and vp[p,q] = 0 for any other

P in the fundamental domain, with (p,q) € (9( ) 6?16 observes from the explicit orbit

15
that (£p, £q) cannot be identified with any ofﬁ(; + %,q), (p+ %,q + %), or (p,q+ %) in
[0,1)2, so it follows that the simple zero of 9,9[+po, £qo](ip) at iu = p is not cancelled
by possible zeros of 9,0[£p + 1, £qo), OgV[E£p + 5, g+ 3], or 9I[£p, £¢q + 3] in the numer-
ator of a[+po, £qolo(ip). As a result, a factor of (9,9[£po, £qo])* in the denominator of
ao[£po, £qo)(ip) implies that the ao[£po, £qo](ip) have simple poles of order 4 at p, and
this is their only singularity, including iu = co. Moreover, arguing as in Theorem 5.2,
this implies that dop, (i; O 15 )) is meromorphic on H U {oco} with only a pole of order 4
at iy = p. Recall that the Eisenstein series G4(ip) is a modular form of weight 4 with a
simple zero at iy = p, hence the function

Qop (ilﬁ O(%,g)) : G4(iﬂ)4

is modular of weight 2 +4 x 4 = 18, and holomorphic on HU {oo}, hence it is in the space

of modular forms of weight 18. In addition, we can see from the explicit Q)-expansion of

Qo (z',u; O(% %)) that the function ao, (i,u; O(; ;)) has a simple zero at Q = 0, hence the
) 676
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function dgn(w; O(é,%)) - Gy(ip) has a zero of order 1 +4 x 0 = 1 at @ = 0. Namely,
Qan (iu; (9(%7%)) -Gy (ip) is a cusp form of weight 18. Since the space of cusp forms of weight
18 is generated by A - Gg, we see that da, (iu; O(p’q)) is contained in the one-dimensional
space generated by

A(ip)Ge(ip)
Ga(ip)!

O

In this case also we can compute the explicit Q-expansion as we find that indeed for
the first three averaged Seeley-deWitt coefficients we have

o —294912Q + 438829056Q2 — 315542863872Q° + - - -
O‘U(W?O(%%)) - T3A2
11468877 A(ip)Ge(ip)
© 337502 Galip)®
294912Q — 438829056Q 4 315542863872Q° + - - -
A
1146887°  A(ip)Ge(ip)
3376A  Ga(ip)?
—270336Q + 402259968Q2 — 289247625216Q° + - - -

Ga(in; O1 ) = =y
_315392x't A(ip)G(ip)
B 50625 Ga(ip)*

6 Conclusions

Unlike the round metric of the Robertson-Walker spacetimes, the Bianchi IX metrics are
only left-invariant under the action of SU(2) but not right-invariant. This SU(2) symmetry
is encoded in the invariant 1-forms of (2.1). We have shown that this SU(2) symmetry of
the Bianchi IX gravity models provides the ground for the existence of arithmetic structures
in the resulting spectral model of gravity, which can be identified explicitly with mathe-
matical methods. More precisely, we have taken the rationality phenomenon presented in
Proposition 2.1, which is due to the symmetries, as a first strong indication of the pres-
ence of deeper arithmetic structures hidden in the Seeley-deWitt coefficients of the small
time heat kernel expansions for these geometries. We have then identified explicitly this
arithmetic structure by showing that all the Seeley-deWitt coefficients associated with the
Dirac-Laplacian of Bianchi IX gravitational instantons are vector valued modular forms.
By studying their zeros and poles we have illustrated how they are related to well known
modular forms.

We should stress that in general it is formidable to have explicit formulas for the
Seeley-deWitt coefficients beyond the first few terms [1, 3, 22, 40, 42], as it is quite difficult
to keep pace with the rapid growth in complexity of the terms. However, by exploiting
the fact that the solutions of the Bianchi IX instantons are given by theta functions, as
written in section 2.2 from [4], we have used the action of the modular group and thereby
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the theory of modular forms to obtain conceptual results about the structure of the full
heat kernel expansion for the Dirac-Laplacian of the instantons. A crucial step in our work
was to perform lengthy calculations with the explicit formulas for the first few terms in
the expansion, which are computable, to identify the existing modular properties. We then
sought to identify a conceptual reason for the observed modularity, and we proved that it
holds because of the isospectrality of the Dirac operators of the metrics related by the action
of the modular group on the parameters defining the family of instantons. With this method
we proved modularity of all the Seeley-deWitt coefficients in the expansion. Different areas
of mathematics and physics are familiar with this type of extraordinary performance of
modular forms in identification of the structure of complicated expressions [45], as modular
forms typically live in low dimensional vector spaces, and there are explicit algorithms for
relating them to well understood modular forms [38].

Part of the motivation for the results described in this paper about the heat kernel of
the Dirac-Laplacian on the Bianchi IX gravitational instantons comes from the construction
of models of Euclidean gravity based on the spectral action functional [10]. This approach
extends to noncommutative spaces and was used to construct models of gravity coupled to
matter, as well as for applications to cosmological models, see [12, 32] for an overview. The
spectral action functional is defined as a regularized trace of the Dirac operator, where the
regularization is given by a smooth approximation f to a cutoff function on the real line,

Trace(f(D/A)),

and A is an energy scale. It is shown in [10] that the spectral action has an asymptotic
expansion for large A of the form

Trace(f(D/A)) ~ > fsA’ ][ D=7 + £(0)¢p(0) + - -, (6.1)

pell

where the terms in the expansion are associated to poles (3 of the zeta function (p(s) of the
Dirac operator, and a more general family of associated zeta functions, and the coefficients
in each term depend on the momenta of the test function f and on the residues of the zeta
function. Mellin transform, in turn, relates these residues to the Seeley-deWitt coefficients
of the heat kernel of the Dirac-Laplacian.

The spectral action can be regarded as the action functional of a modified gravity
model, since the leading terms of its asymptotic expansion recover the usual Einstein-
Hilbert action for gravity with cosmological constant, as well as additional higher derivative
terms such as conformal gravity (Weyl curvature) and Gauss-Bonnet gravity. More pre-
cisely, when written non-perturbatively as Trace(f(D/A)) the spectral action is viewed as
a functional on a configuration space of Dirac operators D, and a corresponding functional
integral should be taken over this space of possible Dirac geometries. When seen per-
turbatively through the asymptotic expansion obtained from the heat kernel, one sees the
individual coefficients as higher derivative correction terms to the classical action functional
of general relativity. The results obtained in this paper on the Seeley-deWitt coefficients of
the Bianchi IX gravitational instantons being vector-valued modular forms translate into
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an analogous statement for the terms in the asymptotic expansion of the spectral action
functional on these geometries. The presence of arithmetic structures in spectral models
of gravity is observed in [17, 21] from a different point of view, where the coefficients of
the heat kernel expansion (hence those of the spectral action functional) are expressed in
terms of periods of mixed Tate motives. This type of result is in a sense analogous to the
well known occurrence of motives and periods in the asymptotic expansions of perturbative
quantum field theory, see [33] for an overview. The results of the present paper show that
arithmetic structures are also present in the form of modular forms in the spectral action
of the Bianchi IX gravitational instantons.

Finally, we mention that considering the approach to quantum gravity based on the
Wick rotation and thereby the heat kernel expansion in the realm of elliptic operators
(cf. [2]), our results have important implications in gravity and cosmology models, which
will be discussed elsewhere (see section 1.1 for a brief outline). Also, the geometries con-
sidered in the present article are especially interesting for a theory of Euclidean quantum
gravity and quantum cosmology because they provide the minisuperspace model approxi-
mation in Hartle-Hawking gravity, see [15].
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