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Abstract

The Oligocene to Present Wrangell Volcanic Belt (WVB) extends for ~500 km
across south-central Alaska (USA) into Canada at a volcanic arc-transform junction.
Previously, geochemistry documented mantle wedge and slab-edge melting in
<12 Ma WVB volcanic rocks; new geochemistry shows that the same processes
characterized ~18-30 Ma WVB magmatism in Alaska. New “°Ar/2?Ar ages demon-
strate that WVB magmatism in Alaska initiated at ~30 Ma due to flat-slab subduc-
tion of the Yakutat microplate and that the dextral Totschunda fault was active at
this time. Our results, together with prior studies, show that Alaskan WVB magma-
tism occurred chiefly due to subduction and should be considered a volcanic arc
(e.g. the Wrangell Arc). The WVB provides a long-term geological record of subduc-
tion, strike-slip and magmatism. Slab-edge upwelling, flat-slab defocused fluid-flux
and faults acting as magma conduits are likely responsible for the exceptionally large

1 | INTRODUCTION

Along convergent margins, volcanic arc-transform junctions are com-
mon (Kamchatka, Park etal., 2002; Central America, Tibaldi,
Pasquareé, & Tormey, 2010; etc.) and present a temporal record of
both variations in the relative position of the leading front of the
slab and translation of the upper plate along strike-slip faults (Porty-
nagin et al., 2005). These slab-edge magmatic systems range from
“typical” calcalkaline arc affinities to alkaline magmatism associated
with upwelling asthenosphere along slab edges/slab windows and
“leaky” strike-slip faults (e.g. Maury et al., 2004). In these settings,
the geochemistry of erupted magmas depends in part on proximity
to subduction-related mantle wedge melting, intra-arc extension,
proximity to intra-arc strike-slip faults, variations in mantle source
(e.g. subduction modified vs. unmodified) (Maury et al.,, 2004) and
slab edges/windows (Thorkelson, Madsen, & Sluggett, 2011).
Flat-slab subduction occurs along ~10% of modern convergent
margins (Gutscher, Maury, Eissen, & Bourdon, 2000) and is often
associated with subduction of thick oceanic crust and broad zones
of deformation (Gutscher, Spakman, Bijwaard, & Engdahl, 2000).

volcanoes and high eruption rates of the Wrangell Arc.

There is no characteristic style of volcanism associated with flat-slab
subduction. In central Mexico, there is an active continental arc
~800 km inboard of the trench that migrated ~100's km inboard dur-
ing the Miocene (Ferrari, Orozco-Esquivel, Manea, & Manea, 2012),
whereas in Peru, Miocene flat-slab subduction has led to the almost
complete shutting off of arc magmatism (Bishop et al., 2017). Fur-
thermore, flat-slab subduction adds a potential increased role for
slab-edge melt as a contributor to the geochemistry of arc-transform
systems (Portnyagin & Manea, 2008; Portynagin et al., 2005), espe-
cially along transforms and slab windows (Yogodzinski et al., 2001).
The Oligocene to Present Wrangell Volcanic Belt (WVB) (Richter
et al., 1990), Alaska (USA), provides a potentially exceptional long-
term record (e.g. since its inception) of the geochemical and eruptive
flux evolution of an arc-transform magmatic belt located along the
corner of a subducting flat slab (Figure 1). The duration, petrogenesis
and tectonic affinity of earliest WVB volcanism is unclear, owing
mainly to the lack of studies from older volcanoes exposed in the
spatial transition between <12 Ma WVB volcanoes (Preece & Hart,
2004; Trop, Hart, Snyder, & Idleman, 2012) and ~18-13 Ma volca-

noes in adjacent parts of Canada (Figure 1) attributed to “leaky”
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transform magmatism (Skulski, Francis, & Ludden, 1992). Further-
more, recent geophysical imaging does not define a clearly imaged
deep (e.g. >100 km) subducting slab under the WVB (Martin-Short,
Allen, & Bastow, 2016), even though many large extinct, dormant
and active volcanoes are present (Richter, Rosenkrans, & Steiger-
wald, 1995). These geophysical results, coupled with the aforemen-
tioned lack of geochronological/geochemical data across a significant
portion of the central WVB, lead to a lack of clarity on the tectonic

setting responsible for the WVB, and this is the focus of our study.

2 | BACKGROUND

The northern Pacific plate margin is characterized by a west-to-east
transition from normal subduction to flat-slab subduction to trans-
form tectonics (Haeussler, 2008). In the western region, subduction
of the Pacific oceanic plate produces a well-defined trench, moder-
ately dipping Benioff zone that reaches depths of 100-150 km
within ~400 km of the trench and active volcanism in the Aleutian
arc. The central region is distinguished by sparse active volcanism
and a shallowly dipping Benioff zone produced by flat-slab

in Fig. 1

P Wrangell arc (Alaska)

subduction of thickened Eocene oceanic crust (e.g. oceanic plateau)
referred to as the Yakutat microplate (Finzel, Trop, Ridgway, &
Enkelmann, 2011). Presently subducting northwestward, the “flat”
slab extends for ~250 km northwestward beneath Alaska at a sub-
duction angle of ~6° before reaching a depth of 150 km more than
600 km inboard of the trench (Figure 1; Eberhart-Phillips et al.,
2006).

The central WVB (Figure 1), the focus of our research, is adja-
cent to the Yukon and marked by active volcanism, shallow seismic-
ity (< ~50 km; Stephens, Fogleman, Lahr, & Page, 1984) and right-
lateral displacement along the Denali, Totschunda/Duke River and
Fairweather faults (Benowitz et al., 2011; Haeussler, 2008; McAleer,
Spotila, Enkelmann, & Berger, 2009). Limited geochronological data
indicated that WVB magmatism initiated at ~26 Ma due to subduc-
tion of the Yakutat microplate (Richter et al, 1990). Geophysical
analyses reveal a progressive west-to-east increase in the angle of
subduction from 11° to 16° south of the WVB near the St. Elias
Mountains and project the depth to the top of the subducting slab
at ~80 km beneath the WVB (Bauer, Pavlis, & Landes, 2014).

The WVB extends >500 km across eastern Alaska, northwestern
British Columbia and southwestern Yukon Territory, and includes

A Wrangell arc volcano (<5 Ma)

I Wrangell volcanic belt (Canada) @ ~22-29 Ma Wrangell arc intrusives

Yakutat microplate

————T Yakutat-NA suture

FIGURE 1 Map of southern Alaska and western Yukon, Canada depicting major tectonomagmatic features and central Wrangell volcanic
belt (WVB) study area. TF, Totschunda fault. SCVF, ~18-30 Ma Sonya Creek volcanic field. <5 Ma Wrangell arc volcanoes: B, Mt. Blackburn;
C, Capital Mountain; Ch, Mt. Churchill; D, Mt. Drum; J, Mt. Jarvis; S, Mt. Sanford; Sk, Skookum Creek volcanic centre; E, Euchre Mountain; T,
Tanada Peak; W, Mt. Wrangell. Yukon volcanic fields: AC, Alsek; NC, Nines Creek; SC, St. Clare Creek; St, Stanley Creek. The St. Clare Creek
volcanic field hosts lavas that have both arc and non-arc geochemical affinities (Skulski et al., 1992). Upper inset is cartoon cross-section
depicting Yakutat microplate subduction and Wrangell arc magmatism, as well as strike-slip motion on the Totschunda Fault, after Richter et al.
(1995). Based on the crustal thickness, velocity structure, shallow subduction angle and deformational response, the Yakutat microplate is
interpreted as an oceanic plateau (Worthington et al., 2012). BC on lower left inset map is British Columbia, Canada. Yakutat plate velocity
from Elliot, Larsen, Freymueller, and Motyka (2010) [Colour figure can be viewed at wileyonlinelibrary.com]
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Fraction of 39 Ar released

ice-capped Quaternary volcanoes, which are some of the tallest and
largest continental volcanoes and largest andesitic shield volcanoes
on Earth (e.g. Mts. Sanford, Wrangell, Churchill) (Richter et al., 1995).
The physiographic volcanic arc component consists of elliptical vol-
canic fields populated with shield volcanoes and stratovolcanoes
(Richter et al., 1995), which characterize other arc-transform junc-
tions (e.g. Kamchatka, Park et al., 2002), as well as lavas, domes,

pyroclastic deposits, calderas, cinder cones and volcaniclastic strata.

Preece and Hart (2004) documented three geochemical types in
<~5 Ma western WVB volcanic rocks: trend 1 calcalkaline to tholei-
itic-transitional suite related to intra-arc extension; trend 2a calcalka-
line suite that represents the largest volume of erupted magmas;
trend 2b calcalkaline adakitic suite found only along the front-side of
the active arc, formed by melting of the Yakutat slab.

In Canada, volumetrically smaller volcanic centres and strike-slip

basins are concentrated along the >300-km-long Duke River
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FIGURE 3 Probability Density Function plots of (a) new and (b)
published ages from the Alaskan Wrangell arc and (c) Yukon
Wrangell volcanic belt volcanic and plutonic rocks (e.g. lavas, tuffs,
shallow intrusive rocks and plutons). See Supporting Information
Table DR1 for data locations and references. (d) Summary plot
showing data from A-C. Note the apparent gap in Alaska volcanism
from ~18 to 13 Ma, as magmatism shifted southeast into Canada
[Colour figure can be viewed at wileyonlinelibrary.com]

segment of the Denali fault system (Figure 1; Skulski et al., 1992).
Less than 20 km east of the Alaska—Yukon border (St. Clare Creek;
Figure 1), Skulski etal. (1992) documented geochemistries in
>~16 Ma WVB lavas attributable to both strike-slip and subduction-
related processes at the arc-transform junction. Alkaline magmas
reflect asthenospheric mantle sources not affected by subduction
that erupted along “leaky” strike-slip faults and transtensional basins,
whereas magmas with transitional to calcalkaline chemistries resulted
from an increased role of subduction-related arc magmatism and

intraplate extension (Skulski et al., 1992).

3 | RESULTS AND DISCUSSION

3.1 | Age constraints on Wrangell Arc magmatism

Here, we present 30 new “°Ar/*°Ar ages of WVB lavas, tuffs and
intrusions and one dikelet sample intruding Totschunda fault gouge
(Figures 2 and 3; Supporting Information Tables DR1 and DR2 in
the Data Repository; refer to Data Repository for methods). These
samples come from outcrops in the northern Wrangell Mountains,
including the Sonya Creek volcanic field (Figure 1). The Sonya
Creek volcanic field is critical in understanding WVB magmatism
because it is where the earliest previously dated WVB rock origi-
nated (~26 Ma; Richter et al., 1990) and that age has been inter-
preted to represent the initiation of the WVB. Our new results
range from 2.2 + 0.1 to 29.7 + 0.5 Ma (Figures 2 and 3; Supporting
Information Table DR1). The ~18-30 Ma ages are all from samples
in the Sonya Creek region or within ~90 km northwest (Figure 1).
These include a ~29.7 Ma feldspar from a dikelet injected into fault
gouge along the Totschunda fault, which we interpret to represent
fluid flow at ~30 Ma into an existing and active fault zone. These
new data demonstrate WVB magmatism initiated at least at
~30 Ma, several million years earlier than previously recognized,
and show that ~18-30 Ma WVB magmatism extended across a
region presently spanning ~100 km, larger than the ~20-35 km
wide Sonya Creek volcanic field as formerly recognized (Richter et
al., 1990).

3.2 | Geochemical constraints on Wrangell Arc
magmatism

We present here 94 new bulk rock major and trace element analyses
(Supporting Information Table DR3), which include 29 of the newly
dated samples (all but the dikelet). These new data, combined with
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FIGURE 4 a3, Volcanic rock classification of Wrangell arc (western and central Wrangell volcanic belt in Alaska) and Wrangell volcanic belt
(eastern Wrangell volcanic belt in the Yukon) rocks from this study and prior work (Preece & Hart, 2004; Skulski et al., 1992; Trop et al., 2012)
(Le Bas, Le Maitre, Streckeiser, & Zanettin, 1986). B: basalt; BA; basaltic andesite; A: andesite; D: dacite; R: rhyolite; TB: trachybasalt; BTA:
basaltic trachyandesite; TA: trachyandesite; TD: trachydacite. Notice the higher alkali concentrations of Yukon rocks relative to Alaskan rocks.
b, AFM diagram illustrating primarily calcalkaline nature of Alaskan rocks and more tholeiitic nature of Yukon rocks [Colour figure can be
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FIGURE 5 a, Nb vs. La. Alaskan samples plot primarily in the “arc” field, with higher La at a given Nb concentration, consistent with
subduction enrichment. This diagram also shows the more intraplate character of the Yukon samples (e.g. more Nb-rich at a given La
concentration). b, Nb/Yb vs. Th/Yb. Both Alaskan and Yukon samples fall on an array of increasing Th/Yb, with little to no increase in Nb/Yb.
Light orange field is Wrangell Mountains region Triassic Nikolai Greenstone lavas (Greene, Scoates, & Weis, 2008) and light blue field is
Cretaceous Chisana arc lavas (Barker et al., 1994). Both of these older units crop out among the sampled igneous rocks and represent possible
crustal contaminants for WVB magmas. Legend as in Figure3 [Colour figure can be viewed at wileyonlinelibrary.com]

other published results, allow us to examine the geochemistry of WVB
igneous products in the context of the entire duration of magmatism.
Foundational in models of how volcanic arcs interact with major
strike-slip faults is establishing that volcanism is truly due to subduc-
tion. Nye (1983), Preece and Hart (2004) and Trop et al. (2012) estab-
lished that < ~12 Ma WVB volcanism in Alaska was arc-related;
however, only a handful of geochemical samples are reported from
the >12 Ma Alaska WVB (Richter, Ratté, Leeman, & Menzies, 2000),

so its tectonic environment is ambiguous. Moreover, studies have
implicated other processes for WVB volcanism such as slab windows
(Thorkelson et al., 2011) and “leaky” transform faults (Skulski et al.,
1992). Figure 4 illustrates the bulk major element chemistry of WVB
bedrock samples, and all samples except the alkaline rocks from the
Yukon overlap in space and are transitional to subalkaline, and calcal-
kaline (Figure 4). Figure 5 plots Nb vs. La and Nb/Yb vs. Th/Yb for

WVB rocks. La enrichment and Nb depletion are characteristic of arc
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adakite field, while dashed orange line depicts rocks that are
“typical” calcalkaline mantle wedge melts, in subduction zones. The
Alaskan samples with high Sr/Y and La/Yb are adakite-like and are
interpreted as slab-edge melts (Preece & Hart, 2004; this study).
Legend as in Figure3 [Colour figure can be viewed at wileyonlinelib
rary.com]

magmas formed via melting of a subduction-affected mantle wedge
(Pearce & Peate, 1995). Alaskan WVB lavas define a volcanic arc array
in Figure 5a, while WVB samples from the Yukon have an intraplate
geochemical signature. These same relations are illustrated in Fig-
ure 5b; Alaskan WVB rocks have Nb/Yb and Th/Yb values that mostly
plot above the MORB-OIB array. Rocks that form via melting of a
subduction-affected mantle wedge extend to higher Th/Yb depending
on the degree of subduction enrichment. Th/Yb can also increase via
interaction with continental crust; however, Th/Yb of local Wrangellia
Terrane crust (e.g. Triassic Nikolai Greenstone and Cretaceous arc
lavas) that WVB lavas could have interacted with cannot explain the
range of Th/Yb displayed by WVB lavas (Figure 5b); interaction with
Cretaceous crust could only cause some of the within-suite increase.
Sr/Y vs. Y and La/Yb vs. Yb (Figure 6) illustrate the presence of ada-
kite-like chemistries in the WVB eruptive sequence (e.g. <1 Ma rocks
from Mt. Drum and Churchill; Preece & Hart, (2004), and newly col-
lected ~18-30 Ma rocks from the central WVB, this study). We docu-
mented ~18-30 Ma adakite-like rocks only from the Sonya Creek
volcanic field and similarly aged shallow intrusive rocks that crop out
to the northwest (Figure 1). Overall, the chemical variations of WVB
rocks are consistent with the hypothesis that Yukon WVB magmas
formed via a different melting regime (e.g. slab window/intraplate and
mantle source less affected by subduction; Thorkelson et al., 2011)
than Alaskan WVB volcanism. The chemical characteristics of Alaskan
WVB rocks, which indicate a subduction origin, also agree with their
mineralogy (e.g. andesites dominated by amphiboles and two-pyrox-
ene mineral assemblages).

In shallow-slab settings, defocused fluid-flux over a wide areal
extent leads to low degree mantle wedge melting, as opposed to

melting of a constricted mantle wedge in a “typical” subduction zone

(Carr, Feigenson, & Bennett, 1990). This results in cumulatively large
magma volume(s) (Carr et al., 1990; Kelley et al., 2010) and presum-
ably large volcanoes. Furthermore, ample evidence exists that a deep
(e.g. >100 km) depth to slab is not needed for mantle wedge melting
and arc volcanism (England & Katz, 2010; Syracuse & Abers, 2006);
thus, even though the WVB is underlain by the shallow-dipping Yaku-
tat slab, mantle wedge melting can occur. Adakite-like chemistries
have only been reported from Alaskan WVB samples; thus we agree
with interpretations of Preece and Hart (2004) and Jadamec and Bil-
len (2010) that WVB adakites represent slab-edge melting generated
by mantle flow around and adjacent to the subducting Yakutat micro-
plate. The leading corners of flat slabs are also conducive environ-
ments for long-lived arc magmatism due to the nature of the edge of
an expansive planar surface and dip angle. Enhanced upwelling along
the edge of the Yakutat slab, coupled with regional transtension asso-
ciated with the major strike-slip faults that favours enhanced volcan-
ism (e.g. Acocella & Funiciello, 2010), as well as the defocused fluid-
flux over a shallow slab, likely accounts for the large size and volume
of WVB volcanoes. The north-south orientation of normal faults
among central WVB eruptive centres and intra-arc basins is consistent
with transtensional deformation along the northwest-striking
Totschunda-Fairweather fault system (Trop et al., 2012).

The Alaskan segment of the WVB represents a type of volcanic
arc that may be under recognized in the geological record, namely
one where the “classic” view of a volcanic arc formed by subduction
forms a hundreds of kilometers long arcuate chain of potentially coe-
val volcanoes (Grove, Till, & Krawczynski, 2012). This difference, as
well as the diversity of geochemical compositions erupted from
large, hazardous WVB volcanoes, directly reflects the unique geody-
namic setting in this part of North America, where subduction zone
magmatism and mantle wedge melting occur in conjunction with
dynamic shallow-slab subduction and upper plate translation along
continental-scale strike-slip faults at an arc-transform junction. Simi-
lar arc-transform magmatic belts are likely present in the more
deformed, deeper time record (e.g. Wang et al., 2009), but are not
easily recognized without similar high-resolution sampling and geo-

chemical/geochronological examination.

4 | CONCLUSIONS

Our results from unstudied, expansive >12 Ma volcanic outcrops in
the central WVB, coupled with prior datasets and younger volcanic
products examined during our study, and the spatial association of
large, hazardous volcanoes above a geophysically imaged north-dip-
ping shallow subducting slab, are best attributed to subduction-
related processes and show that this part of Alaska has been
affected by subduction-related magmatism for the last ~30 Ma,
when the WVB initiated. The present study extends in time and
space the conclusions of previous studies that <12 Ma WVB mag-
matism occurred chiefly due to subduction and indicates that the
WA has been located at the leading edge of a flat slab since at least
~30 Ma. Stern (2016) defines arc magmatism as that which “occurs
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at straight or curved alignments of discrete volcano-plutonic com-
plexes that form above a subduction zone, where oceanic material...
is recycled into Earth's mantle.” The entirety of the Alaskan side of
the WVB fully satisfies these geological criteria and should be con-
sidered an arc, here named the Wrangell Arc (WA). We acknowledge
there are volcanic products on the Canadian edge of the WVB that
have arc affinity, which deserve further study.

New geochemical and geochronological data, coupled with prior
studies, demonstrate that (a) continuous magmatism occurred
throughout the ~30 Ma duration of the WA; (b) melting of a mantle
wedge affected by slab-derived components led to arc volcanism in
Alaska over this entire ~30 Ma duration, while mildly alkaline mag-
matism was focused in the Yukon from ~18 to 13 Ma; (c) fluid-flux
from a shallow slab, slab-edge upwelling and transtensional deforma-
tion were likely responsible for the exceptionally large size and erup-
tion rates of the WA; (d) the petrotectonic history of the WVB
provides a framework to identify arc-transform magmatic belts in the
geological record; (e) the leading corners of flat slabs are conducive
environments for long-lived arc magmatism although the eruptive

centres may be laterally shuffled by strike-slip faults.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Figure DR1. “°Ar/*’Ar muscovite age spectra, Ca/K and CI/K ratios
for the new bedrock samples. Steps filled in grey were used for pla-
teau and weighted average age determinations. Steps filled in red
were used for isochron age determinations.

Table DR1. Compilation of new and recently published (Milde, 2014)
bedrock “°Ar/*Ar Wrangell Arc ages.

Table DR2. Detailed whole rock and feldspar laser step heat data for
“OAr/%° Ar geochronology.

Table DR3. Major and trace element geochemistry. Major elements

reported raw in wt. % and trace elements in ppm.
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