
Lazy Determinism for Faster Deterministic
Multithreading

Timothy Merri�eld
VMware Inc.

timothym@vmware.com

Sepideh Roghanchi
University of Illinois at Chicago

srogha2@uic.edu

Joseph Devietti
University of Pennsylvania
devie�i@cis.upenn.edu

Jakob Eriksson
University of Illinois at Chicago

jakob@uic.edu

Abstract
Deterministic multithreading (DMT) fundamentally requires
total, deterministic ordering of synchronization operations
on each synchronization variable, i.e. a partial ordering over
all synchronization operations. In practice, prior DMT sys-
tems totally order all synchronization operations, regardless
of synchronization variable; the result is severe performance
degradation for highly concurrent applications using�ne-
grained synchronization.
Motivated by this class of programs, we propose lazy de-

terminism as a way to go beyond this total order bottleneck.
Lazy determinism executes synchronization operations spec-
ulatively, and enforces determinism by subsequently validat-
ing the resulting order of operations. If an ordering violation
is detected, part of the computation is restarted. By enforcing
only the partial ordering required to guarantee determinism,
lazy determinism increases the available parallelism during
deterministic execution.

We implement L���D�� via a pure-software runtime sys-
tem accelerated by custom Linux kernel support. Our ex-
periments with hash table benchmarks from Synchrobench
show roughly an order of magnitude improvement in the
performance of lock-based data structures compared to the
state of the art in eager determinism. For benchmarks from
PARSEC-2, SPLASH-2, and Phoenix, we demonstrate run-
time improvements of up to 2⇥ on the programs that chal-
lenge deterministic execution environments the most.

CCS Concepts • Software and its engineering → Mul-
tithreading; Concurrency control.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the� rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
h�ps://doi.org/10.1145/3297858.3304047

Keywords determinism, multi-threading, speculative exe-
cution, performance

ACM Reference Format:
Timothy Merri�eld, Sepideh Roghanchi, Joseph Devietti, and Jakob
Eriksson. 2019. Lazy Determinism for Faster Deterministic Multi-
threading. In 2019 Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’19), April 13–17, 2019, Providence,
RI, USA. ACM, New York, NY, USA, 13 pages. h�ps://doi.org/10.
1145/3297858.3304047

1 Introduction
Many of today’s computer systems are inherently nondeter-
ministic. Due to timing e�ects, the order of operations in
concurrent programs is not well de�ned. This means that
even for a bug-free program, the output of the program may
vary between executions, given identical input. Determin-
istic Multithreading (DMT) systems promise signi�cantly
reduced complexity for programmers writing multithreaded
code. With shared memory communication and synchroniza-
tion “set in stone” for a given input, the programmer is much
better positioned to reproduce reported bugs, and reason
about a multithreaded program’s execution.

These bene�ts come at a performance cost, however, par-
ticularly for synchronization-intensive programs. In all exist-
ing DMT systems, both those that determinize the outcome
of data races (strong determinism schemes) [4, 15, 19, 26, 27,
30, 32] and weak determinism schemes that ignore races
[33], deterministic ordering is eagerly enforced. As a result,
synchronization operations follow a deterministic total order
regardless of variable. This introduces global coordination
at every synchronization operation, even for logically inde-
pendent operations such as acquiring distinct locks.
Our system, L���D��, is the� rst to provide lazy deter-

minism, breaking through the total order bottleneck and
enforcing a more scalable, partial ordering of synchroniza-
tion operations. Lazy determinism executes synchronization
operations speculatively, and enforces determinism by sub-
sequently validating the resulting order of operations. If a
deterministic ordering violation is detected, part of the com-
putation is restarted. By verifying the ordering after the fact,
L���D�� knows which synchronization variables were used,

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

879

and when, allowing it to avoid the total order of eager deter-
minism. L���D�� preserves determinism during speculative
execution by making deterministic decisions about when
to initiate and terminate speculation, and by detecting and
resolving con�icts deterministically.

L���D�� is the� rst software DMT system to employ spec-
ulation, which has been conventionally deemed too expen-
sive to be practical [5]. Our insight with L���D�� is that
strong determinism enables e�cient speculation, especially
through cheap con�ict detection performed only on locks,
not memory locations as with software transactional mem-
ory (STM). While some of the existing literature on deter-
minism has dispensed with strong determinism entirely [33]
ostensibly for performance reasons, L���D�� surprisingly
shows that by enabling speculative execution, strong deter-
minism can in some cases outperform its weak counterpart.

The primary contributions of this paper are as follows:
• We describe the� rst fully general DMT system that
removes the total order synchronization bottleneck.

• We� nd that the thread isolation that underlies strong
determinism is also a key enabler of lazy determinism.
This allows our strong DMT system to match and even
outperform a weak DMT system for the� rst time.

• We detail a high-performance, software implementa-
tion of L���D�� that runs on commodity multicores.

• We apply L���D�� to a challenging new set of synch-
ronization-intensive workloads, where L���D�� per-
forms ⇡ 10⇥ better than existing systems.

Below, we give a brief background and motivation for lazy
determinism in §2, followed by a system description in §3.We
o�er additional context for the relaxed memory consistency
model provided by L���D�� in §4, and a detailed perfor-
mance evaluation in §5. Finally, we discuss related work in
§6, discuss limitations in §7, and o�er our conclusions in §8.

2 Background and Motivation
The key to deterministic multithreading is either restricting
or deterministically ordering all “communication” between
concurrent threads of execution, while still providing a us-
able memory model for multi-threaded programming. Here,
communication consists of any reads of values previously
written by other threads. Communication may be restricted
through thread isolation techniques (in the case of strong
determinism), and the order of operations is regulated by a
deterministic logical clock (DLC).
L���D�� adds lazy determinism to C��������� [30],

an existing deterministic execution environment. We brie�y
review the operation of C��������� below. C���������
uses the virtual memory subsystem to provide thread-level
isolation—each thread maintains its own page table, and any
modi�cations are kept strictly local until explicit commu-
nication in the form of commit and update operations are
performed against the central “version list” (see C���������

128

256

512

768

1024

1K 4K 16K 32K 64K 128K 256K

sl
ow

do
w
n
(c
om

pa
re
d
to
pt
hr
ea
ds
)

size (in objects)

TotalOrder-Weak TotalOrder-Weak-NonDet

128

256

512

768

1024

1K 4K 16K 32K 64K 128K 256K

CONSEQUENCE

Figure 1. The results of a hash table experiment running
under C���������, and two eager variants.

[31]). Changes to local memory are communicated in this
fashion only as a result of synchronization operations, which
are eagerly ordered by an instruction-counter based DLC.
The thread that has the lowest logical clock value (intuitively:
arrives� rst, in deterministic logical time) is always next in
line to execute a synchronization operation. Note that oper-
ations other than synchronization execute independently—
only synchronization operations are ordered by the DLC.

Fundamentally, deterministic multithreading requires syn-
chronization operations on the same variable [28] to occur
in order of increasing DLC values. Like C���������, all
prior work on deterministic multithreading has enforced this
constraint eagerly, allowing a thread to perform a synchro-
nization operation only when it has the globally minimum
DLC value. This, however, results in a total ordering across
operations on all synchronization variables.

In general, it is not possible to predict future synchroniza-
tion operations by other threads. Thus, any eager solution
must totally order all synchronization operations in order to
maintain determinism.

2.1 The Cost of Totally Ordered Synchronization
While the state-of-the-art eager DMT system C���������
[30] achieves good performance on benchmarks that use pri-
marily coarse-grained synchronization, we� nd that the total
ordering of synchronization operations results in tremen-
dous performance degradation on� ne-grained synchroniza-
tion workloads. Figure 1 shows the performance of a hash
table data structure from Synchrobench [21], running on
top of C���������, in terms of slow-down versus nor-
mal pthreads execution. The x-axis is the maximum number
of objects inserted into the hash table for a given experi-
ment. In this example, deterministic execution with C���
������� imposes a factor of ⇡ 300⇥ slowdown versus
nondeterministic execution with pthreads. Figure 1 also

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

880

total
order

partial
order

t1

t2

t1

t2

acq(a) acq(b) acq(c)

acq(d) acq(e) acq(c)

acq(a) acq(b) acq(c)

acq(d) acq(e) acq(c)

waiting

rel(c)

rel(c)

Figure 2. An example execution of a synchronization-heavy
workload with (top) Kendo-style totally ordered synchroniza-
tion [33] and (bottom) L���D��’� partial order determinism.

shows two alternative schemes that provide weaker guar-
antees. Here, C���������-Weak disables strong determin-
ism, and C���������-Weak-Nondet uses a nondeterminis-
tic DLC (with no determinism guarantees). However, both
C���������-Weak and C���������-Weak-Nondet still
enforce a total order on all synchronization operations. This
total order is expensive: even under C���������-Weak-
Nondet, which enforces a total but non-deterministic order
(see §5 for details), the hash table is 128⇥ slower than under
normal, un-ordered operation.

2.2 The Performance Potential of Lazy
Determinism

However, we observe that much of the time, ordering of
synchronization operations on individual variables, a par-
tial order, is deterministic even without enforcement. This
suggests a lazy solution to enforcing deterministic ordering.
L���D�� demonstrates, for the� rst time, that totally or-

dered synchronization is not necessary for determinism. In-
stead, L���D�� uses lazy determinism enforcement to im-
pose only a partial order on synchronization. This avoids the
expensive coordination that prior schemes must necessarily
perform on every synchronization operation.
Figure 2 illustrates how avoiding such coordination can

result in lower latency when synchronization is frequent. In
the top half of the� gure, totally ordered synchronization
requires thread t1 to wait to acquire lock a because it does
not have the global minimum DLC. However, with partial
ordering, threads can acquire distinct locks without coordi-
nation with others. Only t2’s acquisition of lock c incurs any
waiting, as c is currently held by t1.

2.3 Relationship between Strong, and Lazy,
Determinism

Both strong determinism and lazy determinism require thread
isolation in order to provide their determinism guarantees. In
the case of strong determinism, thread isolation delays inter-
thread visibility of writes, to ensure determinism in the face

of race conditions. In the case of lazy determinism, thread
isolation provides the same e�ect, but to enable speculative
lock acquisition.

In principle, one could also design a lazy, weak determin-
istic execution runtime by enabling thread isolation only
when executing speculatively. This alternative design falls
outside the scope of this paper.

3 System Description
Below, we describe the design of L���D��, the� rst DMT sys-
tem that breaks the total synchronization order barrier. As
described in 2, L���D�� builds on C���������. However,
L���D�� avoids the total synchronization order bottleneck
in C���������, by executing lock acquisitions specula-
tively. When L���D�� encounters a lock acquisition in user
code, it must decide whether to acquire the lock convention-
ally (which implies waiting for the current thread to have
the minimum DLC, committing local changes and updating
changes by others, and entering a critical section), or to ac-
quire the lock speculatively and continue execution without
delay, and without publishing its changes to local memory.
System calls during speculative execution require special
handling, see §3.5.
Acquiring a lock speculatively results in a new memory

consistency model, a variant of a Data-Race-Free memory
model [1] that we call Deterministic Data-Race-Free (DDRF)1.
In essence, DDRF says that changes must be visible between
threads that touch the same synchronization variable, and
may be visible at any other time, as long as such visibility
is provided in a deterministic fashion. In §4, we describe
the DDRF memory consistency model more formally, and
compare it to several models from related work.

3.1 Speculative Order Elision
Figure 3 illustrates the speculative operation of L���D��.
Speculation always begins at a lock acquisition.2 If thread
i makes a decision to speculate, it takes a snapshot of its
current state to support roll-back (see §3.3), and the current
value of the DLC is stored in BEGINi . §3.4 describes how
the speculation decision is made in more detail. Speculative
execution then proceeds through one or more lock acquisi-
tions where each lock acquisition triggers a decision about
whether to continue speculating, to terminate speculation,
or to upgrade the speculation run (see §3.5). If the decision
is to continue, speculative lock acquisition merely results in
a record in a thread-local log, Li , for thread i indicating that
the lock was used—no coordination with other threads hap-
pens yet. The same is true for release—the record is updated
1For readers unfamiliar with the term data-race-free, it implies that memory
consistency guarantees are only provided for data race free programs. DDRF
additionally provides determinism guarantees even for racy programs.
2In L���D��, condition variable operations and barriers, as they necessitate
inter-thread communication, cause speculation to commit if possible or
rollback otherwise.

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

881

initialize
speculation
store stack,
register copy

revert & retry
restore stack,
registers.
update heap

speculative
order elision
record lock
acquisition

terminate
speculation
await minimum
DLC, check for
lock conflicts

if lock conflict was observed

if speculation was successful

Figure 3. Action diagram for L���D��. Speculation begins
at a lock acquisition, and may proceed through several, until
a deterministic decision is made to terminate speculation, ei-
ther on lock acquisition, or on other calls that do not permit
speculation. Upon termination, a check is done for locking
con�icts. If a locking con�ict is detected, the thread is re-
stored and restarted, after updating the heap.

to show that the lock is no longer (speculatively) held, but
again, other threads are not (yet) made aware of this. Once
the decision is made to terminate the speculation run, it is
committed in its entirety, as described below.

3.2 Committing a Speculation Run
Once speculation terminates, the thread either successfully
commits all of its writes to shared memory, or reverts to its
state prior to the start of speculation. To ensure progress,
the next critical section executes without speculation.
The speculative commit process begins with the thread

waiting until it has the minimum DLC, followed by con-
�ict detection. Con�ict detection con�rms that none of the
locks recorded in the local log Li were acquired by another
thread since speculation began (at DLC BEGINi). For this
purpose, a global map Gl maintains the DLC of the most
recent acquisition of lock l . The global map and other lock-
related metadata are allocated when the lock is initialized.
This map is updated following a successful commit, or any
non-speculative lock acquisition. Note that L���D�� per-
forms con�ict detection purely on locks, not on the data
addresses accessed by each thread (as with TM systems),
since lock-level con�ict detection is su�cient for determin-
ism and memory consistency. L���D��’s versioned memory
ensures a deterministic outcome, even in the presence of
data races.

If the speculation run passes con�ict detection, the remain-
der of the commit process proceeds as in C���������.

3.3 Reverting and Restarting Execution
To support reverting execution following a failed speculation
run, each thread maintains a copy of its stack and register
contents from before the start of speculation. To revert, stack

and register contents are restored from their copies. How-
ever, the heap and DLC are not restored: instead, the heap
is updated to the most recently committed version, and the
DLC is left unchanged. Intuitively, since all speculation deci-
sions are made deterministically there is no need to restore
the DLC, and leaving it unchanged helps maintain similar
DLC values between threads. Naturally, the heap must be
updated to re�ect the global state of shared variables at the
start of the new run.

3.4 Adaptive Speculation
The decision to speculatively elide DLC ordering should be
an informed one. Repeated failed speculation attempts on
contended locks can severely deteriorate program perfor-
mance, a fact that has not gone unnoticed in the transactional
memory (TM) community [20].
In order to make an informed, yet e�cient, decision we

store an array of per-thread metadata (a single 64-bit word
for each thread) with each lock variable in the program.3 The
metadata represents a bit vector that records the last 64 spec-
ulation successes or failures for this lock, and is updated each
time a speculation run is terminated. During speculation, on
lock acquisition we use a popcnt instruction to count the
set bits (successful speculation runs) in the current thread’s
metadata word and use the ratio of set bits to total bits to
inform our decision making. Our current threshold requires
an 85% success rate to begin speculating. For locks below
that threshold, we retry every 20 attempts to account for pro-
gram phase changes. The deterministic schedules produced
by L���D�� are potentially sensitive to these parameters.
In our evaluation, we tuned the parameters empirically for
the hash table microbenchmark (§5.1), then applied the same
parameters to all of our workloads. We anticipate that higher
performance could be achieved with per-workload tuning.

3.5 Irrevocable Speculation
L���D�� supports deterministic irrevocability [43] to sup-
port I/O and other system calls that are inherently incom-
patible with speculation. Speculation runs cannot terminate
during a critical section: work performed during the run
must be committed, and this can only be done (while pre-
serving correctness) at the end of a critical section. Thus, we
cannot simply terminate speculation before the system call.

Rather than terminate the speculation, L���D�� upgrades
a speculation run to “irrevocable” status when a system call
is encountered. The system call can then be performed, and
execution continues in irrevocable mode until no further
locks are held; this is the� rst feasible termination point.

3The per-thread aspect of the metadata is necessary to preserve determin-
ism. During speculation the metadata is read and used to make decisions -
and these decisions must be deterministic. If the metadata were shared, it
could potentially be updated non-deterministically by another committing
thread and cause di�erent speculation decisions to be made across di�erent
executions.

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

882

An irrevocable speculation run bypasses the con�ict detec-
tion step upon termination. Instead, con�ict detection is
performed during the upgrade process, after which point
the thread blocks others from committing until the run can
be terminated, to ensure there are no con�icts for the now
irrevocable run. If a con�ict is detected during the upgrade
operation, the speculation run is reverted. In §5, irrevoca-
ble speculation is demonstrated to provide a 4⇥ speedup on
the ferret benchmark, over the alternative of reverting the
speculation run when a system call is encountered, and then
restarting without speculation.

Next, we introduce Deterministic, Data-Race Free (DDRF)
consistency, a new memory consistency model that encom-
passes this behavior. While DDRF only requires data ex-
change along happens-before edges, it allows for determinis-
tic data exchange at arbitrary, but deterministic, times.

4 Deterministic DRF Memory Consistency
L���D�� inherits the use of C��������� [32] for thread
isolation and version control of main memory. C������
���� maintains a single central “version list” to/from which
threads commit their changes, and retrieve the most recent
version of global memory. Combining speculative, partial-
order deterministic synchronization with the shared version
list of C��������� results in a new memory consistency
model, that we call Deterministic Data-Race-Free (DDRF).

DDRF is a variant of a Data-Race-Free memory model [1].
A DRF model requires visibility only along happens-before
edges, which arise either via 1) program order, 2) synchro-
nization order between matched synchronization operations
like a release and a subsequent acquire of the same lock or
3) the transitive closure of the two. DDRF extends DRF by
providing a determinism guarantee, which holds even in the
presence of data races (DRF provides no semantics for races).
While DDRF requires visibility along happens-before edges,
it (like DRF) does not rule out visibility at other program
points, so long as determinism is preserved.

Other deterministic execution systems have adopted sim-
ilar relaxed consistency models, such as the DRF model in
RCDC (called DMP-HB) [19] or the Deterministic Lazy Re-
lease Consistency (DLRC) model from RFDet [26]. All of
these consistency models are compatible with the memory
models of mainstream languages like C/C++ [3, 11], and thus
L���D�� supports code written in these languages. L����
D��’� memory isolation mechanism inherits a limitation
from RFDet [26] that, due to word tearing in the presence of
silent stores, makes it incompatible with the Java memory
model’s restrictions on out-of-thin-air values.

DDRF is weaker than Total Store Order (TSO), the consis-
tency model adopted by C��������� [30], as the example
in Figure 4 shows. This program is a variant of the standard
store bu�er example from the consistency model literature,
but with added synchronization. Under TSO, the program in

initially, x == � == 0

Thread 1 Thread 2
acquire(A) acquire(B)
store 1 ! x store 1 ! �
release(A) release(B)
acquire(A) acquire(B)
load r1 � load r2 x
release(A) release(B)

Figure 4. A simple program that, under TSO, can never have
both loads return zero. Under L���D��’� DDRF memory
consistency model, however, such an outcome is possible.

Figure 4 should execute in a sequentially consistent manner
because the lock acquires and releases act as full memory
fences [39]. Thus, it is impossible under TSO for both loads
to return zero (though, without any synchronization, such a
result is possible under TSO).

In DDRF it is possible for the program in Figure 4 to have
both loads return zero. Such an outcome can arise because
stores need only be made visible along happens-before edges,
and there are no such edges between the two threads in
Figure 4. Thus, neither store becomes visible to either load,
and both loads return zero.

4.1 Comparing relaxed consistency models
Despite their similarities, there are signi�cant di�erences be-
tween the relaxed memory consistency models DDRF, DMP-
HB and DLRC in their semantics for data races. The original
DRF0 model [1] does not provide semantics for races: it
only stipulates the conditions under which visibility is guar-
anteed and sequential consistency is preserved. [19] does
not explain the semantics of races except to say that a de-
terministic outcome is guaranteed. While it is hard to state
precisely DMP-HB’s consistency guarantees, we believe they
are equivalent to our DDRF model. In DDRF, we introduce a
new visibility order, a partial order over arbitrary memory
operations of an execution. Visibility order can be a�ected
by arbitrary, deterministic program events, e.g., the number
of locations written by a thread. In DDRF, the value seen
by a racy load l will arise from either a store s such that s
happens-before l , or another store s 0 such that s 0 is ordered
before l in visibility order. Because visibility order is deter-
ministic, data races in DDRF always result in a deterministic
outcome. Because visibility order is arbitrary, it is di�cult to
say a priori what the outcomes of a program can be. The def-
inition of visibility order is deliberately general: this� exible
de�nition of visibility order provides greater scope for opti-
mization, just as with nondeterministic consistency models,
as we discuss next.
RFDet’s DLRC model allows a load to see the value of a

store i� a happens-before edge exists from the store to the

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

883

initially, x == 0

Thread 1 Thread 2
store 1 ! x
release(A)
· · · · · ·

acquire(B)
load r1 x

Figure 5. Under DLRC, T 2’s load can never return 1, while
under L���D��’� DDRF model it can. “· · · ” indicates a se-
quence of arbitrary, non-synchronization operations.

DDRFDLRCTSO

Figure 6. The relative strength of various consistency mod-
els. DLRC is incomparable to TSO, and DDRF admits more
executions than either.

load; without such an edge, the store must not be visible to
the load. Because of the strong restrictions imposed by the
bi-conditional, DLRC’s model is actually stronger than DDRF
in that DLRC allows fewer executions than DDRF allows.4
Figure 5 illustrates the relative strength of these models with
an example program. The load by T2 can never return 1 in
DLRC because there is never a happens-before edge from
T1 to T2. Under DDRF, T2’s load can return either 0 or 1,
as the threads’ executions can induce a visibility order edge
between T1’s store and T2’s load on some executions and
not on others, albeit deterministically.
DLRC is not strictly weaker than TSO, as revisiting Fig-

ure 4 under DLRC reveals. With TSO, the loads in Figure 4
can never both return zero. Under DLRC, because there are
no happens-before edges between the threads, both loads
not only can return zero: they must return zero. Thus, the
executions of this program allowed by TSO and DLRC are
disjoint, and neither consistency model is strictly stronger
or weaker.

Figure 6 illustrates the relative strength of TSO, DLRC and
DDRF in terms of the set of executions allowed under each
model. More relaxed models allow larger sets of executions
than stronger models. As we show in §5, the extra� exibility
allowed by the DDRF model has signi�cant systems implica-
tions, allowing L���D�� to achieve much better scalability
than prior systems. In particular, DLRC’s restrictions on
4This is contrary to [26], which states that “DLRC is most similar to DMP-
HB, but is more relaxed” [page 2].

when stores are visible forces it to retain many versions of
memory while DDRF is free to coalesce these into a single
version to save space and time.

4.2 Scalability Advantage of DDRF over DLRC
As a result of the central version list in L���D��, any update
from the version list includes all prior commits, creating a
visibility order edge between updates and commits to the
version list. Thus, even if no happens-before path exists
between two threads, modi�cations will propagate between
them due to the shared version list.
DDRF allows communication between threads, outside

of happens-before, as long as the execution remains deter-
ministic. For a program with l locks and t threads, DLRC
requires the deterministic execution runtime to maintain
l + t versions of main memory, while DDRF requires only t
versions.

5 Performance Evaluation
Below, we evaluate the performance of L���D��, when run-
ning a variety of programs. First (§5.1), we evaluate a hash
table microbenchmark, which measures in detail the impact
of speculative deterministic execution on a highly concurrent
data structure. Here, we demonstrate an order-of-magnitude
throughput improvement with L���D��. Following that,
(§5.2) we summarize the performance of L���D�� on a wide
variety of applications from the PARSEC [7], SPLASH-2 [44]
and Phoenix [36] benchmark suites, where we achieve up to
2⇥ improvement in performance.

5.1 Hash Table Microbenchmark
To better understand the impact of speculative deterministic
execution on a highly concurrent data structure, we�rst
evaluate L���D�� using the lock-based hash table found
in Synchrobench [21]. For synchronization purposes, each
bucket in this hash table is chained with either (1) hand-over-
hand locking (ht) or (2) a lazy list-based set [23] (htLazy).
Figure 7 shows the runtime of both variants, normalized

to Pthreads performance. In other words, we plot “slowdown”
vs pthreads, thus lower is better. Starting from the left-most
plot, we vary (1) the size of the hash table, (2) the load fac-
tor (number of items per bucket or maximum length of the
chain), and (3) the percentage of updates performed during
the experiment.
We compare L���D�� against other DMT systems that

lack speculation, namely C���������, as well as vari-
ants of L���D�� that trade determinism for performance.
TotalOrder-Weak disables strong determinism, and thus spec-
ulation. TotalOrder-Weak-Nondet disables both strong deter-
minism and the total ordering based on the DLC: instead of
enforcing a speci�c order, it simply acquires a spin-lock. This
still imposes a total ordering of lock acquisitions, just not

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

884

128

256

512

1024

2048

4096

16K 32K 64K 128K 256K 512K 1M 2M 4M

sl
ow

do
w
n
(c
om

pa
re
d
to
pt
hr
ea
ds
)

size (in objects)

TotalOrder-Weak

128

256

512

1024

2048

4096

16K 32K 64K 128K 256K 512K 1M 2M 4M

TotalOrder-Weak-NonDet

128

256

512

1024

2048

4096

16K 32K 64K 128K 256K 512K 1M 2M 4M

LazyDet

128

256

512

1024

2048

4096

16K 32K 64K 128K 256K 512K 1M 2M 4M

consequence

(a) ht, size=X, load=8, update=5%

256

512

1024

2048

4096

1 4 8 16 32

sl
ow

do
w
n
(c
om

pa
re
d
to
pt
hr
ea
ds
)

load factor

TotalOrder-Weak

256

512

1024

2048

4096

1 4 8 16 32

TotalOrder-Weak-NonDet

256

512

1024

2048

4096

1 4 8 16 32

LazyDet

256

512

1024

2048

4096

1 4 8 16 32

consequence

(b) ht, size=64K, load=X, update=5%

256

512

1024

2048

4096

10 25

sl
ow

do
w
n
(c
om

pa
re
d
to
pt
hr
ea
ds
)

% of updates

TotalOrder-Weak

256

512

1024

2048

4096

10 25

TotalOrder-Weak-NonDet

256

512

1024

2048

4096

10 25

LazyDet

256

512

1024

2048

4096

10 25

consequence

(c) ht, size=64K, load=8, % updates=X

16

32

64

128

256

16K 32K 64K 128K 256K 512K 1M 2M 4M

sl
ow

do
w
n
(c
om

pa
re
d
to
pt
hr
ea
ds
)

size (in objects)

TotalOrder-Weak

16

32

64

128

256

16K 32K 64K 128K 256K 512K 1M 2M 4M

TotalOrder-Weak-NonDet

16

32

64

128

256

16K 32K 64K 128K 256K 512K 1M 2M 4M

LazyDet

16

32

64

128

256

16K 32K 64K 128K 256K 512K 1M 2M 4M

consequence

(d) htLazy, size=X, load=8, update=5%

32

64

128

256

1 4 8 16 32

sl
ow

do
w
n
(c
om

pa
re
d
to
pt
hr
ea
ds
)

load factor

TotalOrder-Weak

32

64

128

256

1 4 8 16 32

TotalOrder-Weak-NonDet

32

64

128

256

1 4 8 16 32

LazyDet

32

64

128

256

1 4 8 16 32

consequence

(e) htLazy, size=64K, load=X, update=5%

16

32

64

128

256

512

10 25

sl
ow

do
w
n
(c
om

pa
re
d
to
pt
hr
ea
ds
)

% of updates

TotalOrder-Weak

16

32

64

128

256

512

10 25

TotalOrder-Weak-NonDet

16

32

64

128

256

512

10 25

LazyDet

16

32

64

128

256

512

10 25

consequence

(f) htLazy, size=64K, load=8, % updates=X

Figure 7. A DMT worst case scenario: Performance of DMT systems on a hash-table-based stress test from Synchrobench
[21], with 32 threads. Variants are ht, which uses a linked list for chaining with hand-over-hand locking, and htlazy, which
uses a lazy list-based set [23] for chaining. Results are shown as slowdown vs. pthreads (lower is better). Note the log y-axis.

deterministically across executions. Essentially, TotalOrder-
Weak-Nondet helps us simulate the performance that could
be achieved with a perfect logical clock.
At a high level, Figure 7 shows that L���D�� achieves

roughly an order of magnitude increase in performance over
C���������, the current state of the art. Regarding the
di�erent data structure design choices, all DMT systems do
better with htLazy than ht because it requires fewer lock
acquisitions than the hand-over-hand locking approach. Re-
garding the con�guration parameters, L���D�� does better
as we increase the size of the data structure because the like-
lihood of a con�ict is reduced. If we increase the load factor
for ht performance decreases for all DMT systems, because
the number of items in each linked list increases and thus
we need to acquire more locks.

Overall, we can see from the results in Figure 7 that lazy
determinism enables dramatic performance improvements
over eager determinism for this type of synchronization-
intensive, highly concurrent workload.

5.2 Application Benchmarks
We evaluate L���D�� against programs from the PARSEC-
2, SPLASH-2 and Phoenix benchmark suites. Some of the
programs are excluded due to being problematic for deter-
ministic systems, either due to the use of atomic instructions
or ad-hoc synchronization (see §A). For the barnes program

from SPLASH-2, we made a slight modi�cation to replace a
single� ag variable with a condition variable to allow it to
work with L���D��.

Our testbed is a system with four 2.00GHz Intel Xeon E7-
4820 8-core processors and 256GB of main memory, running
Linux 2.6.37 with the kernel patches needed to run C�����
�����. For these experiments, Hyper-threading was turned
o�, and the frequency scaling governor was set to perfor-
mance. Experiments were run 5 times per thread count, and
we report the mean and standard deviation (error bars).

5.3 Identifying Where Lazy Determinism Could
Make a Di�erence

Table 1 shows lock statistics for a number of benchmark pro-
grams, running with up to 8 threads. We show the number of
lock variables, and the lock acquisitions per-variable by per-
centiles. The benchmarks highlighted in gray were selected
for deeper analysis, based on the number of lock variables,
lock acquisitions performed and distribution across threads.
Among these, those with many lock variables are the bench-
marks where L���D��’� lazy determinism holds the most
promise. Benchmarks that synchronize frequently, but on a
small number of lock variables (e.g. reverse_index), cannot be
signi�cantly improved through speculation. Here, the goal
of L���D�� is simply to not signi�cantly hurt performance.
Clearly for benchmarks that don’t synchronize with locks

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

885

lock # lock lock acquisitions per lock variable (percentile) pthreads

program variables acquisitions 50th 75th 95th 100th (max) runtime (s)

barnes 5222 94175 1 5 70 335 0.3
ocean_cp 15 6487 1 8 5326 5326 0.6
ferret 1004 532112 15 163 781 269993 2.5
water_nsquared 3447 11523 3 4 7 118 0.6
reverse_index 61 17774 1 2 9 17654 1.9
water_spatial 10 306 8 32 117 117 0.5
dedup 2244 246862 37 111 166 88806 6.5
radix 16 216 6 12 104 104 3.5
streamcluster 2 161 2 159 159 159 1.5
�t 3 63 8 53 53 53 0.8
blackscholes 1 2 2 2 2 2 0.4
swaptions 1 2 2 2 2 2 3.6
linear_regression 1 2 2 2 2 2 1.2
word_count 1 2 2 2 2 2 2.1
matrix_multiply 1 2 2 2 2 2 4.9
pca 1 2 2 2 2 2 6.3
string_match 1 2 2 2 2 2 1.8
lu_cb 0 0 0 0 0 0 0.2
lu_ncb 0 0 0 0 0 0 0.1

Table 1. Lock statistics for PARSEC, SPLASH-2, and Phoenix benchmark programs. The percentiles show lock acquisitions
per lock variable. Programs like ferret and dedup, which have a large number of lock variables, are ideal for lazy determinism.

(e.g. blackscholes), the speculation techniques of L���D��
are not relevant. These receive only a brief evaluation below.

Figure 8 shows the overall performance of L���D��when
compared to C���������. We did not compare directly
against DThreads. However, in [30], C��������� was con-
sistently faster than DThreads. We also include implementa-
tions of weak determinism (TotalOrder-Weak, similar to [33])
and weak determinism with nondeterministic synchroniza-
tion (TotalOrder-Weak-Nondet), derived from the L���D��
code base. For TotalOrder-Weak-Nondet, synchronization
is still totally ordered: we implement this as a simple lock
acquisition, instead of using the DLC.

Here we show the best runtime of each library normalized
to the best runtime of (nondeterministic) pthreads. The group
on the left shows applications where speculation on lock vari-
ables may have some impact, either positive or negative. For
barnes, ferret, dedup and water_nsquared - the class of pro-
grams where speculation may help - the average runtime
of L���D�� is 53% of C���������. For water_nsquared,
L���D�� even outperforms TotalOrder-Weak. Overall, these
results demonstrate that speculative deterministic execu-
tion o�ers substantial performance improvements on several
benchmarks, in some cases doubling performance compared
to C���������.
In addition to runtime performance, Figure 10 shows the

CPU utilization results for the lock-based programs running

with 16 threads. The results show that L���D��’s improve-
ment in runtime does not imply an increase in CPU usage.

A noticeable performance regression occurs in radix, where
L���D�� is regressed relative to C��������� by 18%. This
is due to a high failure rate combined with expensive reverts
and a small number of lock acquisitions per-thread (less than
20 in the 32 thread experiment), which doesn’t give L���D��
enough time to learn to avoid speculation. It should be noted
that even in the presence of applications that use highly
contended locks such as reverse_index, the regression is a
modest 6% due to L���D��’s adoption of C���������’s
coarsening optimization [30].

5.4 Speculation Performance Factors
Figure 11 evaluates the performance of various aspects of
L���D��’s speculation engine: L���D��-NoCoarsening lim-
its speculation to one critical section. L���D��-NoIrrevocable
disables upgrading a speculative run to irrevocable, when
encountering code that cannot be executed speculatively
(see §3.5). L���D��-NoPerLockStats replaces per-lock spec-
ulation statistics with per-thread statistics.

Di�erent optimizations are critical for di�erent programs.
For example, with ferret the performance depends on coars-
ening several critical sections as well as using irrevocable
speculation. The reason for this is that one thread performs a
high frequency of lock acquisitions with little work between

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

886

0
1

2.5

5

10

15

barnes

ocean_cp

ferret

water_nsquared
revindex

water_spatial
dedup

ru
nt
im
e
(n
or
m
al
iz
ed

to
pt
hr
ea
ds
)

apps using locks

lu_cb

lu_ncb
kmeans
radix

streamcluster
blackscholes
fft word_count
string_match
matrix_multiply
linear_regression
pca

others

consequence LazyDet LazyDet-Weak LazyDet-Weak-Nondet

Figure 8. Performance results comparing the best runtime of each library normalized to pthreads runtime (any thread count).
Lazy determinism with L���D�� achieves up to 2⇥ speedup vs. eager determinism with C���������. (lower is better)

0
1

5

10

15

24 8 16 24 32

ru
nt
im
e
(n
or
m
al
iz
ed

to
pt
hr
ea
ds
)

barnes

2 4 8 16 24 32

ocean_cp

2 4 8 16 24 32

ferret

2 4 8 16 24 32

water_nsquared

2 4 8 16 24 32

reverse_index

2 4 8 16 24 32

water_spatial

2 4 8 16 24 32

dedup
consequence LazyDet TotalOrder-Weak TotalOrder-Weak-NonDet

Figure 9. Scalability results for relevant benchmarks, normalized to pthreads runtime. For most benchmarks tested, L���D��
improves substantially on C��������� scalability. (lower is better)

to amortize the cost. Further, system calls (e.g. mmap/mun-
map) are invoked while holding locks, leading to the need
to upgrade the speculation to irrevocable. We can also see
that keeping per-lock statistics provides a modest perfor-
mance improvement on ocean_cp, while it slightly degraded
performance for barnes and water_nsquared which maintain
thousands of locks with largely uniform access patterns.
Table 2 shows speculation statistics for our benchmark

programs. For barnes, the statistics paint a picture as to why
the performance does not scale beyond 8 threads (see Figure
9). First, the mean speculation length (in number of critical
sections) is reduced from 19.28 to 5.86 when moving from
8 to 16 threads. Second, the percentage of critical sections
executed speculatively drops from 98.88% to 68.18%. This in-
dicates that lock-set con�icts between threads both reduced
the ability to coarsen and led to failed speculation and falling
back to traditional lock acquisition.

Finally, Figure 12 shows a scatter-plot of revert cost vs.
change set size, as experienced in the programs from Table
2. The mean revert time is approximately 11,000 cycles, and
the black line shows a linear regression of the relationship
between the size of the change set and the revert time.

In summary, L���D�� o�ers substantial performance im-
provements to a wide range of applications, but is particu-
larly helpful for synchronization-heavy, yet highly parallel
programs.

6 Related Work
Research in deterministic concurrency has led to the de-
velopment of several types of systems that support deter-
ministic execution, including hardware architectures [15, 17–
19, 25, 38], runtime systems [14, 27, 30, 32, 33], programming
languages [8–10, 22, 37, 40], compilers [4, 16, 26] and entire
operating systems [2, 24, 41].

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

887

0

20

40

60

80

100

barnes

ocean_cp

ferret

lu_cb

water_nsquared
reverse_index

%
of
C
PU

U
til
iz
at
io
n

% of CPU Utilization

pthreads consequence LazyDet

Figure 10.CPUutilization numbers for lock-based programs.
L���D�� does not signi�cantly impact CPU usage relative
to C���������.

program threads % spec.
acqui-
sitions

% spec.
suc-
cess

mean
spec.
length
(in CS)

barnes 8 97.0% 82.5% 19.3
16 58.5% 50.3% 5.2
32 50.2% 38.4% 3.8

ocean_cp 8 13.8% 7.41% 1.0
16 13.1% 5.27% 1.0
32 12.6% 3.5% 1.0

ferret 8 99.9% 99.8% 38.4
16 100.0% 99.9% 40.5
32 100.0% 99.9% 40.4

water_nsquared 8 99.7% 91.5% 56.1
16 99.5% 91.2% 31.3
32 99.2% 91.0% 24.1

reverse_index 8 10.5% 13.7% 4.2
16 7.7% 4.9% 1.0
32 0.0% 0.0% N/A

water_spatial 8 45.5% 12.6% 1.0
16 41.4% 10.5% 1.0
32 40.1% 7.2% 1.0

dedup 8 51.8% 69.4% 3.3
16 54.1% 62.9% 2.2
32 58.1% 61.5% 2.3

Table 2. Speculation statistics for a number of benchmark
programs. Speculation length (# of critical sections) and suc-
cess correlates with benchmark program performance.

0

1

2

3

4

barnes
ocean_cp

ferret water_nsquared

reverse_index
water_spatial

dedup

ru
nt
im
e
(n
or
m
al
iz
ed

to
La
zy
D
et
)

LazyDet-NoCoarsening LazyDet-NoIrrevocable LazyDet-NoPerLockStats

Figure 11. Performance of benchmark programs with cer-
tain speculation features disabled. The y-axis shows runtime
normalized to the runtime of L���D�� with all speculation
features enabled. (lower is better)

●●

●●
●

●●

●
● ●

●

●
●

●●

●

●
●

●

●

●●

●

●●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

● ●●
●

● ●●● ●●● ● ●

●
● ●

●
●●

●
●

●

●

● ●●

●
●●

●
●●

●

●
●

●
●

●

●

●

●

●● ●●●

●

●●
●●

●● ●●●●
●●

● ●●
●

● ●●
●

●
●

●

● ●●
●●

●

● ●●● ●
●

●

●
●

●●●
● ●

●

●
●●

●●●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●●
●

●
● ●● ●●

●
●

●●

●

●
● ● ●

●
●●

●

●

●●
●●

●

●

●● ●●

●

●

●

●
●●

●

●
●

●● ●
●

●

●
●

●
●●

●

●

●●
●

● ●
●

● ●

● ●

●

●

●
●

●

●

●

●

●●●

●

●
●●

●

●

●● ●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

● ●
●●● ●●

●

●

●

●
●

●

●

●

●

●

● ●

●
● ●●

●

●
●

●
●

●

●

●●
●

●
● ● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●●●

●

●

●● ●

●

●
●●●●●

●
●

●
●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●●

● ●

●

●
●

●
●

●

●

● ●
●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●
● ●

●●
● ●

●

●

●

●
●
●

●

●
●

●
●

●
●

● ●●
● ●

● ●●
●

●

●

●

●

●

● ●
● ●

●

●● ●
●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

● ●

●
●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

● ●
●

●
●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●
●

●●
●

●

●

● ●●●
● ●

●

●

●

●●
●

●

● ●

●

●●

●

●

● ●●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

● ●

●

● ●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●● ●●

● ●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●●

●

●● ●

●●

● ●●●
●

●●● ●

●

●

●

●
●

●

●●

●

●

●

●

●● ● ●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

● ●●

●

● ●

●

●

●
●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

● ●
●●

●
●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●
●

● ● ●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●
● ●●●● ●

●
● ●●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●● ●●●

●

●

●

●
●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●●● ●●●● ●●

●

●

●

●

●

●●●● ●●●● ●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●● ●●●● ●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●
●

●●●●
●

●

●
●●

●●●●●●●
●● ●●●●
●●●●●●●●●●●●●●
●
●●●●●
●
●●●

●
●

● ●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
● ●

●
●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●
●●

●

●

●

● ●

●
●●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

● ●● ●

●
●

●

●

●●

●

●

●

●
●●

●
●
●

●

●●
●

●
●

●

●

●

● ●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●● ●●

●● ●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●
●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●
●
●
●●
●
●
●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

● ●
●
●●
●●●● ●
●●●

●
●

●

●

● ●
●

●
●
●

●

●

●
●

●

●

● ●
●

●
●

●●
● ●●●

●
●●
●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●●

●
●●

●

●
●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●● ●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●
● ●● ●●

●●●●●●
● ● ●●●

●●●
●

● ●● ● ● ●●●● ●● ●●●●● ● ●● ● ●●
●

● ●●●●●●
●
●●
●● ●●●

●
●
●
●●●●●
●●●●

●
●●
● ●

●●
● ●●●●●●●●

●
●

●● ●●●●
●●●● ●●●●●

●

●●●● ●●

●

● ●●● ● ●●●●●
●

●
● ●●●

●
● ●●● ●●●●●●●

●●●
● ●●

●
●●
●● ●●

●●●●● ●●

●
●
●●

●
●

● ●
●
●

●

●●●●●●
● ●●●●

●
● ●●●● ●●●

●●● ●
●

●●●
● ●●
●
●●
●
●

●
●●●

●●
●● ●●

●●●

●

●●●●
●

●

●●
●

●

●●
● ●●

●●
●● ● ●●●●●

●
●●● ●

●
●

●●
●

● ●●●●●
●●●●●● ●

●
●
● ●

●●
●
●●●
●

●
●

●
●

●●
●
●●●

●

●

●●
●
●●
●

●

● ●
●

●

●
●

●●●●
●

●
●
●●
●
●●●

●

●● ● ●
●
●

● ●

●

●
●●

●

●●●●●
●

●●

●
●
●

●●
●
●●
●●●● ● ● ●●●●●

●●● ●●
●●●

●●

●

● ●
●

●●
●●●●●●

●
●

●

●

● ●

●●
●

●●●
●

●

●●●●

●

●

●

●

●

●
●

●
●

●●
●● ●
●
●

●
●

●

●●

●●●
●
●
●

●●
● ●●
●●
● ●
●●

●

●●●
●

●
●
●
● ●●●
●
●
●

●

●

●

●

●●
●

●●

●

●

●●

●

● ●●
●
● ●●●
●● ●●
●● ●
●
●●●●

●
●●

●

●

●

●●●
●
●●●
●

●●

●
●
●

●

● ●●

●

● ●
●

●
●●

●
●
●
● ●

●

●●●●
●●
● ●
●●●
●

●●

●

●●●
●

●
●
●●
●●
●

●
●●
●

●
●
●

●●

●
●

●

●●●

●●

●

● ●
● ●

●

●

●●
●
●
●●
●

●
●

●●●
●
●

●●

●
●●●

●

●
●●

●
●
●●
●

● ● ●

●●●

●

●

●●
●
● ●
●

●
●
●
● ●

●●
● ●●●

●

●
●

● ●●
● ●●

●●
●

●●● ●●●
●●●●
●
●●●●●
●

●

●

●
●●

●
●

●

●● ●
●
●

●

●

●

●●

● ●● ● ●●
●

●●●
●
● ● ●●

●
●

●●
●●●

●
●

● ●
●
●

●

●●
●

● ●●
●

●

●
●●
● ●
●●● ●●●
●

●●
●

●
●

●

●●
●

●
●

● ●

●

●●
●

●●● ●
●
●●
●

●

●

●
●
●

●
●
●
●
●●
●
●
●
●

●●
●●
● ●●

●
●●●
●
●
● ●● ●
●

●

●●

●●
● ●
●

●●
●
●●

●

●●●
●
●

●
●

●

●

●
●
●

●
●

●

●●●●

●
●
●●
●●
●

●
●●
●

● ●●●
●

●
●

●
●●● ●●
●●●

●●
●●●
●

●

●

●

●
●

●●
●

● ●●●●

●
●●

●

●
●●
● ●

●●
●
●

●●

●
● ●

●

●
●

●
●●

●

●

●

●
● ●●●

●

●
●●

●●●

●
●

●
●

●●

●

●
●
●● ●

●●
●●

●●
●

● ●

●

●
●

●

●●●

● ●
●● ●

●●●● ●●
●●

●
●

●●●

●
●

●
●

● ●●●●●●
● ●●
●
●

●●
●

●● ●● ●●●
●

●●●
●

●
●
●

●●
●

●
●
●

●
●
●

●●
●

● ●● ●
●●●●

●●
●
●

●●

●

● ●●●
● ●● ● ●

●●
●
●

●● ●● ●
●

●

●
●
●
●●

●
● ● ●

●

●●
●●

●●
●

● ●●
● ●

●
●
●
●● ●

● ●●●●●
●

● ●●

●

● ●●

●

●●●● ●

●

●

●●
● ●
●

●

●●

●

●●

●

●●

●
● ●

●●

● ●●
●

●
●

●

●

●

●

●
●

●● ●
●●

●

●

●
● ●

●

●
●●
●● ●

●

● ●

●

●
●

●
●●

●

●

●

●
● ●

●●
●

●

●
●
●● ●

●

●
●

●

●
●

●

●● ●

●

●
●

●
●●

●●

●
●
●

●

●● ●

●

●● ●
●

●
●

● ●

●

●
● ●

●
● ●
●
●●
●

●●

●
●

● ●

●
●

●

●● ●
●●
●●

●
●

●

●

●
●

●

●

●

● ●
●

●

●
●

●
●●

● ●●●
● ●

●
●

●●

●

●●
●●

●

●
●

●●●

●

●
●
●

●
●

●

●
●

●
●

●
●●

●

●

●
●●● ●

●
●

●
●

●

●
●

●
●

●
●

● ●●

●●
●

● ●

●

●●

●
●

●●
●

●
●

●
●

●

●●

●

●
●

●

●

● ●●

● ●

●

●

●
●

●

●

●
●

●
● ●

●
●●

●
●

●
● ●

●
●

●
●

●

●

●

● ●●●●●
● ●
●

● ●
● ●

●
●

●

●

●

●●
● ● ●●

●
●

●
●

●

●●
●

●
● ●

●

●
●

●●

●●

● ●●

●

●

●

● ●

●●
●

●

●
●● ●●

●

●
●

● ●
●

● ● ●
●

●

●

●
●

●●●

●●●
●

●

●●

●

● ●

●

●●
●

●

●

● ●●
●

●
●●

●

●●

●
●

● ●● ●
●

● ●
●

●

●

●
●

●
●

● ●

●

●
●●

● ●

●

●●
●● ●

●
●

●●

● ●
●

●
●

●

● ●●
●●●

●
●● ● ●

●

●
●

●● ●
●

●●● ●

●

●

●●
●

●
●

●●
●

● ●●

● ●●
●

●

●

●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

●

● ●●●

●

●

●

●
●

●
●
●

●●●

●

●

●
●

●

● ●
●

●

●●

●

●

●

●

● ●
●● ●

●● ●

●

●

●

●
●●

●●

●

●

●

●● ●● ●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

● ●●

● ●

●

●●

●

●●
●

●
●

●
●

●

●
●●
●

●●

●●

●●
●

● ●
●●
●

●
●

● ●●●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●
● ●

●

●

● ●●
● ●

●

●

●●

●

● ●

●

●

●●●

●

●

●

●●
●

●

●
● ●

●

●
●
●●

●

●

●●
●

●

●

●

●● ●

●

●

●
●
● ●

●
●

●
●● ●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●●

●

●

●●

●

●●
●

●
●

●

●

● ●●●●●●● ●●●●●●

●

●
● ●
●●●●●● ●●●●●

●●●●
●

●
● ●●●●●●● ●●●●●●
●●●●●●●

0

25000

50000

75000

100000

0 20 40 60
dirty pages (4KB)

la
te

nc
y

(in
 c

yc
le

s)

Figure 12. Scatter-plot of revert cost vs. change set size.
Black line shows linear regression. Mean revert cost is ap-
proximately 11,000 cycles.

These various types of deterministicmultithreading (DMT)
systems di�er primarily in the determinism guarantees they
provide and the type of deterministic logical clock (DLC)
they employ. All DMT systems impose a “SyncOrder deter-
minism” constraint that ensures a deterministic order of syn-
chronization operations and, optionally, a stronger “Data�ow
determinism” constraint that ensures a deterministic value
for every load [28]. Most DMT systems impose both con-
straints, though the Kendo system [33] demonstrated that the
Data�ow constraint can be relaxed to improve performance.

A common trait among all of these systems, including re-
cent work such as [26, 30, 32], is that they all impose a total
order on synchronization operations. In further acknowledg-
ment of this bottleneck, related work on “stable multithread-
ing” has resorted to relaxing deterministic synchronization
guarantees [12, 13] to improve performance.

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

888

Like L���D��, several previousDMT systems isolate threads
between synchronization operations using the virtual mem-
ory subsystem [26, 27, 30, 32]. Others use compiler support
[4, 26], or avoid this problem entirely by assuming that pro-
grams are data-race free [33].

In terms of speci�c DLC mechanisms, many schemes use
a deterministic instruction counter [15, 17, 19, 26, 30, 33],
while others count synchronization operations [27, 32]. In
principle, counts of basic blocks, function calls and many
other deterministic program features could be used as the
basis for a DLC. The choice of DLC determines the ordering
of synchronization operations — thus a poor ordering can
result in long delays as threads wait their turn. Here, the
instruction counter solution provides the highest accuracy,
but also incurs the largest overhead.

6.1 Speculative Execution and Relaxed Memory
Models

L���D�� uses speculation to surmount the total order bot-
tleneck that limits previous DMT systems. Speculation (in
the form of hardware transactional memory) was employed
in DMP [17], one of the earliest DMT designs. Follow-on
work to DMP [4] dismissed speculation as overly complex
and instead achieved performance via relaxed memory con-
sistency models, while still utilizing totally ordered synchro-
nization operations. The C��������� system [30] argued
that relaxed consistency buys relatively little given the re-
strictions of totally ordered synchronization, demonstrating
that strong memory models like TSO can match the perfor-
mance of weaker models.

While more relaxed memory consistency can in principle
o�er performance gains for determinism, just as it does for
nondeterministic parallelism, these gains cannot be realized
so long as synchronization remains totally ordered. In some
restricted contexts, it is possible to reason about con�icts a
priori and prove their absence, e.g., the Deterministic Par-
allel Java [9, 10, 42] type-and-e�ect system can do so for
data-parallel fork-join programs. L���D�� is the� rst deter-
ministic system to move past the total order bottleneck for
arbitrary programs.

6.2 Transactional Memory
In many ways, the speculation engine in L���D�� has simi-
larities to a software transactional memory (STM) system.
L���D�� uses, in STM parlance, lazy con�ict detection of
committed critical sections,� attened nesting, and irrevoca-
ble speculation.

Themain di�erence betweenHTM/STM and our approach
is that we are detecting con�icts at the level of synchroniza-
tion variables, not memory accesses. In traditional nonde-
terministic systems this technique would be of little use
because critical sections protected by distinct locks can al-
ready execute in parallel. However, DMT systems have been
hamstrung by the total order bottleneck until L���D��.

Another di�erence is that strong determinismmakes strong
isolation inherent to deterministic multithreading systems.
This means that the mixed-mode access problem commonly
discussed in the STM literature does not arise with L���D��
or other strong determinism systems.
The speculation engine in L���D�� has similarities to

Speculative Lock Elision (SLE) [34] and Speculative Synchro-
nization (SS) [29]. These prior schemes also attempt to auto-
matically speculate past lock acquires. However, a crucial dis-
tinction with this prior work is that L���D�� doesn’t allow
parallelism between critical sections protected by the same
lock – the main purpose of SLE/SS. Using SLE/SS techniques
to unlock additional parallelism is an intriguing direction
for future work in deterministic parallelism. Sophisticated
forms of con�ict detection, like Dependence-Aware TM [35],
might additionally prove useful for reducing reverts.

7 Limitations
Despite the performance bene�ts that speculation brings,
many avenues for improvement remain in DMT systems.
Better support for atomics is one natural extension for L����
D��. Determinism imposes high overheads on these mecha-
nisms, which are chosen by developers explicitly for their
speed. Allowing speculative execution of atomics, perhaps
detecting con�icts only on locations accessed by the atomics,
should improve performance signi�cantly.
While L���D�� adapts its speculation to run programs

with arbitrary system calls, these system calls may compro-
mise L���D��’s determinism guarantee. Enforcing determin-
ism for a wide range of I/O operations is beyond the scope
of L���D��, but an intriguing path for future work.

8 Conclusion
In this work we have shown that deterministic multithread-
ing need not be limited by the total order bottleneck on
synchronization that has restricted previous systems. Our
system, L���D��, demonstrates that speculation is an e�ec-
tive mechanism for breaking through this bottleneck, while
preserving strong determinism guarantees. L���D�� also
shows that, counterintuitively, strong determinism can out-
perform weak determinism for some programs that syn-
chronize frequently, because strong determinism provides a
useful foundation for speculation that makes it possible to
contain and rollback the e�ects of misspeculations.

9 Acknowledgments
This work was made possible through National Science Foun-
dation grants CNS-1320235 and CNS-1703425.

A Incompatible Benchmarks
As Table 3 shows, some benchmarks from PARSEC [6] and
SPLASH-2 [44] are incompatible with L���D��, as well as
many other DMT systems [26, 27, 30]. This is in part due

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

889

benchmark suite program incompatibility reason

PARSEC 2 bodytrack shared stack variables
canneal atomic instructions
�uidanimate shared stack variables
facesim shared stack variables
x264 shared stack variables

Splash 2 cholesky ad-hoc synchronization
barnes⇤ ad-hoc synchronization
radiosity ad-hoc synchronization
volrend ad-hoc synchronization

Table 3. A list of benchmarks that are incompatible with
current DMT systems, and why. ⇤Manually modi�ed in our
evaluation to use pthreads synchronization instead.

to the choice to rely on synchronization operations to en-
force memory visibility. This design choice breaks ad-hoc
synchronization such as� ag-based synchronization: a thread
polling on a� ag never performs a synchronization operation
and thus never receives any updates from remote threads
that set the� ag. Additionally, the use of atomic instructions
requires compiler support to instrument the atomic instruc-
tion so that the DMT system can perform DLC operations
and memory updates; otherwise, the atomic instruction may
operate on a thread-private copy of memory which violates
atomicity and memory ordering semantics.
Note that DMT systems, including L���D��, preserve

determinism even when ad-hoc synchronization or atomic
operations are broken. The resulting deadlocks or program
crashes are repeatable and thus much easier to diagnose
than in a nondeterministic environment. We document these
issues here to facilitate future work addressing these issues.

References
[1] Sarita V. Adve andMark D. Hill. 1990. Weak ordering - a new de�nition.

2–14.
[2] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2010. E�-

cient system-enforced deterministic parallelism. In Proceedings of the
9th USENIX Conference on Operating Systems Design and Implementa-
tion.

[3] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark We-
ber. 2011. Mathematizing C++ Concurrency. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’11). ACM, New York, NY, USA, 55–66.
h�ps://doi.org/10.1145/1926385.1926394

[4] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan
Grossman. 2010. CoreDet: A Compiler and Runtime System for Deter-
ministic Multithreaded Execution. In Proceedings of the 15th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’10). Pittsburgh, Pennsylvania, USA,
53. h�ps://doi.org/10.1145/1736020.1736029

[5] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. 2010.
CoreDet: A Compiler and Runtime System for Deterministic Multi-
threaded Execution. ACM SIGARCH Computer Architecture News 38, 1
(2010), 53–64.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
2008. The PARSEC Benchmark Suite: Characterization and Architectural
Implications. Technical Report TR-811-08. Princeton University.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In PACT (PACT ’08).

[8] Robert Bocchino, Stephen Heumann, Nima Honarmand, Sarita V. Adve,
Vikram S. Adve, Adam Welc, and Tatiana Shpeisman. 2011. Safe
nondeterminism in a deterministic-by-default parallel language. In
Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL ’11. Austin, Texas, USA,
535. h�ps://doi.org/10.1145/1926385.1926447

[9] Robert Bocchino, Mohsen Vakilian, Vikram Adve, Danny Dig, Sarita
Adve, Stephen Heumann, Rakesh Komuravelli, Je�rey Overbey, Patrick
Simmons, and Hyojin Sung. 2009. A Type and E�ect System for
Deterministic Parallel Java. In Proceeding of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and ap-
plications - OOPSLA ’09. Orlando, Florida, USA, 97. h�ps://doi.org/10.
1145/1640089.1640097

[10] Robert L. Bocchino and Vikram S. Adve. 2011. Types, regions, and
e�ects for safe programming with object-oriented parallel frameworks.
In Proceedings of the 25th European conference on Object-oriented pro-
gramming (ECOOP’11). Berlin, Heidelberg, 306–332. h�p://dl.acm.
org/citation.cfm?id=2032497.2032519

[11] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++
concurrency memory model. In Proceedings of the 2008 ACM SIGPLAN
conference on Programming language design and implementation - PLDI
’08. Tucson, AZ, USA, 68. h�ps://doi.org/10.1145/1375581.1375591

[12] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu,
Junfeng Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot:
A Practical Runtime for Deterministic, Stable, and Reliable Threads.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 388–405.
h�ps://doi.org/10.1145/2517349.2522735

[13] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng
Yang. 2011. E�cient Deterministic Multithreading Through Schedule
Relaxation. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP ’11). ACM, New York, NY, USA,
337–351. h�ps://doi.org/10.1145/2043556.2043588

[14] Derek R. Hower and Mark D. Hill. 2011. Hobbes: CVS for Shared
Memory. In Workshop on Determinism and Correctness in Parallel Pro-
gramming.

[15] Derek R. Hower, Polina Dudnik, David A. Wood, and Mark D. Hill.
2011. Calvin: Deterministic or Not? FreeWill to Choose. In Proceedings
of the 17th International Symposium on High-Performance Computer
Architecture (HPCA).

[16] Joseph Devietti, Dan Grossman, and Luis Ceze. 2012. The Case For
Merging Execution- and Language-Level Determinism with MELD.

[17] Joseph Devietti, Brandon Lucia, Luis Ceze, andMark Oskin. 2009. DMP:
Deterministic Shared Memory Multiprocessing. In Proceedings of the
14th international conference on Architectural support for programming
languages and operating systems (ASPLOS ’09). Washington, DC, USA,
85. h�ps://doi.org/10.1145/1508244.1508255

[18] Joseph Devietti, Brandon Lucia, Luis Ceze, andMark Oskin. 2010. DMP:
Deterministic Shared Memory Multiprocessing. IEEE Micro 30, 1 (Jan.
2010), 40–49. h�ps://doi.org/10.1145/1508244.1508255

[19] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Gross-
man. 2011. RCDC: A Relaxed Consistency Deterministic Computer. In
Proceedings of the sixteenth international conference on Architectural
support for programming languages and operating systems.

[20] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merri�eld, and Mark Moir.
2014. Adaptive Integration of Hardware and Software Lock Elision
Techniques. In Proceedings of the 26th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’14). ACM, New York, NY, USA,

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

890

188–197. h�ps://doi.org/10.1145/2612669.2612696
[21] Vincent Gramoli. 2015. More Than You Ever Wanted to Know

About Synchronization: Synchrobench, Measuring the Impact of the
Synchronization on Concurrent Algorithms. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP 2015). ACM, New York, NY, USA, 1–10.
h�ps://doi.org/10.1145/2688500.2688501

[22] Guy Blelloch. 1992. NESL: A Nested Data-Parallel Language. Technical
Report CMU-CS-92-103. Carnegie Mellon University, Pittsburgh, PA.

[23] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir,
William N. Scherer, and Nir Shavit. 2006. A Lazy Concurrent List-based
Set Algorithm. In Proceedings of the 9th International Conference on
Principles of Distributed Systems (OPODIS’05). Springer-Verlag, Berlin,
Heidelberg, 3–16. h�ps://doi.org/10.1007/11795490_3

[24] Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. 2013.
DDOS: taming nondeterminism in distributed systems. In Proceedings
of the eighteenth international conference on Architectural support for
programming languages and operating systems, Vol. 48. 499–508. h�ps:
//doi.org/10.1145/2451116.2451170

[25] Hadi Jooybar, Wilson W.L. Fung, Mike O’Connor, Joseph Devietti, and
Tor M. Aamodt. 2013. GPUDet: a deterministic GPU architecture. In
Proceedings of the eighteenth international conference on Architectural
support for programming languages and operating systems (ASPLOS
’13). ACM, New York, NY, USA, 1–12. h�ps://doi.org/10.1145/2451116.
2451118

[26] Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. 2014. E�cient
Deterministic Multithreading Without Global Barriers. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming.

[27] Tongping Liu, Charlie Curtsinger, and EmeryD. Berger. 2011. Dthreads:
e�cient deterministic multithreading. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP ’11). New
York, NY, USA, 327–336. h�ps://doi.org/10.1145/2043556.2043587

[28] Li Lu andMichael L. Scott. 2011. Toward a Formal Semantic Framework
for Deterministic Parallel Programming. In Proceedings of the 25th
International Conference on Distributed Computing (DISC’11). Springer-
Verlag, Berlin, Heidelberg, 460–474. h�p://dl.acm.org/citation.cfm?
id=2075029.2075086

[29] José F. Martínez and Josep Torrellas. 2002. Speculative Synchronization:
Applying Thread-level Speculation to Explicitly Parallel Applications.
In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
X). ACM, New York, NY, USA, 18–29. h�ps://doi.org/10.1145/605397.
605400

[30] Timothy Merri�eld, Joseph Devietti, and Jakob Eriksson. 2015. High-
performance Determinism with Total Store Order Consistency. In
Proceedings of the Tenth European Conference on Computer Systems
(EuroSys ’15). ACM, New York, NY, USA, Article 31, 13 pages. h�ps:
//doi.org/10.1145/2741948.2741960

[31] Timothy Merri�eld and Jakob Eriksson. [n. d.]. Conversion, Multi-
Version Concurrency Control for Main-Memory Segments. In Proceed-
ings of the 8th ACM european conference on Computer Systems (EuroSys
’13).

[32] Timothy Merri�eld and Jakob Eriksson. 2013. Conversion: multi-
version concurrency control for main memory segments. In Proceed-
ings of the 8th ACM European Conference on Computer Systems (Eu-
roSys ’13). ACM, New York, NY, USA, 127–139. h�ps://doi.org/10.
1145/2465351.2465365

[33] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo:
E�cient Deterministic Multithreading in Software. In Proceeding of the
14th international conference on Architectural support for programming
languages and operating systems - ASPLOS ’09. Washington, DC, USA,
97. h�ps://doi.org/10.1145/1508244.1508256

[34] Ravi Rajwar and James R. Goodman. 2001. Speculative lock eli-
sion: enabling highly concurrent multithreaded execution. In Pro-
ceedings of the 34th annual ACM/IEEE international symposium on
Microarchitecture (MICRO 34). Washington, DC, USA, 294–305. h�p:
//dl.acm.org/citation.cfm?id=563998.564036

[35] Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel. 2008.
Dependence-aware Transactional Memory for Increased Concurrency.
In Proceedings of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 41). IEEE Computer Society, Washington,
DC, USA, 246–257. h�ps://doi.org/10.1109/MICRO.2008.4771795

[36] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. 2007. Evaluating MapReduce for Multi-core
and Multiprocessor Systems. In HPCA. 13–24.

[37] Martin C. Rinard andMonica S. Lam. 1998. The design, implementation,
and evaluation of Jade. ACM Transactions on Programming Languages
and Systems 20, 3 (May 1998), 483–545. h�ps://doi.org/10.1145/291889.
291893

[38] Cedomir Segulja and Tarek S. Abdelrahman. 2012. Architectural sup-
port for synchronization-free deterministic parallel programming. In
Proceedings of the 2012 IEEE 18th International Symposium on High-
Performance Computer Architecture (HPCA ’12). IEEE Computer Soci-
ety, Washington, DC, USA, 1–12. h�ps://doi.org/10.1109/HPCA.2012.
6169038

[39] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer
on Memory Consistency and Cache Coherence. Synthesis Lectures on
Computer Architecture 6, 3 (May 2011), 1–212. h�ps://doi.org/10.2200/
S00346ED1V01Y201104CAC016

[40] Stephen Heumann and Vikram Adve. 2012. Tasks with E�ects: A
Model for Disciplined Concurrent Programming.

[41] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven Gribble. 2010.
Deterministic process groups in dOS. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation.

[42] Mohsen Vakilian, Danny Dig, Robert Bocchino, Je�rey Overbey,
Vikram Adve, and Ralph Johnson. 2009. Inferring Method E�ect Sum-
maries for Nested Heap Regions. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering (ASE ’09).
Washington, DC, USA, 421–432. h�ps://doi.org/10.1109/ASE.2009.68

[43] AdamWelc, Bratin Saha, and Ali-Reza Adl-Tabatabai. 2008. Irrevocable
Transactions and Their Applications. In Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and Architectures
(SPAA ’08). ACM, New York, NY, USA, 285–296. h�ps://doi.org/10.
1145/1378533.1378584

[44] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. 1995. The SPLASH-2 Programs: Charac-
terization and Methodological Considerations. In Proceedings of the
22Nd Annual International Symposium on Computer Architecture (ISCA
’95). ACM, New York, NY, USA, 24–36. h�ps://doi.org/10.1145/223982.
223990

Session: Concurrency ASPLOS’19, April 13–17, 2019, Providence, RI, USA

891

