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Abstract—Traffic congestion and accidents are increasing ex-
ponentially worldwide. More vehicles are sold every year which
leads to more traffic fatalities and congestion. There have been
several efforts worldwide for mobile Cyber Physical Systems
(CPS) to address a range of problems including traffic congestion,
accidents, unnecessary time spent in traffic jams, and overall
infotainment by using onboard communicating and computing
technologies. However, when we use peer-to-peer network-based
communication for mobile CPS, malicious users/vehicles could
mislead the mobile CPS by not reporting their true periodic
status data to their neighbors on the road. In this paper, we study
a data validation and correction approach for resiliency in mobile
CPS that uses a diverse set of data for reducing false information.
Numerical results obtained from Monte Carlo simulation are
used to evaluate the proposed approach. Results show that the
proposed approach minimizes the false data in the mobile CPS
to enhance the resiliency.

Index Terms—Mobile Cyber Physical Systems, Resilient CPS,
CPS Security.

I. INTRODUCTION

Recent advances in computing and communication tech-
nologies and the successful deployment of wireless technolo-
gies for anytime, anywhere connectivity have led to differ-
ent emerging technologies such as Cyber Physical Systems
(CPS), Internet of Things (IoT) and smart cities ( [1]-[3]).
Mobile CPS is one of the emerging areas which is regarded
as a backbone for intelligent and autonomous transportation
systems. Mobile CPS are expected to provide timely feedback
to the vehicles so that either the vehicle can take corrective
action automatically or the driver of the vehicle can take
corrective action in order to enhance road safety and overall
traffic efficiency. Based on the US patent and recent study (
[4], [5]), “about 60% of roadway collisions could be avoided if
the operator of the vehicle was provided warning at least one-
half second prior to a collision”. Furthermore, timely message
transmission in a vehicular network is very important for
emergency vehicles and incidents ( [6], [7]).

It is worth noting that in mobile CPS for transportation
systems, each vehicle should be able to adapt its operating pa-
rameters on the fly based on their local observations and inter-
actions with its neighboring vehicles. Each vehicle in vehicular
ad hoc networks is required to broadcast its location, speed,
and other status information to its neighbors periodically, at
least 8 times a second ( [1], [2], [8]). This periodic reported
status information can be leveraged to provide resiliency in

mobile CPS through data validation and correction, and trust
estimation of interacting vehicles.

Based on the report published by the U.S. National Highway
Traffic Safety Administration (NHTSA), over 30 thousand
traffic fatalities occur every year on US highways due to
vehicle collisions. Vehicles not only driving towards traffic
congested areas but also driving with different speeds in same
direction need to take action instantaneously to adapt their
speeds steadily to avoid any collisions.

In this paper, we study a data validation and correction
approach for mobile CPS, where messages received from
neighboring vehicles are used to estimate trust levels over the
measuring period and adapt the operating parameters based
on trust level, as well as estimated values based on received
periodic status messages.

Recent related works considered data verification using con-
ventional integrity checking approach ( [9]-[11]). Traditional
integrity checking approaches cannot meet the requirement
of the mobile CPS, as traditional approaches rely fully on
the information received from the transmitting party and an
integrity check of the received message. None of the existing
approaches consider the integration of estimation based on the
received messages and local observation by each vehicle. In
this paper, we consider that each vehicle observes different
parameters such as safety distance between vehicles using
ranging/radar technology and leverages the information re-
ceived from neighboring vehicles. This approach bears some
similarity to proposed solutions to the problem of achiev-
ing resilience from misbehaving agents in networked control
systems ( [12]-[14]). First, each vehicle estimates the trust
level of its reachable neighbors (that are reachable by one hop
vehicular communications) over the observation period. Then,
for vehicles whose trust level falls above a given threshold,
different parameters are estimated and updated based on the
proposed algorithm (i.e., Algorithm 1).

The remainder of this paper is organized as follows. Section
II presents a typical system model used in the paper. Section III
presents the approach to evaluate the trust levels of interacting
vehicles and the proposed algorithm to update the speed and
safety separation distance between vehicles. Numerical results
for performance are presented in Section I'V. Conclusions are
presented in Section V.
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Fig. 1: A system model for mobile cyber physical systems.

II. SYSTEM MODEL

A typical system model to study the data validation and
correction for resiliency in mobile CPS is shown in Fig. 1,
where each vehicle is assumed to be equipped with computing,
communication, storage, camera for vision, radar technology
and infrared sensors ( [1], [2], [8]). Furthermore, individual
vehicles are capable of measuring, transmitting, and receiving
data about location, speed, and distance between vehicles. As
components of a mobile CPS, the vehicles are also capable
of making decisions and taking actions based on input and
observed data.

From the perspective of an individual vehicle, the model
contains three basic variables: d (distance to the next vehicle
ahead), s (relative speed of the next vehicle ahead), and ¢
(time).

The variables d and s are further specified in order to
convey information about the source of the data, and in the
case of distance, the time at which the data was recorded.
Distance information measured by the vehicle’s own sensors
at time ¢ is notated as d,,;, while distance data reported at
time ¢ by a neighboring vehicle is notated as d,;. Distance
information at time ¢ that has been calculated by the vehicle
using a blend of internally measured and externally reported
data is notated as d.;. The final assigned value for distance
to the next vehicle ahead at time ¢, which the vehicle uses
to base future decisions, on is notated d;. Similarly, relative
speed of the vehicle ahead is labeled s,, when measured by
the vehicle itself, s, when reported by the vehicle ahead, s.
when calculated by the vehicle using both internal and external
data, and s when it has been finally assigned. In this model, we
consider time to be a secure data point which is not vulnerable
to error or attack, so a selected moment in time is notated
t;, with no reference to the source of time data. We visualize
these variables for the reader in Fig. 1 in order to make clearer
their relationship. The red subject vehicle on the top left drives
behind the blue vehicle in front of it on the top right. Using its
internal sensors, the subject vehicle measures the distance to
the vehicle in front of it, d,,,;,, and the relative speed at which
the vehicle ahead is driving, s,,. At the same time, the vehicle
ahead reports to the subject vehicle its own measurements of
how far away it is, d,,, as well as its relative speed, s,. The
subject vehicle has the option of using its own measurements
and those reported by the vehicle ahead in order to calculate
distance d., and relative speed s., as shown in the thought
bubble coming from the subject vehicle.

Furthermore, based on the interaction of a given vehicle
with its neighboring vehicles, it estimates the trust levels of
all interacting vehicles which is then used to take corrective
actions by the vehicle.

III. PROPOSED APPROACH AND THE ALGORITHM

To estimate the trustworthiness of a given vehicle, we use
an estimated suspicion level of a vehicle for a given time. A
suspicion level s, of a vehicle n among /N vehicles can be
expressed as

Sn

P(Cr = AIMy), (M

where (), is the vehicle type: Adversarial (A) or Honest ()
and M; is the suspicion measuring over the time ¢. Using
Bayes’ theorem, the suspicion level for a given vehicle can be
written as

P(M,|C,, = A)P(Cp = A)
Sn(t) = N
> om=1 PMi[Crp = A)P(Cry = A)

A given vehicle on the road could be adversarial which implies
for any vehicle n and m

P(C, = A) = P(C,, = A).

(@)

Then, (2) can be expressed as

P(My|Cr = A) 3)
~ .
Zmzl P(Mt|Cm = A)
Once a given vehicle estimates the suspicion level of another
vehicle using (3), we can estimate the trust level of the given
vehicle as

Sn(t) =

To(t) =1 — S,(1). “

To estimate the trust level, different data in periodic status
messages can be used (e.g., [8]). For example, estimated
speed of the vehicle of interest using radar technology and
its reported speed through periodic status message, estimated
safety separation distance using distance calculated using
period message and using distance estimator such as radar
technology. We propose the use of the Algorithm 1 to verify
data about the relative speed and distance of the vehicle ahead
of the subject vehicle.

This approach can be summarized as validating internally
measured and externally reported data against each other,
within some thresholds of trust and similarity bounded by
Ar and A7, respectively. The algorithm uses relative speed
and time data to calculate distance when there is too much
disagreement between internally measured and externally re-
ported distance data but relative speed data is in agreement. It
uses distance and time data to calculate relative speed when
the reverse is the case. The extent to which externally reported
data is taken into account in these calculations is modulated by
the trust level of the reporting vehicle. When neither distance
nor relative speed data from internally measured and externally
reported data is in agreement, the cyber-physical system must
determine the reality of the situation using other means, such
as human intervention or computer vision, because the data is
too compromised to draw meaning from.



Algorithm 1 Data Verification for Resiliency in Mobile CPS

Input: Periodic messages from neighboring/front vehicles,
readings of local sensors and Ar, Mg, and Ay threshold
values
Output: Trust level, corrected safety separation distance,
and steadily updated speed for the vehicle
For each Vehiclﬁ/1 n,cto Xerify data at time ¢ do
Sull) s G
Tn(t) «—1- S (t)
if T,,(t) < Ap then
Trust level is too low to take neighboring vehicle’s report
into account
S Sm
dti < dmt7,
else A
i; 7,0
T n(t)
if [m=sel < AT AND [ =dril < \T then
Measured data and data reported by neighboring vehi-
cle are in close enough agreement that no alterations
are needed
S Sm,
dt — dmt
else if 2=l < T AND [l o 3T ghen
Measured speed data and speed data reported by neigh-
boring vehicle are in agreement but measured and
reported distance data are significantly different— speed
data must be used to calculate distance
S Sm,
d (*df —S(t — 1 1)+dtl
else if 2= 5 \T AND M < A7 then
Measured distance data and drstance data reported by
neighboring vehicle are in agreement but measured
and reported distance data are significantly different—
distance data must be used to calculate speed

dt,', — dmt7,
t; — Gt
R — 747”111
else

Data is not verifiable- trigger alternate/backup systems
(human intervention, computer vision, etc.)
end if
end if

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm using Monte Carlo simulation for mobile CPS. We
consider that each vehicle is equipped with computing, com-
munication, infrared, camera and radar devices. As discussed
in the previous section, each vehicle in mobile CPS reports its
periodic status to its neighbors and each vehicle estimates its
surrounding by using its sensors and computing capabilities.

First, we randomly generated trust levels for 1000 neigh-
boring vehicles with a uniform distribution. We also randomly

generated two sets each of speed and distance data for 1000
vehicles with a normal distribution centered around means of
37.5 mph and 125 meters, respectively. One of these pairs of
generated speed and distance data represented measured data,
while the other represented reported data.

We then simulated running our algorithm in order to plot the
frequency of data agreement type for each of the 1000 driving
scenarios represented by a generated set of five data points:
trust level, measured speed, measured distance, reported speed,
and reported data. We set \s and Ay, the thresholds which
allow us to scale trust level to maximum percent difference, to
0.1 on each of the twenty runs of the simulation. The minimum
trust level Ay began at O on the first run and increased by
0.05 on each simulation run, ending at 1. We now present a
representative selection of simulation results.

When minimum trust is at the low end of the possible range,
such as 0.15 as shown in Fig. 2, the scenarios are divided
between having trust levels that are too low to take reported
data into account and having all data agree. The percentage
of scenarios which have trust levels which are too low to take
reported data into account ("no trust”) is approximately the
minimum trust level, 15.8% compared to a minimum trust
level of 0.15 in Fig. 2. This makes sense as our generated trust
levels were uniformly distributed across scenarios, however,
it is noteworthy that every scenario in which the reporting
vehicle was trusted had close enough data agreement across
both speed and distance data.
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Fig. 2: Frequency of data agreement type when minimum trust
level is 0.15.

When minimum trust is in the middle of the possible range,
such as 0.5 as shown in Fig. 3, we begin to see a small number
of scenarios (0.3% and 0.2%, respectively, when trust level is
0.5) which only agree on one type of data, speed or distance,
rather than both. As to be expected, the scenarios which have
only one type of agreement seem to only reduce the number
of scenarios in which all data agree, rather than those in which
there is no trust.
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Fig. 3: Frequency of data agreement type when minimum trust
level is 0.5.

Finally, as minimum trust level starts to climb into the upper
end of the possible range, such as trust level 0.9 as shown in
Fig. 4, we begin to see the balance of the small number of
scenarios which have only distance or speed agreement shift
towards distance agreement. In Fig. 4, where trust level is 0.9,
0.6% of all scenarios had only distance agreement, while only
0.2% off all scenarios had only speed agreement. It is also
notable that there is no point at which there is no agreement
at all between data types in any of the simulations, suggestion
that it would be very rare to need to trigger alternate/backup
systems. Further research will be needed to determine both
why it is extremely unlikely to achieve one type of data
agreement without the other, but also why the balance of
this small number of one data agreement type scenarios shifts
towards distance agreement as minimum trust level increases.
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Fig. 4: Frequency of data agreement type when minimum trust
level is 0.9.

V. CONCLUSION

In this paper, we have presented an algorithm for calculating
the trust level of surrounding vehicles as well as data validation
and correction in mobile CPS. The goal of the proposed
approach is to correct the speed and safety separation distance
of vehicles on the road on the fly based on the observations of
the following vehicle and data reported by vehicles traveling
in the front of the given vehicle in a mobile CPS. We have
used simulation results to evaluate the proposed approach. The
results have shown that the proposed approach can correct the
speed and safety separation distance (in case of untrustworthy
vehicle) for reducing vehicle collisions in the mobile CPS.

Our future work includes an extensive study using in depth
formal analysis, model based data validation and correction,
consideration of the impact of errors in on-board sensors, and
validation of the proposed approach using real test data.
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