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Abstract—Traffic congestion and accidents are increasing ex-
ponentially worldwide. More vehicles are sold every year which
leads to more traffic fatalities and congestion. There have been
several efforts worldwide for mobile Cyber Physical Systems
(CPS) to address a range of problems including traffic congestion,
accidents, unnecessary time spent in traffic jams, and overall
infotainment by using onboard communicating and computing
technologies. However, when we use peer-to-peer network-based
communication for mobile CPS, malicious users/vehicles could
mislead the mobile CPS by not reporting their true periodic
status data to their neighbors on the road. In this paper, we study
a data validation and correction approach for resiliency in mobile
CPS that uses a diverse set of data for reducing false information.
Numerical results obtained from Monte Carlo simulation are
used to evaluate the proposed approach. Results show that the
proposed approach minimizes the false data in the mobile CPS
to enhance the resiliency.

Index Terms—Mobile Cyber Physical Systems, Resilient CPS,
CPS Security.

I. INTRODUCTION

Recent advances in computing and communication tech-

nologies and the successful deployment of wireless technolo-

gies for anytime, anywhere connectivity have led to differ-

ent emerging technologies such as Cyber Physical Systems

(CPS), Internet of Things (IoT) and smart cities ( [1]–[3]).

Mobile CPS is one of the emerging areas which is regarded

as a backbone for intelligent and autonomous transportation

systems. Mobile CPS are expected to provide timely feedback

to the vehicles so that either the vehicle can take corrective

action automatically or the driver of the vehicle can take

corrective action in order to enhance road safety and overall

traffic efficiency. Based on the US patent and recent study (

[4], [5]), “about 60% of roadway collisions could be avoided if

the operator of the vehicle was provided warning at least one-

half second prior to a collision”. Furthermore, timely message

transmission in a vehicular network is very important for

emergency vehicles and incidents ( [6], [7]).

It is worth noting that in mobile CPS for transportation

systems, each vehicle should be able to adapt its operating pa-

rameters on the fly based on their local observations and inter-

actions with its neighboring vehicles. Each vehicle in vehicular

ad hoc networks is required to broadcast its location, speed,

and other status information to its neighbors periodically, at

least 8 times a second ( [1], [2], [8]). This periodic reported

status information can be leveraged to provide resiliency in

mobile CPS through data validation and correction, and trust

estimation of interacting vehicles.

Based on the report published by the U.S. National Highway

Traffic Safety Administration (NHTSA), over 30 thousand

traffic fatalities occur every year on US highways due to

vehicle collisions. Vehicles not only driving towards traffic

congested areas but also driving with different speeds in same

direction need to take action instantaneously to adapt their

speeds steadily to avoid any collisions.

In this paper, we study a data validation and correction

approach for mobile CPS, where messages received from

neighboring vehicles are used to estimate trust levels over the

measuring period and adapt the operating parameters based

on trust level, as well as estimated values based on received

periodic status messages.

Recent related works considered data verification using con-

ventional integrity checking approach ( [9]–[11]). Traditional

integrity checking approaches cannot meet the requirement

of the mobile CPS, as traditional approaches rely fully on

the information received from the transmitting party and an

integrity check of the received message. None of the existing

approaches consider the integration of estimation based on the

received messages and local observation by each vehicle. In

this paper, we consider that each vehicle observes different

parameters such as safety distance between vehicles using

ranging/radar technology and leverages the information re-

ceived from neighboring vehicles. This approach bears some

similarity to proposed solutions to the problem of achiev-

ing resilience from misbehaving agents in networked control

systems ( [12]–[14]). First, each vehicle estimates the trust

level of its reachable neighbors (that are reachable by one hop

vehicular communications) over the observation period. Then,

for vehicles whose trust level falls above a given threshold,

different parameters are estimated and updated based on the

proposed algorithm (i.e., Algorithm 1).

The remainder of this paper is organized as follows. Section

II presents a typical system model used in the paper. Section III

presents the approach to evaluate the trust levels of interacting

vehicles and the proposed algorithm to update the speed and

safety separation distance between vehicles. Numerical results

for performance are presented in Section IV. Conclusions are

presented in Section V.



Fig. 1: A system model for mobile cyber physical systems.

II. SYSTEM MODEL

A typical system model to study the data validation and

correction for resiliency in mobile CPS is shown in Fig. 1,

where each vehicle is assumed to be equipped with computing,

communication, storage, camera for vision, radar technology

and infrared sensors ( [1], [2], [8]). Furthermore, individual

vehicles are capable of measuring, transmitting, and receiving

data about location, speed, and distance between vehicles. As

components of a mobile CPS, the vehicles are also capable

of making decisions and taking actions based on input and

observed data.

From the perspective of an individual vehicle, the model

contains three basic variables: d (distance to the next vehicle

ahead), s (relative speed of the next vehicle ahead), and t

(time).

The variables d and s are further specified in order to

convey information about the source of the data, and in the

case of distance, the time at which the data was recorded.

Distance information measured by the vehicle’s own sensors

at time t is notated as dmt, while distance data reported at

time t by a neighboring vehicle is notated as drt. Distance

information at time t that has been calculated by the vehicle

using a blend of internally measured and externally reported

data is notated as dct. The final assigned value for distance

to the next vehicle ahead at time t, which the vehicle uses

to base future decisions, on is notated dt. Similarly, relative

speed of the vehicle ahead is labeled sm when measured by

the vehicle itself, sr when reported by the vehicle ahead, sc
when calculated by the vehicle using both internal and external

data, and s when it has been finally assigned. In this model, we

consider time to be a secure data point which is not vulnerable

to error or attack, so a selected moment in time is notated

ti, with no reference to the source of time data. We visualize

these variables for the reader in Fig. 1 in order to make clearer

their relationship. The red subject vehicle on the top left drives

behind the blue vehicle in front of it on the top right. Using its

internal sensors, the subject vehicle measures the distance to

the vehicle in front of it, dmti , and the relative speed at which

the vehicle ahead is driving, sm. At the same time, the vehicle

ahead reports to the subject vehicle its own measurements of

how far away it is, drti , as well as its relative speed, sr. The

subject vehicle has the option of using its own measurements

and those reported by the vehicle ahead in order to calculate

distance dcti and relative speed sc, as shown in the thought

bubble coming from the subject vehicle.

Furthermore, based on the interaction of a given vehicle

with its neighboring vehicles, it estimates the trust levels of

all interacting vehicles which is then used to take corrective

actions by the vehicle.

III. PROPOSED APPROACH AND THE ALGORITHM

To estimate the trustworthiness of a given vehicle, we use

an estimated suspicion level of a vehicle for a given time. A

suspicion level sn of a vehicle n among N vehicles can be

expressed as

Sn ≡ P (Cn = A|Mt), (1)

where Cn is the vehicle type: Adversarial (A) or Honest (H)

and Mt is the suspicion measuring over the time t. Using

Bayes’ theorem, the suspicion level for a given vehicle can be

written as

Sn(t) =
P (Mt|Cn = A)P (Cn = A)

∑N

m=1 P (Mt|Cm = A)P (Cm = A)
(2)

A given vehicle on the road could be adversarial which implies

for any vehicle n and m

P (Cn = A) = P (Cm = A).

Then, (2) can be expressed as

Sn(t) =
P (Mt|Cn = A)

∑N

m=1 P (Mt|Cm = A)
. (3)

Once a given vehicle estimates the suspicion level of another

vehicle using (3), we can estimate the trust level of the given

vehicle as

Tn(t) = 1− Sn(t). (4)

To estimate the trust level, different data in periodic status

messages can be used (e.g., [8]). For example, estimated

speed of the vehicle of interest using radar technology and

its reported speed through periodic status message, estimated

safety separation distance using distance calculated using

period message and using distance estimator such as radar

technology. We propose the use of the Algorithm 1 to verify

data about the relative speed and distance of the vehicle ahead

of the subject vehicle.

This approach can be summarized as validating internally

measured and externally reported data against each other,

within some thresholds of trust and similarity bounded by

λT and λT
x , respectively. The algorithm uses relative speed

and time data to calculate distance when there is too much

disagreement between internally measured and externally re-

ported distance data but relative speed data is in agreement. It

uses distance and time data to calculate relative speed when

the reverse is the case. The extent to which externally reported

data is taken into account in these calculations is modulated by

the trust level of the reporting vehicle. When neither distance

nor relative speed data from internally measured and externally

reported data is in agreement, the cyber-physical system must

determine the reality of the situation using other means, such

as human intervention or computer vision, because the data is

too compromised to draw meaning from.



Algorithm 1 Data Verification for Resiliency in Mobile CPS

Input: Periodic messages from neighboring/front vehicles,

readings of local sensors and λT , λs, and λd threshold

values

Output: Trust level, corrected safety separation distance,

and steadily updated speed for the vehicle

For each vehicle n, to verify data at time t do

Sn(t) ←
P (Mt|Cn=A)

∑
N

m=1
P (Mt|Cm=A)

Tn(t) ← 1− Sn(t)
if Tn(t) < λT then

Trust level is too low to take neighboring vehicle’s report

into account

s ← sm
dti ← dmti

else

λT
s ← λs

Tn(t)

λT

d
← λd

Tn(t)

if
|sm−sr|

sm
≤ λT

s AND
|dmti

−drti
|

dmti

≤ λT

d
then

Measured data and data reported by neighboring vehi-

cle are in close enough agreement that no alterations

are needed

s ← sm
dti ← dmti

else if
|sm−sr|

sm
≤ λT

s AND
|dmti

−drti
|

dmti

> λT

d
then

Measured speed data and speed data reported by neigh-

boring vehicle are in agreement but measured and

reported distance data are significantly different– speed

data must be used to calculate distance

s ← sm
dti ← dcti = s(ti − ti−1) + dti−1

else if
|sm−sr|

sm
> λT

s AND
|dmti

−drti
|

dmti

≤ λT

d
then

Measured distance data and distance data reported by

neighboring vehicle are in agreement but measured

and reported distance data are significantly different–

distance data must be used to calculate speed

dti ← dmti

s ← sc =
dti

−dti−1

ti−ti−1

else

Data is not verifiable- trigger alternate/backup systems

(human intervention, computer vision, etc.)

end if

end if

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

algorithm using Monte Carlo simulation for mobile CPS. We

consider that each vehicle is equipped with computing, com-

munication, infrared, camera and radar devices. As discussed

in the previous section, each vehicle in mobile CPS reports its

periodic status to its neighbors and each vehicle estimates its

surrounding by using its sensors and computing capabilities.

First, we randomly generated trust levels for 1000 neigh-

boring vehicles with a uniform distribution. We also randomly

generated two sets each of speed and distance data for 1000

vehicles with a normal distribution centered around means of

37.5 mph and 125 meters, respectively. One of these pairs of

generated speed and distance data represented measured data,

while the other represented reported data.

We then simulated running our algorithm in order to plot the

frequency of data agreement type for each of the 1000 driving

scenarios represented by a generated set of five data points:

trust level, measured speed, measured distance, reported speed,

and reported data. We set λs and λd, the thresholds which

allow us to scale trust level to maximum percent difference, to

0.1 on each of the twenty runs of the simulation. The minimum

trust level λT began at 0 on the first run and increased by

0.05 on each simulation run, ending at 1. We now present a

representative selection of simulation results.

When minimum trust is at the low end of the possible range,

such as 0.15 as shown in Fig. 2, the scenarios are divided

between having trust levels that are too low to take reported

data into account and having all data agree. The percentage

of scenarios which have trust levels which are too low to take

reported data into account (”no trust”) is approximately the

minimum trust level, 15.8% compared to a minimum trust

level of 0.15 in Fig. 2. This makes sense as our generated trust

levels were uniformly distributed across scenarios, however,

it is noteworthy that every scenario in which the reporting

vehicle was trusted had close enough data agreement across

both speed and distance data.
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Fig. 2: Frequency of data agreement type when minimum trust

level is 0.15.

When minimum trust is in the middle of the possible range,

such as 0.5 as shown in Fig. 3, we begin to see a small number

of scenarios (0.3% and 0.2%, respectively, when trust level is

0.5) which only agree on one type of data, speed or distance,

rather than both. As to be expected, the scenarios which have

only one type of agreement seem to only reduce the number

of scenarios in which all data agree, rather than those in which

there is no trust.
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Fig. 3: Frequency of data agreement type when minimum trust

level is 0.5.

Finally, as minimum trust level starts to climb into the upper

end of the possible range, such as trust level 0.9 as shown in

Fig. 4, we begin to see the balance of the small number of

scenarios which have only distance or speed agreement shift

towards distance agreement. In Fig. 4, where trust level is 0.9,

0.6% of all scenarios had only distance agreement, while only

0.2% off all scenarios had only speed agreement. It is also

notable that there is no point at which there is no agreement

at all between data types in any of the simulations, suggestion

that it would be very rare to need to trigger alternate/backup

systems. Further research will be needed to determine both

why it is extremely unlikely to achieve one type of data

agreement without the other, but also why the balance of

this small number of one data agreement type scenarios shifts

towards distance agreement as minimum trust level increases.
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Fig. 4: Frequency of data agreement type when minimum trust

level is 0.9.

V. CONCLUSION

In this paper, we have presented an algorithm for calculating

the trust level of surrounding vehicles as well as data validation

and correction in mobile CPS. The goal of the proposed

approach is to correct the speed and safety separation distance

of vehicles on the road on the fly based on the observations of

the following vehicle and data reported by vehicles traveling

in the front of the given vehicle in a mobile CPS. We have

used simulation results to evaluate the proposed approach. The

results have shown that the proposed approach can correct the

speed and safety separation distance (in case of untrustworthy

vehicle) for reducing vehicle collisions in the mobile CPS.

Our future work includes an extensive study using in depth

formal analysis, model based data validation and correction,

consideration of the impact of errors in on-board sensors, and

validation of the proposed approach using real test data.
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