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Abstract—Software Defined Internet of Vehicles (SDIoV) has
emerged as a promising field of study as it could overcome the
shortcomings of traditional vehicular networks, such as offering
efficient data transmission and traffic shaping in different vehicu-
lar scenarios to satisfy all the requirements of applications on the
fly. Although routing solutions are lightly addressed for SDIoV,
there are many limitations of routing protocols unaddressed
in such environment. More precisely, shortest path routing
algorithms are mostly focused in the state of the arts. This paper
presents quality of service aware routing algorithm (QRA) that
forwards packets toward the most reliable and connected path
to the destination. Particularly, candidate routes should satisfy
metrics such as Signal to Interference and Noise Ratio (SINR)
constraint and have the highest probability of connectivity. To
address these issues, we have formulated a discrete optimization
problem to favor the best route among candidate paths and
proposed the modified Laying Chicken Algorithm (LCA) that
results better results than the traditional approaches. We have
mathematically analyzed the probability of connectivity along
with the SINR metric. Moreover, a multi-score function based
on traffic density and greediness factor is proposed to make
intelligent decision at the intersections. Simulation results are
used to validate the superiority of the proposed routing approach
over the the existing solutions.

Index Terms—Laying Chicken Algorithm, quality of service,
routing algorithm, software-defined Internet of Vehicles (SDIoV).

I. INTRODUCTION

We have witnessed rapid developments in the field of con-
nected vehicles in the last few years. These advances have been
possible as a result of the tight convergence of intelligent com-
puting techniques, vehicular networks and automotive software
and hardware technologies. These emerging technologies pave
the ways for future autonomous driving. Researchers from
both academia and industry are working closely to develop
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and improve the design of autonomous vehicles that will
rely on the computing and communications among cars and
their decision making capabilities [1]. Connected vehicles
enable several applications ranging from traffic control and
management, cooperative collision avoidance, finding optimal
trajectory and lane changing assistance for smart transportation
system. Software defined network for Internet of Vehicles
(IoV) allows smart vehicles to adapt their operating parameters
for computing and communication on the fly to enhance the
overall performance

In Software Defined Internet of Vehicles (SDIoV), packet
routing plays an important role to make IoV applications
feasible since connected vehicles rely on message received
from other vehicles and/or Road Side Unit (RSU) in a
multi-hop fashion. Enabling multi-hop communication in such
environment facilitates wide coverage with low number of
RSUs. Routing in IoV could be done through unicast [2]-
[4]. However, current wireless access standards for vehicular
communications cannot satisfy the delay requirements of time-
critical and emergency vehicular applications. Furthermore,
existing routing solutions have shortcomings in terms of
scalability and adaptability to different IoV scenarios [S]-[7].
Moreover, current vehicular network lacks a mechanism of
disseminating emergency messages in a priority basis.

It is obvious that the existing state of the art solutions
could not be applied directly to tackle the challenges in
IoV scenarios. For instance, Quality of Service-aware (QoS)
information dissemination in different traffic conditions and
fulfilling requirements of different applications will be a daunt-
ing task. These technical challenges will hinder the feasibility
of IoV deployment [8], [9]. Thus, an alternative solution is
required to develop a scalable, adaptable and robust protocol
for IoV environment. Software Defined Network (SDN) has
emerged as a promising technology for orchestrating networks
and offer new features and services. When SDN is applied
in IoV by disassociating the control and data planes, the
controller simply manages the network and could shape the
data traffic for the specific application. Thus, in SDIoV, an
optimal route selection is easier as the centralized controller
has a global view of the whole network.

Efforts have been made to use new SDN paradigm [10]
for route optimization in vehicular scenarios. In an attempt,
in [11] the centralized controller uses positional and topolog-
ical information in order to find best route to the destination
infrastructure node. Similarly, the authors in [12] have used
the notion of SDN to efficiently forward packets toward a
specified destination. In [13], the Kriging interpolation model
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Fig. 1. Typical phases of routing in the SDIoV.

was utilized for selecting a best RSU in terms of Signal to
Interference and Noise Ratio (SINR). However, the proposed
algorithm has high overhead as it extensively searches for
unsatisfactory vehicles by measuring QoE of vehicles within
the coverage of each RSU. In [14], a multicast algorithm was
developed with an aim to reduce time latency in vehicular
networks, however, the algorithm is not scalable and the
complexity of the algorithm was very high. The basic steps
of the multicast algorithm of [14] are summarized in Fig. 1
where to establish a route in SDN enabled vehicular network
a vehicle should be associated to a RSU to send a route
query. Then, a centralized controller builds a network graph
based on the gathered topology information. Favoring the best
quality RSU in order to send route query directly affect the
performance of routing protocols. In [15], an iterative method
was proposed to select the most appropriate RSU among a
set of RSUs. However, this method increases the number of
transmission requests to find the best RSU. To tackle the
high number of transmission requests for RSU association
mechanism, in [12], the Nakagami propagation model was
used for this purpose. In [13], the quality of wireless channel
between a vehicle and RSU was considered to judge the best
RSU.

As reference to the aforementioned discussion, there are
many technical challenges when developing routing algorithms
in SDIoV for data dissemination. For instance, sub-optimal
routing might happen in case of considering shortest path
routing algorithms in the controller side, when a combination
of multi-metrics are not considered to select optimal route for
data communication and finding the metrics for route selection,
which is a daunting task. To this end, this paper presents an op-
timal routing algorithm for data communication, named quality
of service aware routing algorithm (QRA), that forward data
packets toward the most reliable and connected path towards
destination. More precisely, candidate routes should satisfy the
metric such as SINR constraint and have the best probability
of connectivity. We have formulated a discrete optimization
problem to favor the best route among candidate routes and
the modified Laying Chicken Algorithm (LCA) is proposed
to solve this problem. We have mathematically analyzed the
probability of connectivity by considering the SINR metric.
Moreover, a multi-score function based on traffic density and
greediness factor is proposed to make informed decision at
the intersections in urban environment (using NS3 [16]). It is
noteworthy that our proposed multi-hop geographical routing
protocol is well suited for many IoV applications. For instance,
in comfort-related applications, it can be used for chatting,

gaming, file sharing or infotainment between vehicles.
Specifically, our contributions in this paper are:

1) In SDIoV, we have proposed a QRA - a multi-metric
geographic routing algorithm which uses discrete opti-
mization with SINR and probability of connectivity - that
gives the reliable and best connected route that avoids
sub-optimal routing in case of considering shortest path
routing algorithms in the controller side.

2) LCA finds an optimal route among candidate routes
between source and destination for data communication
where the QRA algorithm searches for candidate routes
by handshaking route discovery and reply packets.

3) We have derived mathematical model for multi metric
decision that could be applied in different intersections.
Furthermore, a packet carrier node considers greediness
factor and traffic density of road segment to make deci-
sion on next candidate intersection.

4) We have evaluated the performance of the proposed ap-
proach using numerical results obtained from simulations.

The rest of the paper is arranged as follows: Section II
provides the literature review on recent advances of routing so-
lutions in SDIoV. Section III presents the proposed algorithm
followed by performance evaluation in section IV. Finally,
section V concludes the paper.

II. RELATED WORK

The issue of routing in SDIoV has been studied in various
dimensions in high mobile networks. Centralized and hybrid
routing are main examples of routing data packets in SDIoV.
There are several research works such as [12], [17], [18] that
use centralized routing mechanism in SDIoV. The controller
has global view on the network topology and hence computes
best quality path for message transmission. In such a way,
controller creates per-flow route for all vehicles. In [17], cen-
tralized controller has been used to find efficient route for high
data message delivery. The proposed solution is best suited
for sparse vehicular traffic. However, as the proposed solution
relied on complex prediction mechanism to update dynamic
change of network topology, it leads to high computation delay
and low throughput. Another method for dynamic update of
vehicular topology is adopted in [18]. They fully relied on
beacon messages to continuously update and track dynamic
changing of topology. Their routing algorithm used single path
per source-destination and used a Markov chain model to give
priority to the routes. However, as it has high complexity,
the proposed algorithm does not scale well in high density
environment.

Another architecture for data forwarding, different to cen-
tralized one, is adopted to SDIoV named hybrid routing mech-
anism. In such scheme, RSU performs as a local controller
to assist the centralized controller for maintaining topology
changes [13], [15], [19]. Moreover, Every RSU is responsible
to a specific zone within it’s coverage and provides any topol-
ogy changes to the main controller. Then, once the centralized
controller receives reports from RSUs, it builds a global view
of the whole network. This mechanism significantly reduces
the up-link overhead on the main controller. For instance,



In [15] hierarchical SDIoV is proposed to tackle the problem
of intermittent connectivity with the main controller. This is
done by setting SDN zones through clustering a group vehicles
within the coverage of a specific RSU. Then, those vehicles
could access the main controller through cluster head and
local controller (RSU). When there is no connectivity to the
main controller, the RSU acts as a controller and handles all
incoming traffic.

Previous studies focused on finding paths by forwarding
packets toward shortest routes [15], [18]. But, they have
shortcoming in terms of finding stable and reliable paths as
well as more appropriate RSU to access a controller. Thus,
in [20] integer linear programming is used to develop an
optimized routing algorithm in order to maximize the flow rate
and minimize the cost of each flow. The proposed algorithm
used multiple path per source-destination, i.e, a single packet
has multiple routes toward the destination. Furthermore, link
lifetime and channel access parameters are used to formulate
the optimization problem. However, the proposed algorithm
need more additional messages such as routing queries and
replies with status beacons. Therefore, this will lead to high
communication overhead. They also ignored the phase of RSU
selection for accessing main controller.

Most of the previous state of the art solutions utilized the
benefits of SDN in IoV scenarios by separating the control
and data plane functions. This facilitate routing flexibility
and ease the configuration to find optimal route toward des-
tination. Besides, few research works have considered RSU
selection phase in SDIoV. Moreover, most of the existing
routing algorithms utilize static shortest path solutions such
as Dijsktra or Eppsteins K-shortest [20] in the controller for
requested routing queries. However, traditional shortest path
algorithm does not perform well as links are varied very fast.
Thus, it is important to develop an adaptive routing algorithm
that favours link quality and connectivity among vehicles
during packet forwarding. Furthermore, the RSU selection
mechanisms are not robust and stable as they did not consider
capacity, quality of wireless channel and distance to the RSUs.
Table I illustrates main features of existing routing algorithms
in SDIoV.

III. OVERVIEW OF THE PROPOSED ROUTING ALGORITHM

This section presents the proposed routing algorithm. QRA
is a routing algorithm installed in the controller of SDIoV that
uses LCA optimization scheme in order to compute the opti-
mal path toward the destination. The QRA favors connectivity
probability and link quality. In essence, the routing procedure
will begin by the source vehicle as it sends an association
request to a nearby RSU. Then, upon receiving a route query
from packet carrier vehicle, a controller is responsible for
building network topology based periodic beacons and making
a decision on optimal path. In the proposed QRA, the network
topology is build based on the reliability and quality of links.
Particularly, routing metrics are used to measure the weights
of links. Fig. 2 illustrates the routing process in SDIoV.

A. System Model Formulation

The developed QRA is adopted for SDIoV in which vehicles
communicate with the presence of RSU. Here, we assume
that all vehicles are equipped with on-board wireless access
in order to facilitate communication among vehicles. We also
assume vehicles are equipped with Global Positioning System
(GPS) receiver, on-board navigation system and digital map.
These facilities provide length of road segments, mobility char-
acteristics and location of intersections. Furthermore, vehicles
could get the position of the destination by using accurate
location service.

QRA finds more reliable and connected route while fulfill-
ing the STN Ry, constraint in urban SDN based vehicular sce-
narios. Urban vehicular scenario is represented as graph model
G(i,e) where i is an intersection and e is the road segment
between two intersections. Therefore, each optimal route (
consists of a set of intersections (i1,12, 13,14, 5, ig, .-..... ylm)
and a set of streets (e1, €2, €3, €4, €5, €g, -..... , €n ), where n=m-
1. According to the aforementioned assumptions, the objective
function of the QRA optimization problem can be written as

max F(¢) =M x PC(C) + A2 x SINR(C) (1)

where PC(¢) = HPC(ei),
i=1

S SINR(e;) — S, SINRu(er))
SINR() = >, SINR(c,) ’
2)

3)

subject to
SINR(C) > SINR(¢).

where F'(() is defined as the objective function with a set of
routes ¢ from source to destination. A; and A\ are the weights
that empirically set in the simulation and their summation is
equal to 1. PC(¢) and SINR(() connectivity and reliability
of routes respectively. PC(e;) and STN R(e;) representing the
street’s connectivity and link reliability.

B. Controller Decision on Intersection Selection

In an urban environment with IoV, intersections are involved
in the routing process toward the destination. In case of not
considering intersections for packet forwarding, packets might
face local maximum dilemma during forwarding. Thus, this
section presents main/local controller decision on first prefer-
able next intersection for optimal routing. Then, vehicles by
themselves will take over the responsibility to make decisions
at the next intersection. Therefore, to build smart decision on
the controller side, we introduce the input parameter of the
score function: Greediness factor and connectivity metric of
neighboring intersections to the current intersection.

(1) Greediness — Factor (GF): When a packet carrier
vehicle want to send data to the destination, it will send
route query to the associated RSU. The RSU Computes
Greediness — Factor which indicates the closeness of
a neighboring intersection to the destination intersection.
Particularly, GF is D SU/D;; where D; is the distance of
a neighboring intersection to the destination intersection



TABLE I

COMPARISON OF ROUTING SOLUTIONS IN SDIoOV

Ref. Routing algorithm RSU selec- | Testing Weakness Strength / Contribution
tion
[20] Eppsteins K-shortest No Math modeling and sim- | Complexity and | Reliable transmission by using
ulation by using NTU communication overhead | multipath data delivery
are very high
[18] Not available No Markov modeling and | Scalability is low Priority of links is computed by
simulation using Markov chain model
[15] Not available The NS3 and SUMO are used | Communication overhead | Reliable connectivity among
algorithm for network and mobility | between RSUs and cen- | vehicles and centralized con-
selects a | simulation respectively tralized controller is high | troller
RSU closest
to the
centralized
controller
[19] Not available No NS2 and Highway vehic- | Communication overhead | Estimation of path duration in
ular scenario are used between RSUs and cen- | order to find stable link (max-
tralized controller is high | imizing path duration) toward
destination
[13] Not available SINR is | Matlab is used for simu- | Communication overhead | Kriging model is judging best
used as | lation is high and scalability is | RSU
a metric low
for RSU
selection
[17] Greedy routing No Traffic trace is used to | Communication overhead | Data packet routing is cost ef-
evaluate the proposed ap- | is high and scalability is | ficient
proach low
[12] Dijkstra No Packet level simulator is | Communication overhead | Finding global optimal route
used to evaluate the algo- | and complexity are high | from the source to the destina-
rithm tion
QRA | Optimal route selection Distance NS3 & SUMO are used | Routing overhead are | Using LCA to find optimal
(Pro- is used high espacially in sparse | route based on QoS parameters
posed) for RSU traffic conditions
selection

and DrSU is the distance of the RSU (local controller)
to the destination. The greater the GF is, the higher
priority an intersection has, and hence shortest path will
be selected toward the destination.

(2) Traf fic Density (C): traffic density of neighboring
intersections to the current one is another significant
metric to ensure connectivity between intersections. This
feature gives higher priority to the intersections with best
connectivity. C' depends of the vehicular density which
is defined as Probability Distribution Function (PDF) for
distance among vehicles:

S(d) = A\pe > “4)

where d is inter-vehicle distance, A, is, the traffic density,
defined as A\, = A\/V, where A\ is the traffic flow rate and
V is the average velocity between intersections. Fig. 3
shows the probability density function of traffic distribu-
tion with respect to the flow rate of vehicles. As can be
seen, when vehicles are travelling with higher speed, the
denser traffic distribution is observed.

A multi-metric score function is used to aggregate the
aforementioned metrics. Consider pj is the kth forwarding
metrics as p = {p1, p2, p3, ..., Pr} and used in a maximized
multi-metric function. For instance, p; is defined as GF' and

p2 represents C. In order to rank neighbour nodes, source
node has minimum and maximum range for each forwarding
metric as [pi'", pi*®*]. Then, a general multi-metric function

is defined in equation 5:

1

F(p1,p2, s p) = X pi" X p3% X pS2..pp* + Ymax, (5)

where x is the weight to balance the value of function.
To illustrate, the variable x is used to restrict the value of
function F'(p1, p2, ..., pk) to be <= one. Moreover, «; is the
k:n, weighting factor for each routing metric. For decision on
next intersection selection, the proposed algorithm uses a;; and
ag as weighting factors for GF and C' respectively:

F(hei) =2 x GF* x C°? + Ymax, (6)

where —y
max (7)

T = =—5— —=a -
(o3 (o3
GFmé.X X m%a,x

C. Optimal Route Establishment

In this section, we present the process of optimal route
discovery from nearby controller to the destination. finding
optimal route toward destination is formulated as discrete
optimization problem. As LCA is developed for continuous
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Fig. 2. The hierarchical architecture of proposed optimal routing in SDIoV

optimization problem, we used utilized modified LCA [21] to
solve the such discrete optimization problem in high dynamic
vehicular environment.

As can be seen in 1, When a packet carrier vehicle needs to
send data packets to a specified destination, the source sends
route query packet to the nearby RSU in order to reach a
controller in SDIoV. The header of the route query packet
includes the source and destination ID. If the route to the
specified destination exist in the controller and it is up-to-
date, the controller provides a path to the vehicle; otherwise
the controller will send route query to nearby local controllers.
In case, the route does not exist in nearby RSUs, QRA searches
starts the process of optimal route discovery as illustrated in
Algorithm 2.

The controller starts the mechanism of route discovery by
sending a set of Egg Route Discovery packet (ERD) toward the
destination (Algorithm 2). When ERD reaches the intersection,
it records the intersection ID and the current road segment
SINR then an ERD carrier vehicle at the intersection will
select next intersection based on Greediness — Factor (GF)
and Traf fic Density (C) of road segments for neighboring
intersections.

When ERD reaches the destination and all road segments
SINR was greater than total STN Ry, this route is considered
as a more stable and reliable route toward the destination.
Then, QRA will copy the content of ERD to the Egg Route
Reply packet (ERR) and it will traverse the same path, but
in reverse direction toward the source. In some network
conditions, no route will fulfill the SINR condition of equ. 1
due to unreliable and fast wireless channel variation among
vehicles. In this situation, route establishment process will be
re-initiated.

QRA employs the ERR packet to make decision on optimal

SDloV Controller;
A server

Optimal Route
pis :

. o ¥ Control Plane
internet
Flow

Management

Overlap area

route selection among a set of paths toward destination. When
there is a group of ERR received by the source, LCA is applied
to find an optimal available route. Then, a local controller send
a positive route reply to the source for commencing packet
routing process. The quality of a path depends on probability
of connectivity of each road segment and total SINR of the
route toward destination. Upon receiving route reply from a
controller, a source starts copying a route to the header of data
packet and start sending it.

Algorithm 1 QRA mechanism
1: t,: route update time interval in controller
2: NS: source ID
3: ND: destination ID
4: Using equ. 6 to find best candidate intersections toward
destination
5: NS send route query to the nearby controller for global
route (GR)
6: if GR exist & currentsimtime — updateinterval <
t, & SINR(C) < SINR;y, then
: an association response is sent back to the NS
8: else
9:  the controller broadcast that route query to local con-
trollers for a specified destination
10:  if GR exist in another (RSU) & currentsimtime —
updateinterval < t, & SINR(() < SIN Ry, then

11 an association response with a route is sent back to
the NS

12:  else

13: the controller implements optimal route discovery
algorithm (refer to Algorithm 2)

14:  end if

15: end if




Algorithm 2 QRA Route Discovery Mechanism

1:

Nextl: Next intersection

2: NS source ID
3: ND: destination ID
4: temp path: existing path
5: path : optimal route
6: Egg Route Discovery packet : ERD
7. Egg Route Reply packet : ERR
8: Sequence of Intersections : 1
9: Controller ID : CID
10: Upon receiving ERD (CID,NS,ND,I) from controller
11: if N; == ND then
12:  path=temp path
13:  send back ERR(NS,ND,I)
14:  Return
15: end if
16: if ERDnotseenbe fore then
17 add I; ID in the ERD packet
18:  Use equ. 6 to select next intersection
19:  complete forwarding process to Next]
20: end if
21: if Nextl==destination intersection then
22:  if SINR(() > SINRy, then
23: Copy the content of ERD to ERR
24: traverse the same I in reverse direction toward NS
25:  else
26: drop ERD
27:  end if
28: end if
29: if Nextl==source intersection then
30:  store the path
31:  find optimal route based on equ. 1 and Laying Chicken
Algorithm (refer to Algorithm 3 for LCA)
32:  update controller with optimal path
33:  route data packets toward destination
34: end if
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D. Laying Chicken Algorithm for Discrete Optimization Prob-
lem

As mentioned in previous section, when a group of ERR
packets received by the controller, a set of paths from source
to destination are candidate for packet forwarding purpose.
Such discrete optimization problem is solved by LCA [21],
which uses behaviour of laying chicken on eggs to produce
nests. Similar to the conversion of eggs to the chicken, LCA
converges from feasible to optimal solution. In essence, each
egg represents feasible solution in discrete optimization prob-
lem and a chicken is optimal solution. LCA, Here hens try to
warm their eggs in order to convert eggs to chicken. Likewise,
cost of the objective function in equ. 1 is the temperature of
the eggs (routes). The higher the temperature of specific egg
(route), the higher the cost of objective function for specific
route. Algorithm 3 shows the mechanism of selecting optimal
route among a set of candidate paths.

The algorithms starts with selecting initial feasible solution.
This solution (xg,yo) is randomly selected among candidate
routes. Then, initial population is generated near the initial
solution. In case objective function value is greater than
this value at (z¢,yo), then new value is substituted in the
(Zpest, Ypest ). Thus, this process will continue until optimal
route with highest cost is found. Next section analyses the
probability of connectivity and SINR metrics for optimal route
selection in SDIoV.

Algorithm 3 LCA Procedure for Discrete Optimization Prob-
lem

1: (w0, yo): initial feasible solution

2: (Tpests Ybest): optimal solution

3: iter: number of iterations

4: Nup: Number of population

5: kr=1

6: while kx < iter do

7. the population near (zg,yo) is generated

8: (Io, y0)=($best; ybest)

9: for i = 1toNup do

10: if objective function value > objective fucntion value
at (zo,yo) then

11: (xbeshybest):(xi,yi)

12: end if

13:  end for

14: (.’ﬂ(), y()) = (xbesta ybest)
15 kxr=kr+1

16: end while

E. Probability of Connectivity Model

In this section, we present a communication model for
deriving connectivity probability among vehicles embedded
with Internet. As shown in Fig. 2, we assume vehicles are
traveling on the roads with random movement and following
Poisson distribution on the roads.

In vehicular environment, vehicles are travelling with very
high speed the wireless channel between vehicles are varying
in a very fast pace. In the other words, vehicles are susceptible



to severe fading and shadowing. Among propagation loss
models, probabilistic Nakagami distribution [22] is widely
used by many researchers as wireless channel model because
it is empirically shown in real test-beds [23]. Therefore, The
Probability Density Function (PDF) of instantaneous received
power, with parameters of k and w , by a specific vehicle can
be represented by:

Lk ()

for) = NORE 8)

where w = E(r?), k is a fading figure that represents the
harshness of the wireless channel, gamma function T'(.) is
defined as:

I'(k) = /OO e dy )
0

From equ. 8, we can compute Cumulative Distribution
Function (CDF) when the received power P is greater than
a threshold defined as pyp,

CDFypy=1=P(Pzpu) =1~ [ ) (10)

Pth
Substituting 8 in 10 , the CDF can be written as:

<1 k
CDFp(r) =1 —/ @ X (7

Pth

P ox Pl s elTdr (11)

Here it is necessary to find the relationship between incom-
plete and complete gamma function as follow:

D(k,k/w X p)
(k)

In ToV scenarios, while vehicles are communicating with
each other/ with the RSU, transmitted signal power interferes
with other ones. Thus, Ny, vehicles produce 1, interference
in Nakagami wireless channel representation. Similarly, 12,
interference is generated by R;;, RSUs. Moreover, the power
value of the Il;, and I24, is a random variable follows
gamma distribution as G(kr,wy). k; affects the fading rate
interference signal power while I'] represents mean power of
interference signals generated by vehicles and RSUs. As a
result, total interference power is defined as follow:

P(P > pi) = (12)

13)

The interference signal power also follows gamma distribu-
tion I = G(ky,wr). The PDF of interference power is shown
as follow:

k

1 (ﬁ)kl kr (5

frey = ) =

The quality of wireless link among vehicles tightly depends
on the SINR, which is defined as a ratio of signal to in-
terference and noise power. In vehicular scenarios, vehicles
exchange the value of SINR through periodic beacon frame.
The value of SINR for each received packet should be greater

x rki=t x e (14)

than a specified threshold of SINR (SIN Ryp). Thus, in this
case, the per-link connectivity (Pr) is calculated for vehicles
within the same transmission range as follow:

P
Bi(d) x (I + P,)

where P, is a noise power, P;(d) is the path loss at distance d
between two vehicles, I is defined as interferences power and
P represents the transmission power.

As mentioned, the power of received signal follows gamma
distribution as P = G(k,w). Furthermore, the power of
the interference that affect receiving vehicles follows the
distribution of IG(k;,wr), and number of vehicles that are
transmitting is Ny;,. Therefore, probability of connectivity per
hop is computed based on equ. 17, 14, 12:

Py = P(SINR > SINRy,) = P( ) (15)

(Lz)kthh

“ X f1(r)
L(k) x T'(k X Ngp,)
By substituting equ. 14 into 16,

P =

(16)

k1 kXN
(o

0 k
kr X Nyp—1 (M*I)T
F(k)xF(kthh)x/o " e X
Tk, k/w % (r+ Py) x SINRyp)

P =

F. Link Quality Derivation

IoV is a harsh environment as vehicles are traveling with
high speed. This leads to high wireless channel variation.
Hence, realistic channel among vehicles is prone to packet
error. Therefore, SINR is considered as important metric to
judge the quality of links and successful packet reception. The
SINR value for a vehicle is computed as follow:

P
PL(d) X (I+Pn)

where P, is the noise power, P; is the transmission power
and I is the interference power that affect the transmission
signal power of a vehicle. Py, (d) represents the path loss [24]
between source and receiving vehicles and is defined as follow:

SINR = a7

PL(d)[dB] = PL(dp) + 10 x v x logdi + X5 (18)
0
where PL(d) is the path loss at distance d between transmitter
and receiver, PL(d0) is the average path loss at a reference
distance is (d0), v is the path loss exponent and X, is a zero
mean Gaussian distributed random variable with standard devi-
ation o. The values of path loss exponent v=2.8 and reference
distance dp=0.4 are used for the shadowing propagation model.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed QRA algorithm in
urban IoV scenarios. The simulation is carried out using NS3
packet level simulator. It is designed according to the TCP/IP
communication protocol architecture. A segment of Montreal
down town is used to simulate urban vehicular scenario. The
area of 9200.63 m x 5717.06 m is configured in the simulation



Fig. 4. Map of the region of Montreal city used in the simulation scenario

(Fig. 4). SUMO - Simulation of Urban MObility [25] is used
as microscopic road traffic flow for realistic simulation of
vehicle’s movement. SUMO has efficient vehicle following
model, precise location service and real-time traffic controller.
It also has real world road features such as speed limit and
traffic light at intersections. Vehicles are entering the roads
according to the real time traffic of real vehicular scenarios
and paths from source and destination is randomly generated.
Then, generated trace file form SUMO decides the traffic
flow in NS3. Furthermore, 340 RSUs are randomly deployed
according a uniform distribution within the area. It creates a
full coverage of road segments since the radio communication
range of IEEE802.11p is wide.

At the physical layer, we used the Nakagami propagation
model [22] as it has a precise fading phenomena among
vehicles. We set transmission range at 400 meters for vehicles.
In urban scenario, we vary traffic density 100 to 400 nodes,
and they travel on the urban streets with maximum speed of 50
km/hour. Moreover, the IEEE 802.11p [26] standard protocol,
is used to model MAC layer. The simulation key parameters
are summarized in Table II ([27]).

For benchmarking with the existing routing solutions, the
proposed QRA is compared with the state of the arts geograph-
ical routing (GPSR) [28] for traditional vehicular networks
and SDIoV representative routing solution named Centralized
Routing Protocol (CRP) [12]. We now briefly explain the
operation of these routing solutions: GPSR uses location

TABLE II

SIMULATION PARAMETERS
Parameters Value
Simulation time 500 s
Simulation area 9200 m x 5717 m
Mobility model SUMO
Traffic Density 50-550 nodes
Vehicle velocity 50 km/hr
Transmission range 350 m

Maximum packet generation rate 18 packet/second
Maximum number of source nodes | 9

Channel bandwidth 6 Mbps

MAC protocol IEEE 802.11p
Data packet size 512 bytes
Weighting factors (A1, A2) 0.4, 0.6)

of vehicles to greedily forward packets to a neighbor node
(greedy mode of packet forwarding). In the perimeter mode, a
node forwards packets to the next neighbor node by applying
right hand rule; CRP uses routing server and client (vehicle)
concept to exchange route query and reply. A source sends
a route query packet to the routing server for specific route
to the destination (e.g. [29]). Routing server utilizes network
state vector and digital map to computes shortest path from
source to the destination. When the route response is received
by the vehicle, it copies the route entry will be inserted in its
routing table and starts the process of packet forwarding.

The routing protocols are compared based on the following
evaluation metrics:

(i) End-to-end Packet Delivery Ratio (PDR): It is defined as
number of successful packets received to the number of
packets transmitted.
End-to-end delay: It measures the average time delay
required to transmit all data packets from source to the
destination. The packet delay obtained in the simulation
is the sum of sending buffer, medium access (packets
delay due to interface queue), re-transmission, decision
at the intersection and propagation delay.
Routing Overhead: It is defined as communication over-
head generated by sending extra routing packets per
successfully received data packets.
(iv) controller Overhead: It measures the average handshak-
ing times between vehicles and the controller.

(ii)

(iii)

In the performance evaluation, we conducted different ex-
periments to study the effect of various parameters on the pro-
posed protocol and the representative of the standard routing
protocols.

A. Impact of the Weighting Factors A1 and Ao

This section presents the experiments of analyzing the sensi-
tivity of A\; and A2 of PC and SINR metrics for optimal routing
toward destination. Furthermore, we conducted experiments
for different values of the weighting factors. In Fig. 5, we
illustrate the packet delay with respect to the simulation time
for various value set of weighting factors.

As illustrated in Fig. 5, when the weighting factors (A1, A2)
have the same value, the average data packet delay is lower.
Thus, we set the value of (A1, \2) to (0.5,0.5). This is because
suboptimal routing might happen when only a single metric is
considered during packet forwarding. The QRA favors more
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Fig. 5. Impact of weighting factors on the performance of QRA algorithm
for various (A1, A2); (0.3,0.7),(0.8,0.2),(0.5,0.5),(0.6,0.4)

connected and reliable candidate route without giving priority
to any metric. In other words, both PC and SINR are crucial
in order to find optimal route in SDIoV. This can be done
by setting (A1, A2) to (0.5,0.5). For example, when QRA
favors SINR than PC ((A1, A2) to (0.3,0.7)), which offers high
average delay of 0.836925 s. The reason is that PC contributes
in finding more connected and stable route. Similarly, SINR
is also has significant contribution in finding optimal route
as it assures reliable route toward destination. Moreover, we
observe a instantaneous fluctuation in the time latency. This
might happen due to availability of the requested route in
the local and main controller. More particularly, when the
controller positively responses to the route inquiry, the time
delay for route discovery is very low.

B. Impact of Traffic Density

In this experiment, simulations are carried out to illustrate
the effects of vehicular traffic density on the performance
of proposed QRA and existing routing protocols. In the
simulation, we configured the speed of vehicles at 50 km/hour
and number of sources at 9 with 40 kbps of constant bit rate
traffic. Moreover, the number of vehicles are varied from 100
to 550. We configured a server to act as a main controller and
340 RSUs are deployed in the simulation area.

Simulation results are illustrated in Fig. 6. In Fig. 6a,
successful packet delivery rate is plotted with respect to the
number of vehicles. We observe that packet delivery ratio for
QRA, CRP and GPSR is increasing with an increase in number
o vehicles per unit area. The reason is that higher traffic density
leads to higher network connectivity on the road segments. In
more detailed explanation, when traffic density is adequately
high, almost all routing algorithms’ delivery rate becomes flat.
For QRA, as number of vehicles are increasing, on one hand
the contention on accessing RSU for accessing main controller
is increasing and on the other hand packet forwarding in such
dense environment leads more interference among vehicles.
Moreover, finding many candidate routes by sending many
ERDs toward destination contributes in packet collision on the
wireless channel. In comparison QRA, CRP is not performing
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(a) Packet delivery ratio comparison among proposed QRA and others.
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Fig. 6. Effect of varying number of vehicles on the performance of QRA
(proposed approach), GPSR and CRP approaches for delay.

well as reliability of wireless channel and more connected
road segments are not considered in their packet forwarding
scheme. In realistic SDIoV, GPSR does not perform well as
greedy packet forwarding is not satisfactory.

Another performance measure is end-to-end packet delay as
illustrated in Fig. 6b. We notice the average delay is consistent
when number of vehicles are increasing. Particularly, when
number of vehicles are 100 the average delay is higher than
that in the dense traffic. We believe that in sparse scenario
the probability of network disconnection is high during packet
routing. We also observe low packet delay when traffic density
is 250 and 500 nodes. This happens due to the availability
of route in the main controller when a vehicle requested a
specific route toward destination. As a result, packet delay is
decreasing steeply. This case shows the advantage of software
defined based routing in vehicular networks. The packet delay
of CRP, on the other hand, is larger than the proposed QRA.
There are two reasons for this: First CRP does not consider
finding a set of candidate routes and select the optimal one,.
Second, CRP considers hop by hop optimal packet routing
rather than intersection based packet forwarding. In addition,
the general upward trend of AODV is due to the fact that there
is now a connected path which drives the average delay up.

Table III shows the average routing overhead according to



TABLE III
AVERAGE PACKET DELIVERY RATIO, DELAY AND CONTROL OVERHEAD IN
EXTREME VEHICULAR SCENARIOS

Routing overhead | Routing overhead
Node= 100 Node = 550

CRP 0.25 2.6
GPSR 0.99 5.72
QRA 1.71 3.65
2
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Fig. 7. Controller overhead comparison of QRA (proposed) and CRP.

the variation of traffic density. As we compare the proposed
QRA approach in terms of routing overhead with existing
solutions, we observe that the proposed QRA has slightly more
overhead in comparison to the CRP. The reason is that CRP
is assumed to be equipped with two wireless interfaces WiFi
and WiMAX. CRP uses WiMAX in order to reach the main
controller while WiFi is used for hop to hop routing. With this
scheme, the routing load will be distributed on both wireless
interfaces. Another reason is that QRA sends a set of ERD
packets in order to find candidate routes and then it uses LCA
to search an optimal path. However, our proposed algorithm
offers better performance in terms of successful delivery rate
and average path delay.

Another significant metric for performance evaluation is
the communication overhead in the main controller. Fig. 7
illustrates the controller overhead variation according to the
traffic density. The trend of controller overhead for QRA
always lagging behind the trend of CRP. This is not surprise as
QRA utilizes the benefits of local controllers (RSUs) to offer
optimal route for route vehicle requesters. Moreover, QRA
searches for reliable and stable path as those routes less likely
susceptible to link breakdown. Thus, no extra route query is
sent to the main controller. The trend for both routing solution
is increasing. This is due to the fact that higher number of
vehicles requires higher number of route discovery request to
the controller.
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Fig. 8. Effect of varying number of vehicles on the performance of QRA
(proposed), GPSR and CRP approaches.

C. Impact of Packet Generation Rate

In this experiment, we configured traffic density on 300
nodes and number of sources on 7. To illustrate the effect
of packet generation rate (Constant Bit Rate (CBR)) on the
performance of proposed routing solution, we run experiments
with vehicle speed of 50 km/hour.

The effect of packet generation rate on packet delivery
ratio is presented in Figure 8a. We can see that when packet



TABLE IV
AVERAGE IMPROVEMENT OF QRA AS COMPARED TO GPSR AND CRP
SOLUTIONS
CRP | GPSR | QRA
Time delay (s) 1.56 2.27 0.85
PDR 0.679 | 0.539 | 0.787
Routing overhead | 8.857 | 8.017 | 10.396

generation rate is 72 kbps, QRA, GPSR and CRP solutions
suffer a decline in successful packet delivery. The reason is
that increasing the frequency of packet rate generation causes
elevation of traffic load on the network, yielding higher packet
contention at the MAC layer. However, packet delivery ratio
for CRP and GPSR are always lagging behind the QRA
solution. The proposed QRA explores more reliable path for
packet routing that gives better results.

Next, Figure 8b presents the control overhead variation with
respect to the CBR per source. As it can be seen, with a less
value of CBR, an obtuse ascending of the control overhead
trend is observed. This result is partly due to less traffic load
on the wireless channel between vehicles. On the other hand,
when the packet generation rate is increased from 15 kbps to
72 kbps, the trend of control overhead rises acutely. The reason
is that when the CBR increases, the network load increases
too, combined with the fact that this increase leads to more
contention at the MAC layer. It is noteworthy that the simulator
is also ran by varying the frequency of packet generation for
vehicle speed of 50 km/hour.

In order to investigate the impact of vehicle speed on the
performance of proposed and existing protocols, the inter-
packet time is varied for different vehicular speeds. Fig. 8c
outlines the average packet delay under different CBR/source,
with the vehicle speed taken as 30 and 50 km/hour. As depicted
in Figure 8c, the packet delay for all protocols increases as
the frequency of packet generation rate increases for different
vehicle speeds. But, GPSR suffers to a great extent from high
packet latency. The performance smash of GPSR is due to
the fast movement of vehicles as well as the fact that it relies
on hop by hop route exploration rather than intersection based
path finding; thus, constructed routes toward destinations break
down frequently. Similarly, as packet generation rate and speed
of vehicles are increasing, QRA performance is decreasing.
This is because generating more packets per source into the
network will elevate traffic load and causes more route query
and response for the controller. Moreover, we have shown the
performance improvement of QRA as compared to the GPSR
and CRP protocols (Table IV).

V. CONCLUSIONS

In this paper, we have proposed a QoS-aware routing algo-
rithm (QRA) for vehicular communications in urban scenarios
to find the best route for data packets by using probability of
connectivity that relies on road segment and SINR parameters.
The QRA has leveraged the modified LCA to find the best
route among set of reliable and more connected candidate
routes. Multi-score objective function has been used to select

an intersection which is closest to the destination and has
more connected traffic situations. The performance of the
proposed approach is evaluated using extensive simulations.
The numerical results have shown that the proposed QRA
outperforms the existing routing solutions in terms of packet
delivery ratio and average end-to-end delay. The proposed
QRA helps the main controller to find optimal route (not
shortest path) and takes real time traffic of the streets into
account. Thus, the proposed approach is suitable for real-
world urban vehicular environment in which buildings and real
traffics are present. Furthermore, the results have shown that
the QRA can be used for applications that require reliable
and stable data delivery such as video transmission among
vehicles.
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