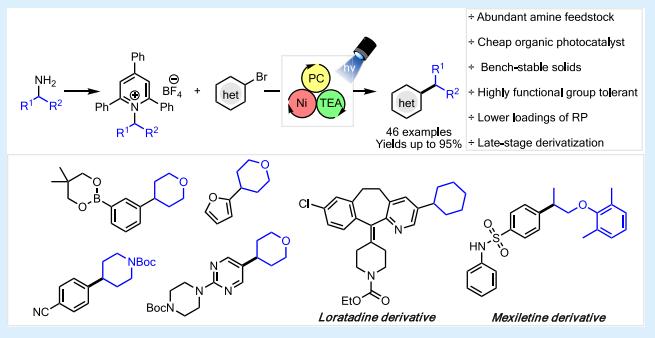


Deaminative Reductive Arylation Enabled by Nickel/Photoredox Dual Catalysis

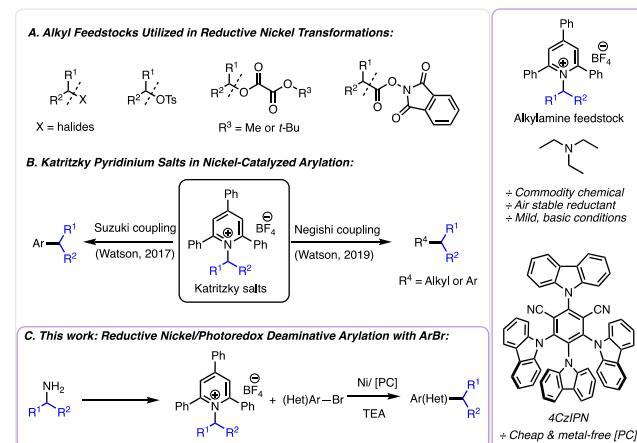

Jun Yi,^{†,‡,§} Shorouk O. Badir,^{†,§} Lisa Marie Kammer,[†] María Ribagorda,[†] and Gary A. Molander^{*,†}

[†]Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States

[‡]Jiangsu Laboratory of Advanced Functional Materials, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China

S Supporting Information

ABSTRACT: Described is a cross-electrophilic, deaminative coupling strategy harnessing Katritzky salts as a new species of electrophile in Ni/photoredox dual catalytic reductive cross-coupling reactions. Distinguishing features of this arylation protocol include its mild reaction conditions, high chemoselectivity, and adaptability to a variety of complex substrates [i.e., pyridinium salts derived from amines and partners derived from (hetero)aryl bromides].

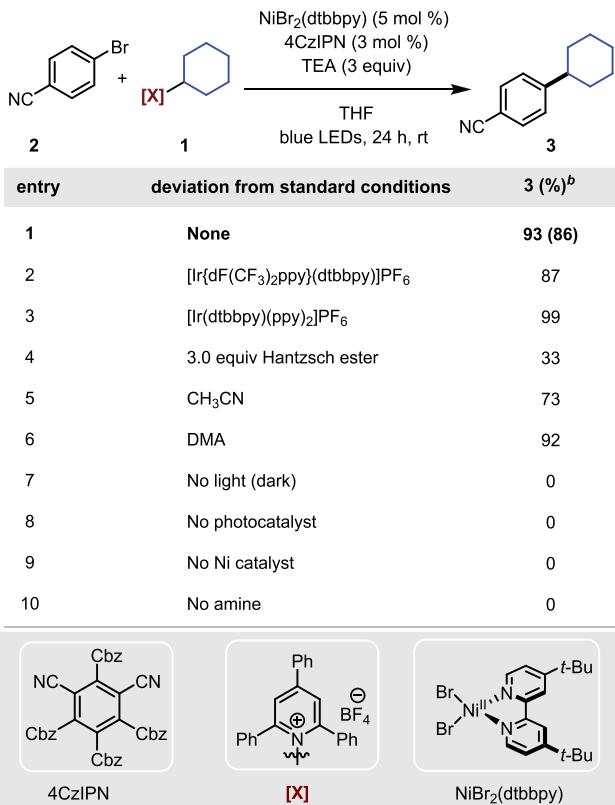


Aliphatic primary amines are a privileged class of compounds prevalent in natural products, valued synthetic intermediates, and pharmaceutical drugs such as Tamiflu, Linagliptin, Amlodipine, and Sitagliptin.¹ In an elegant report, the Watson group recently demonstrated the use of Katritzky salts, formed via a simple condensation of the corresponding amines with a bench-stable, commercially available pyrylium salt, as alkyl radical precursors in cross-couplings with arylboronic acids.^{2,3} Subsequently, Glorius, Aggarwal, Shi, Gryko, and Liu further demonstrated the utility of these redox-active amines in C–H arylation,⁴ borylation,⁵ alkynylation,⁶ allylation,⁷ and dicarbofunctionalization, respectively.⁸ More recently, Watson and co-workers disclosed a deaminative alkyl–alkyl Negishi cross-coupling with alkylzinc halides.⁹ The growing interest in this area highlights the challenges associated with C–N bond activation and presents new opportunities to address these limitations, in particular with regard to the development of cross-electrophilic, deaminative strategies to forge C(sp³)-hybridized centers.

In recent years, nickel/photoredox dual catalysis has emerged as a powerful tool to construct C–C bonds via a single-electron transmetalation pathway.¹⁰ In this context, the unique characteristics of this reaction manifold favor the formation of tetrahedral carbon centers without the need for harsh nucleophilic organometallic reagents or elevated temperature.¹¹ Given our and other groups' longstanding interest in reductive nickel transformations and our deep understanding of photoredox catalysis,¹² we envisioned the application of Katritzky salts as a new species of alkyl radical precursors in a reductive, cross-electrophilic coupling with (hetero)aryl bromides, representing one of the few synthetic methods employing

a net reductive photoredox/Ni dual catalytic transformation (Scheme 1).¹⁴

Scheme 1. Aliphatic Amines as Radical Precursors in Cross-Coupling



Given the accessible redox potential of Katritzky salts ($E_{1/2} = -0.93$ V vs SCE),⁷ the organic dye 4CzIPN (reduced photocatalyst $E_{1/2} = -1.21$ V vs SCE) was examined and proved effective at delivering the desired coupled product (Table 1). Other photocatalysts were also tested (entries 2 and 3 in Table 1). Not surprisingly, $[\text{Ir}(\text{dtbbpy})(\text{ppy})_3]\text{PF}_6$

Received: March 28, 2019

Published: April 17, 2019

Table 1. Optimization of the Reaction Conditions^a

^a1 (0.45 mmol), 2 (0.3 mmol), 4CzIPN (3 mol %), and NiBr₂(dtbbpy) (5 mol %) in dry, degassed solvent (3.0 mL, 0.1 M) under blue LED irradiation for 24 h. ^bGCMS yield using 1,3,5-trimethoxybenzene as internal standard. Isolated yield in parentheses.

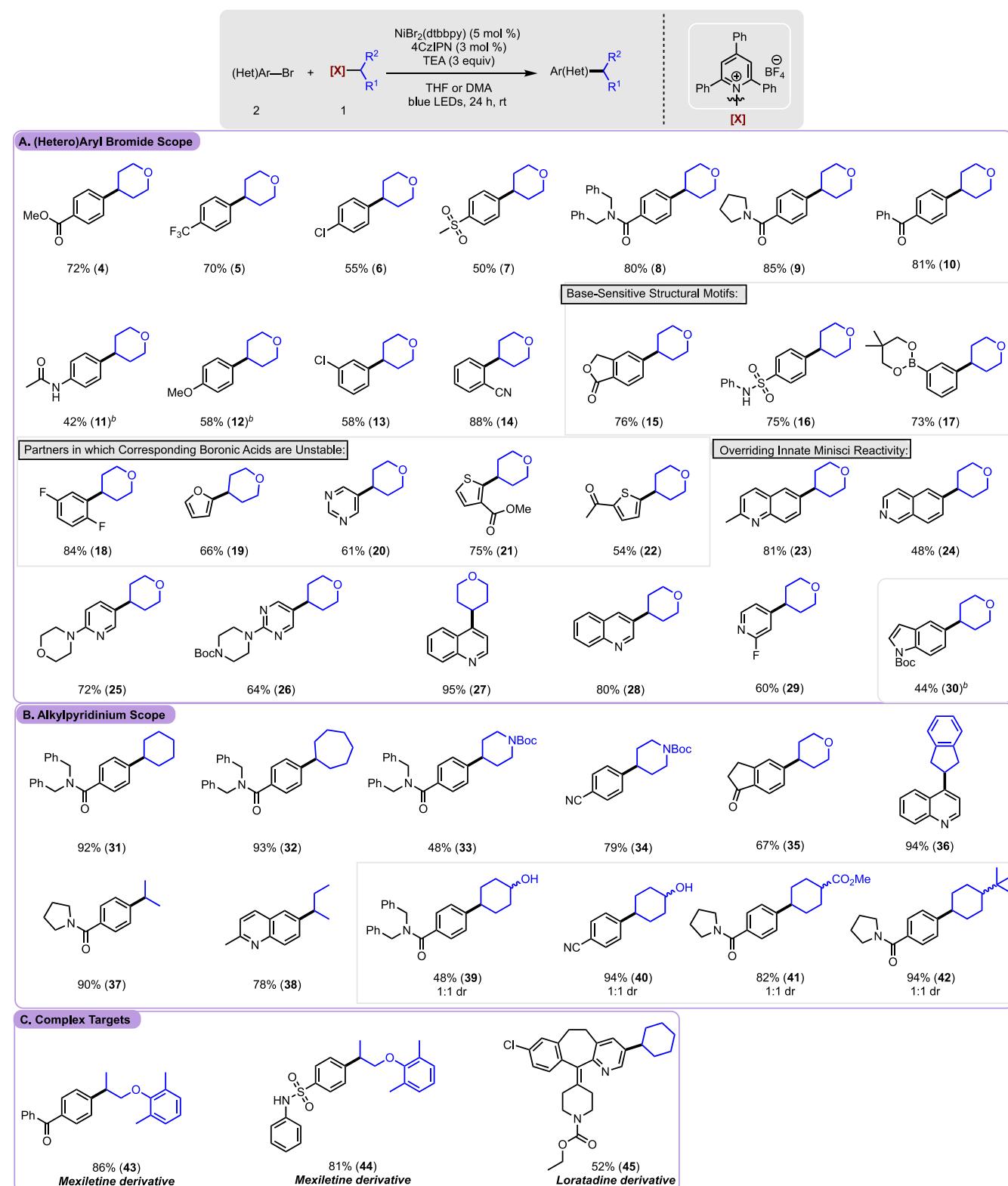
provided quantitative conversion to the desired product, likely because of its strongly reductive nature ($E_{1/2} = -1.51$ V vs SCE).^{4,10b} Considering the low cost, ease of preparation, and excellent reactivity of 4CzIPN,¹⁵ it was chosen as the photocatalyst of choice. Although DMA provided equally good results in this cross-coupling (entry 6 in Table 1), THF was chosen because of its low boiling point. However, it should be noted that the use of DMA for electron-rich substrates proved effective at times (see *Supporting Information*). As anticipated, control experiments proved that all components of the reaction were necessary for the dual catalytic system to proceed (entries 7–10). Finally, in an attempt to provide an easier reaction setup, the optimization was carried out using the precomplex $\text{NiBr}_2\text{-dtbbpy}$.

With suitable reaction conditions in hand, the scope of this deaminative cross-coupling was examined (Scheme 2). To this end, a wide array of aryl bromides bearing electron-withdrawing substituents at the *para*-position exhibited excellent reactivity (3–10, 16). Electron-rich aryl bromides were also compatible substrates (11 and 12). Importantly, aryl bromides bearing an additional handle for further elaboration in Chan–Lam and Suzuki couplings, such as pinacol boronic ester (17) and aryl chlorides (6 and 13), reacted to afford the corresponding products in good yields.

Given the mildly basic conditions of this protocol, a variety of sensitive functional groups, including lactone **15** and sulfonamide **16**, were compatible structural motifs. Substitution at the *meta*-position (**13**, **15**, **17**, and **18**) and *ortho*-

position (14 and 18) was explored, whereby efficient cross-coupling events took place. Moreover, electron-deficient difluoroaryl bromide 18 and several heteroaryl systems (19–30 and 36) were successfully employed. Because of their notoriously unstable nature as the corresponding boronic acids (owing to protodeboronation under strongly basic conditions),¹⁶ the analogous substructural partners had provided sluggish reactivity in previous reports.²

Given their importance in pharmaceutical settings,¹⁷ a variety of nitrogen-containing heteroaryl bromides, including pyrimidine (20 and 26), quinoline (23, 27, and 28), isoquinoline 24, pyridine (25 and 29), and indole (30) electrophiles were effectively incorporated under this reaction manifold. It is worth highlighting that heteroaromatics (23 and 24), previously well-behaved under photoinduced deamination/C–H arylation conditions,³ reacted in a chemoselective manner. This highlights the complementary advantages of this protocol to existing Minisci transformations.^{4,18}


Next, attention was turned to the scope of the alkylpyridinium salts, where a wide array of functional groups were tolerated. Katritzky salts bearing a free hydroxyl group (39 and 40) did not inhibit the reaction, presenting orthogonal reactivity to C–O bond formation previously reported by MacMillan.¹⁹ Other pyridinium salts bearing an ester handle (41) and nitrogen heterocyclic structural motifs (33 and 34) afforded the desired products in excellent yields. It is worth noting that both cyclic (31–36, 39–42) and acyclic (37, 38, 43, and 44) alkylpyridinium salts reacted efficiently under the reaction conditions.

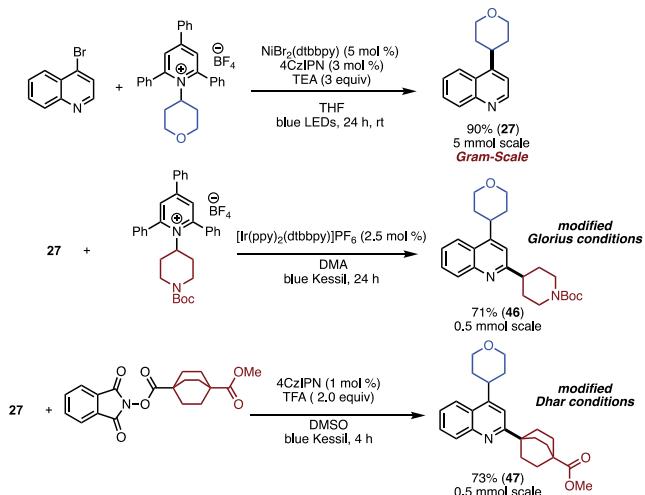
Finally, to demonstrate the applicability of this protocol to the synthesis of bioactive molecules, we prepared the corresponding alkylpyridinium salt from Mexiletine, a voltage-gated sodium channel blocker used as an antiarrhythmic.²⁰ Utilizing two different aryl bromides, success was achieved at delivering the cross-coupled products **43** and **44** in excellent yields. Finally, a complex aryl bromide derived from Loratadine,²¹ used in the treatment of allergies, was compatible under the reaction conditions (**45**).

To highlight the benefits of employing 4CzIPN as an inexpensive organic photocatalyst [$\sim \$5\text{ mmol}^{-1}$], a transformation was successfully performed on gram scale, whereby the desired heteroaryl coupled product 27 was obtained in 90% yield (Scheme 3).

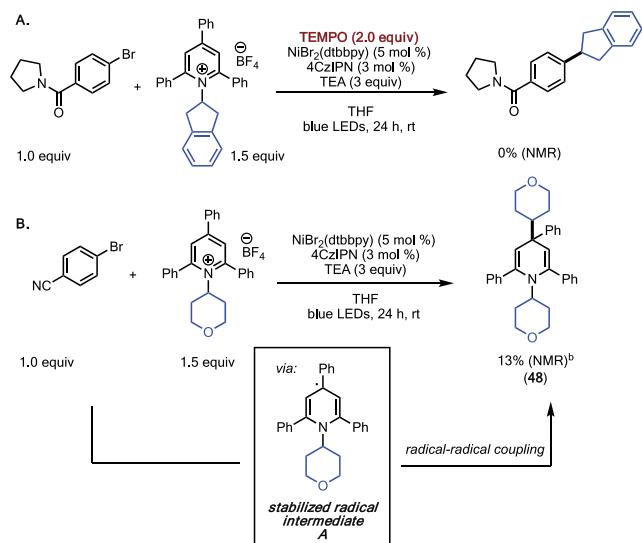
By taking further advantage of the inherent chemoselectivity of this cross-coupling as described earlier, the quinoline scaffold of **27** was further elaborated at the C2 position to obtain **46** and **47** in good yields, utilizing Minisci-type photoinduced deaminative and decarboxylative strategies previously reported by Glorius and Dhar, respectively.^{4,18c} The ease with which a wide array of aryl and heteroaryl systems can be fashioned showcases the significant potential of deaminative-based C–C bond construction in industrial settings.

To probe the reaction pathway, we conducted a series of mechanistic experiments. In the presence of the radical scavenger TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl], the arylation was completely inhibited, with full recovery of the aryl bromide (Scheme 4A). This is suggestive of the involvement of radical species under this metallaphotoredox manifold. This hypothesis was further corroborated by isolation of **48**, a byproduct likely formed via a radical–radical coupling of the persistent dihydropyridine radical intermediate

Scheme 2. Scope of (Hetero)aryl Bromides and Alkylpyridinium Salts^a

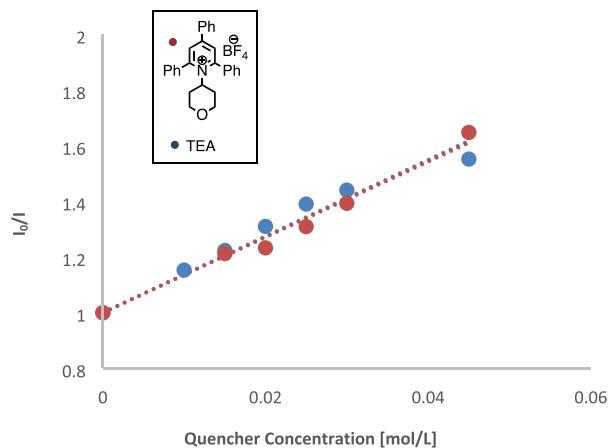

^aAs in Table 1 (entry 1), 0.5 mmol scale. ^bUsing DMA as a solvent, 48 h.

A with a transient secondary alkyl radical during the course of the reaction⁶ (Scheme 4B).

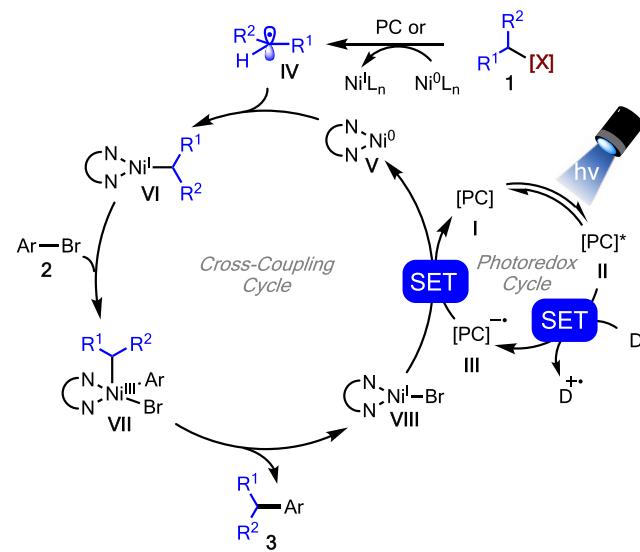

To gain further understanding of the role of the photocatalyst, fluorescence quenching studies were performed (Figure 1). As anticipated, the Stern–Volmer relationship

confirmed that the photoexcited 4CzIPN was quenched by both triethylamine and the Katritzky salt. Although these results could support an operative single-electron-transfer (SET) reduction of the alkylpyridinium salt by the photocatalyst, we cannot rule out the possibility of a direct SET

Scheme 3. Sequential Gram-Scale Deaminative Cross-Coupling and Minisci C–H Arylation


Scheme 4. Support for Involvement of Radical Intermediates

^aAs in Table 1 (entry 1), 0.3 mmol scale. ^bNMR yield was calculated based on the alkylpyridinium reagent (theoretical yield of 0.225 mmol).


event from a low-valent nickel intermediate as proposed by Watson and Lei.^{2,14a}

Based on these results and precedented literature reports detailing the reductive cleavage of Katritzky salts,^{2–8} a plausible mechanism is depicted in Scheme 5. First, visible-light irradiation of 4CzIPN generates a potent excited-state oxidant ($E_{1/2} = +1.35$ V vs SCE),²² which is sufficiently quenched by triethylamine D ($E_{1/2} = +1.0$ V vs SCE),^{10b} thus forming the reduced state of the photocatalyst. Upon generation of alkyl radical IV from the Katritzky salt ($E_{1/2} = -0.93$ V vs SCE)⁷ via SET from the photoexcited 4CzIPN or a low-valent nickel intermediate, the radical is intercepted by a ligated Ni(0) complex V to afford a Ni(I) intermediate. Subsequently, VI undergoes oxidative addition with the (hetero)aryl bromide to afford the corresponding high-valent Ni(III) complex VII. Reductive elimination would then occur to yield the desired coupled product 3 and Ni–Br species VIII.

Figure 1. Stern–Volmer Fluorescence Quenching Studies of 4CzIPN ($c = 2.0$ M) in THF.

Scheme 5. Reductive Nickel/Photoredox Dual Catalysis: Mechanistic Rationale

Reduction of VIII by the ground state of the reduced photocatalyst III ($E_{1/2} = -1.21$ V vs SCE) concurrently completes both catalytic cycles.

The developed arylation protocol does exhibit a limitation owing to the inherent stability of the dihydropyridine radical intermediate A generated (Scheme 5). Thus, primary alkylpyridinium salts preferentially undergo reoxidation to deliver the corresponding pyridine byproduct.⁶ Considering the sheer number of existing, complementary cross-coupling approaches for primary alkyl radicals developed by our group and others,²² we foresee the current work as an important, complementary approach to the challenges associated with the activation of inert C–N bonds in recently described systems that appear restricted to aryl iodides and use excess metal reductants at elevated temperatures.²³

In conclusion, a cross-electrophilic, reductive deaminative arylation protocol under photoredox conditions has been developed, using triethylamine as the terminal reductant. By eliminating the need for stoichiometric metal reductants, elevated temperatures, and/or strong bases, an exceptional array of functional groups and complex structural scaffolds can

be incorporated, including those from bioactive molecules. This arylation protocol is scalable, operationally simple, and utilizes alkylamines as abundant feedstocks.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: [10.1021/acs.orglett.9b01097](https://doi.org/10.1021/acs.orglett.9b01097).

General procedures; fluorescence quenching studies; NMR spectra ([PDF](#))

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: gmolandr@sas.upenn.edu.

ORCID

María Ribagorda: [0000-0001-7185-4095](#)

Gary A. Molander: [0000-0002-9114-5584](#)

Author Contributions

§J.Y. and S.O.B. contributed equally to this work.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors are grateful for the financial support provided by the NSF (CHE-1664818) and the NIGMS (R01 GM 113878 to G.M.). J.Y. acknowledges funding from the National Natural Science Foundation of China (Grant No. 21602017), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160405), the University Science Research Project of Jiangsu Province (16KJB150001), and China Scholarship Council (201708320115). M.R. acknowledges support from the Ministerio de Educación, Cultura y Deporte, Subprograma Estatal de Movilidad and Fulbright grant visiting scholar program. We thank Mr. Shuai Zheng (UPenn) for stimulating discussions. We thank Dr. Charles W. Ross, III (UPenn) for his assistance in obtaining HRMS data. Kessil is acknowledged for providing the lights used in this study.

■ REFERENCES

- (a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. *J. Chem. Educ.* **2010**, *87*, 1348–1349. (b) Ruiz-Castillo, P.; Buchwald, S. L. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. *Chem. Rev.* **2016**, *116*, 12564–12649. (c) Liu, Y.; Ge, H. Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group. *Nat. Chem.* **2017**, *9*, 26–32.
- (2) Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P. Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C–N Bond Activation. *J. Am. Chem. Soc.* **2017**, *139*, 5313–5316.
- (3) For an aryl pyridium salt, see: Moser, D.; Duan, Y.; Wang, F.; Ma, Y.; O'Neill, M. J.; Cornella, J. Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. *Angew. Chem., Int. Ed.* **2018**, *57*, 11035–11039.
- (4) Klauck, F. J. R.; James, M. J.; Glorius, F. Deaminative Strategy for the Visible-Light-Mediated Generation of Alkyl Radicals. *Angew. Chem., Int. Ed.* **2017**, *56*, 12336–12339.
- (5) (a) Wu, J.; He, L.; Noble, A.; Aggarwal, V. K. Photoinduced Deaminative Borylation of Alkylamines. *J. Am. Chem. Soc.* **2018**, *140*, 10700–10704. (b) Sandfort, F.; Strieth-Kalthoff, F.; Klauck, F. J. R.; James, M. J.; Glorius, F. Deaminative Borylation of Aliphatic Amines Enabled by Visible Light Excitation of an Electron Donor–Acceptor Complex. *Chem. - Eur. J.* **2018**, *24*, 17210–17214. (c) Hu, J.; Wang, G.; Li, S.; Shi, Z. Selective C–N Borylation of Alkyl Amines Promoted by Lewis Base. *Angew. Chem., Int. Ed.* **2018**, *57*, 15227–15231.
- (6) Ociepa, M.; Turkowska, J.; Gryko, D. Redox-Activated Amines in C(sp^3)–C(sp) and C(sp^3)–C(sp^2) Bond Formation Enabled by Metal-Free Photoredox Catalysis. *ACS Catal.* **2018**, *8*, 11362–11367.
- (7) Zhang, M.-M.; Liu, F. Visible-light-mediated allylation of alkyl radicals with allylic sulfones via a deaminative strategy. *Org. Chem. Front.* **2018**, *5*, 3443–3446.
- (8) (a) Klauck, F. J. R.; Yoon, H.; James, M. J.; Lautens, M.; Glorius, F. Visible-Light-Mediated Deaminative Three-Component Dicarbofunctionalization of Styrenes with Benzyl Radicals. *ACS Catal.* **2019**, *9*, 236–241. (b) Jiang, X.; Zhang, M. M.; Xiong, W.; Lu, L. Q.; Xiao, W. J. Deaminative (Carbonylative) Alkyl-Heck-type Reactions Enabled by Photocatalytic C–N Bond Activation. *Angew. Chem., Int. Ed.* **2019**, *58*, 2402–2406. (c) Wu, J.; Grant, P. S.; Li, X.; Noble, A.; Aggarwal, V. K. Catalyst-Free Deaminative Functionalizations of Primary Amines by Photoinduced Single-Electron Transfer. *Angew. Chem., Int. Ed.* **2019**, *58*, 5697.
- (9) Plunkett, S.; Basch, C. H.; Santana, S. O.; Watson, M. P. Harnessing Alkylpyridinium Salts as Electrophiles in Deaminative Alkyl–Alkyl Cross-Couplings. *J. Am. Chem. Soc.* **2019**, *141*, 2257–2262.
- (10) For reviews on Ni/photoredox dual catalysis: (a) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp^3 – sp^2 Cross-Coupling. *Acc. Chem. Res.* **2016**, *49*, 1429–1439. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. *Chem. Rev.* **2013**, *113*, 5322–5363. (c) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. Photoredox-Mediated Routes to Radicals: The Value of Catalytic Radical Generation in Synthetic Methods Development. *ACS Catal.* **2017**, *7*, 2563–2575.
- (11) (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Dual catalysis. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. *Science* **2014**, *345*, 433–436. (b) Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D. M.; DiRocco, D. A.; MacMillan, D. W. C. Direct arylation of strong aliphatic C–H bonds. *Nature* **2018**, *560*, 70–75. (c) Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Selective sp^3 C–H alkylation via polarity-match-based cross-coupling. *Nature* **2017**, *547*, 79–83. (d) Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Metallaphotoredox-catalysed sp^3 – sp^3 crosscoupling of carboxylic acids with alkyl halides. *Nature* **2016**, *536*, 322–325. (e) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp^3 C–H bonds as latent nucleophiles. *Science* **2016**, *352*, 1304–1308. (f) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Dual catalysis. Merging photoredox with nickel catalysis: coupling of α -carboxyl sp^3 -carbons with aryl halides. *Science* **2014**, *345*, 437–440.
- (12) (a) Molander, G. A.; Traister, K. M.; O'Neill, B. T. Engaging Nonaromatic, Heterocyclic Tosylates in Reductive Cross-Coupling with Aryl and Heteroaryl Bromides. *J. Org. Chem.* **2015**, *80*, 2907–2911. (b) Molander, G. A.; Traister, K. M.; O'Neill, B. T. Reductive Cross-Coupling of Nonaromatic, Heterocyclic Bromides with Aryl and Heteroaryl Bromides. *J. Org. Chem.* **2014**, *79*, 5771–5780. (c) Molander, G. A.; Wisniewski, S. R.; Traister, K. M. Reductive Cross-Coupling of 3-Bromo-2,1-borazaronaphthalenes with Alkyl Iodides. *Org. Lett.* **2014**, *16*, 3692–3695. (d) Garcia, K. J.; Gilbert, M. M.; Weix, D. J. Nickel-Catalyzed Addition of Aryl Bromides to Aldehydes To Form Hindered Secondary Alcohols. *J. Am. Chem. Soc.* **2019**, *141*, 1823–1827. (e) Olivares, A. M.; Weix, D. J. Multimetallic Ni- and Pd-Catalyzed Cross-Electrophile Coupling To Form Highly Substituted 1,3-Dienes. *J. Am. Chem. Soc.* **2018**, *140*, 2446–2449. (f) Huang, L.; Olivares, A. M.; Weix, D. J. Reductive Decarboxylative

Alkynylation of N-Hydroxyphthalimide Esters with Bromoalkynes. *Angew. Chem., Int. Ed.* **2017**, *56*, 11901–11905. (g) Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates. *Nature* **2015**, *524*, 454–457. (h) Heinz, C.; Lutz, J. P.; Simmons, E. M.; Miller, M. M.; Ewing, W. R.; Doyle, A. G. Ni-Catalyzed Carbon–Carbon Bond-Forming Reductive Amination. *J. Am. Chem. Soc.* **2018**, *140*, 2292–2300. (i) Hofstra, J. L.; Cherney, A. H.; Ordner, C. M.; Reisman, S. E. Synthesis of Enantioenriched Allylic Silanes via Nickel-Catalyzed Reductive Cross-Coupling. *J. Am. Chem. Soc.* **2018**, *140*, 139–142. (j) Poremba, K. E.; Kadunce, N. T.; Suzuki, N.; Cherney, A. H.; Reisman, S. E. Nickel-Catalyzed Asymmetric Reductive Cross-Coupling To Access 1,1-Diaryalkanes. *J. Am. Chem. Soc.* **2017**, *139*, 5684–5687. (k) Ye, Y.; Chen, H.; Sessler, J. L.; Gong, H. Zn-Mediated Fragmentation of Tertiary Alkyl Oxalates Enabling Formation of Alkylated and Arylated Quaternary Carbon Centers. *J. Am. Chem. Soc.* **2019**, *141*, 820–824. (l) Wang, X.; Wang, S.; Xue, W.; Gong, H. Nickel-Catalyzed Reductive Coupling of Aryl Bromides with Tertiary Alkyl Halides. *J. Am. Chem. Soc.* **2015**, *137*, 11562–11565. (m) Zhao, C.; Jia, X.; Wang, X.; Gong, H. Ni-Catalyzed Reductive Coupling of Alkyl Acids with Unactivated Tertiary Alkyl and Glycosyl Halides. *J. Am. Chem. Soc.* **2014**, *136*, 17645–17651. (n) García-Domínguez, A.; Li, Z.; Nevado, C. Nickel-Catalyzed Reductive Dicarbofunctionalization of Alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 6835–6838.

(13) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A. Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings. *J. Am. Chem. Soc.* **2015**, *137*, 4896–4899.

(14) (a) Duan, Z.; Li, W.; Lei, A. Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Alkyl Bromides: Et₃N as the Terminal Reductant. *Org. Lett.* **2016**, *18*, 4012–4015. (b) Peng, L.; Li, Z.; Yin, G. Photochemical Nickel-Catalyzed Reductive Migratory Cross-Coupling of Alkyl Bromides with Aryl Bromides. *Org. Lett.* **2018**, *20*, 1880–1883. (c) Paul, A.; Smith, M. D.; Vannucci, A. K. Photoredox-Assisted Reductive Cross-Coupling: Mechanistic Insight into Catalytic Aryl–Alkyl Cross-Couplings. *J. Org. Chem.* **2017**, *82*, 1996–2003.

(15) Luo, J.; Zhang, J. Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp³)–C(sp²) Cross-Coupling. *ACS Catal.* **2016**, *6*, 873–877.

(16) Chen, L.; Sanchez, D. R.; Zhang, B.; Carrow, B. P. Cationic” Suzuki–Miyaura Coupling with Acutely Base-Sensitive Boronic Acids. *J. Am. Chem. Soc.* **2017**, *139*, 12418–12421.

(17) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged Scaffolds for Library Design and Drug Discovery. *Curr. Opin. Chem. Biol.* **2010**, *14*, 347–361.

(18) For selected publications, see: (a) Kammer, L. M.; Rahman, A.; Opatz, T. A Visible Light-Driven Minisci-Type Reaction with N-Hydroxyphthalimide Esters. *Molecules* **2018**, *23*, 764. (b) Matsui, J. K.; Primer, D. N.; Molander, G. A. Metal-free C–H alkylation of heteroarenes with alkyltrifluoroborates: a general protocol for 1°, 2° and 3° alkylation. *Chem. Sci.* **2017**, *8*, 3512–3522. (c) Sherwoord, T. C.; Li, N.; Yazdani, A. N.; Murali Dhar, T. G. Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via N-(Acyloxy)phthalimides. *J. Org. Chem.* **2018**, *83*, 3000–3012. (d) Cheng, W.-M.; Shang, R.; Fu, Y. Photoredox/Brønsted Acid Co-Catalysis Enabling Decarboxylative Coupling of Amino Acid and Peptide Redox-Active Esters with N-Heteroarenes. *ACS Catal.* **2017**, *7*, 907–911.

(19) Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Switching on elusive organometallic mechanisms with photoredox catalysis. *Nature* **2015**, *524*, 330–334.

(20) Koszelewski, D.; Pressnitz, D.; Clay, D.; Kroutil, W. Deracemization of Mexiletine Biocatalyzed by ω -Transaminases. *Org. Lett.* **2009**, *11*, 4810–4812.

(21) Geha, R. S.; Meltzer, E. O. Desloratadine: A new, nonsedating, oral antihistamine. *J. Allergy Clin. Immunol.* **2001**, *107*, 751–762.

(22) (a) Jouffroy, M.; Primer, D. N.; Molander, G. A. Base-Free Photoredox/Nickel Dual-Catalytic Cross-Coupling of Ammonium Alkylsilicates. *J. Am. Chem. Soc.* **2016**, *138*, 475–478. (b) Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners. *Chem. Rev.* **2011**, *111*, 1417–1492.

(23) (a) Li, C.; Han, J.; Mao, Yu.; Pan, Yi. Ni-Catalyzed Deamination Cross-Electrophile Coupling of Katritzky Salts with Halides via C–N Bond Activation *ChemRxiv*. *Preprint*. DOI: [10.26434/chemrxiv.7638164.v1](https://doi.org/10.26434/chemrxiv.7638164.v1). (b) Yue, H.; Zhu, C.; Shen, L.; Geng, Q.; Hock, K. J.; Yuan, T.; Cavallo, L.; Rueping, M. Nickel-catalyzed C–N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling. *Chem. Sci.*, **2019**, Advance Article. DOI: [10.1039/C9SC00783K](https://doi.org/10.1039/C9SC00783K).