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ARTICLE INFO ABSTRACT

Keywords: Plants’ tolerance of low temperatures is an economically and ecologically important limitation on geographic
Cold distributions and growing seasons. Tolerance for low temperatures varies significantly across different plant
Abiotic stress species, and different mechanisms likely act in different species. In order to survive low-temperature stress, plant
Comparative biology membranes must maintain their fluidity in increasingly cold and oxidative cellular environments. The responses

Transcriptome of different species to low-temperature stress include changes to the types and desaturation levels of membrane
Membrane .. o e . . .
Lipids lipids, though the precise lipids affected tend to vary by species. Regulation of membrane dynamics and other

low-temperature tolerance factors are controlled by both transcriptional and post-transcriptional mechanisms.
Here, we review low-temperature induced changes in both membrane lipid composition and gene transcription
across multiple related plant species with differing degrees of low-temperature tolerance. We attempt to define a
core set of changes for transcripts and lipids across species and treatment variations. Some responses appear to
be consistent across all species for which data are available, while many others appear likely to be species or
family-specific. Potential rationales are presented, including variance in testing, reporting and the importance of
considering the level of stress perceived by the plant.

1. Introduction increase their low-temperature tolerance through a process called cold-

acclimation [2]. This explains why winter-hardy crops like wheat,

Low-temperatures negatively affectplant growth, development, and
productivity. Plant species display a broad range of tolerance to low-
temperatures, which is a major factor influencing the spatial distribu-
tion of plant species and limits the expansion of the growing regions of
crop species into areas otherwise suitable for crop production. Low-
temperature stress has two distinct components: chilling, usually de-
fined as lower than normal growing temperatures for a given species
but higher than 0 °C, and freezing, defined as less than 0 °C A number of
economically important crops such as maize, soybean, rice, cotton, and
tomato are sensitive to chilling [1]. Chilling tolerant plants of tempe-
rate origin usually require exposure to moderate cool temperatures to

barley, oats, and rye are sensitive to low temperature during many life
stages, including flowering. These species have a vernalization re-
quirement [3,4], which prevents them from flowering prior to spring.

A reduction in temperature causes two direct effects at the mole-
cular level. It variably reduces enzyme activity, and it reduces mem-
brane flexibility [5]. An important example of the variable reduction in
enzyme activity is photosynthesis. As plants are chilled, the light re-
actions of photosynthesis are relatively stable while the dark reactions
enzymes are reduced in activity. This leads to photoinhibition of pho-
tosystem I and sometimes II [6,7], and allows production of reactive
oxygen species (ROS) [8]. One of the effects of ROS is to cause lipid
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photosynthetic fluorescence; Fm, maximum photosynthetic fluorescence; MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG, sulfo-
quinovosyldiacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidic acid; PG, phosphatidylglycerol; PI, phosphatidylinositol

* Corresponding author at: University of Nebraska — Lincoln, 1901 Vine Street, N123 Beadle Center, Lincoln, NE, 68588-0660, USA.

E-mail address: rroston@unl.edu (R.L. Roston).

1 Current address: Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.

2 Authors contributed equally.
3 Authors contributed equally.

https://doi.org/10.1016/j.plantsci.2018.08.002

Received 23 April 2018; Received in revised form 1 August 2018; Accepted 2 August 2018

Available online 07 August 2018
0168-9452/ © 2018 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/01689452
https://www.elsevier.com/locate/plantsci
https://doi.org/10.1016/j.plantsci.2018.08.002
https://doi.org/10.1016/j.plantsci.2018.08.002
mailto:rroston@unl.edu
https://doi.org/10.1016/j.plantsci.2018.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.plantsci.2018.08.002&domain=pdf

S.K. Kenchanmane Raju et al.

peroxidation, which reduces membrane fluidity [9]. Low temperatures
also directly reduce membrane flexibility. Rigid membranes are easily
damaged, resulting in increased electrolyte leakage [5]. Genetic and
metabolic studies have been critical to identifying plant responses,
which in Arabidopsis include changes in membrane lipid abundance
and composition [10-14], especially desaturation [15-18], accumula-
tion of solutes [19-21] and membrane-stabilizing proteins [22,23], and
increases in ROS scavengers [9,22]. In wheat, non-specific lipid trans-
port proteins are also implicated [24]. At the subcellular level, it has
long been known that changes to the plasma membrane composition
are necessary, as it is the barrier between the cell and its environment
[14,25]. These changes include both glycerolipids and sphingolipids, a
special class of membrane lipids that accumulate only on the outer
surface of the plasma membrane [26]. Damage of internal membranes
in response to low temperatures was classically observed [27], and we
now know in Arabidopsis, remodeling of galactolipids in the chloroplast
envelopes is necessary to prevent catastrophic membrane failure during
freezing stress [28,29].

Many of the cellular changes in response to chilling are regulated by
a series of cold-responsive transcriptional cascades. The major reg-
ulators were discovered by a combination of yeast one hybrid analysis
and genetic studies in Arabidopsis and include C-repeat binding factors
(CBFs), which are also referred to as dehydration responsive element-
binding factors (DREBs) [30-32]. CBFs are activated by Inducer of CBF
expression 1 (ICE1) [33] and inhibited by MYB15, an R2R3-MYB family
protein [34]. Low-temperature responses are tied into calcium signaling
through the calmodulin binding transcription activator (CAMTA) fa-
mily proteins that directly regulate the CBFs [35], and responses also
appear to be regulated by the circadian clock [36,37]. DREB/CBF-like
genes appear to play a similar role in regulating cold responses in
grasses and have been identified in every grass genome sequenced to
date [38]. Constitutive over-expression of these genes results in in-
creased cold tolerance combined with marked growth retardation in
maize, rice, wheat, barley, and cassava [39-42]. In Arabidopsis, ex-
pression of CBF3 allows increased low-temperature tolerance, although
it can also cause growth retardation during normal conditions [43,44].
Arabidopsis expression of CBF homologs from freezing tolerant (wheat,
barley, and B. napus) and freezing sensitive species (rice, maize, and
tomato) has been shown to provide enhanced freezing tolerance
[45,46]. In contrast, expression of AtCBF3 or LeCBF1 in tomato does not
increase freezing tolerance in that species [46], implying that the CBF
protein DNA binding specificity is more conserved than the composition
of the downstream CBF target gene regulation. This likely causes phe-
notypic differences in CBF over-expression responses in freezing-tol-
erant Arabidopsis and susceptible tomato species.

Low temperatures damage plant membranes similarly, regardless of
the species, though varied responses have been recorded. Some of these
can potentially include changes that do not necessarily increase fitness
to low temperature, and instead are results of energy scavenging from
cell damage or death. It would be useful if the variable responses to low
temperature could be removed, leaving a core set of responses required
for fitness to low temperature. A potential way to do that is to compare
data acquired across multiple species. In this review, we explore the
hypothesis that there is a core set of changes to transcription and lipid
levels in response to low-temperature stress across published reports.
We focus on changes at the transcriptional and lipid metabolite level,
because of the established importance of each and the presence of
multiple publications describing each in detail. From the studies sur-
veyed, we show that a subset of transcriptional changes seem to be
conserved across plant species, implying that a core response is con-
served. However, conservation of changes in lipids is less clear. We
highlight both the conserved and non-conserved nature of transcript
and lipid changes, point out the wide variety of experimental designs
and reporting standards, and conclude that either the variety of ap-
proaches is too wide or a core lipid response does not exist. Finally, we
suggest some additional reporting standards which will facilitate future
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comparisons for similar multi-study comparisons.
2. Transcriptional changes due to low temperature

During the past two decades, improvements in sequencing tech-
nologies have enabled extensive use of transcript profiling to under-
stand gene expression changes and their regulation. This has enabled
researchers to study genome-wide patterns of gene expression changes
to various internal and external stimuli [47]. Low-temperature stress
produces wide-ranging changes in the overall transcriptome of every
species examined to date. Microarray and RNA-seq based studies have
consistently identified between 10-15 percent of genes as differentially
expressed in response to low-temperature in Arabidopsis, rice, and
maize [48-50]. Early studies using cDNA microarrays which measured
only a subset of expressed genes in Arabidopsis, rice, wheat and several
other plants identified smaller numbers cold-responsive (COR) genes
[51-53]. In Arabidopsis, Seki and colleagues reported 19 COR genes,
while Fowler and Thomashow identified 306 COR genes, 45 of which
were regulated by CBF1 [52,54]. Expression profiling of cassava apical
shoots, lead to the identification of early responsive genes including
photosynthesis-related, signal transduction components, and tran-
scription factors [55]. Genome-wide analysis of low-temperature tol-
erance in grapefruit showed down-regulation of transcripts related to
photosynthesis, defense, cell wall, and secondary metabolism, while
membrane proteins, lipid metabolism, phytohormone and cold-re-
sponsive transcription factors were up-regulated [56].

The set of three CBF genes found in the Arabidopsis genome are
clustered in the same region of Chromosome 5 [57] and play an es-
sential role in mediating responses to cold. CBF genes are highly in-
duced in Arabidopsis during the early response to low-temperature
stress, reaching peak expression after 1-3h [58]. However, mutations
of different upstream regulators have different effects on CBF expres-
sion, with CBF3 induction disrupted in icel mutants, CBF2 induction
disrupted in both icel and ice2 mutants, and CBF1 induction increased
in an ice2 over-expressing line, but not disrupted in an ice2 mutant
background [33,59-62]. The CAMTAS3 transcription factor has also
been identified as a positive regulator of CBF2 [35]. However, only a
small subset of low-temperature-responsive genes is regulated by CBFs.
One study concluded that of 2000 identified low-temperature-re-
sponsive transcripts, about 170 were regulated by CBFs [63]. Early low-
temperature induced transcription factors like ZAT12, ZAT10, HSFC1,
ZF, ICE1 and CZF1 are also known to regulate expression of cold re-
sponsive genes and each other, and may be responsible for the large
proportion of transcriptional responses to cold which are not CBF de-
pendent [33,63,64].

To test our hypothesis that there is a core set of low-temperature
responsive transcripts, we reviewed the low-temperature transcriptome
across plant species, considering only published studies with tran-
scriptome data in repositories NCBI-SRA or ArrayExpress (Table 1;
Fig. 1). Given the breadth of different ideal growth conditions across
the plant species sampled, we see a broad range of temperatures used as
stress treatment in these studies (0 °C to 23 °C). The duration of the low-
temperature treatment also varied from as little as 30 min to as long as
7 days. There were also differences across studies in the selection of the
developmental stage at the initiation of stress, with the earliest stress
applied at germination (sorghum) and the latest stress applied at two
years after planting (tea). The vast majority of studies worked with only
a single genetic background, while several compared multiple acces-
sions or cultivars [65-71] or closely related species [72,73].

The parameters used in each considered study, as well as the pri-
mary findings of each, are listed in Table 1. Genes related to photo-
synthesis and chloroplast development were consistently repressed in
response to low-temperature, though in some species this occurred after
24 h and may not be a primary response [74-76]. The most conserved
set of genes upregulated in response to low-temperature stress belonged
to the CBFs, WRKYs, and AP2/EREBP transcription factors. Calcium
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Fig. 1. Phylogenetic tree displaying plant species with low-temperature gene
expression data surveyed. Orange ovals show the availability of low-tempera-
ture gene expression data, dark-green ovals show low-temperature stress lipid
data, and light-green ovals show partial lipid data. Branches are colored to
highlight freezing tolerance, blue (ability to withstand less than 0°C, data
collected from USDA Plants website (https://plants.usda.gov/java/), suscept-
ibility, red, or unknown tolerance, black. Grey boxes group the following spe-
cies: legumes represent species belonging to Fabaceae, crucifers represent
members of Brassicaceae, and monocots represent the monocotoyledons group
including poaceae and musaceae. Scientific names of species identified by
common names above: soybean (Glycine max), pigeonpea (Cajanus cajan), al-
falfa (Medicago sativa), chickpea (Cicer arietinum), orange (Citrus X sinensis),
cotton (Gossypium hirsutum), field mustard (Brassica napus), canola (Brassica
rapa), eutrema (Eutrema salsugineum), Arabidopsis (Arabidopsis thaliana), poplar
(Populus simonii), jatropha (Jatropha curcas), cassava (Manihot esculenta), grape
(Vitis amurensis), tea (Camellia sinensis), tomato (Solanum lycopersicum), potato
(Solanum tuberosum), banana (Musa sps), rice (Oryza sativa), brachypodium
(Brachypodium distachyon), wheat (Triticum aestivum), rye (Secale cereale),
barley (Hordeum vulgare), switchgrass (Panicum virgatum), urochloa (Urochloa
fusca), foxtail millet (Setaria italica), sorghum (Sorghum bicolor), tripsacum
(Tripsacum dactyloides), maize (Zea mays), amborella (Amborella trichopoda),
and physcomitrella (Physcomitrella patens).

binding proteins play a role in the early chilling-stress signal trans-
duction, with the majority induced at early time points. In multiple
species including Arabidopsis, sorghum, maize, and Physcomitrella pa-
tens the magnitude of gene expression changes under chilling stress
increases from onset to 24 h of stress [48,52,64,73,74]. In Arabidopsis,
after 24h the number of identified differentially expressed genes
(DEGs) decreased slowly [48,52,64,74]. One possible explanation for
this observation is that if the expression of a few transcripts greatly
increases, the expression of all other transcripts may appear to de-
crease, as both microarray and sequencing based methods for analyzing
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transcript expression normalize against measures of total abundance.

The timing of transcriptional responses to low temperature can also
vary across species. For a specific example, consider MYBS3, a tran-
scription factor believed to suppress CBF1 signaling after prolonged low
temperature exposure. In rice, CBF1 responds to low temperature
within 6h, while MYBS3 (Os10g0561400) accumulates over the next
72h [87]. Similarly, this gene was specifically up-regulated in a low-
temperature tolerant rice accession [71]. Two homologs of OsMYBS3 in
maize (GRMZM5G813892 and GRMZM2G034110), and their shared
sorghum ortholog (Sobic.001G297500) showed down-regulation after
24 h of low-temperature stress [73], while the same sorghum gene was
up-regulated in both susceptible and tolerant sorghum genotypes after
36h of stress [68]. Banana showed down-regulation of MYBS3 ex-
pression between 3 and 24 h, and then showed recovery of expression
48 h post stress. In contrast, MYBS3 expression in plantain did not show
significant down-regulation until 6 h post-stress and the expression had
already started to recover at 24 h post-stress.

Differences in timing of transcriptional responses can also be seen
through comparing homologs with early responses in different species
and by comparing changes in timing between multiple ecotypes of a
single species. In P. patens, genes which showed early transcriptional
responses to low temperature tended to lack homologs in other land
plants, while genes with later transcriptional responses to low tem-
perature were more likely to be homologous to genes in other land
plant genomes [74]. Even when the same gene was conserved across
species or between different accessions of the same species, in many
cases the pattern of transcriptional response to low temperature is not
also conserved. Initial transcriptional changes under low temperature
appear to be more conserved between conserved orthologous gene pairs
in maize and sorghum while later transcriptional responses were often
specific to only one member of a conserved orthologous gene pair [73].
Waters, et al. reported significant amounts of variation in transcrip-
tional responses to low temperature between different maize accessions
and between different alleles within hybrid plants [50]. In two studies
of sorghum, fewer low-temperature responsive DEGs were identified in
chilling-tolerant than in chilling-sensitive accessions [67,68]. Barah
et al., reported larger numbers of DEGs in response to low temperature
stress in the Cvi ecotype (Cape Verde Islands) adapted to a warmer
temperature regime than in the cold-tolerant Col-0 ecotype (Columbia).
Relatively few genes were consistently modulated in all ten Arabidopsis
ecotypes tested and the majority of DEGs (~75%) showed ecotype-
specific expression patterns. The increase in DEGs in sensitive acces-
sions and ecotypes underscores that the transcriptional response of a
gene to low temperature does not necessarily indicate that the gene
plays a beneficial role in low temperature survival. A study on cis-acting
promoter elements in dehydration and chilling stress suggests the ex-
istence of diverse transcriptional regulation of chilling-response genes
in Arabidopsis, rice, and soybean, in contrast to conserved dehydration-
induced promoter elements [79]. To summarize our attempt to find
similarities in transcriptional responses to low temperature across
species, we identified only transcription factors with well-established
roles in the low temperature stress response, and even for these both the
timing and the magnitude of the transcriptional responses varied.

We next examined the degree of conservation between similarly
designed low-temperature stress studies within the same species, fo-
cusing on Arabidopsis and sorghum, where multiple published high
quality transcriptome and lipid datasets exist. In Arabidopsis, two stu-
dies were compared which both used the Col-0 ecotype and where
transcriptional responses were analyzed using microarrays. Lee et al.,
moved two-week old plants to 0°C at 12PM while Barah et al. used
three-week old plants and 10 °C as stress treatment. Three hours post
stress, Lee et al. identified 132 DEGs (p-value < 0.01), while Barah
et al. identified 185 DEGs (p-value < 0.01). Only 10 common DEGs
were identified in both studies (Fig. 2a; Supplemental Table 1). Using a
more relaxed p-value cut-off (< 0.05), Barah et al. identified 977 DEGs
of which 31 overlapped with the set identified by Lee et al. DEGs
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Fig. 2. Few differentially expressed genes are identical in two sets of similarly-designed low-temperature stress studies.

Low-temperature treatments of the studies were as follows: Barah et al. treated 2-week-old Col-0 Arabidopsis at 10 °C for 3h [65]. Lee et al. treated 3-week-old Col-0
Arabidopsis at 0 °C for 3h [48]. Marla et al. treated ten-day-old sorghum seedlings at 10 °C/8 °C for 36 h [68]. Zhang et al. treated 12-day old sorghum seedlings at
6 °C for 24 h [73]. In both sorghum experiments, low-temperature stress was initiated at the beginning of the night cycle.

identified in both studies include CBF1, CBF3, CML38, ERF4, ZAT10,
CYP707A3, and a lipase implicated in oxylipin metabolism
(AT1G02660). That there was not more overlap in the highest con-
fidence DEGs is surprising. We suggest that differences in experimental
set up may be a major factor responsible for the low degree of com-
monality observed between these two studies. In addition, differences
in statistical methods and p-values employed may play a role, parti-
cularly as the use of stringent, multiple-testing-corrected p-values in-
creases the frequency of false negatives in gene expression analyses.
To gain more insight into the pathways associated with differen-
tially expressed genes conserved in multiple ecotypes, we performed
GO analysis using the DavidGO package [88] on two sets of genes se-
lected from Barah et al. [65]. While Barah et al. previously examined
differences in GO terms enriched among genes that showed differential
expression in individual ecotypes, here we used the same dataset to test
for differences in functional annotations between genes which showed
consistent transcriptional responses to low temperature stress. We de-
fined this as occurring in at least seven of the ten investigated ecotypes.
We also tested for ecotype-specific transcriptional responses to low
temperature, which we defined as differentially expressed in only one
tested ecotype. Genes related to circadian rhythm, cold acclimation,
transcription, and the response to red light were overrepresented
among the conserved DEGs while DEGs unique to individual Arabi-
dopsis ecotypes were enriched for defense response to bacterium, re-
sponse to salicylic acid, response to wounding, and genes whose

products were predicted to be located in the chloroplast stroma
(Table 2). CBF3 was up-regulated at 3 h post-stress in all ten accessions
tested, while CBF1 and CBF2 were induced in all except ecotype Cvi,
known to be grown in warmer climates [65]. Similarly, all three CBFs
were up-regulated at the same time point in another study in Arabi-
dopsis [48].

From sorghum, we compared three studies which used the chilling-
sensitive genotype BTx623 [67,68,73]. Both Marla et al. and Zhang
et al. initiated the stress treatment with start of the dark cycle on
samples of similar developmental stage (10-12 day seedling), while in
Chopra et al, cold stress began as soon as the seeds were imbibed. 24 h
after the initiation of stress, Zhang et al., identified 7722 DEGs in
BTx623, while Marla et al, identified 3320 DEGs at 36 h after the in-
itiation of stress, with slightly less than 50% of these DEGs also being
identified by Zhang et al. (Fig. 2b, Supplemental Table 1). Differences
in the duration of low-temperature stress (24 h in case of Zhang et al,
and 36h in Marla et al) and the stress temperature (6 °C in case of
Zhang et al, and 10°C/8 °C in Marla et al) may explain the number of
non-overlapping DEGs between the studies. However, the proportion of
DEGs which were consistently identified in both sorghum studies is
greater than the proportion of DEGs consistently identified in both
Arabidopsis studies. Potential explanations include the relatively si-
milar experimental set-ups, similar data analysis pipelines, and the
shared use of next-generation sequencing technology rather than dis-
tinct microarray platforms. Overall, the comparison of these studies

Table 2
Enriched GO terms from conserved and unique DEGs from low-temperature stress transcriptome in ten Arabidopsis ecotypes.
Type GO Term Number Count % P-value FE FDR
Conserved DEG' Cold acclimation GO0:0009631 5 6.7 4.30E-05 25.2 1.20E-03
(at least 7 ecotypes) Circadian rhythm G0:0007623 7 9.3 1.90E-06 18.5 1.40E-04
Response to red light G0:0010114 4 5.3 1.40E-03 17.7 3.40E-02
Negative regulation of transcription G0:0045892 5 6.7 1.80E-03 9.6 3.50E-02
Response to cold GO0:0009409 9 12 1.90E-05 7.7 6.70E-04
Regulation of transcription G0:0006355 25 33.3 5.60E-07 3 8.00E-05
Transcription, DNA-templated GO0:0006351 21 28 1.80E-05 2.9 8.60E-04
Transcription factor activity, sequence-specific DNA binding G0:0003700 21 28 2.10E-07 3.7 1.70E-05
DNA binding GO0:0003677 17 22.7 6.10E-04 2.5 2.50E-02
Transcription factor activity, transcription factor binding G0:0000989 3 4 7.90E-04 69.9 2.20E-02
Unique DEGs' Response to bacterium G0:0009617 38 0.8 2.10E-07 2.4 4.00E-04
Response to salicylic acid G0:0009751 45 1 3.00E-05 1.9 1.90E-02
Defense response to bacterium GO0:0042742 71 1.6 1.30E-05 1.7 1.20E-02
Response to wounding G0:0009611 53 1.2 7.10E-05 1.7 3.30E-02
Chloroplast stroma G0:0009570 141 3.1 4.10E-05 1.4 1.70E-02

1 DEGs used for DAVID GO annotation [88] were from [65]. DEGs consistently modulated in at least seven ecotypes under low-temperature were considered
conserved, while DEGs unique in each ecotype were considered unique. FE (fold enrichment). False-discovery rate (FDR) is given after multiple testing corrections

using the Benjamini-Hochberg method [89].
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emphasizes the fact that even though a core set of genes respond to low-
temperature in a conserved fashion, over half of the genes identified as
differentially expressed will vary, possibly due to small variations in
experimental set-up or data analysis.

3. Glycerolipid changes due to low temperature

To survive low temperature stress, plants must maintain membrane
integrity and fluidity under changing temperature regimes. Integrity is
dependent on fluidity, as membranes must maintain an optimal fluidity
to avoid leakage or fracture. Glycerolipids make up the majority of the
membranes and are composed of a polar “head” attached through a
glycerol to two fatty acid “tails”. Fatty acids can be fully saturated,
having no double bonds along the tail, or be desaturated at specific
locations. The level of saturation influences how a fatty acid fits into the
rest of the membrane and impacts the fluidity of membranes at different
temperatures. In addition, the relative size of a lipid’s “head” group in
relationship to its “tails” also affects fit and fluidity [90]. Thus, changes
to headgroups or fatty acids can affect overall membrane fluidity.
Glycerolipids are the most frequently quantified type of lipid in studies
of membrane responses to low temperature and therefore are the only
lipid class considered here. There is emerging evidence for a role of
sphingolipids in low-temperature tolerance [26,101], however they
have been much less frequently quantified in studies of low temperature
stress [102], limiting the feasibility of drawing conclusions about a core
set of responses from cross species comparisons at this time. Some re-
ported glycerolipid adaptations to low temperature include increasing
levels of desaturation of the fatty acid tails [15,103,104] and conver-
sions between different whole lipid head groups like increasing tria-
cylglycerol, also known as oil, or removing lipids, such as mono-
galactosyldiacylglycerol (MGDG), that destabilize membranes
[28,105]. We predicted that, as in the transcript analysis above, a core
set of lipid changes in response to low temperature stress may be
conserved across plant species. To test this hypothesis, we chose to
focus on reports from sorghum, maize, wheat, Arabidopsis, pea, and
tomato, as these species are well represented in the literature and in-
clude multiple monocots and eudicot taxa. Few papers quantified both
transcriptional and glycerolipid-based changes in response to stress,
generally reporting one or the other. However for each selected species
at least one transcript dataset and multiple publications quantifying
lipid abundance for multiple lipid headgroups were available (Table 3,
Fig. 1). Some species had abundant reports with complete datasets,
such as Arabidopsis, for these we chose to consider publications with
the most similarity in both experimental design and lipid quantifica-
tion.

Lipid desaturation is a commonly observed response to low-tem-
perature stress and assists in maintaining membrane fluidity at low
temperatures. Of the publications considered (Table 3), several re-
ported overall desaturation increases in total lipids under low-tem-
perature treatment [95,96,98]. Other publications showed desaturation
changes of specific lipids. Marla et al. showed that desaturation of total
PC increased, specifically 36:5 and 36:6 [68]. Tarazona et al., showed
more desaturated lipids were retained after low-temperature treatment,
along with an increase in sphingolipid desaturation [96]. Additionally,
Spicher et al., concluded that increases in desaturated MGDG and
DGDG were important for low-temperature tolerance [99]. The excep-
tion was one paper listed in Table 3 which reported no change in
overall lipid desaturation [97]. Fatty acid desaturation has been studied
as a potential route of understanding and improving low-temperature
tolerance. Studies across multiple plant species show the improvement
of low-temperature tolerance after the expression or overexpression of
either endogenous or exogenous desaturase genes [106-108]. Im-
proving tolerance during low temperature through increased fatty acid
desaturation may be a near universal rule of life, as desaturase genes
from sunflower also improve the salt and freezing tolerance of yeast
[109].
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In Table 3, we summarize changes reported in major membrane
lipids, MGDG, digalactosyldiacylglycerol (DGDG), and phosphati-
dylcholine (PC), lipids important for signaling, phosphatidylinositol
(PI) and phosphatidic acid (PA), those important for photosynthesis,
sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG),
and lastly phosphatidylethanolamine (PE) which is abundant in mi-
tochondrial inner membranes and important for respiration. We also
calculate lipid ratios of MGDG/DGDG, MGDG/PC, and PC/PE (Sup-
plemental Table 2) and display the changes to these ratios in Table 3.
We note the process in analyzing lipids across species was cumbersome,
as lipid data reporting was not standardized. Data was calculated and
displayed differently, and not all publications included equivalent
measures. We encourage the inclusion of raw data with publications, or
in a public repository [110,111].

Galactolipids are the most abundant glycerolipids in nature [112].
Of the galactolipids, MGDG is the most abundant membrane lipid found
in chloroplast membranes, making up 52 mol% of the thylakoids [113].
Reports are mixed about how MGDG changes under low-temperature
stress, even among related species. Some decreases in MGDG were re-
ported in maize, sorghum, Arabidopsis and wheat [68,92,95]. In gen-
eral, papers that saw a decrease in MGDG suggested that removing
MGDG, a non-bilayer forming lipid, could help to stabilize membranes.
In corroboration of that idea, at least two enzymes modify MGDG in
response to low-temperature stress and recovery [105,114], also im-
plying that it may be important to reduce the amount of MGDG in
membranes exposed to low temperature. DGDG is the second most
abundant lipid found in chloroplast membranes, making up 26 mol% of
thylakoids [113]. Unlike MGDG, DGDG is a bilayer-forming lipid [115].
Reports of changes in DGDG were mixed. In papers where an increase in
DGDG was observed in response to low temperature stress, it was
suggested that an increase in bilayer-forming lipids helps to stabilize
membranes [92,94,95]. Additionally, papers quantifying specific forms
of DGDG found that during freezing, more saturated forms were lost or
reduced more often than less saturated forms [96]. SQDG is an anionic
lipid important for photosynthesis, and can partially substitute for PG in
photosynthetic membranes, and SQDG and PG changes have been ob-
served to be negatively correlated [116]. There were a wide range of
reported responses of SQDG abundance to low-temperature stress with
approximately even representation of reported decreases, increases,
and no changes. SQDG is not required for plant growth under normal
conditions because Arabidopsis mutants lacking SQDG synthesis genes
can survive as long as they are not phosphate stressed [117]. Few
studies have speculated as to the role of the observed low-temperature
SQDG abundance response, perhaps because of the lack of consistent
patterns.

Phospholipids make up the bulk of extra-plastidic membranes. Of all
phospholipids, PC is the most abundant and is also found in the outer
envelope of the chloroplast [113]. Thus, it is particularly interesting
that reports of changes in PC are so divided. PC levels were shown to
increase in wheat and the non-thylakoid fraction of isolated pea
membranes [94,95,97]. In contrast, PC abundance was reported to
decline under low-temperature treatment in several studies
[10,11,92,100], and in one study comparing two wheat genotypes, it
decreased only in the low-temperature tolerant line [94]. The two re-
ports in Arabidopsis attribute the decrease in PC abundance to con-
version into PA through the activity of two phospholipase D (PLD)
isoforms: PLDa and 8 [10,11]. They investigate their roles through loss-
of-function Arabidopsis mutants, showing that PLDa is important for
tolerance, and PLDS is important for stress recovery [10,11]. In maize,
Gu et al., suggested that the decrease of PC combined with an increase
in DGDG, resulting from shuttling of PC into galactolipids under low-
temperature stress [92]. When reported, lyso-phospholipids and PA
nearly always showed an increase in abundance in response to low-
temperature stresses [10,11,92]. This increase could be explained by
the action of PLDs turning PC into PA [10,11] or through the activity of
diacylglycerol kinase [118]. Diacylglycerol kinase was suggested to
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Table 3
Lipid changes after low temperature in multiple species.
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Species Genotype Relative abundance after low temperature
MG DG SQ PC PE PA PG PI MG/DG MG/PC PC/PE Temp & Light Intensity Day (h) Age/ Ref
Duration Stage
Sorghum bicolor ~ BTx623 1 I ND NS ND | NS ND ! 1 ND 10°Cd/ 8°C  700-800-pumol/ 12 V3 [68]
RTx430 | |/ ND NS ND | NS ND NS | ND n, m?/s
NiuShengZui | | ND | ND | NS ND NS NS ND 12h
Hong Ke Zi | | ND NS ND | NS ND NS | ND
Shan Qui Red ! } ND NS ND | NS ND | | ND
Kaoling | | ND NS ND | NS ND NS NS ND
BTx623 NS NS NS NS ¢ NS NS ND NS NS | 6°C, 24h ND 13 3 leaf [91]
Zea mays He344 | 1 NS NS NS 1t NS NS | 1 1 5°C,3d ND 16 2.5 [92]
weeks
CM 7 | NS ND ND ND ND ND ND ND ND ND 5°C,4d&6d no light 16 V3.5 [93]
Co 151 | NS ND ND ND ND ND ND ND ND ND
S125 | NS ND ND ND ND ND ND ND ND ND
EPI | NS ND ND ND ND ND ND ND ND ND
B73 NS NS NS NS NS NS NS ND NS NS NS 6°C, 24h ND 13 3 leaf [91]
Triticum aestivum Miranovskaja | 1 1 | ND ND NS ND | NS ND 1.5°C, ND 16 8 weeks  [94]*
Penjamo I, L t 1t ND ND { ND 1t | ND 4wk
Manitou | 1 | 1 1 ND ND ND | I 1 4°C, 120 umol/m?/s 16 4 weeks  [95]
2 wk
Arabidopsis Columbia NS NS ND | | 1 | NS | 1 | -8°C, 30 umol/m?/s 12 4.5 [11]
thaliana Wassilewskija | NS ND | | 1 A NS | 1 | 2h weeks
Columbia 1 NS NS | A ND NS NS ¢ 1 NS 10°C, 120 umol/m?/s 16 4 weeks [95]
3wk
Columbia NS NS ND | | 1 | NS | 1 | -8°C, 30 umol/m?/s 12 5.5 [10]
2h weeks
Columbia | | | 1 T ND | 1 ND ND ND —-2°C, no light 12 4.5 961"
12h weeks
Pisum sativum Feltham First | NC ¢ 1 ND ND NC ND NS | ND 4°C/7 °C, 60 w/m? 16 3 leaf 9717
season stage
Feltham First 1 i 1 1 ND ND ¢ ND NS | ND 5°C-10°C, natural 3 leaf 981"
season stage
Solanum M82 | l ND ND ¢ ND ND ND NS ND ND 10°C/8°C, 6 250 umol/mz/s 16 5-6 [991"
lycopersicum d weeks
Sibirskie ! L L L 4 ND | | 1 1 NS 6°C,5d 10Kkix and 2.5 klx 16 3-4 true  [100]"
Skorospelye leaves

The Temp & duration column gives the lowest temperature and the longest duration of the low-temperature stress. Ages/stages gives the age or stage of the plant,
including any time spent in cold acclimation, when stress is applied. Day (d), night (n), hour (hr), week (wk), not determined (ND). NC (no change) indicates that cold
and control samples were reported to exhibit equivalent values without any reported statistical testing. NS (not significant) indicates that a statistical test was
conducted, but any pattern observed was not statistically significant. Monogalactosyldiacylglcyerol (MG), digalactosyldiacylglycerol (DG), sulfoquinovosyldia-
cylglycerol (SQ), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylinositol (PI). * re-
presents a study done on isolated thylakoid membranes and " represents studies lacking statistical analysis. Lipid ratios represent reported ratios or were calculated
for studies reporting quantified lipid abundance. No change (NC) was indicated for lipid ratios if the difference was less than 5%.

activate in response to membrane rigidification in isolated Arabidopsis
cells [18] and may respond to low temperature. PA and lyso-lipids are
known to be signals during many developmental stages of plant growth
and various environmental stresses [119], so this change may be a
functional part of the low-temperature response. PG is required for
photosynthesis [116], and is important for photochemical and electron
transport inside the thylakoids and coordinating Photosystem II reac-
tion centers [120]. PG is synthesized in the chloroplast, endoplasmic
reticulum, and the mitochondria in plant cells [121-123]. Mutant
plants lacking PGP1, one of two PG synthases, have chloroplast defects
[124], while mutants lacking both PG synthases have embryonic de-
fects, are albino, and have chloroplast and mitochondrial defects [125].
PG levels decreased under low-temperature treatment in most reported
datasets, although some individual studies also reported increases or
the absence of statistically significant changes. During low-temperature
stress, the dark reactions of photosynthesis lag and this leads to a
buildup of ROS through the saturation of photosystem I and in high
light conditions photosystem II [8]. Thus, one potential benefit of de-
creasing levels of PG in the plant during low-temperature stress is that
the electron transport chain has been shown to be less efficient with
reduced PG [120]. It is unclear how the decrease in PG occurs, but it
could be hydrolyzed and recycled in response to stress conditions.
However, Welti et al. suggest that PLDa, a lipase known to be active in
response to freezing stress is not responsible for the reduction in PG
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[10]. PE levels were frequently observed to decrease in response to low
temperatures. In one instance, the specific fatty acid groups 36:4 and
36:5 were observed to decrease dramatically [10]. In contrast, one
publication reported a PE level increase specifically in 34:2 and 36:4 PC
[99]. PE is a non-bilayer forming lipid [115], so decreasing overall PE
abundance may help improve membrane stability. Saturated PE is more
likely to form bilayers than desaturated PE, which could mean that
decreases in more desaturated PE levels are a functional adaptation to
low-temperature [126]. PI derivatives are important secondary sig-
naling molecules during times of stress. PI-kinases have been found to
be active under low temperatures upstream of phospholipase C, which
cleaves the entire lipid headgroup and creates diacylglycerol and in-
ositol-1,4,5-triphosphate [127]. A phosphatidylinositol transfer-asso-
ciated protein from maize was overexpressed in Arabidopsis and con-
ferred tolerance to low-temperature stress [128]. However, when
measured, the abundance of PI was generally found to be unchanged
under low-temperature stress. Only one report noted an increase in PI
abundance in response to stress treatment and one a decrease. This may
be because PI changes are typically ephemeral and may not have been
captured at the limited timepoints sampled.

Few general trends of glycerolipid responses were observed across
multiple treatments, genotypes, and species, and in every case excep-
tions also existed. MGDG levels were the most consistent, showing
decreases in response to cold across many treatments and species, with
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the exception of reports in sorghum, Arabidopsis, or pea, four of which
increased and two of which were non-significant (Table 3). No addi-
tional consistent trends were found when separately considering data
from studies in monocots or eudicots, or from treatments above
freezing. Ratios of changes in major membrane lipid classes also did not
explain changes in response to low-temperature stress.

One challenge in a broad, multistudy comparison of lipid changes is
a lack of consistency with which lipid head groups are assayed. In many
studies, only lipid subsets of interest to specific research questions were
assayed (Table 3). A second challenge is the difficulty of defining
equivalent development stages across species. Studies varied from 2
week old corn [91] to reproductive stage Arabidopsis [10]. Within in-
dividual species, the largest age variance was in wheat, where there was
a difference of four weeks. In addition, the studies shown in Table 3
vary in growth conditions and the parameters of the low temperature
treatment, including temperature, length of stress, and amount of light
during treatment. In spite of sharing all of the same challenges, com-
parison of transcript data across species did reveal a core set of changes,
while lipid data did not. Most transcript-based studies assayed a com-
prehensive or nearly comprehensive set of annotated genes, while few
publications reported even all of the major membrane lipids. Thus, we
consider two possibilities, i) there is no core lipid response to low
temperature, and ii) a core lipid response exists but cannot be defined
using these studies with too much diversity in testing procedures, de-
velopmental stage, and lipid reporting.

We next compared different reports from the same species. We again
utilized data from Arabidopsis and sorghum because of their relatively
abundant lipid and transcript datasets, and representation of the
monocots and eudicots [10,11,68,91,95,96] (Table 3). Changes in
abundance of individual lipid headgroups were generally consistent
across studies. With the exception of one study, Arabidopsis PC and PE
levels decreased in response to low temperature stress across two
genotypes. PG levels also decreased consistently in studies of Arabi-
dopsis with the exception of Li et al 2015, in which no statistically
significant changes were identified [95]. Sorghum PA levels were de-
creased in most reports, while Arabidopsis PA levels increased. In sor-
ghum DGDG levels decreased across all genotypes, chilling sensitive
and tolerant alike, though in one study the change was not statistically
significant, whereas in Arabidopsis changes in DGDG levels were gen-
erally not statistically significant. MGDG levels did not exhibit a clear
pattern of response to low-temperature stress in Arabidopsis, however,
changes in MGDG levels in sorghum showed differences between lines
which were largely consistent with the classification of these lines as
chilling tolerant or chilling sensitive (Table 3). Generally, decreases in
MGDG abundance were observed after low-temperature treatment
especially in accessions that were chilling tolerant, Niu Sheng Zui, Hong
Ke Zi, Shan Qui Red, and Kaoling [68]. The exception was the chilling-
sensitive line BTx673, which either increased post low-temperature
treatment [68] or decreased so slightly as to not be statistically sig-
nificant [91].

Upregulation of multiple membrane lipid desaturases occurs in low
temperatures [15,16], some of which seem to function primarily during
chilling stress [17]. Engineering increases in lipid desaturation in-
creases low-temperature tolerance [106,129,130], and mutants de-
creasing desaturation increase low-temperature susceptibility
[15,17,103]. A long-standing hypothesis is that the membrane rigidi-
fying effect of low-temperatures is directly relieved by increasing
membrane desaturation [131]. Reporting of desaturation levels across
lipid headgroups varies, in part because of inherent differences between
direct mass-spectrometry measurement and derivatization-based
methods. First, we discuss conclusions from two similar studies on
sorghum using each study’s own approach to quantifying desaturation,
then we compare multiple Arabidopsis studies using a ratio between
reported desaturation index levels in control and treated plants to
compare overall desaturation changes between species. Marla et al.
showed an increase in PC desaturation after chilling in all sorghum
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accessions tested, including both low-temperature tolerant and sensi-
tive lines [68]. These changes primarily came from an increase in 36:5
and 36:6 PC levels relative to levels of less desaturated forms of PC.
Statistically significant increases in desaturation levels were also ob-
served for PI and PA in five out of six sorghum accessions tested. Yan
et al. and also observed increased desaturation of PC in response to
cold, including an increase in 18:3 containing PC, consistent with the
observation of Marla et al. However, the difference was not sufficient to
be statistically significant, and neither were differences in PI or PA
[91]. In contrast, desaturation levels were observed to decrease in PE,
PG, SQDG and DGDG. The two experimental setups were similar
(Table 3), both using young seedlings of the same accession and within
4°C of the same temperature, however the timing of the study was
dramatically different with respect to the diurnal clock with a 12- vs a
24-hour sampling time.

We reasoned that if lipid desaturation directly relieves membrane
stiffness caused by low temperatures, then there would be more lipid
desaturation at lower temperatures. To avoid multi-species compar-
isons and differences between desaturation indices, we calculated de-
saturation indices from multiple Arabidopsis investigations with dif-
ferent temperature usage (Fig. 3). We also included one mass-
spectrometry study with self-reported desaturation indices from a si-
milar calculation [132]. Surprisingly, a correlation is not observed be-
tween temperature and desaturation index. Data from three reports
have a desaturation index ratio below one, indicating decreasing de-
saturation during low temperatures [132-134]. Data from six reports
showed an increase in total desaturation during low temperatures, but
there was no trend of increasing desaturation with increasingly low
temperatures. Because membrane fluidity must be preserved, we con-
clude that desaturation is not the only mechanism preventing mem-
brane stiffening at low temperatures. Similarly, because desaturation is
known to be required for low-temperature survival, the desaturation of
specific lipid types must be needed for other reasons, allowing toler-
ance. Alternatively, a final possibility is that differences in experimental
setup and analysis obscure interpretation. Controls varied between
studies with some research groups using unstressed plants and some
cold-acclimated plants. Also, low-temperature treatments differed in
length from 2h to 37 days.
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Fig. 3. Overall lipid desaturation does not correlate with low-temperature
tolerance.

Total fatty acid desaturation index ratios in Arabidopsis across a range of
temperatures are graphed from publications reporting data as quantified values
[17,105,132,133,166,167]. Desaturation index ratios displayed are a ratio of
low-temperature desaturation index to control temperature desaturation index.
Where desaturation indices were not reported, they were calculated as follows:
(X:0%0) + (X:1*1) + (X:2*2) + (X:3*3), where X:0, X:1, X:2 and X:3 indicate
the amount of each fatty acid quantified as a molar percentage of total lipids for
the lipid headgroup class under consideration. A linear trend line is shown with
an R squared value of 0.4259 (solid line). The anticipated trend of fatty acid
desaturation with temperature is also shown (dashed line).
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Table 4
Response of lipid metabolism genes to low-temperature stress.
Citation Marla Gu Li Li
Species Sorghum Maize Arabidopsis Wheat CBF Regulated
Gene MGD 1 1 1 1 No
(1,2,3)
DGD (1,2) i 1 1 i i
SQD (1,2) i i I i No
FATB i 1 ND i No
LACS 1 i ND i No
PLDa ? 1 ND ! No
C/E Kinase 1 1 ND | |
FAD (2,3) | 1 I 1 No
FAD ! 1 i i No
(5,6,7,8)
PAP T 1 ND | No

Transcript analyses from three papers containing four species of plants, also
found in Table 3, are compared here [68,92,95]. CBF regulation was de-
termined from [63]. Abbreviations are as follows: MGD — MGDG synthase; DGD
— DGDG synthase; SQD - SQDG synthase; FATB — Acyl-ACP Thioesterase B;
LACS - Long-Chain Acyl Co-A Synthetase; PLDa — Phospholipase D alpha; C/E
Kinase — Choline ethanolamine kinase; FAD - Fatty acid desaturase; PAP —
Phosphatidic acid phosphatase.

Relatively few papers performed both transcript and lipid analysis
[68,92,95]. Given the lack of similarity of lipid responses to low tem-
peratures between these papers, the level of similarity observed in
transcripts of lipid genes is surprising (Table 4). MGD and DGD syn-
thase transcript number increased for all species, while MGDG and
DGDG lipid levels generally decreased under low-temperature stress.
DGD synthase is directly upregulated as a response to cold as a com-
ponent of the CBF regulon [63] (Table 4), presumably explaining its
increased transcript levels. MGD synthase is not part of the CBF reg-
ulon, and instead it is regulated by multiple post-translational me-
chanisms [135,136]. High MGD synthase transcript levels could be a
response to low MGDG levels as a feedback mechanism. Choline kinase
is directly downregulated in response to cold (Table 4) [63]. In Ara-
bidopsis studies shown in Table 3, PC generally decreased in response
to cold. Unlike DGD and MGD synthases, choline kinase may be re-
sponding to cold temperatures mainly at the transcript level. Fatty acid
desaturase transcripts had some of the least consistent changes
(Table 4), though the direction of the desaturase transcript change
generally matched the levels of lipid desaturation in that study. For
example, Li et al., 2015 observed increases in all fatty acid desaturase
transcripts, and also saw an increase in total desaturated fatty acids
under low-temperature stress [95]. This implies that fatty acid desa-
turases are mostly transcriptionally controlled in response to low tem-
perature. Surprisingly, transcriptional changes were more consistent
across species than the lipid responses to low-temperature stress, even
though most were absent from the CBF regulon [63]. We conclude that
low-temperature tolerance has many non-transcriptional factors influ-
encing it. It is likely that different species have different post-transla-
tional regulation or response levels, and this could be connected to their
stress perception.

4. Reported differences in experimental setups

A major complicating factor in comparing both transcript and lipid
changes in response to low temperature is the variety of growth con-
ditions and stress treatment protocols used (Tables 1 and 3). Multiple
aspects of low-temperature treatment affect the intensity of a plant's
response. It has long been known that the severity of low-temperature
treatments matter, and longer treatments of low-temperature stress
result in increased plant damage [137]. For instance, 5 °C treatment of
maize for two days was mostly survived, but after ten days nearly all
plants died [138]. Sorghum exhibits even greater sensitivity to low
temperatures, with significant reductions in growth observable when
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either air or soil temperatures are below 15°C [139,140]. In contrast,
Arabidopsis can complete its entire growth cycle and set seed at tem-
peratures of 6 °C, but dies below —10°C [141,142]. Many studies used
different low temperatures to apply stress, even though they in-
vestigated the same species. Within included Arabidopsis studies, the
duration of low temperature stress treatments varied from as little as
two hours to as long as three weeks, while treatment temperatures
varied from 10 °C to —12°C [95,132]. A second factor known to affect
the severity of a low-temperature stress is whether a plant was pre-
viously cold acclimated [2]. Cold acclimation is a well-recognized and
commonly performed part of freezing stress tests, but is less frequently
added to severe cold tests of plants that cannot withstand freezing. As
demonstrated in Fig. 4, cold acclimation of maize seedlings at 16 °C
increases their tolerance of 4 °C.

One of the most frequently reported growth conditions was plant
age (Tables 1,3). However, the age of plants tested varied from young
vegetative plants to plants at reproductive stages. This is an important
factor in experimental design because in most species, different growth
stages and tissue types have different levels of tolerance for low-tem-
peratures [143-145]. Young seedlings are often more sensitive to low
temperature than the same plants at more advanced stages of devel-
opment [1], for example winter wheat is most tolerant at its full ve-
getative growth stage [146]. However in Arabidopsis, younger leaves
have greater freezing tolerance than older leaves [21,147]. Other tis-
sues also vary in tolerance. For example, Arabidopsis pollen grains are
more sensitive to low temperature than leaf tissues [148], and the
maize meristem is more resistant, especially while it remains below the
soil surface and is buffered from fluctuations in air temperature prior to
the six-leaf-stage [149].

The level of light provided during low-temperature treatment also
affects the severity of a plant’s perceived stress, as high light levels
under low temperature conditions adds oxidative stress [150]. In Ara-
bidopsis, oxidative stress response genes are upregulated in response to
low-temperature stress [52]. Differences in light intensity during low
temperature stress treatment can therefore have an impact on both
molecular (transcriptional and lipid) and whole-plant responses to
equivalent severities of treatment. In many cases light intensity levels
during cold stress treatment and/or control conditions were not re-
ported. In studies where light intensity was reported, values varied
more than 10 fold from 30 umoles/m2/s to 800 umoles/m2/s. Thus,
even studies employing equivalent temperatures as part of their low
temperature treatment may subject plants to substantially different
degrees of stress.

In addition to the tolerance changing effect of light levels during
stress, the timing of the light/dark cycle before stress also changes
tolerance. Studies have found that the expression levels of many genes
known to be involved in mediating responses to low-temperature stress
cycle diurnally [151]. Further, mutations disrupting the circadian clock
in Arabidopsis also decrease survival rates in freezing stress treatments
by 50% [152]. This strongly suggests that the time of day at which low
temperatures are applied influences the level of tolerance observed in
different experiments. We confirmed this with maize plants. When ex-
posed to cold in the middle of the day, maize exhibited more severe
stress phenotypes than equivalent plants cold treated at the end of the
day (Fig. 4). This phenomenon is likely due to the interaction between
low-temperature tolerance and circadian and diurnal rhythms. Many
abiotic stress genes are connected to the clock and naturally cycle in
addition to reacting to times of stress, with one transcriptome analysis
finding extensive overlap between abscisic acid signaling and the cir-
cadian clock [153]. Abscisic acid is connected to many environmental
stress responses; meaning time of day plants are stressed and sampled
could greatly influence observed patterns of transcriptional responses.
However, few studies report the time of day at which low-temperature
stress treatments are initiated.

Finally, an additional consideration is the relative health of the
plants prior to treatment, which is often a sum of other stresses
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A

Control

preexisting for the plant. In summary, the severity of a low-temperature
treatment can differ greatly between experiments based on duration of
treatment, prior cold acclimation, plant age, tissue type sampled, light
levels during treatment, and position of the treatment within the
diurnal cycle, and of course the temperature used to create the stress.

5. Physiological and phenotypic measurements to quantify
tolerance/susceptibility to low-temperature stress

Low temperatures directly cause physiological, biochemical, cel-
lular, and molecular changes that alter whole-plant processes. Plants
exposed to low temperature show growth inhibition, dehydration,
membrane damage, solute leakage, and metabolite imbalances [22]. As
plants perceive changes in temperature, transcription factors and other
primary responses are activated, causing gene expression and physio-
logical, biochemical, cellular, and molecular trait changes.

Treatments with the same low temperatures may not always impose
equivalent stress levels across plant species or genotypes because of
native variation in the ability to withstand low temperatures. Thus, the
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Fig. 4. Low-temperature tolerance is affected
by cold acclimation and time of low-tem-
perature stress.

For all portions of the figure: Normal growth
conditions were 29 °C day/ 22 °C night with a
16 h:8 h day/night cycles. All maize is acces-
sion B73. CA represents plants cold accli-
mated at 16°C with a 12h:12h day/night
cycle for one week. NA represents plants that
were not acclimated. ED represents plants
moved to low-temperature stress at the end of
the day cycle when growth chamber lights
shut off. MD represents plants moved into
low-temperature stress in the middle of the
day cycle. Cold treatments were at 4 °C with a
12h:12h day:night cycle. All images were
taken 3 days post recovery from stress. A) 20-
day-old maize plants grown under normal
conditions (left) or grown normally for 10
days, cold-acclimated at 16 °C for one week,
and cold treated at the end of the day cycle
(ED) for three days (right). B) Same as A, ex-
cept plants were cold treated in the middle of
the day cycle (MD). C) Second leaf excised
from plants in A and B, 29° denotes control
plants, CA denotes cold-acclimated and cold-
treated plants. D) 20-day-old maize plants
grown under normal conditions (left) or
grown normally for 17 days, then cold treated
without prior acclimation for three days
(right). Cold treatment began at the end of the
day cycle (ED). E) 20-day-old maize plants
grown under normal conditions (left) or
grown normally for 17 days, then cold treated
without prior acclimation for three days
(right). Cold treatment began in the middle of
the day cycle (MD). F) Second leaf excised
from plants in D and E, 29° denotes control
plants, CA denotes cold-acclimated and cold-
treated plants.

level of stress experienced by plants in a given trial is critical to both
quantify and report. Below we review phenotypic changes in response
to low temperature, noting the level of consistency with which they are
experienced by different species.

Impairment of CO, assimilation rates have been used as a proxy for
photosynthetic activity in maize, sorghum, and several other panicoid
grasses as a quantitative measure to infer differing levels of sensitivity
to chilling stress [73]. Chlorophyll fluorescence measured as the ratio of
F, (variable fluorescence) over F,, (maximum fluorescence), is another
photosynthetic property whose changes are relevant in understanding
plants response to low temperature. Upon cold stress, F,/F,, values are
used to determine the maximum quantum efficiency of Photosystem II
[154], which drops significantly in low-temperature-sensitive plants,
whereas in low-temperature-tolerant plants, the values decrease only
slightly [155,156].

Imaging plants provides a visual indication of the plants’ perceived
stress levels. Few studies sampled in Table 1 included images of plants
after low-temperature treatment. Including close-up pictures of leaves
or tissues of interest can improve interpretation of the plants’ stress
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levels, especially in larger bodied plants where whole-plant images are
necessarily small and details are difficult to resolve (Figs. 4; 1A,B in
[72] and Fig. 1A-C in [55]). With the advent of high-throughput plant
phenotyping systems, automated phenotyping platforms have been
used to study plants response to various biotic and abiotic stress [157].
In a proof-of-concept study, Humplik et al, developed automated
screening for growth rate and photosynthetic efficiency by RGB and
chlorophyll fluorescence imaging and verified the reliability of these
image based data with ground truth measurements [158]. However,
regular photography can also be effective. For example, Yang et al.
showed that the leaves of low-temperature sensitive banana plants
droop after 6 h of cold treatment at 10 °C, while the resistant plantain
leaves remained normal [72]. These phenotypic changes and other
physiological measurements corresponded well with the gene expres-
sion changes indicating differing sensitivity low-temperature [72].

Membrane injury levels are another marker of plant stress, and can
be measured by membrane leakage and lipid oxidation [159,160].
Following low temperature stress treatments, electrolyte leakage was
higher in low-temperature sensitive banana and japonica rice variety
IR29, compared to resistant genotypes [71,72]. Malondialdehyde is an
end-product of lipid peroxidation in cell membranes, and has been
shown to accumulate in low-temperature sensitive genotypes in rice,
cassava, and banana, particularly after prolonged stress [55,71,72].

Other physiological responses of low-temperature-stressed plants
like chlorophyll content, amino acid accumulation, and relative water
content can also be observed, however these responses are less con-
sistent across accessions and/or species. Low temperature is known to
inhibit chlorophyll synthesis and chloroplast formation in rice plants
[161]. Chlorophyll content has a positive effect on low-temperature
tolerance in rice. Low-temperature tolerant japonica rice varieties ac-
cumulate chlorophyll at a higher rate than sensitive indica lines under
cold stress [162]. In cassava, An et al, reported that low-temperatures
changed chloroplast ultrastructure by reducing thylakoid stacking and
reducing or eliminating starch granules [55]. Most freezing tolerant
plants accumulate one or more amino acids as cryoprotectants during
low temperatures, though the precise amino acid profile varies. Relative
increases in proline levels are common, in Arabidopsis proline and
glutamine are hyperaccumulated [163]. Other species preferentially
accumulate different sets of amino acids: bluegrass accumulates pro-
line, tyrosine and arginine [164], and frost-resistant barley accumulates
mainly y-aminobutyric acid while its relative levels of proline and many
other amino acids are reduced [165].

Comparisons of the severity of low-temperature stress experienced
in different studies are currently challenging. However, as described
above a number of phenotypic traits appear to show relatively universal
changes in response to the degree of stress experienced by a plant —
rather than the absolute temperature or other details of how the stress is
applied. Specifically, plant imaging, ion leakage and accumulation of
MDA are relatively species-independent measurements. Reporting va-
lues for some or all of these traits would be one way to improve cross-
comparability across independent studies working with different gen-
otypes, species, or stress treatment protocols.

6. Conclusions

Low-temperature is a key constraint on crop productivity and
growing ranges. Unseasonably early or late cold can both reduce yield
and decrease the quality of any surviving harvest. We used published
studies to test the hypothesis that a core set of changes in transcript and
lipid profiles induced by low temperature stress are conserved across
plant species. A core set of transcriptional responses was indeed ob-
served across many species. The CBF genes were consistently upregu-
lated early in response to low-temperature stress, while photosynthesis
and chloroplast related genes were consistently downregulated later. A
subset of genes involved in lipid metabolism were also regulated con-
sistently. In contrast, we were not able to identify any consistent
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changes in membrane lipid abundance across the species profiled in the
literature.

Perception, signaling, and response to low-temperature stress is a
complex process with multiple mechanisms and pathways converging
to affect adaptation. The widespread variation in transcriptional and
biochemical responses to low-temperature stress presumably results
from two primary mechanisms: inherent genetic and physiological
differences between how different species perceived and respond to low
temperature or differences in how low temperature is applied and
outcomes assayed across different studies. Genetic and physiological
differences among species are interesting and could entirely explain the
variation in lipid abundance, however, more consistent reporting of
experimental design parameters and phenotypic responses to stress are
needed to test this. Alternatively, accurate comparisons that take into
account the perceived severity of the low temperature stress may
identify the most relevant lipid changes to improve plant low tem-
perature tolerance in a variety of species. Ultimately, multistudy ana-
lyses sample a wider range of treatment conditions and species than an
individual report, enabling them to highlight the subset of biochemical
and transcriptional changes that are functionally constrained.
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