
Calibrate: Frequency Estimation and Heavy Hitter

Identification with Local Differential Privacy via

Incorporating Prior Knowledge

Jinyuan Jia, Neil Zhenqiang Gong

Department of Electrical and Computer Engineering, Iowa State University

{jinyuan, neilgong}@iastate.edu

Abstract—Estimating frequencies of certain items among a
population is a basic step in data analytics, which enables more
advanced data analytics (e.g., heavy hitter identification, frequent
pattern mining), client software optimization, and detecting
unwanted or malicious hijacking of user settings in browsers.
Frequency estimation and heavy hitter identification with local
differential privacy (LDP) protect user privacy as well as the
data collector. Existing LDP algorithms cannot leverage 1) prior
knowledge about the noise in the estimated item frequencies and
2) prior knowledge about the true item frequencies. As a result,
they achieve suboptimal performance in practice.

In this work, we aim to design LDP algorithms that can
leverage such prior knowledge. Specifically, we design Calibrate

to incorporate the prior knowledge via statistical inference.
Calibrate can be appended to an existing LDP algorithm to
reduce its estimation errors. We model the prior knowledge about
the noise and the true item frequencies as two probability distri-
butions, respectively. Given the two probability distributions and
an estimated frequency of an item produced by an existing LDP
algorithm, our Calibrate computes the conditional probability
distribution of the item’s frequency and uses the mean of the
conditional probability distribution as the calibrated frequency
for the item. It is challenging to estimate the two probability
distributions due to data sparsity. We address the challenge via
integrating techniques from statistics and machine learning. Our
empirical results on two real-world datasets show that Calibrate

significantly outperforms state-of-the-art LDP algorithms for
frequency estimation and heavy hitter identification.

I. INTRODUCTION

In frequency estimation, a data collector aims to estimate
the frequencies of certain items among a population, where
frequency of an item is the number of users that have the
item. Frequency estimation is a basic research problem in data
analytics and networking services. For instance, Google may
be interested in estimating how many users set a particular
webpage as the default homepage of Chrome [27], where
Google is the data collector and each webpage is an item;
and an app developer may be interested in estimating how
many users adopt a certain feature of the app, where the app
developer is the data collector and each feature of the app
is an item. Such frequency estimation is often the first step to
perform more advanced data analytics, optimize client software
(e.g., web services, mobile apps), and detect unwanted or
malicious hijacking of user settings in browsers [27]. For
instance, after estimating item frequencies, the data collector
can identify the items whose frequencies are larger than a given
threshold, which is called heavy hitter identification.

A naive solution for frequency estimation or heavy hitter
identification is to ask each user to share its item or set of
items with the data collector, who can compute the items’
frequencies easily. However, this naive solution faces two
challenges. First, when the items are sensitive, users may not
be willing to share their raw items with the data collector.
Second, the data collector could be vulnerable to insider
attacks and could be compromised to leak the users’ items,
which frequently happens in real world, e.g., Equifax was
recently compromised and personal data of 143 million users
were leaked [16].

Local differential privacy (LDP) [27], [5], [20], [22], [30],
[3], [12], [13], [34], [29], [23], [8], [24], [14], [6], [28],
[32], [35], [1], a privacy protection mechanism based on ε-
differential privacy [15], can address both challenges. Several
algorithms [27], [5], [20], [22], [30], [3], [12] for frequency
estimation with LDP have been proposed recently. Moreover,
LDP was deployed by Google Chrome [27], Apple [3], Mi-
crosoft [12], and Uber [26]. In fact, LDP is the first privacy
mechanism that was widely deployed in industry. These LDP
algorithms essentially consist of three steps, i.e., Encode,
Perturb, and Aggregate [30]. Encode and Perturb are
executed at client side for each user, while Aggregate is
executed at the data collector side. Encode translates a user’s
item into a number or vector; Perturb perturbs a user’s
encoded number or vector to preserve LDP, and sends the
perturbed value to the data collector; Aggregate estimates
item frequencies using the perturbed values from all users.

However, existing LDP algorithms have two key limita-
tions. Specifically, the estimated frequency of an item produced
by the Aggregate step is the sum of the true item frequency
and some noise. First, existing LDP algorithms do not leverage
the prior knowledge about the noise to filter them. Second, in
many scenarios, the data collector could have prior knowledge
about the true item frequencies, but existing LDP algorithms
cannot leverage such prior knowledge. For instance, many real-
world phenomena such as video popularity, webpage click
frequency, node degrees in social networks–follow power-law
distributions [9], [10], [18]; human height follows a Gaussian
distribution [2]. In a hybrid LDP setting [4], some opt-in users
share their true items with the data collector, who could obtain
prior knowledge about the distribution of the true item frequen-
cies from such opt-in users. Moreover, hypothesis testing with
LDP [17] can also help to determine the distribution family of
the true item frequencies. Due to these two limitations, existing
LDP algorithms achieve suboptimal performance.



User Data 

Collector

Perturb(Encode(Item)) Aggregate

User

User

Perturb(Encode(Item))

Perturb(Encode(Item))

Calibrate

Existing Local Differential Privacy Algorithms

Fig. 1: Our statistical inference framework.

Our work: In this work, we aim to address the two limitations
of existing LDP algorithms. Towards this goal, we propose a
Calibrate step, which incorporates the prior knowledge about
the noise and the true item frequencies via statistical inference.
Our Calibrate step can be appended to the Aggregate step to
reduce the noise and increase accuracies for an existing LDP
algorithm. Figure 1 illustrates existing LDP algorithms and our
Calibrate step. We model the prior knowledge about the noise
and the true item frequencies as probability distributions ps
and pf , respectively. The two probability distributions mean
that, if we sample an item uniformly at random, then 1)
the item’s estimated frequency produced by an existing LDP
algorithm has a noise δ with a probability ps(δ), and 2) the
item’s true frequency is k with a probability pf (k). Given
the two probability distributions and the estimated frequency
of an item produced by a certain LDP algorithm, we compute
the conditional probability distribution of the item’s frequency,
and we use the mean of the conditional probability distribution
as a calibrated frequency for the item. We theoretically show
that, under the same conditions (i.e., given the two probability
distributions and an estimated item frequency), our Calibrate
is the optimal estimator to refine the item frequency.

Implementing our Calibrate step faces two challenges.
First, how to estimate the probability distribution ps of the
noise? Second, how to estimate the probability distribution pf
of the true item frequencies. To address the first challenge, we
theoretically show that, for state-of-the-art LDP algorithms,
the noise follows a Gaussian distribution with mean 0 and a
known variance. To address the second challenge, we consider
the data collector knows the distribution family that pf belongs
to. A distribution family is a group of probability distributions
that have similar properties, e.g., power-law distribution is a
distribution family that we would observe in many real-world
phenomena. A distribution family is parameterized by certain
parameters, e.g., a power-law distribution is parameterized by
an exponent. We design a mean-variance method to estimate
the parameters in the probability distribution pf efficiently.

We perform extensive experiments on two real-world
datasets to evaluate our Calibrate step and compare it with
state-of-the-art LDP algorithms for frequency estimation and
heavy hitter identification. Our results demonstrate that once
we append our Calibrate step to an existing LDP algorithm,
we can increase accuracies significantly.

In summary, our contributions are as follows:

• We propose a statistical inference framework called
Calibrate to incorporate prior knowledge about 1)
noise in the estimated item frequencies and 2) true
item frequencies. Our Calibrate can be appended to
an existing LDP algorithm to improve accuracies.

• We design methods to estimate the probability distri-
butions that model such prior knowledge.

• We perform extensive experiments on two real-world
datasets to evaluate Calibrate. Our results show that
Calibrate significantly outperforms state-of-the-art
LDP algorithms for frequency estimation and heavy
hitter identification.

II. BACKGROUND AND RELATED WORK

A. Frequency Estimation and Heavy Hitter Identification

Frequency estimation: Suppose we have d items (denoted
as {1, 2, · · · , d}) and n users. Each user has an item.1 A data
collector aims to compute the frequency fi of each item among
the n users, i.e., fi is the number of users that have the item
i. For instance, an item is Yes or No when the data collector
is interested in estimating the number of users that are HIV
positive and negative in a survey; an item is a webpage when
the data collector (e.g., Google) aims to estimate the number
of users that set a particular webpage as a browser’s default
homepage; an item is a feature of a mobile app when the data
collector (e.g., the app developer) aims to estimate the number
of users that use each feature.

Heavy hitter identification: A direct application of frequency
estimation is heavy hitter identification. Specifically, given a
threshold, heavy hitter identification aims to detect the items
whose frequencies are larger than the threshold. Heavy hitter
identification is a basic research problem in data analytics
with many applications, such as trend monitoring, marketing
analysis, and anomaly detection.

B. Local Differential Privacy Algorithms

The first local differential privacy (LDP) algorithm for
frequency estimation called randomized response dates back
to 1960s [33]. Recently, several LDP algorithms for frequency
estimation [27], [20], [22], [30], [3], [12] were proposed, e.g.,
RAPPOR [27], k-RR [20], and Optimized Unary Encoding
(OUE) [30]. An existing LDP algorithm A essentially consists
of three functions, i.e., A = (Encode, Perturb,Aggregate).
Figure 1 illustrates the three key functions for frequency
estimation with LDP. The Encode function encodes a user’s
item into a numerical value or a vector; the Perturb function
perturbs a user’s encoded value or vector such that local
differential privacy is achieved; the Aggregate function es-
timates item frequencies from the perturbed encoded values or
vectors from all users. The Encode and Perturb functions are
performed at client side for every user, while the Aggregate
function is executed at the data collector side. For simplicity,
we denote Perturb(Encode(i)) as PE(i), where i is an item.

Roughly speaking, in LDP, any two items have close
probabilities to be mapped to the same perturbed numerical
value or vector. Moreover, state-of-the-art LDP algorithms
(e.g., basic RAPPOR [27], k-RR [20], and OUE [30]) achieve
pure local differential privacy [30], which is formally defined
as follows:

1Our techniques can also be applied to the scenarios where each user has
a set of items.



Definition 1 (Pure Local Differential Privacy). A random-
ized algorithm A = (Encode, Perturb,Aggregate) achieves
pure local differential privacy if and only if there exists two
probability values p∗ and q∗ such that for all item i.

Pr[PE(i)) ∈ {t|i ∈ Support(t)}] = p∗, (1)

∀j 6=iPr[PE(j) ∈ {t|i ∈ Support(t)}] = q∗, (2)

where Support(t) is the set of items that a perturbed numer-
ical value or vector t supports.

For any pure LDP algorithm, the data collector can use
the following equation to estimate item frequencies in the
Aggregate function [30]:

f̂i =

∑

u 1Support(tu)(i)− nq∗

p∗ − q∗
, (3)

where f̂i is the estimated frequency for item i, tu is
the perturbed encoded output of user u, and the function
1Support(tu)(i) is 1 if tu supports the item i, otherwise it
is 0. Intuitively, for every perturbed encoded output from
users, we add one count to the items that are supported by
the output. In the end, we normalize the counts using the
probabilities p∗ and q∗. Different pure LDP algorithms use
different Encode and/or Perturb functions, and thus they
have different Support functions, p∗, and q∗.

Next, we use a state-of-the-art pure LDP algorithm called
OUE [30] as an example to illustrate the three functions.
OUE is an optimized version of the basic RAPPOR algorithm
proposed by Erlingsson et. al. [27].

Encode: OUE uses unary encoding to encode an item.
Specifically, OUE uses a length-d binary vector X to encode
the d items. If a user has item i, then X[i] = 1 and all other
entries of X are 0.

Perturb: In this step, OUE perturbs a binary vector X

into another binary vector Y probabilistically bit by bit.
Specifically, we have:

Pr(Y[i] = 1) =











p =
1

2
, if X[i] = 1

q =
1

1 + eε
, if X[i] = 0

(4)

If a bit in X is 1, then the corresponding bit in Y will be
1 with a probability 1

2 . However, if a bit in X is 0, then the

corresponding bit in Y will be 1 with a probability 1
1+eε

, where
ε is the privacy budget.

Aggregate: Once the data collector receives the perturbed
binary vectors Y from users, the data collector estimates the

frequency f̂i of item i using Equation 3 with the function
1Support(tu)(i) = Yu[i], p

∗ = p, and q∗ = q, where Yu is the
perturbed binary vector from user u.

After estimating the item frequencies, we can identify
heavy hitters. We note that some studies [19], [5], [22], [6],
[31] designed LDP algorithms to identify top-k heavy hitters,
which are the k items that have the largest frequencies. How-
ever, such algorithms cannot identify threshold-based heavy
hitters, because they do not consider the item frequencies.

C. Evaluation Metrics

Frequency estimation: Since a LDP algorithm is a ran-

domized algorithm, the estimated frequency f̂i is a random
variable, which means that every time the data collector

executes the LDP algorithm, the estimated frequency f̂i could
be different. Therefore, like previous studies [30], [27], [5],
[20], we use the mean square error (MSE) of the random

variable f̂i to measure error of a LDP algorithm at estimating
the frequency of item i. Specifically, the MSE for item i

is defined as MSE(f̂i, fi) = E(f̂i − fi)
2, where fi is the

true frequency of item i, E represents expectation, and the
expectation is taken with respect to the probability distribution

of f̂i. Note that if f̂i is an unbiased estimator, which means
that its expectation equals fi, then the MSE for item i is the

variance of the random variable f̂i. Moreover, the estimation
error of a LDP algorithm A is defined as the average MSE
of estimating frequencies of the d items. Formally, estimation
error of an algorithm A is computed as follows:

Estimation Error of A =
1

d

d
∑

i=1

MSE(f̂i, fi). (5)

Heavy hitter identification: Given a threshold, we define an
item as a True (False) Positive if the item has a true frequency
larger (smaller) than the threshold and is estimated to have a
frequency larger than the threshold. We also define an item as
a False Negative if the item has a true frequency larger than
the threshold but is estimated to have a frequency smaller than
the threshold. We use standard metrics in information retrieval
to measure the quality of heavy hitter identification:

Precision =
True Positive

True Positive + False Positive
(6)

Recall =
True Positive

True Positive + False Negative
(7)

F-Score =
2 · Precision · Recall

Precision + Recall
(8)

III. OUR Calibrate FRAMEWORK

Existing LDP algorithms consist of three steps Encode,
Perturb, and Aggregate. Our Calibrate can be appended to
an existing LDP algorithm as the fourth step.

A. Overview of Calibrate

Formulating Calibrate as an optimization problem: Sup-
pose we have an LDP algorithm A. The data collector esti-

mates the frequency of an item i to be f̂i via executing the

algorithm. f̂i is a sum of the true frequency fi of the item i

and a noise. Specifically, we split the estimated frequency f̂i
as follows:

f̂i = fi + si, i ∈ {1, 2, · · · , d}, (9)

where si is a noise. We model the noise as a random variable
s, whose probability distribution is denoted as ps. We view the
d noise s1, s2, · · · , sd as random samples from the probability
distribution ps. We model the true item frequency as a random
variable f , whose probability distribution is denoted as pf .
We view the d true item frequencies f1, f2, · · · , fd as random



samples from the probability distribution pf . We model the

estimated item frequency as a random variable f̂ , whose
probability distribution is denoted as p

f̂
. We view the d

estimated item frequencies f̂1, f̂2, · · · , f̂d as random samples
from the probability distribution p

f̂
. Specifically, if we sample

an item i uniformly at random from the d items, then the item
has a true frequency of k with a probability of pf (f = k),
the item has an estimated frequency of k̂ with a probability of

p
f̂
(f̂ = k̂), and the noise has a value of δ with a probability

of ps(s = δ).

The probability distributions ps and pf model the prior
knowledge about the noise and the true item frequencies,
respectively. For instance, as we will demonstrate in Sec-
tion III-B, for pure LDP algorithms, ps can be well approx-
imated as a Gaussian distribution with a known mean and
variance; for many application domains (e.g., video popu-
larity, webpage click frequency, and node degrees in social
networks [9], [10]), pf can be parameterized as a power-
law distribution, though the parameters in the power-law
distribution have to be estimated from the observed estimated
item frequencies f̂1, f̂2, · · · , f̂d.

Given Equation 9, we model the relationships between the

random variables s, f , and f̂ as f̂ = f + s. In other words,
we model frequency estimation with LDP as a probabilistic
generative process: for a randomly sampled item, the item’s
true item frequency is sampled from the probability distribution
pf , a noise is sampled from the probability distribution ps, and
an existing LDP algorithm estimates the item’s frequency as
the sum of the true frequency and the noise.

In the probabilistic generative process, we observe an
item’s estimated frequency produced by an existing LDP
algorithm. Our Calibrate step aims to “reverse” the generative
process to find the true item frequency. Specifically, given a

frequency estimation f̂i and the three probability distributions
ps, pf , and p

f̂
, our Calibrate step aims to produce a calibrated

frequency estimation f̃i, such that the MSE is minimized.

More formally, we aim to obtain f̃i via solving the following
optimization problem:

f̃i = argmin
f ′

E((f ′ − f)2|f̂ = f̂i)

subject to: f̂i = f + s,

f ∝ pf ,

s ∝ ps, (10)

where the expectation is taken with respect to the random
variable f conditioned on that the estimated item frequency

is f̂ = f̂i, f ∝ pf means that f is a random variable whose
probability distribution is pf , and s ∝ ps means that s is a
random variable whose probability distribution is ps.

Conditional expectation as an optimal solution to the
optimization problem: Given the estimated item frequency

f̂i and the probability distributions ps, pf , and p
f̂

, we can

compute a conditional probability distribution of the random
variable f , which models the knowledge we have about the
true frequency of item i after observing the estimated item

frequency f̂i. Specifically, according to the Bayes’ rule [25],

we have:

Pr(f = k|f̂ = f̂i) =
Pr(f = k, f̂ = f̂i)

Pr(f̂ = f̂i)

=
Pr(f̂ = f̂i|f = k)Pr(f = k)

Pr(f̂ = f̂i)

=
ps(s = f̂i − k)pf (f = k)

p
f̂
(f̂ = f̂i)

, (11)

where ps(s = f̂i − k) is the probability that the noise s is

f̂i − k.

Our Calibrate step computes the expectation of the condi-
tional probability distribution in Equation 11 as the calibrated
frequency estimation of item i. Formally, Calibrate estimates

f̃i as follows:

f̃i =
∑

k

k · Pr(f = k|f̂ = f̂i). (12)

We show that our conditional expectation based calibrator
in Equation 12 is an optimal solution to the optimization
problem in Equation 10 as follows:

Theorem 2. Our conditional expectation based calibrator in

Equation 12 achieves the minimum MSE E((f ′ − f)2|f̂ = f̂i)
among all calibrators f ′. Specifically, we have:

E((f̃i − f)2|f̂ = f̂i) ≤ E((f ′ − f)2|f̂ = f̂i), for all f ′.

Proof: See Appendix A.

Relationship and difference with Bayesian inference: Using
the terminology of the standard Bayesian inference, it seems
like that the probability distribution pf could be interpreted as
a prior probability distribution of the true item frequency and
the conditional probability distribution of the random variable
f , which is shown in Equation 11, could be interpreted as
the posterior probability distribution of the item frequency
after observing the estimated item frequency. However, the
key difference with the standard Bayesian inference is that
the prior probability distribution is independent from the
observed data (i.e., the observed estimated item frequencies
in our problem) in standard Bayesian inference, while we
estimate the parameters in pf using the observed estimated
item frequencies, i.e., pf is a data-dependent prior.

We note that any post-processing of a differential privacy
algorithm also achieves differential privacy with the same
privacy guarantee [15]. Therefore, Calibrate does not sacrifice
privacy guarantees. Next, we will discuss how to estimate the
probability distributions ps, pf , and p

f̂
.

B. Estimating ps

Every time the data collector executes a LDP algorithm, we
will have d noise s1, s2, · · · , sd and d frequency estimations

f̂1, f̂2, · · · , f̂d. ps is the probability distribution formed by the
d noise in a single execution trial. Since the LDP algorithm is

a randomized algorithm, si and f̂i across different execution
trials are different, even if each user has the same item in
different execution trials. For simplicity, we model si and f̂i
as random variables, where the randomness comes from the



LDP algorithm and i = 1, 2, · · · , d. Moreover, we denote by

s
(j)
i and f̂

(j)
i the noise and estimated frequency for item i in

the jth execution trial, respectively. s
(1)
i , s

(2)
i , · · · are random

samples from the random variable si, while f̂
(1)
i , f̂

(2)
i , · · · are

random samples from the random variable f̂i.

We note that executing a LDP algorithm multiple trials may
compromise user privacy because the noise may be canceled
out via aggregating results in multiple execution trials. Mem-
oization [27], [12] was proposed to preserve privacy when the
data collector repeatedly executes the LDP algorithm to collect
data. In memoization, the client side pre-computes each user’s
perturbed and encoded item and responds to the data collector
with the pre-computed value in different execution trials. If
the memoization is adopted and users’ items do not change
in different execution trials, then the noise si and estimated
item frequency f̂i are the same in different execution trials.

However, to illustrate the randomness of si and f̂i, we assume
the memoization is not adopted.

Probability distribution of the noise for an item across mul-
tiple execution trials: State-of-the-art LDP algorithms [27],
[20], [30] satisfy pure local differential privacy [30]. Therefore,
we will focus on pure LDP algorithms. Pure LDP algorithms

estimate f̂i using Equation 3. The variable 1Support(tu)(i)
in the Equation 3 is a binary random variable, due to the

randomness of the LDP algorithm. Therefore, f̂i is essentially
a sum of n binary random variables (with some normalization).

According to the Central Limit Theorem [11], f̂
(1)
i , f̂

(2)
i , · · ·

obtained in multiple execution trials of the LDP algorithm
approximately form a Gaussian distribution. Moreover, the

expectation of f̂i across multiple execution trials of the LDP
algorithm is fi, the true frequency of item i; and the variance

of f̂i is approximated as
nq∗(1−q∗)
(p∗−q∗)2 [30].

Since s
(j)
i = f̂

(j)
i − fi, we obtain that s

(1)
i , s

(2)
i , · · ·

obtained in multiple execution trials also form a Gaussian
distribution. Moreover, we have the expectation and variance
of si as follows:

E(si) = E(f̂i)− fi = 0 (13)

V ar(si) = V ar(f̂i) =
nq∗(1− q∗)

(p∗ − q∗)2
(14)

The expectation and variance do not depend on the item index
i. Therefore, the random noise si for each item approximately
follows the same Gaussian distribution. In Figure 2, we put
the noise of each item in multiple execution trials in a matrix,
where the ith row corresponds to the noise of item i in different
execution trials and the jth column corresponds to noise of the
d items in the jth execution trial. For pure LDP algorithms,
the numbers in each row of the matrix are sampled from the
same Gaussian distribution.

Probability distribution ps formed by the noise for all
items in a single execution trial: In our formulation of
Calibrate, ps models the probability distribution of the noise
of the d items in a single execution trial. Specifically, for
the jth execution trial, ps models the probability distribution

formed by the noise s
(j)
1 , s

(j)
2 , · · · , s

(j)
d , i.e., the jth column

of the matrix illustrated in Figure 2. Since all numbers in the
matrix are sampled from the same Gaussian distribution, each

2

6

6

6

6

4

s
(1)
1 s

(2)
1 . . . s

( j)
1 . . .

s
(1)
2 s

(2)
2 . . . s

( j)
2 . . .

...
...

. . .
...

. . .

s
(1)
d s

(2)
d . . . s

( j)
d . . .

3

7

7

7

7

5

ps: Gaussian distribution 

Fig. 2: Matrix of noise in multiple execution trials.

column of the matrix follows the same Gaussian distribution.
Therefore, ps is a Gaussian distribution. Moreover, the Gaus-

sian distribution has a mean 0 and variance
nq∗(1−q∗)
(p∗−q∗)2 . The

data collector can compute the variance using n, the number
of users, and ε, the predefined privacy budget (p∗ and/or q∗

depends on ε). In our experiments, we will show results to
empirically verify that ps is a Gaussian distribution with the
known mean and variance.

We note that for LDP algorithms that are not pure LDP, the
noise distribution ps does not necessarily follow a Gaussian
distribution. For instance, RAPPOR [27] with Bloom filters
is not a pure LDP algorithm (basic RAPPOR without Bloom
filters is pure LDP). We empirically found that ps does not
follow a Gaussian distribution. Moreover, ps depends on the
items’ true frequencies. For such LDP algorithms with data-
dependent noise distribution, our Calibrate is not applicable.
However, this limitation is minor since we aim to advance
state-of-the-art LDP algorithms, which satisfy pure LDP.

C. Estimating pf and p
f̂

We assume the data collector knows the distribution family
that pf belongs to. For instance, many real-world phenomena–
such as video popularity, webpage click frequency, word
frequency in documents, node degrees in social networks–
follow power-law distributions [9], [10]; height of human
follows a Gaussian distribution [2]. Moreover, in a hybrid local
differential privacy setting [4], some opt-in users trust the data
collector and share their true items with the data collector.
The data collector could leverage such opt-in users to roughly
estimate the distribution family that pf belongs to. Moreover,
we design a mean-variance method to estimate pf . Based on
ps and pf , we further estimate p

f̂
.

Estimating pf : Suppose the distribution family of pf is
parameterized by a set of parameters Θ, which we denote as
pf (f |Θ). For instance, the following shows the popular power-
law distribution family:

Power-law: pf (f = k|α) ∝ k−α (15)

We discuss two methods, maximum likelihood estimation
method and mean-variance method, to estimate the parameters
Θ. The maximum likelihood estimation method is a standard
technique in statistics, while the mean-variance method is
proposed by us. The maximum likelihood estimation method is
applicable to any distribution family, while our mean-variance
method can estimate the parameters of distributions that have









V. CONCLUSION AND FUTURE WORK

Frequency estimation with local differential privacy (LDP)
is a basic step in privacy-preserving data analytics without
a trusted data collector. In this work, we propose Calibrate
to calibrate item frequencies estimated by an existing LDP
algorithm. Our Calibrate incorporates prior knowledge about
noise in the estimated item frequencies and prior knowledge
about true item frequencies through statistical inference. We
show that such prior knowledge can be modeled as two
probability distributions, respectively; and the two probabil-
ity distributions can be estimated via integrating techniques
from statistics and signal processing. Our empirical results on
both synthetic and real-world datasets demonstrate that our
Calibrate can reduce estimation errors of state-of-the-art LDP
algorithms by orders of magnitude. An interesting future work
is to generalize our Calibrate to calibrate results for other
data analytics tasks such as frequent pattern mining.

Acknowledgements: We thank the anonymous reviewers for
their insightful reviews. This work was supported by NSF grant
No. 1801584.

REFERENCES

[1] J. Acharya, Z. Sun, and H. Zhang, “Hadamard response: Estimating
distributions privately, efficiently, and with little communication,” arXiv

preprint arXiv:1802.04705, 2018.

[2] B. A’hearn, F. Peracchi, and G. Vecchi, “Height and the normal
distribution: evidence from italian military data,” Demography, 2009.

[3] Apple Differential Privacy Team, “Learning with privacy at scale,” in
Machine Learning Journal, 2017.

[4] B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits, “Blender:
Enabling local search with a hybrid differential privacy model,” in
Usenix Security Symposium, 2017.

[5] R. Bassily and A. D. Smith, “Local, private, efficient protocols for
succinct histograms,” in STOC, 2015.

[6] R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta, “Practical locally
private heavy hitters,” in NIPS, 2017.

[7] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets, “Using association rules
for product assortment decisions: A case study,” in KDD, 1999.

[8] M. Bun, J. Nelson, and U. Stemmer, “Heavy hitters and the structure
of local privacy,” in SIGMOD. ACM, 2018.

[9] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system,” in ACM Internet Measurement Conference, 2007.

[10] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distribu-
tions in empirical data,” SIAM Review, no. 51, 2009.

[11] M. H. DeGroot and M. J. Schervish, Probability and Statistics (4th

Edition), 2011.

[12] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data
privately,” in NIPS, 2017.

[13] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and
statistical minimax rates,” in FOCS, 2013.

[14] J. C. Duchi, M. J. Wainwright, and M. I. Jordan, “Local privacy and
minimax bounds: Sharp rates for probability estimation,” in NIPS, 2013.

[15] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in TCC, 2006.

[16] Equifax Announces Cybersecurity Incident Involving Consumer Infor-
mation, “https://goo.gl/HgPXek.”

[17] M. Gaboardi and R. Rogers, “Local private hypothesis testing: Chi-
square tests,” arXiv preprint arXiv:1709.07155, 2017.

[18] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar,
and D. Song, “Evolution of social-attribute networks: Measurements,
modeling, and implications using google+,” in IMC, 2012.

[19] J. Hsu, S. Khanna, and A. Roth, “Distributed private heavy hitters,” in
Automata, Languages, and Programming, 2012.

[20] P. Kairouz, K. Bonawitz, and D. Ramage, “Discrete distribution esti-
mation under local privacy,” ICML, 2016.

[21] Kosarak, “http://fimi.ua.ac.be/data/.”

[22] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren, “Heavy hitter
estimation over set-valued data with local differential privacy,” in CCS,
2016.

[23] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generating
synthetic decentralized social graphs with local differential privacy,” in
CCS, 2017.

[24] A. Smith, A. Thakurta, and J. Upadhyay, “Is interaction necessary for
distributed private learning?” in IEEE S & P, 2017.

[25] B. Thomas, “An essay towards solving a problem in the doctrine of
chances,” Philosophical Transactions of the Royal Society of London,
1763.

[26] Uber Differential Privacy, “https://goo.gl/1Bcxsg.”

[27] A. K. Úlfar Erlingsson, Vasyl Pihur, “Rappor: Randomized aggregatable
privacy-preserving ordinal response,” in CCS, 2014.

[28] S. Wang, L. Huang, Y. Nie, P. Wang, H. Xu, and W. Yang, “Privset:
Set-valued data analyses with local differential privacy,” in INFOCOM,
2018.

[29] S. Wang, Y. Nie, P. Wang, H. Xu, W. Yang, and L. Huang, “Local
private ordinal data distribution estimation,” in INFOCOM, 2017.

[30] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in Usenix Security Symposium,
2017.

[31] T. Wang, N. Li, and S. Jha, “Locally differentially private heavy hitter
identification,” arXiv preprint arXiv:1708.06674, 2017.

[32] T. Wang, N. Li, and S. Jia, “Locally differentially private frequent
itemset mining,” in IEEE S & P, 2018.

[33] S. L. Warner, “Randomized response: A survey technique for elim-
inating evasive answer bias,” in Journal of the American Statistical

Association, 1965.

[34] M. Ye and A. Barg, “Optimal schemes for discrete distribution estima-
tion under locally differential privacy,” ISIT, 2017.

[35] Z. Zhang, T. Wang, N. Li, S. He, and J. Chen, “Calm: Consistent
adaptive local marginal for marginal release under local differential
privacy,” in CCS. ACM, 2018.

APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 leverages the following Lemma
from probability theory [11]:

Lemma 3. Suppose X is a random variable. E(X − t)2

reaches its minimum value when t = µ, where µ = E(X).

Proof:

For any value of t, we have:

E(X − t)2 = E(X2 − 2tX + t2)

= E(X2)− 2tµ+ t2 (23)

Then, we take derivative with respect to t:

∂E(X − t)2

∂t
= −2µ+ 2t (24)

E(X − t)2 reaches its minimum value when the derivative in
Equation 24 is 0. By setting the derivative in Equation 24 to
be 0, we get t = µ. Therefore, E(X−t)2 reaches its minimum
value when t = µ.

We can prove Theorem 2 via leveraging Lemma 3. Specif-
ically, we can view the random variable f in Theorem 2 as
the random variable X in Lemma 3, where the randomness is
conditioned on that f̂ = f̂i. Therefore, E((f ′ − f)2|f̂ = f̂i)
reaches its minimum value when f ′ = E(f |f̂ = f̂i) = f̃i.


