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Abstract—This paper obtains the first degrees of freedom
(DoFs) bound that is provably sensitive to network coherence
time, i.e., coherence time in an interference network, where
all channels experience the same coherence patterns. This is
accomplished by a novel adaptation of the aligned image sets
bound and settles various open problems noted previously by
Naderi and Avestimehr and by Gou ef al. For example, a nec-
essary and sufficient condition is obtained for the optimality of
1/2 DoF per user in a partially connected interference network,
where the channel state information at the receivers (CSIRs) is
perfect, the channel state information at the transmitters (CSITs)
is instantaneous but limited to finite precision, and the network
coherence time is 7, = 1. The surprising insight that emerges is
that even with perfect CSIR and instantaneous finite precision
CSIT, the network coherence time matters, i.e., it has a DoF
impact.

Index Terms—Degrees of freedom, interference networks,
network coherence time, channel state information at the trans-
mitter.

I. INTRODUCTION

HE impact of coherence time in a wireless network

is a topic that has been studied extensively [1]-[9].
Nevertheless some of the most fundamental questions about
coherence remain unanswered. For example, it is well known
that longer coherence time is beneficial to amortize the cost of
learning the channel state information at the receivers (CSIR)
and/or the delays in feeding back channel state informa-
tion to the transmitters (CSIT). Yet, beyond that, it is not
known whether network coherence! offers any additional DoF
benefits. Specifically, if CSIR is assumed to be perfectly
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INetwork coherence refers to the model where all the channels in the
network follow the same coherence pattern, eliminating the diversity of
coherence patterns that enables blind interference alignment schemes [5].

available and the CSIT, limited to finite precision as it may be,
is also assumed to be available instantaneously, then it is
not known whether the network coherence time still impacts
the DoF of interference networks. Partial insights into this
question have emerged recently through novel achievable
schemes [6], [8], [9]. However, a conclusive answer to this
question has remained elusive due to the difficulty of obtaining
DoF outer bounds that are sensitive to network coherence time.
In fact, no such bounds exist, to the best of our knowledge. The
lack of such bounds is underscored by various open problems
noted in [9] and [10].

A promising development in this regard is the recent
emergence of an outer bound argument in [11] based on
bounding the cardinality of the images of codewords that
align at one receiver but remain distinguishable at another
receiver (in short, the Aligned Image Sets (AIS) argument).
Motivated by this promising development, in this work we
use a novel adaptation of the AIS approach to prove that
indeed network coherence time matters, even with perfect
CSIR and instantaneous finite precision CSIT. As immediate
application of our result, we are able to settle the open
problems from [9] and [10].

Coherence times are critical for acquiring CSIR or CSIT,
as shown in [1], [2], and [12]-[14]. Even with perfect CSIR
and no CSIT except the knowledge of the coherence pat-
terns, the idea of blind interference alignment was intro-
duced in [5] to show that a diversity of coherence patterns
enables DoF improvements. Blind interference alignment is
not feasible if there is no diversity of coherence patterns,
i.e., coherence patterns are identical across users (network
coherence). In this setting, are there further DoF benefits of
channel coherence? The recent body of work on topological
interference management [5], [6], [9] suggests that there is
such a possibility. Introduced in [5], topological interference
management (TIM) refers to DoF studies of partially con-
nected wireless networks with perfect CSIR and no CSIT
beyond the network connectivity. As shown in [5], TIM is
essentially related to the index coding problem, interference
alignment plays a crucial part in TIM (and index coding),
and DoF gains from interference alignment are achieved even
though no knowledge of channel realizations is available to
the transmitters provided that the network coherence times
are sufficiently long. Reference [6] provides the first example
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where such gains are achievable even with network coherence
time of unity. TIM for unit coherence time 7, = 1 is then
studied extensively by Naderializadeh and Avestimehr [9],
who obtain broad characterizations of the DoF gains possible
in this setting. Remarkably, with 7, = 1, the DoF achieved
in [9] are in general strictly smaller than what is achieved, say
for T, = 2 in [5]. Thus, the achievable schemes suggest that
coherence time matters. However, in all instances where higher
DoF are achieved with a longer coherence time, the optimality
of the achievable schemes for the shorter coherence times
remains unknown. This is because the outer bounds in [9]
are not sensitive to network coherence times, and thus cannot
distinguish between T, = 1 and 7, > 1. Indeed, to our
knowledge no such DoF outer bounds exist anywhere that are
sensitive to network coherence times (when CSIR is perfect
and CSIT is available without delay). In this paper we present
the first such outer bound, based on the Aligned Image Sets
approach [11]. The new bound proves that indeed network
coherence time matters for interference networks with perfect
CSIR and finite precision CSIT. It also allows us to settle open
problems previously noted in [9] and [10]. Two open problems
where a gap remains between the achievable DoF of [9] and
the DoF outer bounds of [9] are highlighted by Naderializadeh
and Avestimehr [9, Fig. 16]. The problems are reproduced
in this paper in Figure 2. Optimal DoF for both problems
are immediately settled by the new outer bound derived in
this paper. A related open problem is the achievability of
1/2 DoF per user in the TIM setting with coherence time
T. = 1. Gou et al. [10] characterize a sufficient condition for
achievability of 1/2 DoF per user. However, in the absence of
an outer bound for the 7, = 1 setting, it remains unknown
whether the sufficient condition of Gou et al is also a
necessary condition. Our new outer bound also settles this
open problem, establishing a necessary and sufficient condition
for achievability of 1/2 DoF per user in the TIM setting with
coherence time 7, = 1.

An underlying theme from this and other recent works that
successfully generalize the AIS approach in various direc-
tions [11], [15]-[19], is the broadening scope of the aligned
image sets argument. Recognized by Korner and Marton [20]
more than 40 years ago, characterizing the difference in
the size of image sets at different receivers is one of the
most essential challenges in network information theory. Seen
in this light, interference alignment schemes address this
challenge from the achievability side, showing how under
various specialized assumptions it is possible to create a large
difference, i.e., create a large image at one receiver while
the image at the other receiver remains small because of
interference alignment. As noted in [11], the AIS argument
is the other side of the same coin. It shows, from the converse
side, how under various limitations on the precision of CSIT,
the difference in the sizes of images cannot be made too
large. Indeed, just as interference alignment in its various
forms seems inevitable in understanding optimal achievable
schemes for wireless networks, so too the aligned image
sets bounds may be equally unavoidable for robust converse
arguments.
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II. DEFINITIONS

The following definitions of undirected graphs originate in
the topological interference management framework of [8].

Definition 1 (Alignment Graph G, and Alignment Set As):
The vertices of the alignment graph are the K messages,
Wi, Wa, -+, Wk. Messages W; and W; are connected with
a solid black edge (called an alignment edge) if the sources
of both these messages are heard by a destination that desires
message Wi ¢ {W;, W;}. Each connected component of the
alignment graph is called an alignment set.

Definition 2 (Conflict Graph G, and Internal Conflict):
The vertices of the conflict graph are the K messages,
Wi, Wa, - -+, Wk. Message W; is connected by a dashed red
edge (called a conflict edge) to all other messages W; whose
sources are heard by the destination that desires message
W;. If two messages that belong to the same alignment set
have a conflict edge between them, it is called an internal
conflict.

Definition 3 (Reduced Graph G,): The vertices of the
reduced graph G, are those alignment sets .4; that have
two or more messages, i.e., |A;| > 2. Singleton alignment
sets are not represented in G,. A; and A ; in G, have an edge
between them if the conflict graph contains an edge between
a message W; € A; and a message W; € A;.

Definition 4 (Completed Cycle C. and parameters
m,my,ly): A completed cycle is a relation from a cycle in
G, to a cycle in another graph where the vertices are the
messages and each edge is either an alignment edge or a
conflict edge. It is obtained as follows. Consider a cycle C,
in G, of length m, that is comprised of edges (A;, Aj),
(Ai, Aiy), -0 (Aiy_y s Ay, (Aiy s Aiy). A completed cycle
C. that is related to C, is obtained by replacing each edge
(Ai;, Ai;,,) of Cr (subscripts interpreted cyclically, so that
im+1 = i1) with a conflict edge (W;;, Wl.’j+1), Wi, € A,
Wi//+1 € Aj;,,. Each vertex A;; of C, ‘is replaced with
the message Wi, it Wi, = Wl.’j , or by a path from W;; to
Wi’j comprised of alignment edges connecting a subset of
messages drawn from A;; if W;; # Wi’j. The resulting graph
is a cycle, called completed cycle, which contains exactly m
conflict edges. All the remaining edges are alignment edges.
Define m; as the number of instances of i; € {1,2,---,m}
for which W;, = Wl./j . Further, if the length of the

completed cycle is denoted as |C|, then define Is £ |C.| —
m -+ mj.

The next three definitions are related to the finite precision
channel knowledge assumption.

Definition 5 (Bounded Density Channel Coefficients):
Define a set of real valued random variables, G such that the
magnitude of each random variable g € G is bounded away
from infinity, |g| < A < oo, for some constant A, and there
exists a finite positive constant fiax, such that for all finite
cardinality disjoint subsets Gi, G» of G, the joint probability
density function of all random variables in G;, conditioned
on all random variables in G, exists and is bounded above
by fllnga;‘. Without loss of generality we will assume that
Smax > 1, A > 1.
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Definition 6 (Arbitrary Channel Coefficients): Let H be a
set of arbitrary constant values that are bounded above by A,
ie., if h € H then |h| < A < o0.

Definition 7 (Bounded Density Linear
For real numbers xi,x»,---,x; define the notations
Llj’.(xi, 1 <i<k),and L;(x;,1 <i <k) to represent,

Lo, 2 D gl (1)
I<i<k
Li(xi, - ,x0) 2 D Lhjxil )
1<i<k
for distinct random variables g; € G, and for

arbitrary constants i, € H. The corresponding multi-letter
forms are defined as Ll;["](xl,~~ ,Xp) = (X i<i<kLgi (D)

] Y glgpmxm)), LM w2
(leisk Ly, (Dxi(D], -+, 2 <i<i LB (n)xi(n)]), for disti-
nct g;,(t) € G and arbitrary constants hj; € H. We refer to
the L functions as bounded density linear combinations.
Finally, for compact notation, let us define [k] = {1,2,--- , k}
for positive integer k.

III. SYSTEM MODEL
A. The Channel

Under the DoF framework, the channel model for the
partially connected” K user interference channel is defined
by the following input-output equations. Vk € [K],

Yi(t) = PG (T1/ Te1) Xk (1)

+ D VPGu (/T Xi(1) + Ze (). (3)
le M,

The channel uses are indexed by ¢ € N, X;(¢) is the symbol
sent from transmit antenna / subject to a unit power constraint,
Yi(¢) is the symbol observed by Receiver k, Z(t) is the zero
mean unit variance additive white Gaussian noise (AWGN)
at Receiver k, and Gy (t) is the channel fading coefficient
between Transmitter / and Receiver k. The channel coefficients
Gy (1) are assumed to be distinct elements of G, Vk € [K],
[ € [K], t € N. The channel coefficient values are fixed for
blocks of T, € N symbols. 7, is called the network coherence
time. Our focus throughout this work is primarily on the
T, = 1 setting, for which the channel model can be simplified
as follows.

Yie(t) = VPG Xi(t) + X e, VPG X1 (1) + Zi(1).
)

While 7., = 1 implies that the channel coefficients change
with every channel use, note that we do not require that they
should be independent across t. Our results hold whether
the channels take independent values or remain correlated in
time, provided their probability density functions are bounded.

2A DoF characterization for the partially connected setting is a special case
of the GDoF characterization for arbitrary channel strength levels. As such,
the main insights are not limited to binary connectivity models, i.e., the
DoF gap due to coherence time for partially connected channels can be
readily translated into a GDoF gap due to coherence time for channels with
sufficiently disparate strengths.

Combinations):
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The transmitters are only aware of all the joint and conditional
probability density functions (pdf) of the channel coefficients,
which satisfies the bounded density assumption. Beyond this,
the transmitters have no knowledge of the channel realizations.
Thus, the transmitted symbols X;(¢) may depend on the pdf of
G but are independent of the realizations of G. Perfect channel
state information is assumed at all receivers (CSIR).

P is the nominal SNR parameter that is allowed to approach
infinity. The partial connectivity is specified through the set
M. which is defined as a subset of the set [K], such that
[ € My if and only if the I'* transmitter can be heard
by the k' receiver. For simplicity, let us assume all values
are real. Generalizations to complex channels are somewhat
cumbersome but conceptually straightforward as in [11].

B. Finite Precision CSIT

Under finite precision CSIT, the channel coefficients may
be represented as

Gu(t) = Gu(t) + Gu(t) ©)

Recall that for any k,/ € [K], Gy (¢) is the channel fading
coefficient between Transmitter / and Receiver k. le (t) are
the channel estimate terms and le (t) are the estimation error
terms. The channel variables le ®, Gu ), Yk,l € [K],
t € N, are subject to the bounded density assumption with the
difference that the actual realizations of ékl (r) are revealed to
the transmitter, but the realizations of le (t) are not available
to the transmitter.

C. DoF

The definitions of achievable rates R;(P) and capacity
region C(P) are standard. The DoF region is defined as

D ={(d1,---,dg) : 3 (Ri(P), -, Rg(P))

Ri (P
€ CP), st dy = Pll_r)nm%, eIkl (©6)
2

IV. RESULTS: COHERENCE TIME MATTERS

The main contribution of this work is an outer bound, based
on the aligned images argument, which shows that the DoF
of an interference network under finite precision CSIT and
perfect CSIR, are limited by the network coherence time,
i.e., coherence time matters. In particular, we bound the DoF
under coherence time 7, = 1 and show that this bound is
strictly smaller than what is achievable in general with a larger
coherence time, say 7, = 2.

Theorem 1: For a partially connected K user interference
channel with finite precision CSIT and coherence time 7, = 1,
if the reduced graph G, has an odd-length cycle C,, then the
following bound holds on the symmetric DoF per user (a).

| |
“5(5)(1_m+2m2+212) M

where the parameters m, m; and [ are as defined in Section II
for any completed cycle C. related to C,.
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Fig. 1.  (a) Partially connected interference network. (b) Corresponding
Alignment graph (black edges) and Conflict graph (dashed red edges).
Also shown are the alignment sets A;, Ay, A3, A4. (c) Reduced graph G,
comprised of Ay, Ay, A3. Note that A4 is not a part of G, because it has
only one message. Also note that G, has an odd cycle C, of length m = 3.
(d) A completed cycle corresponding to Cy, for whichm =3, my = 1,1y = 3.

It was shown in [8] that the symmetric DoF of a partially
connected K user interference channel with finite precision
CSIT and coherence time 7, = 2 is equal to 1/2 if and only if
there are no internal conflicts. Since the interference network
of Figure 1(a) has no internal conflicts, its symmetric DoF
value per user is 1/2 for 7, = 2. However, now let us apply
the result of Theorem 1 to the same network for 7. = 1. The
reduced graph G, of the network (shown in Figure 1(c) has
cycle of odd length m = 3. The completed graph in Figure 1(d)
has m = 3,my = 1,ly = 3, so the outer bound (7) from
Theorem 1 tells us that if 7. = 1, then the symmetric DoF
peruser < 5/11.In fact 5/11 is achievable, see Section . More
importantly, since 5/11 is less than 1/2, Theorem 1 implies
that network coherence time matters, i.e., 7, = 1 allows less
DoF than possible with 7T, = 2.

As an immediate application of Theorem 1, we have the
following corollary which settles an open problem from [10].

Corollary 1: In a partially connected K user interference
channel with finite precision CSIT and coherence time 7, = 1,
the symmetric DoF value of 1/2 per user is achievable if and
only if the following two conditions are satisfied.

Cl1. There are no internal conflicts.
C2. The reduced graph G, has no odd length cycles.
Proof: The achievability result, i.e., that conditions CI/,
C2 are sufficient for achieving a symmetric DoF of 1/2 per
user, was established by Gou er al. [10, Th. 1] utilizing
the topological interference management framework of [8].
Gou et al. assume that the transmitters are not aware of
the coherence time, and show that 1/2 DoF per user is
achievable regardless of the length of the coherence interval
when conditions CI, C2 are satisfied. The necessity of CI
is established in [8], which shows that if there are internal
conflicts then the symmetric DoF per user are strictly less
than 1/2. This is shown for arbitrarily large coherence times,
so it holds for coherence time 7, = 1 as well. The necessity of
Condition C2 was previously open but is immediately settled
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Fig. 3. Second open problem from [9] (see [9, Fig. 16]).

by Theorem 1, because the presence of an odd cycle in G,
activates the outer bound (7) which means that the symmetric
DoF value per user is strictly less than 1/2. |

Note that the result of Corollary 1 holds even if the trans-
mitters are unaware of the value of the coherence time. This
is because an achievable scheme that works for all coherence
times, must also work for coherence time T, = 1.

As another application of the new bound, consider the two
examples of open problems highlighted by Naderializadeh and
Avestimehr [9, Fig. 16] where the optimal symmetric DoF per
user are unknown for 7, = 1. The two examples are illustrated
in Figure 2 and Figure 3.

References [9] and [10] have shown that the a = 4/9 is
achievable in each of these settings. However, the best outer
bound previously known is & < 1/2, which is achievable (and
optimal) if coherence time is greater than or equal to 2,
as shown in [8]. A tight outer bound was not previously avail-
able when coherence time is unity. However, the following
corollary of Theorem 1 settles the symmetric DoF per user
for coherence time T, = 1 for both of these networks.
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Corollary 2: For each of the partially connected interfer-
ence networks illustrated in Figure 2, with coherence time
T, = 1, the optimal symmetric DoF per user = 4/9.

Proof: For each of the networks, from the cycles of
reduced graph illustrated in Figure 2, we have m = 3,my =0
and [y = 3. Substituting into (7) we find the outer bounds
o < 4/9, thus settling the symmetric DoF for both of these
networks. |

V. PROOF OF THEOREM 1

Suppose there exists a cycle of odd length m in the reduced
graph G,. Then there exist alignment sets Aj, Ay, -+, Ay,
such that there exists a conflict between any two consecutive
sets, A;, A;+1. Note that the indices are interpreted in a cyclic
manner, so that 4; follows .4,,. Consider alignment set A;.
Choose a message W; € A; such that W; conflicts with a
message in A;_1. Similarly, choose a message W/ € A; that
conflicts with a message in A; 1. If W; # W/, then find the
shortest path from W; to W/, comprised of alignment edges.
Such a path exists because W;, Wl-/ € A; and A; is a connected
component of the alignment graph. Let the length of this path
be ;. Without loss of generality, label the messages along
this path as W; = Wi’(), Wi,l) cee Wi’][ = Wi/' Ifw = Wi/’
then choose a different message W/" € A; which is connected
to W; with an alignment edge. Such a message must exist
because each alignment set involved in the reduced graph
has two or more messages. In this case, the path from W;
to W/ is of length [; = 1, and without loss of generality we
label W; = W, W/ = W;,. Such a situation occurs in As
in the example illustrated in Figure 4. Other messages and
conflict/alignment edges may exist, but are not important for
this proof, so they are suppressed for clarity in Figure 4.

A. Alignments Zlf/ and Conflicts ZI;

Following in the steps of the AIS argument of [11], we use
the deterministic approximation of (4) with integer-valued

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 12, DECEMBER 2018

inputs Xi(t) € {0,1,---, P} and integer-valued outputs
Yx(t), k € [K], so that

Yi(t) = [Gu()Xr (1) | + Z |G ()X ()] (3)
le My,

and P is defined as L«/F . For ease of exposition, let us
further customize our notation for the completed cycle. For
the transmitter sending message W; ;, denote the transmitted
symbols as X;. j- Further, define Z[f/ and Z% as follows. The
time index is suppressed for compact notation.

zb = (L% (X0, X1.00), L, (X2,0, X215,
s LY Xm0y X)) )
Zb = (LY (X1, X2,0), LS (X205, X3,0),

Ly Rt X1,0)). (10)
For the example illustrated in Figure 4 these would be
zb = (LY (X0, X, 3), L3 ,(Xp.0. X50),
LI;/(}_(B,O» 5(3,4)9 Lg/(}_(4,o, }_(4,3),
L%, (Xs50. X5,1)
7% = (L7, (X, 3. X2,0), L5, (X, 5, X3 9),
Ly (X34, X40), LG (X4 5, X5 ),
L%, (Xs.1, X1 0)). (1D

Multi-letter forms, Zlf/[”], 7% are obtained by replacing
L{.’ /o L{?X with L?‘[/"], L?L"], respectively. The intuitive signifi-
cance of the notation is as follows. We use v" as a subscript for
combinations of symbols that we would like to align because
these are messages connected by alignment edges, while x
is used as a subscript for combinations of symbols that we
would like to not align, because of message conflicts. The
symmetric DoF bound that we seek will come from bound-
ing H(Z""\g) — H (zb}”]|g) from above and from below.
The intuition behind this is as follows. Zi["] terms contain
combinations of desired signals and interference. The desired
signal must not align with interference because a receiver
must be able to resolve its desired signal from interference.
Since we do not want these terms to align, the entropy of
Zl;["] should be as large as possible. On the other hand,
Zlf/[n] are combinations of terms that only present undesired
interference to a receiver. In order to achieve high data rates,
it is desirable to consolidate interference into the smallest
space possible, i.e., the entropy of Zlf/[”] should be as small
as possible. Thus, the rate (DoF) value is bounded above by
the difference of these entropies: H (zl;["]|g) — H (z”}”ﬂg).
Equivalently H(Z2"™G) — H(Z"""|G) is bounded below in
terms of the DoF value. On the other hand, because channel
knowledge is available to only finite precision and the coher-
ence time T, = 1, the aligned image sets argument limits the
ability of the transmitters to align interfering signals without
aligning desired signals with them. Equivalently, the aligned
image sets argument bounds H(Z2™|G) — H (z”}”Hg) from
above. Therefore, combining the lower bound on H (Zl;[”] 1G)—
H (Zlf/[”]|g) in terms of the DoF value and the upper bound
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on H(Zl)’(["]|g) - H(Z{°/[”]|g) in terms of the aligned image
sets bound, will give us our upper bound on the DoF.

B. Bounding H(Z""\|g) — H(Z?"]lg) from below

gy —

|g) we will derive an upper bound on the negative

In order to derive a lower bound on H (Zli
H(Z""
term H (Zb["]|g) and a lower bound on the positive term
H (Z |g) These bounds are based on alignment and conflict
graphs, i.e., the topological interference management perspec-
tive.

1) Bounding H (Z |g) From Above: Let us first bound the
terms H(Lb["](X, 0, Xi.1;)|G). Note that Vj € {0, --- ,[; — 1},

(Xl Jjo Xl j+1)|g)

This is because W; j, W; j41 are connected by an alignment
edge, i.e., both messages cause interference at a receiver where
neither is desired. Since o dimensions must be left interference
free for the desired message, the collectlve interference at
this receiver from W; ;, W; j41, ie., H(L (Xl > X; J+DI9)
must have no more than (1 — a) DoF.

Further, using the functional form of submodularity prop-
erty of the entropy function for arbitrary random variables
Ui, Uz, Us,

H (Ui, Uy, Uz) + H(U1 + Uy + Uz)

H(L (1 —a)nlog(P)

< HWU + U, Us) + HU, Uy + Us)  (12)
and for independent Uy, U;, Us,
HU)+ HU; + Uy + Us)
<HWU +U))+HU+Uz) (13)

let us proceed as follows (as usual, o(log(P)) terms that are
inconsequential for DoF are suppressed),

H(L (X0, X:1)16) < n(1 — a) log(P)
H(L (X0, Xi2)10) < HLY (X0, Xi1)1G)
+H (LY (X1, Xi0)IG) — H (X!
< (2(1 —a)— a)nlog(ﬁ), (15)
H(L (X0, Xi3)16) < HLM (X0, Xi2)10)
+H (L (X0, Xi3)|G)— H (X
< (3(1 —a)— 2a)nlog(13), (16)

(14)

HLY Koo, Xi0)19) = (10 = @) = U = Da)nlog(P)
a7)

Finally, because X; ; are all independent, we have the bound,

H(ZM|g) =

Z H(L (X0, Xi0)IG) (18)

< (12(1 —2a) +ma)nlog(i>) (19)

where Is 211 +1p + -+ + L.
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2) Bounding H(Zb["]|g) From Below: For this, we need
to bound the terms H(L (Xl Ii» Xi+1,0)|G). Recall that the
messages were chosen such that if W; # W/, then W/ = Wy,
conflicts with W;11 = W;41 0. Since conflicting messages
cannot align, we must have

HLMM (X1, Xi41,0)1G) > 2anlog(P) (20)

On the other hand, if W; = Wl.’ , then W; = W, conflicts
with Wiy 1 = Wiy1,0, and W/ = W;;, = W; 1 is connected to
Wi = W; o with an alignment edge. Therefore, we have the
following bounds.

H(L (X1, Xi41,0)1G)
> H(Lb["](Xio, Xi11,019)
—H (LY (X1, Xi0)IG) + H (X'
> 2anlog(P) — n(1 — a)log(P) + anlog(P)

= (4(1 — l)nlog(I_’) (21)

Finally, because X; ; are all independent, we have the bound,

m
H(ZMMG) = > HLM Xy, Xim1016)  (22)
i=1
> (2am1 + (4o — l)mz)nlog(l_’)
where
mp 2 > 1 (23)
i€{l,2,- ,m}, Wi #W/
my & > 1 (24)
i€{l,2,- ,m}, W;=W/
m=mi +my (25)
Combining the bounds obtained for H (z’;[”]|g) and
H(Z\b/[n]|g), we have
H(Z)"MG) — H(Z)™M(G)
> (2am1 + (4o — 1)my — mo + Qa — 1)12)
xnlog(P) (26)
Note that if we set a = 1/2, then
H(ZMG) - HEZPMG) = (T )nlog(P) @D

C. Bounding H(Zi[n”g) -
Image Sets

H(Z?"”g) From Above: Aligned

This is where the AIS argument is invoked. The steps
that are essentially identical to [11] are summarized here for
the sake of completeness. The main novelty appears in the
part (63)-(75).

—1 _
H(Z)MG) = HZ)MG) < (F5—)nlog(P)  (28)
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1) Replacing Zl; With Z.: While le( is comprised of
bounded density linear combinations, the bound that we derive
in this section will be shown in a stronger sense, i.e., it
holds for arbitrary linear combinations. So we will bound
H(ZW) — H(Z"™|G) where

Zy = (le(Xl,ll» XZ,O), T, me()_(m,lm, Xl,()))~

L;x are arbitrary linear combinations, and the codewords X ij
are deaned with full knowledge of these combinations. Note
that Z remains unchanged, i.e., it is still comprised of
bounded density linear combinations Lb \/ , as before. So the
codewords may depend only on the (bounded) probability
density functions of the combining coefficients G but are
independent of the actual realizations of the bounded density
combining coefficients.

2) Functional Dependence: There are multiple codewords
that may produce the same Z , one of which is cho-
sen according to a random ch01ce function L. Conditioning
reduces entropy, so H(Zb["]|g) > H(Zlﬁn]|g, L), and the
minimum over £ (say the mlnimum corresponds to £ = L*)
is smaller than or equal to the average over L. Our goal is
to maximize H(ZE?]) - H(Z\b}[n]|g). Setting £L = L* does
not change the first term while it can only reduce the second
term. Therefore, without loss of generality we will assume
henceforth that L = L*, , all the codewords X ["j] are

functions of Z

(29)

I Note that this 1mp11es that Z \/["] is a function
of (Z % ,g) When needed, for clarity we may hlghhght this

functional dependence by writing X ["] as X (Z "1y an b[n]
as Z (zI" gy,
3) Allgned Image Set:
HZY, 20MG) = HZYh + H @z ZY, 6)
— H(Z™) (30)
H(ZW, 2"MG) = H(Z"M6) + H(ZU 20, 6)
(31)
= H(Zh = HZP"G) = HZY125",6)
b
< Ei glogIS/(Z\/["], 9l (32)
We used functional dependence in (30). Given zb / ! and g,

define §’ (Zb["] G) as the set of feasible codewords, or equiv-
alently the set of feasible Z (because of functional depen-
dence). In (32) we used the fact that the uniform distribution
maximizes entropy.

For the aligned images arguments, it is more convenient to
index the aligned image sets by Z E?] instead of Zl\’/["] values.
This is accomplished as follows.

b
H(Z[X"HZ ", g)

B glog|8'(Z )", G)| (33)
=Eg > P =20"10)10g15' ", 9)
zf’/["]ez‘[;’]
(34)
=Eg > )
ezl ezl ZPm I )=
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Pz = Z11G) log|5' &M, )l (35)
=E5 2 )
Z3[}1]62:‘[/}1] Z[)QL]EZEL]:Z‘/ ( [n] g) )l]
Pz = My log |0, 9)) (36)
=Eg D 2.
inleglnl  lnlg glnl Zbnl (1] gy bin)
Pz} = 2 log|SEY, 9 (37)
=Eg >, PV =LNloglsEL Gl 38
ezl
= > Pz =dNEglog|sclL o) (39)
ez
< > PV =) logEglSEYL 9 (40)
ezl
< max logEg|S(z>< ,9)| 41)
gzl
= logEg S, §)| 42)
=log| > PG esp, ) (43)
rez
where 2! and Z [} are defined as the support of the random
variables Z I and Z["], respectively. In (36) we used the
fact that Z is independent of G. This is because it depends

only on the codewords, which are chosen independent of the
realizations of G. The aligned image set S (Z[X" ,G) is defined
as follows.

S(zW,G) = (A" e 21 such that Z2"
=2"(z,,9)}

Jensen’s inequality was used to obtain (40). Equation (42) is
based on the following definition of v[*,

(4,9
(44)

M = arg max logEng(z["] 9. (45)
lezl

4) Bounding the Probability of Alignment P ¢
S, G)): Consider two distinct realizations of Z [X"], denoted
by A"l and vl We wish to bound the [probability that they
align, i.e., that they produce the same Z Let us denote the

corresponding codewords realizations X ["] by /1 j I and ! j]
respectively.

= (L[lnx] (A1,15 42,0), Lé"j (22,15 43,0),

s Ly G 41,0)) (46)

(i] ,/1[”] 915}:])9 (47)
vl = (L1 W11, 12,0), Lg"X] (v2,15,13,0),

s Lk Wy v1,0) (48)

= (vt'”, ol vl (49)

As required for the aligned images argument, our goal in this
section is to bound P(1 € S(w!"!, G)) from above, with an
expression involving the |4;(t) — v;(¢)| terms.
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Given G, if A"l ¢ SO, G), then

Zb/[”](,l[”],g) _ Zl\)/[n](v[n],g) (50)
ie.,
uﬁmkﬂlmllh)lﬁf(izmlzh)
=L w10, v1.0), L (02,0, v2), -

b
Lm[fl/] (/1)11,05 /’{m,lm ))

b
i) Lm[l:l/] (Um,O, Um,l,y, ))

(51)

So for all ¢ € [n], and for all i € [m], we have,
Lgi,0(®)Ai,0(®)] + L&i1; () Aiy; (1))

= Lgio®vio®)] + Lgiy (O)viy (1)) (52)

= Lgio(®)i0(t)] — Lgio(®)vio(®)]

= Lgiy; ®vig ()] — Lgii; () Aig; (1)) (53)

24;(1)

8i,0(1) (Ai,0(t) —vio (1))

€ (ai(t) —2,ai(t) +2) (54)

Thus, conditioned on any given value of g;;, (f), alignment
of 2" and v!"! requires that gi,0(t) must take values in an
interval of length less than or equal to 4/|4;0(¢) — v,-,o(t)l.3
Similarly, conditioned on any given value of g; o(7), alignment
requires that g; ;, (#) must take values in an interval of length
less than or equal to 4/|4; (t) — viy (t)|. From each pair of
channels g; o(t) and g;, (t), let us define g;(¢) as the one that
corresponds to the smaller interval, while the other is identified
as g (t). Let us also define B; ;(t) which will be useful at a
later stage of this proof. Define

Bij (0) 2 max (124, (0) = vigy 01, 125000) = v;0(01)

(8 (1), & (1))

2 ] (800, gi; (1) if Bii (1) = [4i,0(t) — vi,0(?)]
(8i,1; (1), 8i,0(1)) if B i () # 14i,0(t) — vio(?)]

(535

Thus, Vi € [m], Vt € [n], for 2" € S, G), it must be true

that conditioned on any value of g7 (¢), the bounded density

random variable g; () takes values in an interval d; (¢) of length

4/Bi; i(t). Therefore, the bounded density assumption on G,
leads to the following bound on the probability of alignment.

PG e s, g))

<[ / @) ( [ /g i g‘:)dg*) 4z

>

(56)
4 max -c
< [ /f(g* 1 1 lfl(t) & 6]
ielm] teln]
Bii (1)#0
4fmax
-1 11 59
ie[m] te€[n] Bi’i(t)
Bii (1)#0
< Gfma)™ ] H e (t) (59)
ie[m]teln ll

31f 4i,0(t) = v; o(?) then the interval is of infinite length, which renders the
constraint inactive.
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where B;r] (t) = max(1, B; (1)), i.e., when B; ;(t) = O then
B;Lj (t) = 1. (59) holds because fmax > 1. Thus, we have a
bound on P11 € S, G)) in terms of [Ai,j () — vi j ()]
terms. Recall that A; ;(r) and v; ;(r) are the realizations of
codeword symbols X i,j (t). However, for the aligned images
argument, we need the bound in terms of |4;(¢) —v; (¢)] terms,
where A;(t) and v;(¢) are the corresponding realizations of
the elements of Z. This is accomplished through a novel
argument as follows.
For all i € [m], and V¢t € [n],

Zi(t) —vi(?)
= Lhig () Aig; @] + [hiv1,0(0) Ait1,0(0)]
— iy @)vig, (O] — Lhig1,0(O)vit1,0(0)]
= [4i(t) —vi(1)]
< 2A max (Mi,li () = vig; (O], [ir1,0(0) — Vi+1,0(t)|> +2
(61)
(62)

(60)

= 2ABii+1(t) +2

In order to go from B+ (t) terms in (59) to |1;(¢) — v; (?)]
terms, we wish to replace the B+ () terms with Bl i1 (@)
terms. To this end, define

i*(t) = arg max B;“l () (63)
which then implies
B;Z iy (@) = B,t i+ (1), (64)
Bl++1 2 (1) = Bl 11, l*+1(t)B 2,2 (), (65)
B3 e4a® = Bl e s(DBL L g0, (66)
(67)

+ Bt +
B, i i* +m—2,i*+m—2(t)Bi*+m—1>i*+m—1(t)

(68)

+m—=2,i*+m— l(t)

where (64) follows from (63) and ((65)-(68)) is true as for
any positive integer numbers a, b, ¢, d we have max(a, b) <
max(a, c) max(b,d). The remaining Bl+l 41 () terms are
bounded as follows.

Bl 53 < P (69)

: (70)

Bi,, () <P 1)

Substituting into (59) we have,
]P)(/l[n] c S(\) n] .G)
= (4fmax)mn H H (72)
ie[m]teln )

=< (4fmax)mn H H (73)
ie[m],ieN, te[n *+z l*+z+1(t)

< PR fa)™ H [N o
ie[m]te[n] " z+1( )

where N, is defined as the set of odd natural numbers, (73)
follows from ((64)-(68)) and (74) is cocluded from ((69)-(71)).
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Further substituting from (62) we have

P e SO, G))
< PP DR o)™ T
ie[m]
2A
4 () —vi (O] =2

Il

[Ai (D) —vi(0)]>2

X H 1
teln]
|2 (t)—vi (1) <2

< ﬁn(M71)/2(8 Afmax)mn

I1

ie[m]

H 1
feln] [4i(t) —vi(®)| —2
[2i (1) =vi()|>2

X H 1

te[n]
|2 (t)—vi ()] <2

(75)

(75) holds because A > 1. Thus, we have our desired bound.
Note that, 4;(r) is equal to [h;y ()i ()] + Lhiv1,0(7)
Ai+1,0(t)] from (46) and (47). Therefore,
|4i(1)] < 24+2AP <3+ [2AP], (76)
so the support of 1;(t) is contained within

, 3+ [2AP]) (77)
(78)

si(t) £ {=3—[2AP], -
- {_ﬁ,... ,—1,0,1,---

where

’_1’091""
’ﬁ}’
P 234 [2AP). (79)

5) Bounding the Average Size of the Aligned Image Set,
Eg|S(!", G)]:

EglS0". )= > PUMese™, )  (80)
M’l]eZlX"J
< PO (8A finax)™ A (81)

where A is defined in (82)

2. Il

i[n]ezgll ie[m]

H 1
Celn] [Ai (1) —vi()| =2
[4i (t)—vi(t)]>2

X H 1

teln]
[2i (1) —vi ()| <2

(82)

At this point we are ready for the next critical step in the
AIS approach — re-writing a sum of products as a product
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of sums. To make this step clear, let us define the following
functions, Vi € [m], t € [n].

1
— lx=vi@®)]>2
fiu) = \x—wy =2 MO (83)
1, x —vi()] <2.
Using these functions we can express A as
A= 2 > 2
Ar(Desi(1) Ar(n)esi(n) A2(1)esa(1)
Aza(n)esa(n) Az(1)es3(1) S (1) €8 (n)
(11D frala@) fo1 (2 (1)
 Fon(a @) f3,1 B3 (D) finn Gon (1))
= 2. fuitu@)y)
Z1(1)es (1)
> Aalam)
A1(n)esi(n)
> funCm(n)) (84)
Am(n)Espy (1)
=T 11 > £ty (85)
ie[m]te[n] \Ai(t)esi(t)
=1L 2 M-(r)—\l)-(m—z
ie[m]teln] Ai(t)esi(t) ! !
[2i (1) =vi()|>2
+ > 1l ®

Zi(t)es;(t)
[4i(1)—=vi (1) <2

Note that in (84) we re-wrote the sum of products as a product
of sums using a generalization of the simple equality

> ar=(Za)(Z0). @
ieZ,jeJ i€l jeJ
Substituting into (82) we have,
EglSo™, g)|
ie[m]teln
> o _},(,)I D M
Limesin ! Ji(0esi(t)
12 (6)=vi (1)[>2 |2:()—vi (1) <2
(88)
Note that
Z 1< 1=5 (89)

Li(t)es;(t) Li(t)€vi(t)—2w; (1)+2]

[4i (D) —vi(0)[=2



DAVOODI AND JAFAR: NETWORK COHERENCE TIME MATTERS—AIS AND THE DoF OF INTERFERENCE NETWORKS

and similarly,

1
> (90)
Wyt [Ai(t) —vi ()| —2
14 (0) v (1)[>2
< >
i) ewity—=2—=P 1 vi(t) —2—1]
U i) +24+1 : vi(0) +2+ P]
1
91
a0~ a0l =2 e
=2 Z - (92)
pE[P]

where P =3 + [2A P] from (79). Substituting into (88) we
have

EglS™, §)
S }_)n(M71)/2(8 Afmax)mn

x H H Z ! +5 (93)
ie[m] te[n] pe[ﬁ] p
< Pn(ln—l)/Z(gAfmaX)mn
<111 (2 +2log(P) + 5) (94)
ie[m] te[n]
= P =D/2(QA fr0)™" (T + 21og(P))™ (95)

We obtain (94) using the fact that the partial sum of a
harmonic series can be bounded above by the log function,
ie, >0, ll <1+logn.
6) Concluding the Bound: Substituting into (42), we have
b
H(Z{h — H(Z}"1G)
< logEg|S0!", 9)|
< log (P D28 A fmax)™ (7 + 2 log(P))™)
(m—1)
2

(96)

nlog(P) + no(log(P))

Comparing with (26) we have a general bound on the sym-
metric DoF per user, «,

(2am1 + (4o — Dyma — ma + 2o — 1)12)
(m—1)
2

1 1
B I
(2)( m+2m2+2]z)

7) Discussion: The proof relies on the assumption 7, = 1
as for each t € [n] a separate (involving distinct channel
coefficient variables) constraint, i.e., (54) is derived. So when
T, = 1, the probability of alignment is bounded by the product
of n terms in (59). It turns out that if we directly extend these
arguments to larger values of coherence time, then the bounds
that we obtain are strictly loose. For example, if we assume
that the coherence time, 7, = 2, then because the channel
coefficient remains the same for two consecutive channel uses,

o7

= a

IA

(98)
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we are left with separate constraints only for odd values of ¢.
So, in (72) we must restrict ¢ to only odd values,

1
peM e SO 9 = @)™ [T [ 275
ie[m] te[n],teN, i,i(t)
99)
As a consequence, in (83) we have fi;(x) = 1 for all
t € [n],t ¢ N,, so that (85) becomes
A=TTT1I1 2 #uy (100)
ie[m]teln] \1i(t)es;(t)
o\ 2T
= (1+28)" "
<1 11 > firli(@)
ie[m] te[n],teN, \Li(t)es;()
(101)

This in turn contributes an extra 5 n log(P) term on the RHS
of (97), which results in more than 1/2 on the RHS of (98).
Clearly, this bound is strictly loose because it is trivially true
that (even with perfect CSIT), symmetric DoF value is not
more than 1/2. Indeed, the problem of finding tight DoF outer
bounds for particular values of network coherence times larger
than 1 remains a highly non-trivial open problem.

VI. CONCLUSION

A DoF bound sensitive to network coherence time
was obtained. This was accomplished by a novel adapta-
tion ((63)-(75)) of the aligned image sets bound, and closes
several open problems noted previously by Naderializadeh
and Avestimehr [9] and by Gou et al. [10]. An interesting
direction for future work is to determine whether the sym-
metric DoF bound proposed in Theorem 1 continues to be
tight for all K user partially connected interference channels in
general.

APPENDIX

Consider eleven channel uses. Let us denote the k" trans-
mitter and the k'" receiver by Ty and Ry for any k € [7]. For
any k € [7], User k’s message Wy is split into messages Wi,
and Wy, representing common message and private message,
respectively. The common message Wi, and the private mes-
sage Wy, are encoded into independent Gaussian codebooks
Xkes Xk1p»> Xk2p»> Xk3p»> Xkap- Bach of the codebooks Xy, and
Xk carries 1 DoF for any k € [7], j € [4] and are transmitted
with powers

E|Xyjpl* = 0.5
E|Xic|? = 0.5

(102)
(103)

For any m € [11], define the vector e, as the 11 x 1 vector
with ten zeros and one entry equal to one in its m*" row, e.g.,
e; = (0,0,1,0,0,0,0,0,0,0, O)T. Remember that 71, 7, €

Ay, T3,Ts € Az and Ty, T7 € A;. From the alignment sets,
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the transmitted signals are,

(Xk(1), Xk (2), -+, Xe(11)T

(es +es5)Xi1p +e9Xi2p
+e10Xi3p + e Xpap + €Xpe k=1
esXri1p +e9Xi2p +e10Xi3p
+e11 Xrap + e X k=2
_ ] esXup +ecXiop +e7Xi3)p (104)
+egXrap + €Xje k € {3, 5}
e1Xk1p +e2Xpp +e3Xi3p
+e4 Xpap + €Xpe ke{4,7}
e Xx1p +e2Xk2p +e3Xi3p
+e6Xap + X k=6

where € is defined as the 11 x 1 vector with eleven entries
equal to one. Now, we claim that R decodes the five intended
messages from 7; for any k € [7]. First of all, consider Rj.
Recall that, it receives signals from 77, 73 and T, i.e.,

Yi(t) = VPG11()X1 (1) + VPG 13(t) X5(1)

+vVPGis()Xs(t) + Z1(t) (105)

Thus, from (104), it receives three linear combinations of X,
X3, and X5, in the first, second and third channel uses, i.e.,

Yi(1) = VPG1i() X1 + VPG 13(1) X3,

+VPGis(1)Xse + Z1(1) (106)
Y1(2) = VPG X1 + VPG 13(2) X3,

+VPGi5(2)Xsc + Z1(2) (107)
Y13) = VPG11(3)X1c + VPG13(3) X3,

+VPG15(3)Xsc + Z1(3) (108)

As the channel coefficients are assumed to be generic,
R decodes Wi., W3, and Ws, successfully. Reconstructing
the codewords Xi., X3, and Xs. from W;., W3, and Ws,
and subtracting contribution of the codewords X{., X3, and
X5 from the received signal, Ry decodes Wi, as it receives
interference-free signals X11,, X12p, X13p, X14p in the 4th,
9t 10" and 11" channel uses. Now consider User 3. The
received signal at the third receiver is represented as,

Y3(t) = VPG33()X3(1) + VP G3u(t) X4 ()

+VPG3(t)X7(t) + Z3(t)  (109)

Similar to the decoding for User 1, from (104), it receives
three linear combinations of X3, X4, and X7, in the 97, 10"
and 11" channel uses. Thus, R3 decodes W3, Wi, and W,
successfully and reconstructs the codewords X3, X4, and X7,
from W3., W4, and W7.. Subtracting contribution of the code-
words X3¢, X4 and X7, from the received signal, R3 is able
to decode its desired signal, i.e., third receiver decodes W3,
as it receives interference-free signals X31,, X32p, X33p, X34p
in the 5, 6'", 7" and 8" channel uses. All the other users
decode their desired signals similarly, resulting in total 5 DoF
in 11 channel uses per user.
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