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Network Coherence Time Matters—Aligned Image

Sets and the Degrees of Freedom of Interference
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Abstract— This paper obtains the first degrees of freedom
(DoFs) bound that is provably sensitive to network coherence
time, i.e., coherence time in an interference network, where
all channels experience the same coherence patterns. This is
accomplished by a novel adaptation of the aligned image sets
bound and settles various open problems noted previously by
Naderi and Avestimehr and by Gou et al. For example, a nec-
essary and sufficient condition is obtained for the optimality of
1/2 DoF per user in a partially connected interference network,
where the channel state information at the receivers (CSIRs) is
perfect, the channel state information at the transmitters (CSITs)
is instantaneous but limited to finite precision, and the network
coherence time is Tc = 1. The surprising insight that emerges is
that even with perfect CSIR and instantaneous finite precision
CSIT, the network coherence time matters, i.e., it has a DoF
impact.

Index Terms— Degrees of freedom, interference networks,
network coherence time, channel state information at the trans-
mitter.

I. INTRODUCTION

T
HE impact of coherence time in a wireless network

is a topic that has been studied extensively [1]–[9].

Nevertheless some of the most fundamental questions about

coherence remain unanswered. For example, it is well known

that longer coherence time is beneficial to amortize the cost of

learning the channel state information at the receivers (CSIR)

and/or the delays in feeding back channel state informa-

tion to the transmitters (CSIT). Yet, beyond that, it is not

known whether network coherence1 offers any additional DoF

benefits. Specifically, if CSIR is assumed to be perfectly
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1Network coherence refers to the model where all the channels in the

network follow the same coherence pattern, eliminating the diversity of
coherence patterns that enables blind interference alignment schemes [5].

available and the CSIT, limited to finite precision as it may be,

is also assumed to be available instantaneously, then it is

not known whether the network coherence time still impacts

the DoF of interference networks. Partial insights into this

question have emerged recently through novel achievable

schemes [6], [8], [9]. However, a conclusive answer to this

question has remained elusive due to the difficulty of obtaining

DoF outer bounds that are sensitive to network coherence time.

In fact, no such bounds exist, to the best of our knowledge. The

lack of such bounds is underscored by various open problems

noted in [9] and [10].

A promising development in this regard is the recent

emergence of an outer bound argument in [11] based on

bounding the cardinality of the images of codewords that

align at one receiver but remain distinguishable at another

receiver (in short, the Aligned Image Sets (AIS) argument).

Motivated by this promising development, in this work we

use a novel adaptation of the AIS approach to prove that

indeed network coherence time matters, even with perfect

CSIR and instantaneous finite precision CSIT. As immediate

application of our result, we are able to settle the open

problems from [9] and [10].

Coherence times are critical for acquiring CSIR or CSIT,

as shown in [1], [2], and [12]–[14]. Even with perfect CSIR

and no CSIT except the knowledge of the coherence pat-

terns, the idea of blind interference alignment was intro-

duced in [5] to show that a diversity of coherence patterns

enables DoF improvements. Blind interference alignment is

not feasible if there is no diversity of coherence patterns,

i.e., coherence patterns are identical across users (network

coherence). In this setting, are there further DoF benefits of

channel coherence? The recent body of work on topological

interference management [5], [6], [9] suggests that there is

such a possibility. Introduced in [5], topological interference

management (TIM) refers to DoF studies of partially con-

nected wireless networks with perfect CSIR and no CSIT

beyond the network connectivity. As shown in [5], TIM is

essentially related to the index coding problem, interference

alignment plays a crucial part in TIM (and index coding),

and DoF gains from interference alignment are achieved even

though no knowledge of channel realizations is available to

the transmitters provided that the network coherence times

are sufficiently long. Reference [6] provides the first example
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where such gains are achievable even with network coherence

time of unity. TIM for unit coherence time Tc = 1 is then

studied extensively by Naderializadeh and Avestimehr [9],

who obtain broad characterizations of the DoF gains possible

in this setting. Remarkably, with Tc = 1, the DoF achieved

in [9] are in general strictly smaller than what is achieved, say

for Tc = 2 in [5]. Thus, the achievable schemes suggest that

coherence time matters. However, in all instances where higher

DoF are achieved with a longer coherence time, the optimality

of the achievable schemes for the shorter coherence times

remains unknown. This is because the outer bounds in [9]

are not sensitive to network coherence times, and thus cannot

distinguish between Tc = 1 and Tc > 1. Indeed, to our

knowledge no such DoF outer bounds exist anywhere that are

sensitive to network coherence times (when CSIR is perfect

and CSIT is available without delay). In this paper we present

the first such outer bound, based on the Aligned Image Sets

approach [11]. The new bound proves that indeed network

coherence time matters for interference networks with perfect

CSIR and finite precision CSIT. It also allows us to settle open

problems previously noted in [9] and [10]. Two open problems

where a gap remains between the achievable DoF of [9] and

the DoF outer bounds of [9] are highlighted by Naderializadeh

and Avestimehr [9, Fig. 16]. The problems are reproduced

in this paper in Figure 2. Optimal DoF for both problems

are immediately settled by the new outer bound derived in

this paper. A related open problem is the achievability of

1/2 DoF per user in the TIM setting with coherence time

Tc = 1. Gou et al. [10] characterize a sufficient condition for

achievability of 1/2 DoF per user. However, in the absence of

an outer bound for the Tc = 1 setting, it remains unknown

whether the sufficient condition of Gou et al. is also a

necessary condition. Our new outer bound also settles this

open problem, establishing a necessary and sufficient condition

for achievability of 1/2 DoF per user in the TIM setting with

coherence time Tc = 1.

An underlying theme from this and other recent works that

successfully generalize the AIS approach in various direc-

tions [11], [15]–[19], is the broadening scope of the aligned

image sets argument. Recognized by Korner and Marton [20]

more than 40 years ago, characterizing the difference in

the size of image sets at different receivers is one of the

most essential challenges in network information theory. Seen

in this light, interference alignment schemes address this

challenge from the achievability side, showing how under

various specialized assumptions it is possible to create a large

difference, i.e., create a large image at one receiver while

the image at the other receiver remains small because of

interference alignment. As noted in [11], the AIS argument

is the other side of the same coin. It shows, from the converse

side, how under various limitations on the precision of CSIT,

the difference in the sizes of images cannot be made too

large. Indeed, just as interference alignment in its various

forms seems inevitable in understanding optimal achievable

schemes for wireless networks, so too the aligned image

sets bounds may be equally unavoidable for robust converse

arguments.

II. DEFINITIONS

The following definitions of undirected graphs originate in

the topological interference management framework of [8].

Definition 1 (Alignment Graph Ga and Alignment Set As ):

The vertices of the alignment graph are the K messages,

W1, W2, · · · , WK . Messages Wi and W j are connected with

a solid black edge (called an alignment edge) if the sources

of both these messages are heard by a destination that desires

message Wk /∈ {Wi , W j }. Each connected component of the

alignment graph is called an alignment set.

Definition 2 (Conflict Graph Gc and Internal Conflict):

The vertices of the conflict graph are the K messages,

W1, W2, · · · , WK . Message Wi is connected by a dashed red

edge (called a conflict edge) to all other messages W j whose

sources are heard by the destination that desires message

Wi . If two messages that belong to the same alignment set

have a conflict edge between them, it is called an internal

conflict.

Definition 3 (Reduced Graph Gr ): The vertices of the

reduced graph Gr are those alignment sets Ai that have

two or more messages, i.e., |Ai | ≥ 2. Singleton alignment

sets are not represented in Gr . Ai and A j in Gr have an edge

between them if the conflict graph contains an edge between

a message Wi ∈ Ai and a message W j ∈ A j .

Definition 4 (Completed Cycle Cc and parameters

m, m2, l!): A completed cycle is a relation from a cycle in

Gr to a cycle in another graph where the vertices are the

messages and each edge is either an alignment edge or a

conflict edge. It is obtained as follows. Consider a cycle Cr

in Gr , of length m, that is comprised of edges (Ai1 ,Ai2 ),

(Ai2 ,Ai3 ), · · · , (Aim−1 ,Aim ), (Aim ,Ai1 ). A completed cycle

Cc that is related to Cr is obtained by replacing each edge

(Ai j ,Ai j+1 ) of Cr (subscripts interpreted cyclically, so that

im+1 = i1) with a conflict edge (Wi j , W ′
i j+1

), Wi j ∈ Ai j ,

W ′
i j+1

∈ Ai j+1 . Each vertex Ai j of Cr is replaced with

the message Wi j if Wi j = W ′
i j

, or by a path from Wi j to

W ′
i j

comprised of alignment edges connecting a subset of

messages drawn from Ai j if Wi j ̸= W ′
i j

. The resulting graph

is a cycle, called completed cycle, which contains exactly m

conflict edges. All the remaining edges are alignment edges.

Define m2 as the number of instances of i j ∈ {1, 2, · · · , m}

for which Wi j = W ′
i j

. Further, if the length of the

completed cycle is denoted as |Cc|, then define l! ! |Cc| −
m + m2.

The next three definitions are related to the finite precision

channel knowledge assumption.

Definition 5 (Bounded Density Channel Coefficients):

Define a set of real valued random variables, G such that the

magnitude of each random variable g ∈ G is bounded away

from infinity, |g| ≤ " < ∞, for some constant ", and there

exists a finite positive constant fmax, such that for all finite

cardinality disjoint subsets G1,G2 of G, the joint probability

density function of all random variables in G1, conditioned

on all random variables in G2, exists and is bounded above

by f
|G1|
max . Without loss of generality we will assume that

fmax ≥ 1," ≥ 1.
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Definition 6 (Arbitrary Channel Coefficients): Let H be a

set of arbitrary constant values that are bounded above by ",

i.e., if h ∈ H then |h| ≤ " < ∞.

Definition 7 (Bounded Density Linear Combinations):

For real numbers x1, x2, · · · , xk define the notations

Lb
j (xi , 1 ≤ i ≤ k), and L j (xi , 1 ≤ i ≤ k) to represent,

Lb
j (x1, · · · , xk) !

∑

1≤i≤k

⌊g ji xi⌋ (1)

L j (x1, · · · , xk) !
∑

1≤i≤k

⌊h ji xi⌋ (2)

for distinct random variables g ji ∈ G, and for

arbitrary constants h ji ∈ H. The corresponding multi-letter

forms are defined as L
b[n]
j (x1, · · · , xk) ! (

∑

1≤i≤k⌊g ji (1)

xi (1)⌋, · · · ,
∑

1≤i≤k⌊g ji (n)xi (n)⌋), L
[n]
j (x1, · · · , xk) !

(∑

1≤i≤k⌊h ji (1)xi(1)⌋, · · · ,
∑

1≤i≤k⌊h ji (n)xi (n)⌋
)

, for disti-

nct g ji (t) ∈ G and arbitrary constants h ji ∈ H. We refer to

the Lb functions as bounded density linear combinations.

Finally, for compact notation, let us define [k] = {1, 2, · · · , k}

for positive integer k.

III. SYSTEM MODEL

A. The Channel

Under the DoF framework, the channel model for the

partially connected2 K user interference channel is defined

by the following input-output equations. ∀k ∈ [K ],

Yk(t) =
√

PGkk (⌈t/Tc⌉) Xk(t)

+
∑

l∈Mk

√
PGkl (⌈t/Tc⌉) X l(t) + Zk(t). (3)

The channel uses are indexed by t ∈ N, Xl(t) is the symbol

sent from transmit antenna l subject to a unit power constraint,

Yk(t) is the symbol observed by Receiver k, Zk(t) is the zero

mean unit variance additive white Gaussian noise (AWGN)

at Receiver k, and Gkl (t) is the channel fading coefficient

between Transmitter l and Receiver k. The channel coefficients

Gkl (t) are assumed to be distinct elements of G, ∀k ∈ [K ],

l ∈ [K ], t ∈ N. The channel coefficient values are fixed for

blocks of Tc ∈ N symbols. Tc is called the network coherence

time. Our focus throughout this work is primarily on the

Tc = 1 setting, for which the channel model can be simplified

as follows.

Yk(t) =
√

PGkk(t)Xk(t) +
∑

l∈Mk

√
PGkl(t)X l (t) + Zk(t).

(4)

While Tc = 1 implies that the channel coefficients change

with every channel use, note that we do not require that they

should be independent across t . Our results hold whether

the channels take independent values or remain correlated in

time, provided their probability density functions are bounded.

2A DoF characterization for the partially connected setting is a special case
of the GDoF characterization for arbitrary channel strength levels. As such,
the main insights are not limited to binary connectivity models, i.e., the
DoF gap due to coherence time for partially connected channels can be
readily translated into a GDoF gap due to coherence time for channels with
sufficiently disparate strengths.

The transmitters are only aware of all the joint and conditional

probability density functions (pdf) of the channel coefficients,

which satisfies the bounded density assumption. Beyond this,

the transmitters have no knowledge of the channel realizations.

Thus, the transmitted symbols X l(t) may depend on the pdf of

G but are independent of the realizations of G. Perfect channel

state information is assumed at all receivers (CSIR).

P is the nominal SNR parameter that is allowed to approach

infinity. The partial connectivity is specified through the set

Mk which is defined as a subset of the set [K ], such that

l ∈ Mk if and only if the l th transmitter can be heard

by the kth receiver. For simplicity, let us assume all values

are real. Generalizations to complex channels are somewhat

cumbersome but conceptually straightforward as in [11].

B. Finite Precision CSIT

Under finite precision CSIT, the channel coefficients may

be represented as

Gkl (t) = Ĝkl (t) + G̃kl(t) (5)

Recall that for any k, l ∈ [K ], Gkl (t) is the channel fading

coefficient between Transmitter l and Receiver k. Ĝkl(t) are

the channel estimate terms and G̃kl(t) are the estimation error

terms. The channel variables Ĝkl(t), G̃kl (t), ∀k, l ∈ [K ],

t ∈ N, are subject to the bounded density assumption with the

difference that the actual realizations of Ĝkl (t) are revealed to

the transmitter, but the realizations of G̃kl(t) are not available

to the transmitter.

C. DoF

The definitions of achievable rates Ri (P) and capacity

region C(P) are standard. The DoF region is defined as

D = {(d1, · · · , dK ) : ∃ (R1(P), · · · , RK (P))

∈ C(P), s.t. dk = lim
P→∞

Rk(P)
1
2

log(P)
,∀k ∈ [K ]} (6)

IV. RESULTS: COHERENCE TIME MATTERS

The main contribution of this work is an outer bound, based

on the aligned images argument, which shows that the DoF

of an interference network under finite precision CSIT and

perfect CSIR, are limited by the network coherence time,

i.e., coherence time matters. In particular, we bound the DoF

under coherence time Tc = 1 and show that this bound is

strictly smaller than what is achievable in general with a larger

coherence time, say Tc = 2.

Theorem 1: For a partially connected K user interference

channel with finite precision CSIT and coherence time Tc = 1,

if the reduced graph Gr has an odd-length cycle Cr , then the

following bound holds on the symmetric DoF per user (α).

α ≤
(

1

2

)(

1 −
1

m + 2m2 + 2l!

)

(7)

where the parameters m, m2 and l! are as defined in Section II

for any completed cycle Cc related to Cr .
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Fig. 1. (a) Partially connected interference network. (b) Corresponding
Alignment graph (black edges) and Conflict graph (dashed red edges).
Also shown are the alignment sets A1,A2,A3,A4. (c) Reduced graph Gr

comprised of A1,A2,A3. Note that A4 is not a part of Gr because it has
only one message. Also note that Gr has an odd cycle Cr of length m = 3.
(d) A completed cycle corresponding to Cr , for which m = 3, m2 = 1, l! = 3.

It was shown in [8] that the symmetric DoF of a partially

connected K user interference channel with finite precision

CSIT and coherence time Tc = 2 is equal to 1/2 if and only if

there are no internal conflicts. Since the interference network

of Figure 1(a) has no internal conflicts, its symmetric DoF

value per user is 1/2 for Tc = 2. However, now let us apply

the result of Theorem 1 to the same network for Tc = 1. The

reduced graph Gr of the network (shown in Figure 1(c) has

cycle of odd length m = 3. The completed graph in Figure 1(d)

has m = 3, m2 = 1, l! = 3, so the outer bound (7) from

Theorem 1 tells us that if Tc = 1, then the symmetric DoF

per user ≤ 5/11. In fact 5/11 is achievable, see Section . More

importantly, since 5/11 is less than 1/2, Theorem 1 implies

that network coherence time matters, i.e., Tc = 1 allows less

DoF than possible with Tc = 2.

As an immediate application of Theorem 1, we have the

following corollary which settles an open problem from [10].

Corollary 1: In a partially connected K user interference

channel with finite precision CSIT and coherence time Tc = 1,

the symmetric DoF value of 1/2 per user is achievable if and

only if the following two conditions are satisfied.

C1. There are no internal conflicts.

C2. The reduced graph Gr has no odd length cycles.

Proof: The achievability result, i.e., that conditions C1,

C2 are sufficient for achieving a symmetric DoF of 1/2 per

user, was established by Gou et al. [10, Th. 1] utilizing

the topological interference management framework of [8].

Gou et al. assume that the transmitters are not aware of

the coherence time, and show that 1/2 DoF per user is

achievable regardless of the length of the coherence interval

when conditions C1, C2 are satisfied. The necessity of C1

is established in [8], which shows that if there are internal

conflicts then the symmetric DoF per user are strictly less

than 1/2. This is shown for arbitrarily large coherence times,

so it holds for coherence time Tc = 1 as well. The necessity of

Condition C2 was previously open but is immediately settled

Fig. 2. First open problem from [9] (see [9, Fig. 16]).

Fig. 3. Second open problem from [9] (see [9, Fig. 16]).

by Theorem 1, because the presence of an odd cycle in Gr

activates the outer bound (7) which means that the symmetric

DoF value per user is strictly less than 1/2.

Note that the result of Corollary 1 holds even if the trans-

mitters are unaware of the value of the coherence time. This

is because an achievable scheme that works for all coherence

times, must also work for coherence time Tc = 1.

As another application of the new bound, consider the two

examples of open problems highlighted by Naderializadeh and

Avestimehr [9, Fig. 16] where the optimal symmetric DoF per

user are unknown for Tc = 1. The two examples are illustrated

in Figure 2 and Figure 3.

References [9] and [10] have shown that the α = 4/9 is

achievable in each of these settings. However, the best outer

bound previously known is α ≤ 1/2, which is achievable (and

optimal) if coherence time is greater than or equal to 2,

as shown in [8]. A tight outer bound was not previously avail-

able when coherence time is unity. However, the following

corollary of Theorem 1 settles the symmetric DoF per user

for coherence time Tc = 1 for both of these networks.
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Fig. 4. Completed cycle with m = 5, m2 = 1, l! = 13.

Corollary 2: For each of the partially connected interfer-

ence networks illustrated in Figure 2, with coherence time

Tc = 1, the optimal symmetric DoF per user = 4/9.

Proof: For each of the networks, from the cycles of

reduced graph illustrated in Figure 2, we have m = 3, m2 = 0

and l! = 3. Substituting into (7) we find the outer bounds

α ≤ 4/9, thus settling the symmetric DoF for both of these

networks.

V. PROOF OF THEOREM 1

Suppose there exists a cycle of odd length m in the reduced

graph Gr . Then there exist alignment sets A1,A2, · · · ,Am ,

such that there exists a conflict between any two consecutive

sets, Ai ,Ai+1 . Note that the indices are interpreted in a cyclic

manner, so that A1 follows Am . Consider alignment set Ai .

Choose a message Wi ∈ Ai such that Wi conflicts with a

message in Ai−1 . Similarly, choose a message W ′
i ∈ Ai that

conflicts with a message in Ai+1. If Wi ̸= W ′
i , then find the

shortest path from Wi to W ′
i , comprised of alignment edges.

Such a path exists because Wi , W ′
i ∈ Ai and Ai is a connected

component of the alignment graph. Let the length of this path

be li . Without loss of generality, label the messages along

this path as Wi = Wi,0, Wi,1, · · · , Wi,li = W ′
i . If Wi = W ′

i ,

then choose a different message W ′′
i ∈ Ai which is connected

to Wi with an alignment edge. Such a message must exist

because each alignment set involved in the reduced graph

has two or more messages. In this case, the path from Wi

to W ′′
i is of length li = 1, and without loss of generality we

label Wi = Wi,0 , W ′′
i = Wi,li . Such a situation occurs in A5

in the example illustrated in Figure 4. Other messages and

conflict/alignment edges may exist, but are not important for

this proof, so they are suppressed for clarity in Figure 4.

A. Alignments Zb
! and Conflicts Zb

×
Following in the steps of the AIS argument of [11], we use

the deterministic approximation of (4) with integer-valued

inputs X̄k(t) ∈ {0, 1, · · · , P̄} and integer-valued outputs

Ȳk(t), k ∈ [K ], so that

Ȳk(t) =
⌊

Gkk(t)X̄k(t)
⌋

+
∑

l∈Mk

⌊

Gkl (t)X̄ l(t)
⌋

(8)

and P̄ is defined as
⌊√

P
⌋

. For ease of exposition, let us

further customize our notation for the completed cycle. For

the transmitter sending message Wi, j , denote the transmitted

symbols as X̄ i, j . Further, define Zb
! and Zb

× as follows. The

time index is suppressed for compact notation.

Zb
! = (Lb

1!(X̄1,0, X̄1,l1), Lb
2!(X̄2,0, X̄2,l2),

· · · , Lb
m!(X̄m,0, X̄m,lm )), (9)

Zb
× = (Lb

1×(X̄1,l1, X̄2,0), Lb
2×(X̄2,l2 , X̄3,0),

· · · , Lb
m×(X̄m,lm , X̄1,0)). (10)

For the example illustrated in Figure 4 these would be

Zb
! = (Lb

1!(X̄1,0, X̄1,3), Lb
2!(X̄2,0, X̄2,2),

Lb
3!(X̄3,0, X̄3,4), Lb

4!(X̄4,0, X̄4,3),

Lb
5!(X̄5,0, X̄5,1))

Zb
× = (Lb

1×(X̄1,3, X̄2,0 ), Lb
2×(X̄2,2, X̄3,0),

Lb
3×(X̄3,4, X̄4,0), Lb

4×(X̄4,3, X̄5,0),

Lb
5×(X̄5,1, X̄1,0)). (11)

Multi-letter forms, Z
b[n]
! , Z

b[n]
× are obtained by replacing

Lb
i!, Lb

i× with L
b[n]
i! , L

b[n]
i× , respectively. The intuitive signifi-

cance of the notation is as follows. We use " as a subscript for

combinations of symbols that we would like to align because

these are messages connected by alignment edges, while ×
is used as a subscript for combinations of symbols that we

would like to not align, because of message conflicts. The

symmetric DoF bound that we seek will come from bound-

ing H (Z
b[n]
× |G) − H (Z

b[n]
! |G) from above and from below.

The intuition behind this is as follows. Z
b[n]
× terms contain

combinations of desired signals and interference. The desired

signal must not align with interference because a receiver

must be able to resolve its desired signal from interference.

Since we do not want these terms to align, the entropy of

Z
b[n]
× should be as large as possible. On the other hand,

Z
b[n]
! are combinations of terms that only present undesired

interference to a receiver. In order to achieve high data rates,

it is desirable to consolidate interference into the smallest

space possible, i.e., the entropy of Z
b[n]
! should be as small

as possible. Thus, the rate (DoF) value is bounded above by

the difference of these entropies: H (Z
b[n]
× |G) − H (Z

b[n]
! |G).

Equivalently H (Z
b[n]
× |G) − H (Z

b[n]
! |G) is bounded below in

terms of the DoF value. On the other hand, because channel

knowledge is available to only finite precision and the coher-

ence time Tc = 1, the aligned image sets argument limits the

ability of the transmitters to align interfering signals without

aligning desired signals with them. Equivalently, the aligned

image sets argument bounds H (Z
b[n]
× |G) − H (Z

b[n]
! |G) from

above. Therefore, combining the lower bound on H (Z
b[n]
× |G)−

H (Z
b[n]
! |G) in terms of the DoF value and the upper bound
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on H (Z
b[n]
× |G) − H (Z

b[n]
! |G) in terms of the aligned image

sets bound, will give us our upper bound on the DoF.

B. Bounding H (Z
b[n]
× |G) − H (Z

b[n]
! |G) from below

In order to derive a lower bound on H (Z
b[n]
× |G) −

H (Z
b[n]
! |G), we will derive an upper bound on the negative

term H (Z
b[n]
! |G) and a lower bound on the positive term

H (Z
b[n]
× |G). These bounds are based on alignment and conflict

graphs, i.e., the topological interference management perspec-

tive.

1) Bounding H (Z
b[n]
! |G) From Above: Let us first bound the

terms H (L
b[n]
i! (X̄ i,0, X̄ i,li )|G). Note that ∀ j ∈ {0, · · · , li − 1},

H (L
b[n]
i! (X̄ i, j , X̄ i, j+1)|G) ≤ (1 − α)n log(P̄)

This is because Wi, j , Wi, j+1 are connected by an alignment

edge, i.e., both messages cause interference at a receiver where

neither is desired. Since α dimensions must be left interference

free for the desired message, the collective interference at

this receiver from Wi, j , Wi, j+1, i.e., H (L
b[n]
i! (X̄ i, j , X̄ i, j+1)|G)

must have no more than (1 − α) DoF.

Further, using the functional form of submodularity prop-

erty of the entropy function for arbitrary random variables

U1, U2, U3,

H (U1, U2, U3) + H (U1 + U2 + U3)

≤ H (U1 + U2, U3) + H (U1, U2 + U3) (12)

and for independent U1, U2, U3,

H (U2) + H (U1 + U2 + U3)

≤ H (U1 + U2) + H (U2 + U3) (13)

let us proceed as follows (as usual, o(log(P)) terms that are

inconsequential for DoF are suppressed),

H (L
b[n]
1! (X̄ i,0, X̄ i,1)|G) ≤ n(1 − α) log(P̄) (14)

H (L
b[n]
1! (X̄ i,0, X̄ i,2)|G) ≤ H (L

b[n]
1! (X̄ i,0, X̄ i,1)|G)

+H (L
b[n]
1! (X̄ i,1, X̄ i,2)|G)−H (X̄

[n]
i,1 )

≤
(

2(1 − α) − α

)

n log(P̄), (15)

H (L
b[n]
1! (X̄ i,0, X̄ i,3)|G) ≤ H (L

b[n]
1! (X̄ i,0, X̄ i,2)|G)

+H (L
b[n]
1! (X̄ i,2, X̄ i,3)|G)−H (X̄

[n]
i,2 )

≤
(

3(1 − α) − 2α

)

n log(P̄), (16)

...

H (L
b[n]
1! (X̄ i,0, X̄ i,li )|G) ≤

(

li (1 − α) − (li − 1)α
)

n log(P̄)

(17)

Finally, because X i, j are all independent, we have the bound,

H (Z
b[n]
! |G) =

m
∑

i=1

H (L
b[n]
i! (X̄ i,0, X̄ i,li )|G) (18)

≤
(

l!(1 − 2α) + mα

)

n log(P̄) (19)

where l! ! l1 + l2 + · · · + lm .

2) Bounding H (Z
b[n]
× |G) From Below: For this, we need

to bound the terms H (L
b[n]
i× (X̄ i,li , X̄ i+1,0)|G). Recall that the

messages were chosen such that if Wi ̸= W ′
i , then W ′

i = Wi,li

conflicts with Wi+1 = Wi+1,0. Since conflicting messages

cannot align, we must have

H (L
b[n]
i× (X̄ i,li , X̄ i+1,0)|G) ≥ 2αn log(P̄) (20)

On the other hand, if Wi = W ′
i , then Wi = Wi,0 conflicts

with Wi+1 = Wi+1,0 , and W ′′
i = Wi,li = Wi,1 is connected to

Wi = Wi,0 with an alignment edge. Therefore, we have the

following bounds.

H (L
b[n]
i× (X̄ i,1, X̄ i+1,0)|G)

≥ H (L
b[n]
i× (X̄ i,0, X̄ i+1,0)|G)

−H (L
b[n]
i! (X̄ i,1, X̄ i,0)|G) + H (X̄

[n]
i,1 )

≥ 2αn log(P̄) − n(1 − α) log(P̄) + αn log(P̄)

=
(

4α − 1
)

n log(P̄) (21)

Finally, because X i, j are all independent, we have the bound,

H (Z
b[n]
× |G) =

m
∑

i=1

H (L
b[n]
i× (X̄ i,li , X̄ i+1,0)|G) (22)

≥
(

2αm1 + (4α − 1)m2

)

n log(P̄)

where

m1 !
∑

i∈{1,2,··· ,m},Wi ̸=W ′
i

1 (23)

m2 !
∑

i∈{1,2,··· ,m},Wi=W ′
i

1 (24)

m = m1 + m2 (25)

Combining the bounds obtained for H (Z
b[n]
× |G) and

H (Z
b[n]
! |G), we have

H (Z
b[n]
× |G) − H (Z

b[n]
! |G)

≥
(

2αm1 + (4α − 1)m2 − mα + (2α − 1)l!

)

×n log(P̄) (26)

Note that if we set α = 1/2, then

H (Z
b[n]
× |G) − H (Z

b[n]
! |G) ≥

(m

2

)

n log(P̄) (27)

C. Bounding H (Z
b[n]
× |G) − H (Z

b[n]
! |G) From Above: Aligned

Image Sets

This is where the AIS argument is invoked. The steps

that are essentially identical to [11] are summarized here for

the sake of completeness. The main novelty appears in the

part (63)-(75).

H (Z
b[n]
× |G) − H (Z

b[n]
! |G) ≤

(m − 1

2

)

n log(P̄) (28)
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1) Replacing Zb
× With Z×: While Zb

× is comprised of

bounded density linear combinations, the bound that we derive

in this section will be shown in a stronger sense, i.e., it

holds for arbitrary linear combinations. So we will bound

H (Z
[n]
× ) − H (Z

b[n]
! |G) where

Z× = (L1×(X̄1,l1, X̄2,0), · · · , Lm×(X̄m,lm , X̄1,0)). (29)

L i× are arbitrary linear combinations, and the codewords X̄ i, j

are designed with full knowledge of these combinations. Note

that Z
b[n]
! remains unchanged, i.e., it is still comprised of

bounded density linear combinations L
b[n]
i! , as before. So the

codewords may depend only on the (bounded) probability

density functions of the combining coefficients G but are

independent of the actual realizations of the bounded density

combining coefficients.

2) Functional Dependence: There are multiple codewords

that may produce the same Z
[n]
× , one of which is cho-

sen according to a random choice function L. Conditioning

reduces entropy, so H (Z
b[n]
! |G) ≥ H (Z

b[n]
! |G,L), and the

minimum over L (say the minimum corresponds to L = L∗)

is smaller than or equal to the average over L. Our goal is

to maximize H (Z
[n]
× ) − H (Z

b[n]
! |G). Setting L = L∗ does

not change the first term while it can only reduce the second

term. Therefore, without loss of generality we will assume

henceforth that L = L∗, i.e., all the codewords X̄
[n]
i, j are

functions of Z
[n]
× . Note that this implies that Z

b[n]
! is a function

of (Z
[n]
× ,G). When needed, for clarity we may highlight this

functional dependence by writing X̄
[n]
i, j as X̄

[n]
i, j (Z

[n]
× ) and Z

b[n]
!

as Z
b[n]
! (Z

[n]
× ,G).

3) Aligned Image Set:

H (Z
[n]
× , Z

b[n]
! |G) = H (Z

[n]
× ) + H (Z

b[n]
! |Z

[n]
× ,G)

= H (Z
[n]
× ) (30)

H (Z
[n]
× , Z

b[n]
! |G) = H (Z

b[n]
! |G) + H (Z

[n]
× |Z

b[n]
! ,G)

(31)

⇒ H (Z
[n]
× ) − H (Z

b[n]
! |G) = H (Z

[n]
× |Z

b[n]
! ,G)

≤ E
Z

b[n]
! ,G

log |S′(Z
b[n]
! ,G)| (32)

We used functional dependence in (30). Given Z
b[n]
! and G,

define S′(Z
b[n]
! ,G) as the set of feasible codewords, or equiv-

alently the set of feasible Z
[n]
× (because of functional depen-

dence). In (32) we used the fact that the uniform distribution

maximizes entropy.

For the aligned images arguments, it is more convenient to

index the aligned image sets by Z
[n]
× instead of Z

b[n]
! values.

This is accomplished as follows.

H (Z
[n]
× |Z

b[n]
! ,G)

≤ E
Z

b[n]
! ,G

log |S′(Z
b[n]
! ,G)| (33)

= EG

∑

z
b[n]
! ∈Z [n]

!

P(Z
b[n]
! = z

b[n]
! |G) log |S′(zb[n]

! ,G)|

(34)

= EG

∑

z
b[n]
! ∈Z [n]

!

∑

z
[n]
× ∈Z [n]

× :Z
b[n]
! (z

[n]
× ,G)=z

b[n]
!

P(Z
[n]
× = z

[n]
× |G) log |S′(zb[n]

! ,G)| (35)

= EG

∑

z
b[n]
! ∈Z [n]

!

∑

z
[n]
× ∈Z [n]

× :Z
b[n]
! (z

[n]
× ,G)=z

b[n]
!

P(Z
[n]
× = z

[n]
× ) log |S′(zb[n]

! ,G)| (36)

= EG

∑

z
b[n]
! ∈Z [n]

!

∑

z
[n]
× ∈Z [n]

× :Z
b[n]
! (z

[n]
× ,G)=z

b[n]
!

P(Z
[n]
× = z

[n]
× ) log |S(z

[n]
× ,G)| (37)

= EG

∑

z
[n]
× ∈Z [n]

×

P(Z
[n]
× = z

[n]
× ) log |S(z

[n]
× ,G)| (38)

=
∑

z
[n]
× ∈Z [n]

×

P(Z
[n]
× = z

[n]
× )EG log |S(z

[n]
× ,G)| (39)

≤
∑

z
[n]
× ∈Z [n]

×

P(Z
[n]
× = z

[n]
× ) log EG |S(z

[n]
× ,G)| (40)

≤ max
z
[n]
× ∈Z [n]

×

log EG |S(z
[n]
× ,G)| (41)

= log EG |S(ν[n],G)| (42)

= log

⎛

⎜
⎝

∑

λ∈Z [n]
×

P(λ[n] ∈ S(ν[n],G))

⎞

⎟
⎠ (43)

where Z
[n]
! and Z

[n]
× are defined as the support of the random

variables Z
b[n]
! and Z

[n]
× , respectively. In (36) we used the

fact that Z
[n]
× is independent of G. This is because it depends

only on the codewords, which are chosen independent of the

realizations of G. The aligned image set S(Z
[n]
× ,G) is defined

as follows.

S(Z
[n]
× ,G) = {λ[n] ∈ Z

[n]
× such that Z

b[n]
! (λ,G)

= Z
b[n]
! (Z×,G)} (44)

Jensen’s inequality was used to obtain (40). Equation (42) is

based on the following definition of ν
[n],

ν
[n] = arg max

z
[n]
× ∈Z [n]

×

log EG |S(z
[n]
× ,G)|. (45)

4) Bounding the Probability of Alignment P(λ[n] ∈
S(ν[n],G)): Consider two distinct realizations of Z

[n]
× , denoted

by λ
[n] and ν

[n]. We wish to bound the probability that they

align, i.e., that they produce the same Z
b[n]
! . Let us denote the

corresponding codewords realizations X̄
[n]
i, j by λ

[n]
i, j and ν

[n]
i, j ,

respectively.

λ
[n] = (L

[n]
1×(λ1,l1 ,λ2,0), L

[n]
2×(λ2,l2 ,λ3,0),

· · · , L
[n]
m×(λm,lm ,λ1,0)) (46)

! (λ
[n]
1 ,λ

[n]
2 , · · · ,λ[n]

m ), (47)

ν
[n] = (L

[n]
1×(ν1,l1 , ν2,0), L

[n]
2×(ν2,l2 , ν3,0),

· · · , L
[n]
m×(νm,lm , ν1,0)) (48)

! (ν
[n]
1 , ν

[n]
2 , · · · , ν[n]

m ) (49)

As required for the aligned images argument, our goal in this

section is to bound P(λ ∈ S(ν[n],G)) from above, with an

expression involving the |λi (t) − νi (t)| terms.
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Given G, if λ
[n] ∈ S(ν[n],G), then

Z
b[n]
! (λ[n],G) = Z

b[n]
! (ν[n],G) (50)

i.e.,

(L
b[n]
1! (λ1,0,λ1,l1), L

b[n]
2! (λ2,0,λ2,l2 ), · · · , L

b[n]
m!(λm,0,λm,lm ))

=(L
b[n]
1! (ν1,0, ν1,l1), L

b[n]
2! (ν2,0, ν2,l2 ), · · ·, L

b[n]
m!(νm,0, νm,lm )).

(51)

So for all t ∈ [n], and for all i ∈ [m], we have,

⌊gi,0(t)λi,0(t)⌋ + ⌊gi,li (t)λi,li (t)⌋
= ⌊gi,0(t)νi,0(t)⌋ + ⌊gi,li (t)νi,li (t)⌋ (52)

⇒ ⌊gi,0(t)λi,0(t)⌋ − ⌊gi,0(t)νi,0(t)⌋
= ⌊gi,li (t)νi,li (t)⌋ − ⌊gi,li (t)λi,li (t)⌋

︸ ︷︷ ︸

"ai (t)

(53)

gi,0(t)
(

λi,0(t) − νi,0(t)
)

∈ (ai (t) − 2, ai (t) + 2) (54)

Thus, conditioned on any given value of gi,li (t), alignment

of λ
[n] and ν

[n] requires that gi,0(t) must take values in an

interval of length less than or equal to 4/|λi,0(t) − νi,0(t)|.
3

Similarly, conditioned on any given value of gi,0(t), alignment

requires that gi,li (t) must take values in an interval of length

less than or equal to 4/|λi,li (t) − νi,li (t)|. From each pair of

channels gi,0(t) and gi,li (t), let us define ḡi (t) as the one that

corresponds to the smaller interval, while the other is identified

as ḡc
i (t). Let us also define Bi, j (t) which will be useful at a

later stage of this proof. Define

Bi, j (t) ! max
(

|λi,li (t) − νi,li (t)|, |λ j,0(t) − ν j,0(t)|
)

(ḡi (t), ḡc
i (t))

!

{

(gi,0(t), gi,li (t)) if Bi,i (t) = |λi,0(t) − νi,0(t)|

(gi,li (t), gi,0(t)) if Bi,i (t) ̸= |λi,0(t) − νi,0(t)|

(55)

Thus, ∀i ∈ [m],∀t ∈ [n], for λ
[n] ∈ S(ν[n],G), it must be true

that conditioned on any value of ḡc
i (t), the bounded density

random variable ḡi(t) takes values in an interval δi (t) of length

4/Bi,i (t). Therefore, the bounded density assumption on G,

leads to the following bound on the probability of alignment.

P(λ[n] ∈ S(ν[n],G))

≤
∫

· · ·

∫

∗
f (ḡc

∗)

(∫

· · ·

∫

ḡ∗∈δ∗

f (ḡ∗ | ḡc
∗)dḡ∗

)

dḡc
∗

(56)

≤
∫

· · ·

∫

∗
f (ḡc

∗)

⎛

⎜
⎜
⎝

∏

i∈[m]

∏

t∈[n]
Bi,i (t) ̸=0

4 fmax

Bi,i (t)

⎞

⎟
⎟
⎠

dḡc
∗ (57)

=
∏

i∈[m]

∏

t∈[n]
Bi,i (t) ̸=0

4 fmax

Bi,i (t)
(58)

≤ (4 fmax)
mn

∏

i∈[m]

∏

t∈[n]

1

B+
i,i (t)

(59)

3If λi,0(t) = νi,0(t) then the interval is of infinite length, which renders the
constraint inactive.

where B+
i, j (t) ! max(1, Bi, j (t)), i.e., when Bi, j (t) = 0 then

B+
i, j (t) = 1. (59) holds because fmax ≥ 1. Thus, we have a

bound on P(λ[n] ∈ S(ν[n],G)) in terms of |λi, j (t) − νi, j (t)|

terms. Recall that λi, j (t) and νi, j (t) are the realizations of

codeword symbols X̄ i, j (t). However, for the aligned images

argument, we need the bound in terms of |λi (t)−νi (t)| terms,

where λi (t) and νi (t) are the corresponding realizations of

the elements of Z×. This is accomplished through a novel

argument as follows.

For all i ∈ [m], and ∀t ∈ [n],

λi (t) − νi (t)

= ⌊hi,li (t)λi,li (t)⌋ + ⌊hi+1,0(t)λi+1,0(t)⌋
−⌊hi,li (t)νi,li (t)⌋ − ⌊hi+1,0(t)νi+1,0(t)⌋ (60)

⇒ |λi (t) − νi (t)|

≤ 2" max
(

|λi,li (t) − νi,li (t)|, |λi+1,0(t) − νi+1,0(t)|
)

+ 2

(61)

= 2"Bi,i+1(t) + 2 (62)

In order to go from B+
i,i (t) terms in (59) to |λi (t) − νi (t)|

terms, we wish to replace the B+
i,i (t) terms with B+

i,i+1(t)

terms. To this end, define

i∗(t) = arg max
i

B+
i,i (t) (63)

which then implies

B+
i∗,i∗+1(t) ≤ B+

i∗,i∗(t), (64)

B+
i∗+1,i∗+2(t) ≤ B+

i∗+1,i∗+1(t)B+
i∗+2,i∗+2(t), (65)

B+
i∗+3,i∗+4(t) ≤ B+

i∗+3,i∗+3(t)B+
i∗+4,i∗+4(t), (66)

... (67)

B+
i∗+m−2,i∗+m−1(t) ≤ B+

i∗+m−2,i∗+m−2(t)B+
i∗+m−1,i∗+m−1(t)

(68)

where (64) follows from (63) and ((65)-(68)) is true as for

any positive integer numbers a, b, c, d we have max(a, b) ≤
max(a, c) max(b, d). The remaining B+

i,i+1(t) terms are

bounded as follows.

B+
i∗+2,i∗+3(t) ≤ P̄ (69)

... (70)

B+
i∗+m−1,i∗(t) ≤ P̄ (71)

Substituting into (59) we have,

P(λ[n] ∈ S(ν[n],G))

≤ (4 fmax)
mn

∏

i∈[m]

∏

t∈[n]

1

B+
i,i (t)

(72)

≤ (4 fmax)
mn

∏

i∈[m],i∈No

∏

t∈[n]

1

B+
i∗+i,i∗+i+1(t)

(73)

≤ P̄n(m−1)/2(4 fmax)
mn

∏

i∈[m]

∏

t∈[n]

1

B+
i,i+1(t)

(74)

where No is defined as the set of odd natural numbers, (73)

follows from ((64)-(68)) and (74) is cocluded from ((69)-(71)).
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Further substituting from (62) we have

P(λ[n] ∈ S(ν[n],G))

≤ P̄n(m−1)/2(4 fmax)
mn

∏

i∈[m]
⎛

⎜
⎜
⎝

∏

t∈[n]
|λi (t)−νi (t)|>2

2"

|λi (t) − νi (t)| − 2

⎞

⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

∏

t∈[n]
|λi (t)−νi (t)|≤2

1

⎞

⎟
⎟
⎠

≤ P̄n(m−1)/2(8" fmax)
mn

∏

i∈[m]
⎛

⎜
⎜
⎝

∏

t∈[n]
|λi (t)−νi (t)|>2

1

|λi (t) − νi (t)| − 2

⎞

⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

∏

t∈[n]
|λi (t)−νi (t)|≤2

1

⎞

⎟
⎟
⎠

(75)

(75) holds because " ≥ 1. Thus, we have our desired bound.

Note that, λi (t) is equal to ⌊hi,li (t)λi,li (t)⌋ + ⌊hi+1,0(t)

λi+1,0(t)⌋ from (46) and (47). Therefore,

|λi (t)| ≤ 2 + 2"P̄ ≤ 3 + ⌊2"P̄⌋, (76)

so the support of λi (t) is contained within

si (t) ! {−3 − ⌊2"P̄⌋, · · · ,−1, 0, 1, · · · , 3 + ⌊2"P̄⌋} (77)

=
{

−P̂, · · · ,−1, 0, 1, · · · , P̂
}

, (78)

where

P̂ ! 3 + ⌊2"P̄⌋. (79)

5) Bounding the Average Size of the Aligned Image Set,

EG |S(ν[n],G)|:

EG |S(ν[n],G)| =
∑

λ[n]∈Z [n]
×

P(λ[n] ∈ S(ν[n],G)) (80)

≤ P̄n(m−1)/2(8" fmax)
mn A (81)

where A is defined in (82)

A =
∑

λ[n]∈Z [n]
×

∏

i∈[m]

⎛

⎜
⎜
⎝

∏

t∈[n]
|λi (t)−νi (t)|>2

1

|λi (t) − νi (t)| − 2

×
∏

t∈[n]
|λi (t)−νi(t)|≤2

1

⎞

⎟
⎟
⎠

(82)

At this point we are ready for the next critical step in the

AIS approach — re-writing a sum of products as a product

of sums. To make this step clear, let us define the following

functions, ∀i ∈ [m], t ∈ [n].

fi,t (x) =

⎧

⎨

⎩

1

|x − νi (t)| − 2
, |x − νi (t)| > 2

1, |x − νi (t)| ≤ 2.
(83)

Using these functions we can express A as

A =
∑

λ1(1)∈s1(1)

· · ·
∑

λ1(n)∈s1(n)

∑

λ2(1)∈s2(1)

· · ·
∑

λ2(n)∈s2(n)

∑

λ3(1)∈s3(1)

· · ·
∑

λm(n)∈sm(n)
(

f1,1(λ1(1)) · · · f1,n(λ1(n)) f2,1(λ2(1))

· · · f2,n(λ2(n)) f3,1(λ3(1)) · · · fm,n(λm(n))
)

=

⎛

⎝

∑

λ1(1)∈s1(1)

f1,1(λ1(1))

⎞

⎠ · · ·

⎛

⎝

∑

λ1(n)∈s1(n)

f1,n(λ1(n))

⎞

⎠

· · ·

⎛

⎝

∑

λm(n)∈sm(n)

fm,n(λm(n))

⎞

⎠ (84)

=
∏

i∈[m]

∏

t∈[n]

⎛

⎝

∑

λi (t)∈si(t)

fi,t (λi (t))

⎞

⎠ (85)

=
∏

i∈[m]

∏

t∈[n]

⎛

⎜
⎜
⎝

∑

λi (t)∈si(t)
|λi (t)−νi (t)|>2

1

|λi (t) − νi (t)| − 2

+
∑

λi (t)∈si(t)
|λi (t)−νi (t)|≤2

1

⎞

⎟
⎟
⎠

(86)

Note that in (84) we re-wrote the sum of products as a product

of sums using a generalization of the simple equality

∑

i∈I, j∈J

ai b j =

(

∑

i∈I

ai

)
⎛

⎝

∑

j∈J

b j

⎞

⎠ . (87)

Substituting into (82) we have,

EG |S(ν[n],G)|

≤ P̄n(m−1)/2(8" fmax)
mn

∏

i∈[m]

∏

t∈[n]
⎛

⎜
⎜
⎝

∑

λi (t)∈si(t)
|λi (t)−νi (t)|>2

1

|λi (t) − νi (t)| − 2
+

∑

λi (t)∈si(t)
|λi (t)−νi (t)|≤2

1

⎞

⎟
⎟
⎠

(88)

Note that
∑

λi (t)∈si(t)
|λi (t)−νi(t)|≤2

1 ≤
∑

λi (t)∈[νi(t)−2:νi (t)+2]

1 = 5 (89)
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and similarly,

∑

λi (t)∈si(t)
|λi (t)−νi (t)|>2

1

|λi (t) − νi (t)| − 2
(90)

≤
∑

λi (t) ∈ [νi (t) − 2 − P̂ : νi (t) − 2 − 1]

∪ [νi (t) + 2 + 1 : νi (t) + 2 + P̂]

1

|λi (t) − νi (t)| − 2
(91)

= 2
∑

p∈[ P̂]

1

p
(92)

where P̂ = 3 + ⌊2"P̄⌋ from (79). Substituting into (88) we

have

EG|S(ν[n],G)|

≤ P̄n(m−1)/2(8" fmax)
mn

×
∏

i∈[m]

∏

t∈[n]

⎛

⎝2
∑

p∈[ P̂]

1

p
+ 5

⎞

⎠ (93)

≤ P̄n(m−1)/2(8" fmax)
mn

×
∏

i∈[m]

∏

t∈[n]

(

2 + 2 log(P̂) + 5
)

(94)

= P̄n(m−1)/2(8" fmax)
mn(7 + 2 log(P̂))mn (95)

We obtain (94) using the fact that the partial sum of a

harmonic series can be bounded above by the log function,

i.e.,
∑n

i=1
1
i

≤ 1 + log n.

6) Concluding the Bound: Substituting into (42), we have

H (Z
[n]
× ) − H (Z

b[n]
! |G)

≤ log EG |S(ν[n],G)|

≤ log
(

P̄n(m−1)/2(8" fmax)
mn(7 + 2 log(P̂))mn

)

=
(m − 1)

2
n log(P̄) + no(log(P̄)) (96)

Comparing with (26) we have a general bound on the sym-

metric DoF per user, α,

(

2αm1 + (4α − 1)m2 − mα + (2α − 1)l!

)

≤
(m − 1)

2
(97)

⇒ α ≤
(

1

2

) (

1 −
1

m + 2m2 + 2l!

)

(98)

7) Discussion: The proof relies on the assumption Tc = 1

as for each t ∈ [n] a separate (involving distinct channel

coefficient variables) constraint, i.e., (54) is derived. So when

Tc = 1, the probability of alignment is bounded by the product

of n terms in (59). It turns out that if we directly extend these

arguments to larger values of coherence time, then the bounds

that we obtain are strictly loose. For example, if we assume

that the coherence time, Tc = 2, then because the channel

coefficient remains the same for two consecutive channel uses,

we are left with separate constraints only for odd values of t .

So, in (72) we must restrict t to only odd values,

P(λ[n] ∈ S(ν[n],G)) ≤ (4 fmax)
mn

∏

i∈[m]

∏

t∈[n],t∈No

1

B+
i,i (t)

(99)

As a consequence, in (83) we have fi,t (x) = 1 for all

t ∈ [n], t /∈ No, so that (85) becomes

A =
∏

i∈[m]

∏

t∈[n]

⎛

⎝

∑

λi (t)∈si(t)

fi,t (λi (t))

⎞

⎠ (100)

=
(

1 + 2P̂
)m⌈ n−1

2 ⌉

×
∏

i∈[m]

∏

t∈[n],t∈No

⎛

⎝

∑

λi (t)∈si(t)

fi,t (λi (t))

⎞

⎠ .

(101)

This in turn contributes an extra m
2

n log(P̄) term on the RHS

of (97), which results in more than 1/2 on the RHS of (98).

Clearly, this bound is strictly loose because it is trivially true

that (even with perfect CSIT), symmetric DoF value is not

more than 1/2. Indeed, the problem of finding tight DoF outer

bounds for particular values of network coherence times larger

than 1 remains a highly non-trivial open problem.

VI. CONCLUSION

A DoF bound sensitive to network coherence time

was obtained. This was accomplished by a novel adapta-

tion ((63)-(75)) of the aligned image sets bound, and closes

several open problems noted previously by Naderializadeh

and Avestimehr [9] and by Gou et al. [10]. An interesting

direction for future work is to determine whether the sym-

metric DoF bound proposed in Theorem 1 continues to be

tight for all K user partially connected interference channels in

general.

APPENDIX

Consider eleven channel uses. Let us denote the kth trans-

mitter and the kth receiver by Tk and Rk for any k ∈ [7]. For

any k ∈ [7], User k’s message Wk is split into messages Wkc

and Wkp , representing common message and private message,

respectively. The common message Wkc and the private mes-

sage Wkp are encoded into independent Gaussian codebooks

Xkc, Xk1p, Xk2p, Xk3p, Xk4p . Each of the codebooks Xkj p and

Xkc carries 1 DoF for any k ∈ [7], j ∈ [4] and are transmitted

with powers

E|Xkj p|
2 = 0.5 (102)

E|Xkc|
2 = 0.5 (103)

For any m ∈ [11], define the vector em as the 11 × 1 vector

with ten zeros and one entry equal to one in its mth row, e.g.,

e3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T . Remember that T1, T2 ∈
A1, T3, T5 ∈ A3 and T4, T7 ∈ A2. From the alignment sets,
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the transmitted signals are,

(Xk(1), Xk(2), · · · , Xk(11))T

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪
⎩

(e4 + e5)Xk1p + e9 Xk2p

+e10 Xk3p + e11 Xk4p + ēXkc k = 1

e5 Xk1p + e9 Xk2p + e10 Xk3p

+e11 Xk4p + e4 Xkc k = 2

e5 Xk1p + e6 Xk2p + e7 Xk3p

+e8 Xk4p + ēXkc k ∈ {3, 5}

e1 Xk1p + e2 Xk2p + e3 Xk3p

+e4 Xk4p + ēXkc k ∈ {4, 7}

e1 Xk1p + e2 Xk2p + e3 Xk3p

+e6 Xk4p + ēXkc k = 6

(104)

where ē is defined as the 11 × 1 vector with eleven entries

equal to one. Now, we claim that Rk decodes the five intended

messages from Tk for any k ∈ [7]. First of all, consider R1.

Recall that, it receives signals from T1, T3 and T5, i.e.,

Y1(t) =
√

PG11(t)X1(t) +
√

PG13(t)X3(t)

+
√

PG15(t)X5(t) + Z1(t) (105)

Thus, from (104), it receives three linear combinations of X1c,

X3c and X5c in the first, second and third channel uses, i.e.,

Y1(1) =
√

PG11(1)X1c +
√

PG13(1)X3c

+
√

PG15(1)X5c + Z1(1) (106)

Y1(2) =
√

PG11(2)X1c +
√

PG13(2)X3c

+
√

PG15(2)X5c + Z1(2) (107)

Y1(3) =
√

PG11(3)X1c +
√

PG13(3)X3c

+
√

PG15(3)X5c + Z1(3) (108)

As the channel coefficients are assumed to be generic,

R1 decodes W1c, W3c and W5c successfully. Reconstructing

the codewords X1c, X3c and X5c from W1c, W3c and W5c

and subtracting contribution of the codewords X1c, X3c and

X5c from the received signal, R1 decodes W1p as it receives

interference-free signals X11p, X12p, X13p, X14p in the 4th ,

9th , 10th and 11th channel uses. Now consider User 3. The

received signal at the third receiver is represented as,

Y3(t) =
√

PG33(t)X3(t) +
√

PG34(t)X4(t)

+
√

PG37(t)X7(t) + Z3(t) (109)

Similar to the decoding for User 1, from (104), it receives

three linear combinations of X3c, X4c and X7c in the 9th , 10th

and 11th channel uses. Thus, R3 decodes W3c, W4c and W7c

successfully and reconstructs the codewords X3c, X4c and X7c

from W3c, W4c and W7c. Subtracting contribution of the code-

words X3c, X4c and X7c from the received signal, R3 is able

to decode its desired signal, i.e., third receiver decodes W3p

as it receives interference-free signals X31p, X32p, X33p, X34p

in the 5th , 6th , 7th and 8th channel uses. All the other users

decode their desired signals similarly, resulting in total 5 DoF

in 11 channel uses per user.
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