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Abstract— Private information retrieval (PIR) is the problem
of retrieving one message out of K messages from N non-
communicating replicated databases, where each database stores
all K messages, in such a way that each database learns no
information about which message is being retrieved. The capacity
of PIR is the maximum number of bits of desired information
per bit of downloaded information among all PIR schemes.
The capacity has recently been characterized for PIR as well
as several of its variants. In every case it is assumed that all
the queries are generated by the user simultaneously. Here we
consider multiround PIR, where the queries in each round are
allowed to depend on the answers received in previous rounds.
We show that the capacity of multiround PIR is the same
as the capacity of single-round PIR. The result is generalized
to also include T -privacy constraints. Combined with previous
results, this shows that there is no capacity advantage from
multiround over single-round schemes, non-linear over linear
schemes or from ε-error over zero-error schemes. However,
we show through an example that there is an advantage in terms
of storage overhead. We provide an example of a multiround,
non-linear, ε-error PIR scheme that requires a strictly smaller
storage overhead than the best possible with single-round, linear,
zero-error PIR schemes.

Index Terms— Private information retrieval, multiple rounds,
capacity, storage overhead.

I. INTRODUCTION

PRIVATE information retrieval (PIR) [1], [2] is one of

the canonical problems in theoretical computer science

and cryptography. The PIR setting involves K messages that

are assumed to be independent, N distributed databases that

are replicated (each database stores all K messages) and non-

colluding (the databases do not communicate with each other),

and a user who desires one of the K messages. A PIR scheme

is any mechanism by which a user may retrieve his desired

message from the databases privately, i.e., without revealing

any information about which message is being retrieved, to any
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individual database. An information theoretic formulation of

PIR guarantees the user’s privacy even if the databases are

computationally unbounded.1 The “rate” of a PIR scheme is

defined as the ratio of the number of bits of desired information

to the total number of bits downloaded by the user from all

the databases. The supremum of achievable rates is defined

to be the capacity of PIR. For K messages and N databases,

the capacity of PIR was characterized recently in [6] as

C =
(

1 + 1/N + 1/N2 + · · · + 1/N K−1
)−1

(1)

The capacity has also been determined for various con-

strained forms of PIR such as LPIR [7] – where mes-

sage lengths can be arbitrary, TPIR [8] – where any set of

up to T databases may collude, RPIR [8] – where robustness

is required against unresponsive databases, SPIR [9] – which

extends the privacy constraint symmetrically to protect both the

user and the databases, MDS-PIR [10] and MDS-SPIR [11] –

variants of PIR and SPIR, respectively, where each message

is separately MDS coded.2

A common theme in these results is that there is no capacity

advantage of non-linear schemes over linear schemes, or of

�-error schemes over zero-error schemes. This is a matter

of some curiosity because the necessity of non-linear coding

schemes has often been a key obstacle in network coding

capacity problems [13]–[16], and the capacity benefit of �-

error schemes over zero-error schemes for network coding

problems in general [17] remains one of the key unresolved

mysteries — with direct connections to the edge-removal

question [18] and the existence of strong converses [19] in

network information theory. Motivated by this curiosity, in this

work we explore another important variant of PIR – multiround

PIR (MPIR). Our contributions are summarized next.

The classical PIR setting assumes that all the queries are

simultaneously generated by the user. This assumption is also

made in [6]. However, such a constraint is not essential to

PIR. What if this constraint is relaxed, i.e., multiple rounds

of queries and answers are allowed, such that the queries

1There is also a widely studied cryptographic formulation of PIR, where
the user’s privacy is guaranteed only against computationally bounded data-
bases [3]–[5].

2As a caveat, we note that separate MDS coding of each message is a
restrictive assumption. Consider the setting with K = 2 messages, N = 3
databases and the storage size of each database is equal to the size of one
message. If separate MDS codes are employed for each message, then the
maximum rate (capacity) is equal to 3/5 [10]. However, [12, Example 2]
shows that rate 2/3 (> 3/5) is achievable with a storage code that jointly
encodes both messages.
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in each round of communication are generated by the user

with the knowledge of the answers from all previous rounds?

The resulting variant of the PIR problem is the multiround

PIR (MPIR) problem (also known as interactive PIR [20],

[21]). Multiround PIR has been noted as an intriguing possi-

bility in several prior works [2], [20], [21]. However, it is not

known whether there is any benefit of MPIR over single-round

PIR. Answering this question from a capacity perspective

is the first contribution of this work. Specifically, we show

that the capacity of MPIR is the same as the capacity of

PIR, i.e., both are given by (1). Combined with previous

results, this shows that there is no capacity advantage from

multiround over single-round schemes, non-linear over linear

schemes or from �-error over zero-error schemes. Furthermore,

we show that this is true even with T -privacy constraints.

To complement the capacity analysis, we consider another

metric of interest – storage overhead. Classical PIR assumes

replicated databases, i.e., each database stores all the messages.

For larger datasets, replication schemes incur substantial stor-

age costs. Coding has been shown to be an effective way to

reduce the storage costs in distributed data storage systems.

Applications of coding to reduce the storage overhead for

PIR have attracted attention recently [10]–[12], [22]–[28].

In this context, our main contribution is an example (N = 2

databases, K = 2 messages) of a multiround, non-linear,

�-error PIR scheme that achieves a strictly smaller storage

overhead than the best possible with a single-round, linear,

zero-error scheme. The simplicity of the scheme and the

N = K = 2 setting makes it an attractive point of reference

for future work toward understanding the role of linear versus

non-linear schemes, zero-error versus �-error capacity, and

single-round versus multiround communications. Interestingly,

the scheme reveals that coded storage is useful not only for

reducing the storage overhead, but also it has a surprising

benefit of enhancing the privacy of PIR.

Notation: For n1, n2 ∈ Z, n1 ≤ n2, define the notation

[n1 : n2] as the set {n1, n1 + 1, · · · , n2}, A(n1 : n2) as

the vector (A(n1), A(n1 + 1), · · · , A(n2)) and An1:n2 as the

vector (An1, An1+1, · · · , An2). In this paper, we follow the

convention that for queries and answers, sub-scripts denote

the database index, super-scripts denote the message index

and parentheses denote the communication round index. When

n1 > n2, [n1 : n2] is a null set and A(n1 : n2), An1:n2 are

null vectors. For an index set T = {i1, i2, · · · , in} such that

i1 < i2 < · · · < in , the notation AT represents the vector

(Ai1 , Ai2 , · · · , Ain ). The notation X ∼ Y is used to indicate

that X and Y are identically distributed.

II. PROBLEM STATEMENT

Let us start with a general problem statement that can

then be specialized to various settings of interest. Consider

K independent messages W1, · · · , WK , each comprised of L

i.i.d. uniform bits.

H (W1, · · · , WK ) = H (W1) + · · · + H (WK ), (2)

H (W1) = · · · = H (WK ) = L . (3)

There are N databases. Let Sn denote the random variable that

represents the information stored at the nth database.

H (Sn|W1, W2, · · · , WK ) = 0, ∀n ∈ [1 : N]. (4)

Define the storage overhead α as the ratio of the total amount

of storage used by all databases to the total amount of data.3

α
4
=

∑N
n=1 H (Sn)

K L
. (5)

For replication based schemes, each database stores all K

messages, so Sn = (W1, W2, · · · , WK ), H (Sn) = K L, and

the storage overhead, α = N .

A user privately generates θ uniformly from [1 : K ] and

wishes to retrieve Wθ while keeping θ a secret from each

database.

Prior works on capacity of PIR and its variants make cer-

tain (implicitly justified) assumptions of deterministic behav-

ior, e.g., that the answers provided by the databases are

deterministic functions of queries and messages. Here we will

follow, instead, an explicit formulation. We allow randomness

in the strategies followed by the user and the databases. This

is accomplished by representing the actions of the user and

the databases as functions of random variables. Let us use

F to denote a random variable privately generated by the

user, whose realization is not available to the databases (the

distribution of F could be made public to all databases).

Similarly, G is a random variable that determines the random

strategies followed by the databases, and whose realizations

are assumed to be known to all the databases4 and the user

without loss of generality. F and G take values over the set of

all deterministic strategies that the user or the databases can

follow, respectively, associating each strategy with a certain

probability. F and G are generated offline, i.e., before the

realizations of the messages or the desired message index are

known. Since these random variables are generated a-priori,

we must have

H (θ, F, G, W1, · · · , WK )

= H (θ) + H (F) + H (G) + H (W1) + · · · + H (WK ). (6)

The multiround PIR scheme proceeds as follows. Suppose

θ = k. In order to retrieve Wk , k ∈ [1 : K ] privately,

the user communicates with the databases over 0 rounds.

In the first round, the user privately generates N random

queries, Q
[k]
1 (1), Q

[k]
2 (1), · · · , Q

[k]
N (1).

H (Q
[k]
1 (1), Q

[k]
2 (1), · · · , Q

[k]
N (1)|F) = 0, ∀k ∈[1 : K ]. (7)

The user sends query Q
[k]
n (1) to the nth database, ∀n ∈ [1 : N].

Upon receiving Q
[k]
n (1), the nth database generates an answer-

ing string A
[k]
n (1). Without loss of generality, we assume

3Perfect compression may not be possible for arbitrary L , especially when
L is small. However, since in this work we consider the Shannon theoretic
formulation where the message size is large, i.e., L → ∞, we have defined
storage overhead using the entropy of Sn which is achievable in this regime.

4One might wonder if we could allow each database to have its own random
strategy (determined by a random variable Gi ). We note that in this case,
we can define G = (G1, · · · GN ) such that the constraints in this paper all
continue to hold (i.e., (8), (10), (11), (13)) and the converse in Theorem 1
still applies. Thus, there is no potential gain of localized Gi .
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that the answering string is a function of Q
[k]
n (1), the stored

information Sn , and the random variable G.

H (A[k]
n (1)|Q[k]

n (1), Sn, G) = 0. (8)

Each database returns to the user its answer A
[k]
n (1).

Proceeding similarly,5 over the γ th round, γ ∈ [2 : 0],

the user generates N queries Q
[k]
1 (γ ), · · · , Q

[k]
N (γ ), which are

functions of previous queries and answers and F,

H (Q
[k]
1:N (γ )|Q

[k]
1:N (1 : γ − 1), A

[k]
1:N (1 : γ − 1), F) = 0. (9)

The user sends query Q
[k]
n (γ ) to the nth database, which

generates an answer A
[k]
n (γ ) and returns A

[k]
n (γ ) to the user.

The answer is a function of all queries received so far,

the stored information Sn , and G,

H (A[k]
n (γ )|Q[k]

n (1 : γ ), Sn, G) = 0. (10)

At the end of 0 rounds, from all the information that is now

available to the user (A
[k]
1:N (1 : 0), Q

[k]
1:N (1 : 0), F), the user

decodes the desired message Wk according to a decoding

rule that is specified by the PIR scheme. Let Pe denote the

probability of error achieved with the specified decoding rule.

To protect the user’s privacy, the K possible values of

the desired message index should be indistinguishable from

the perspective of any subset T ⊂ [1 : N] of at most T

colluding databases, i.e., the following privacy constraint must

be satisfied.

[T -Privacy] (Q
[k]

T
(1 : 0), A

[k]

T
(1 : 0), G, ST )

∼ (Q
[k0]

T
(1 : 0), A

[k0]

T
(1 : 0), G, ST ) (11)

∀k, k 0 ∈ [1 : K ], ∀T ⊂ [1 : N], |T | = T .

The PIR rate characterizes how many bits of desired infor-

mation are retrieved per downloaded bit and is defined as

follows:6

R =
L

D
(12)

where D is the expected value7 of the total number of bits

downloaded by the user from all the databases over all 0

rounds.

5One might wonder if the setting can be further generalized by allowing
sequential queries, i.e., allowing the query to each database to depend not
only on the answers received from previous rounds, but also on the answers
received from other databases queried previously within the same round.
We note that sequential queries are already contained in our multiround
framework, e.g., by querying only one database in each round (sending null
queries to the remaining databases).

6In this work, the metric we consider is rate (download cost), while the
upload cost is ignored. We note that in the single round setting [6], the upload
cost is negligible in the large message size regime because the same query can
be reused multiple times. However, in the multi-round setting as considered in
this work, the queries depend on previous answers so that the same query may
not be reused. Therefore, as a caveat we note that for multi-round schemes
the upload cost may not be negligible.

7Alternatively, D may be defined as the maximum download needed by the
PIR scheme which (similar to choosing zero-error instead of �-error) weakens
the converse and strengthens the achievability arguments in general. The
capacity characterizations in this work, as well as previous works in [6], [8],
and [9] hold under either definition. This is because in every case, the upper
bounds allow average download D, while the achievability only requires
maximum download D.

A rate R is said to be �-error achievable if there exists a

sequence of PIR schemes, indexed by L, each of rate greater

than or equal to R, for which Pe → 0 as L → ∞.8 Note that

for such a sequence of PIR schemes, from Fano’s inequality

we must have ∀k ∈ [1 : K ] :

[Correctness]

o(L) = H (Wk|A
[k]
1:N (1 : 0), Q

[k]
1:N (1 : 0), F, G)

(7)(9)
= H (Wk|A

[k]
1:N (1 : 0), F, G), (13)

where any function of L, say f (L) is said to be o(L) if

limL→∞ f (L)/L = 0. The supremum of �-error achievable

rates is called the �-error capacity C� .

A rate R is said to be zero-error achievable if there

exists (for some L) a PIR scheme of rate greater than or equal

to R for which Pe = 0. The supremum of zero-error achievable

rates is called the zero-error capacity Co. From the definitions,

it is evident that

Co ≤ C� . (14)

III. RESULTS

There are two main contributions in this work, summarized

in the following sections.

A. Capacity Perspective

We first consider the capacity benefits of multiple rounds

of communication in the classical setting where each data-

base stores all messages, i.e., storage is unconstrained.

We present our result in the general context of multiround

PIR with T -privacy constraints (MTPIR). The MTPIR setting

is obtained from the general problem statement by relaxing

the storage overhead constraints, i.e.,

Sn = (W1, W2, · · · , WK ),∀n ∈ [1 : N]

α = N

i.e., each database stores all the messages (replication). The

following theorem presents the main result.

Theorem 1: The capacity of MTPIR

Co = C� =

(

1 + T/N + T 2/N2 + · · · + T K−1/N K−1
)−1

.

The converse proof of Theorem 1 is presented in Section IV.

Achievability follows directly from [8]. The following obser-

vations place the result in perspective.

1) The capacity of MTPIR matches the capacity of TPIR

found in [8], i.e., multiple rounds do not increase

capacity.

2) Setting T = 1 gives us the capacity of multiround

PIR (MPIR) without T -privacy constraints. The capacity

of MPIR matches the capacity of PIR found in [6],

i.e., multiple rounds do not increase capacity.

3) Since the achievability proofs in [6] and [8] only require

linear and zero-error schemes, there is no capacity

8Equivalently, for any � > 0, there exists a finite L� such that Pe < � for
all L > L� .
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benefit of multiple rounds over single-round schemes,

non-linear over linear schemes, or �-error over zero-error

schemes.

4) For all N, K , T, 0 the converse proof of Theorem 1

generalizes the converse proofs of [6] and [8]. Remark-

ably, it requires only Shannon information inequalities,

i.e., sub-modularity of entropy.

5) Since the capacity metric focuses only on the download

cost, it does not penalize multi-round PIR schemes for

their potentially non-negligible upload cost relative to

single-round PIR schemes. Theorem 1 shows that even

with the ability to have unlimited uploads for free (which

particularly favors multi-round schemes) multi-round

PIR offers no capacity advantage over single-round PIR.

B. Storage Overhead Perspective

As summarized above, our first result shows that in a broad

sense – with or without colluding databases – there is no

capacity benefit of multiple rounds over single-round commu-

nication, �-error over zero-error schemes or non-linear over

linear schemes for PIR. This pessimistic finding may lead one

to believe that there is little reason to further explore interactive

communication, non-linear schemes or �-error schemes for

PIR. As our main contribution in this section, we offer

an optimistic counterpoint by looking at the PIR problem

from the perspective of storage overhead instead of capacity.

The counterpoint is made through a counterexample. The

counterexample is quite remarkable in itself as it shows from

a storage overhead perspective not only the advantage of a

multiround PIR scheme over all single-round PIR schemes, but

also of a non-linear PIR scheme over all linear PIR schemes,

and an �-error scheme over all zero-error schemes.

For a counterexample the simplest setting is typically the

most interesting. Therefore, in this section we will only

consider the simplest non-trivial setting, with K = 2 messages,

N = 2 databases, and T = 1, i.e., no collusion among

databases. Recall that for this setting the capacity is C = 2/3.

For our counterexample we explore the minimum storage

overhead that is needed to achieve the rate 2/3.

Theorem 2: For K = 2, N = 2, T = 1, and for rate 2/3,

1) there exists a multiround, non-linear and �-error PIR

scheme with storage overhead

α = 3/4 + 3/8 log2 3

which is less than 3/2.

2) the storage overhead of any single-round, linear and

zero-error PIR scheme is

α ≥ 3/2

The achievability arguments, including the multiround, non-

linear and �-error PIR scheme that proves the first part

of Theorem 2 are presented in this section. The proof of

the second claim notably utilizes Ingleton’s inequality, which

goes beyond submodularity, and is presented in Section V.

1) A Multiround, Non-Linear, and �-Error PIR Scheme for

K = 2, N = 2, T = 1: Define w1, w2 as two independent

uniform binary random variables. Further, define

x1 = w1 ∧ w2 (15)

x2 = (¬w1) ∧ (¬w2) (16)

y1 = w1 ∧ (¬w2) (17)

y2 = (¬w1) ∧ w2 (18)

where ∧ and ¬ are the logical AND and NOT operators. Note

the following,

x1 = 1 ⇒ (w1, w2) = (1, 1) (19)

x2 = 1 ⇒ (w1, w2) = (0, 0) (20)

x1 = 0 ⇒ (w1, w2) = (y1, y2) (21)

x2 = 0 ⇒ (w1, w2) = (¬y2,¬y1) (22)

For ease of exposition, consider first the case where each

message is only one bit long. In this case, the messages

W1, W2, directly correspond to w1, w2, respectively. Denote

the first database as DB1 and the second database as DB2.

Regardless of whether the user desires W1 or W2, he flips a pri-

vate fair coin, and requests the value of either x1 (head) or x2

(tail) from DB1. If the answer is 1, then according to (19)

and (20) the user knows the values of both w1, w2 and no

further information is requested from DB2. If the answer is 0,

then the user proceeds as follows.

• If x1 = 0 and W1 is desired, ask DB2 for the value of

y1. Retrieve w1 = y1.

• If x1 = 0 and W2 is desired, ask DB2 for the value of

y2. Retrieve w2 = y2.

• If x2 = 0 and W1 is desired, ask DB2 for the value of

y2. Retrieve w1 = ¬y2.

• If x2 = 0 and W2 is desired, ask DB2 for the value of

y1. Retrieve w2 = ¬y1.

Note that in order to answer the user’s queries, DB1 only

needs to store (x1, x2), and DB2 only needs to store

(y1, y2). This observation is the key to not only the reduced

storage overhead, but also the enhanced privacy of this

scheme.

Further, in preparation for the proofs that follow, let us

define another binary random variable u, which takes the value

u = 0 if no response is needed from DB2, and the value u = 1

otherwise. Note that u = 0 implies that (y1, y2) = (0, 0).

On the other hand, if u = 1, then (y1, y2) takes the values

(0, 0), (1, 0), (0, 1), each with probability 1/3. Therefore,

H (y1, y2|u)

= 1/4 × H (y1, y2|u = 0) + 3/4 × H (y1, y2|u = 1) (23)

= 1/4 × 0 + 3/4 × H (1/3, 1/3, 1/3) = 3/4 log2 3 (24)

The correctness of the scheme is obvious from (19)-(22).

Let us verify that the scheme is private. Start with DB1. The

query to DB1 is equally likely to be x1 or x2, regardless of the

desired message index and the message realizations. There-

fore, DB1 learns nothing about which message is retrieved.

Next consider DB2. Let us prove that (Q
[1]
2 , y1, y2) ∼
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(Q
[2]
2 , y1, y2).

(θ = 1) (θ = 2)

(Q
[1]
2 , y1, y2) Prob.

(∅, 0, 0) 1/4

(“y1”, 0, 0) 1/8

(“y2”, 0, 0) 1/8

(“y1”, 0, 1) 1/8

(“y2”, 0, 1) 1/8

(“y1”, 1, 0) 1/8

(“y2”, 1, 0) 1/8

∼

(Q
[2]
2 , y1, y2) Prob.

(∅, 0, 0) 1/4

(“y1”, 0, 0) 1/8

(“y2”, 0, 0) 1/8

(“y1”, 0, 1) 1/8

(“y2”, 0, 1) 1/8

(“y1”, 1, 0) 1/8

(“y2”, 1, 0) 1/8

where the double quote notation around a random variable

represents the query about its realization. The computation of

the joint distribution values is straightforward. We present the

derivation here for one case. All other cases follow similarly.

From the law of total probability, we have

Pr
(

(Q
[1]
2 , y1, y2) = (“y1”, 0, 1)

)

= Pr
(

(Q
[1]
2 , y1, y2) = (“y1”, 0, 1)| (Q

[1]
1 , w1, w2)

= (“x1”, 0, 1)
)

× Pr
(

(Q
[1]
1 , w1, w2) = (“x1”, 0, 1)

)

+ Pr
(

(Q
[1]
2 , y1, y2) = (“y1”, 0, 1)| (Q

[1]
1 , w1, w2)

= (“x2”, 0, 1)
)

× Pr
(

(Q
[1]
1 , w1, w2) = (“x2”, 0, 1)

)

(25)

= 1 × 1/8 + 0 × 1/8 = 1/8 (26)

Similarly,

Pr
(

(Q
[2]
2 , y1, y2) = (“y1”, 0, 1)

)

= Pr
(

(Q
[2]
2 , y1, y2) = (“y1”, 0, 1)| (Q

[2]
1 , w1, w2)

= (“x1”, 0, 1)
)

× Pr
(

(Q
[2]
1 , w1, w2) = (“x1”, 0, 1)

)

+ Pr
(

(Q
[2]
2 , y1, y2) = (“y1”, 0, 1)| (Q

[2]
1 , w1, w2)

= (“x2”, 0, 1)
)

× Pr
(

(Q
[2]
1 , w1, w2) = (“x2”, 0, 1)

)

(27)

= 0 × 1/8 + 1 × 1/8 = 1/8 (28)

Thus, Pr
(

(Q
[1]
2 , y1, y2) = (“y1”, 0, 1)

)

=

Pr
(

(Q
[1]
2 , y1, y2) = (“y1”, 0, 1)

)

. All other cases are

verified similarly. Then, since the distribution of (Q
[θ]
2 , y1, y2)

does not depend on θ , and the answers are only deterministic

functions of the query and the stored information, it follows

that the scheme is private.

Next consider the L length extension of this PIR

scheme, where each desired bit is retrieved indepen-

dently as described above. Under the L length extension,

W1, W2, X1, X2, Y1, Y2, U are sequences of length L, such

that the sequence of tuples [(W1(l), W2(l), X1(l), X2(l),

Y1(l), Y2(l), U(l))]L
l=1 is i.i.d. ∼ (w1, w2, x1, x2, y1, y2, u).

Since the extension is obtained by repeated independent appli-

cations of the PIR scheme described above for retrieving each

message bit, it follows trivially that the extended PIR scheme

is also correct and private. The purpose for the L length

extension, with L → ∞, is to invoke fundamental limits of

data compression which optimize both the data rates and the

storage overhead as explained next.

Let us show that the rate 2/3 is achieved asymptotically

as L → ∞. We take advantage of the fact that the answers

from the databases are not uniformly distributed, and therefore

the sequence of answers from each database is compressible

(i.e., each database codes over the sequence of answers and

returns the compressed answer to the user). With optimal

compression, the user downloads H (1/4, 3/4) bits per desired

message bit from DB1. This is because, for each retrieved

bit, the answer from DB1 takes the value 1 with probability

1/4 and 0 with probability 3/4. From DB2, we download

1/4 × 0 + 3/4 × H (1/3, 2/3) = 3/4 H (1/3, 2/3) bits per

desired message bit, because with probability 1/4 (when

the answer from DB1 is 1), no response is requested from

DB2 and otherwise within the remaining space of probability

measure 3/4 (when the answer from DB1 is 0), the answer

from DB2 is 1 with conditional probability 1/3 and 0 with

conditional probability 2/3. Therefore the total download

is H (1/4, 3/4) + 3/4 H (1/3, 2/3) = 3/2 bits per desired

message bit and the rate achieved is 2/3.

Next let us determine the storage requirements of this

scheme. DB1 needs (X1, X2) to answer the user’s queries,

so with optimal compression, it needs to store H (x1, x2) =

H (1/4, 1/4, 1/2) = 3/2 bits per desired message bit. One

might naively imagine that the same storage requirement also

applies to DB2, because DB2 similarly needs the values

(Y1, Y2) to answer the user’s queries. However, this is not

true, because the query sent to DB2 already contains some

information about the message realizations,9 and this side-

information allows DB2 to reduce its storage requirement by

taking advantage of Slepian Wolf coding [29], [30] (distributed

compression with decoder side information).

The key is to realize that DB2 does not need to know

(Y1, Y2) until after it receives the query from the user. The

query from the user includes U as side information. There-

fore, using Slepian Wolf coding, DB2 is able to optimally

compress the i.i.d. sequence (Y1, Y2) to the conditional entropy

H (y1, y2|u) bits per desired message bit and still decode the

(Y1, Y2) sequence when it is needed, i.e., after the query

is provided by the user. Thus, the total storage required by

this PIR scheme is 3/2 + 3/4 log2 3 bits per bit of desired

message. Since there are two messages, the storage overhead

is 3/4 + 3/8 log2 3.

The following observations are useful to place the new PIR

scheme in perspective.

1) The optimal compression guarantees (Slepian Wolf

coding) are only available in the �-error sense.

Therefore, this PIR scheme is essentially an �-error

scheme.

9Note that the query sent to DB2 is independent of the desired message
index but not the message realizations.
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2) The multiround scheme is in fact a sequential PIR

scheme that utilizes only one round of queries for

each database (two rounds total since there are two

databases).

3) The scheme is essentially non-linear because, e.g.,

the logical AND operator is non-linear.

4) Since the multiround, non-linear and �-error aspects are

all essential for this scheme to create an advantage in

terms of storage overhead, it is an intriguing question

whether all three aspects are necessary in general or if

it is possible to achieve storage overhead less than 3/2

through another scheme while sacrificing at least one of

the three aspects.

5) A key insight from this PIR scheme is the surpris-

ing privacy benefit of storage overhead optimization.

By not storing all the information at each database,

and by optimally compressing the stored information,

not only do we reduce the storage overhead, but also

we enable stronger privacy guarantees than would hold

otherwise. Note that if each database stores all the

information (both W1 and W2), then the scheme is not

private. To see this, suppose (w1, w2) = (1, 1). This

would be known to DB2 because it stores both messages.

Under this circumstance, DB2 knows that if the user asks

for y2, then his desired message must be W1 and if the

user asks for y1 then his desired message must be W2.

Thus, storing all the information at each database would

result in loss of privacy. As another example, we note

that if w1 and/or w2 are not uniformly distributed then

again the PIR scheme would lose privacy. To see this,

suppose Pr(w1 = 1)=Pr(w2 = 1) > 1/2. Then DB2 is

more likely to be asked for y1 if the desired message is

W2 than if the desired message is W1. On the other hand,

note that optimal data compression is a pre-requisite

in any case for the optimization of rate and storage

overhead.10

6) Let us consider momentarily the restricted message size

setting, where each message is only L = 1 bit long.

Then it is easy to see that any single-round scheme (all

queries generated simultaneously) must download at

least 2 bits on average, but our multiround scheme

requires an expected download of only 1 + 3/4 = 7/4

bits. Thus, when storage is not constrained, even though

the download advantage of multiround PIR disappears

under unconstrained message lengths, for constrained

message lengths there are benefits of multiround PIR.

7) A key limitation of our PIR scheme is its upload cost.

We need to send queries for each message bit so the

upload cost scales linearly with the message size L. This

observation points to an interesting tradeoff between

the storage overhead and upload cost. In particular the

possibility of storage overhead improvements subject to

negligible upload cost is intriguing.

10Since optimal compression limits are typically achieved asymptotically,
if the data is not assumed to be uniform a-priori, then as noted by [20] and [21]
the privacy guarantees would also be subject to �-leakage that approaches zero
as message length approaches infinity.

2) A Single-Round, Linear, and Zero-Error Scheme for

K = 2, N = 2, T = 1: For comparison, the corre-

sponding scheme from [6] which also achieves rate 2/3 is

reproduced below. This will be shown to be the optimal

single-round, linear, zero-error scheme for storage overhead

in Section V. Denote the messages, each comprised of 4 bits,

as W1 = (a1, a2, a3, a4), W2 = (b1, b2, b3, b4). The down-

loaded information from each database is shown at the top of

the next page.

The scheme achieves rate 2/3 and is linear, single-round, and

zero-error. A total of 6 bits are stored at each database

S1 = (a1, a3, b1, b3, a2 + b2, a4 + b4) (29)

S2 = (a2, a4, b2, b4, a3 + b1, a1 + b3) (30)

Thus, the storage overhead is 3/2.

IV. PROOF OF THEOREM 1

We first present two useful lemmas. Note that in the proofs,

the relevant equations needed to justify each step are specified

by the equation numbers set on top of the (in)equality symbols.

Lemma 1: For all k ∈ [2 : K ],

I (Wk:K ; Q
[k−1]
1:N (1 : 0), A

[k−1]
1:N (1 : 0), F|W1:k−1, G)

≥
T

N
I (Wk+1:K ; Q

[k]
1:N (1 : 0), A

[k]
1:N (1 : 0), F|W1:k , G)

+
LT

N
(1 −

o(L)

L
). (31)

Proof: The proof is shown at the top of the next

page.

Here, (32) follows from the non-negativity of mutual infor-

mation. In (33), we have used the privacy constraint (11) and

in this storage unconstrained setting, the stored information

ST in (11) is W1:K . (34) is due to the chain rule and the fact

that mutual information is non-negative. In (37), we use Han’s

inequality [30, Th. 17.6.1] with conditioning on common

random variables.

Remark: Intuitively, Lemma 1 recursively relates the inter-

ference (information about other messages that is contained in

the answers for message Wk−1) in the K − k + 2 messages

setting to the interference in the K − k + 1 messages setting.

Note that Lemma 1 is a generalization of the corresponding

lemma in the single round PIR setting (see [6, Lemma 5]).

In the proof, the intuitive idea is to reduce the interference

contained in answers from all N databases to that from T

databases and then bound the interference using the privacy

and correctness constraints. Note that in the multi-round

setting, when expanding the interference term, the causality

constraint must not be violated.

Lemma 2:

I (W2:K ; Q
[1]
1:N (1 : 0), A

[1]
1:N (1 : 0), F|W1, G)

≤ L(1/R − 1) + o(L). (45)
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Prob. 1/2 Prob. 1/2

Want W1 Want W2 Want W1 Want W2

Database 1 a1, b1, a2 + b2 a1, b1, a2 + b2 a3, b3, a4 + b4 a3, b3, a4 + b4

Database 2 a4, b2, a3 + b1 a2, b4, a1 + b3 a2, b4, a1 + b3 a4, b2, a3 + b1

N I (Wk:K ; Q
[k−1]
1:N (1 : 0), A

[k−1]
1:N (1 : 0), F|W1:k−1, G)

≥
N

(
N
T

)

∑

T ⊂ [1:N],|T |=T

I (Wk:K ; Q
[k−1]

T
(1 : 0), A

[k−1]

T
(1 : 0)|W1:k−1, G) (32)

(11)
=

N
(

N
T

)

∑

T ⊂ [1:N],|T |=T

I (Wk:K ; Q
[k]

T
(1 : 0), A

[k]

T
(1 : 0)|W1:k−1, G) (33)

=
N

(
N
T

)

∑

T ⊂ [1:N],|T |=T

0
∑

γ=1

I (Wk:K ; Q
[k]

T
(γ ), A

[k]

T
(γ )|Q

[k]

T
(1 : γ − 1), A

[k]

T
(1 : γ − 1), W1:k−1, G)

≥
N

(
N
T

)

∑

T ⊂ [1:N],|T |=T

0
∑

γ=1

I (Wk:K ; A
[k]

T
(γ )|Q

[k]

T
(1 : γ ), A

[k]

T
(1 : γ − 1), W1:k−1, G) (34)

(8)(10)
=

N
(

N
T

)

∑

T ⊂ [1:N],|T |=T

0
∑

γ=1

H (A
[k]

T
(γ )|Q

[k]

T
(1 : γ ), A

[k]

T
(1 : γ − 1), W1:k−1, G) (35)

≥
N

(
N
T

)

∑

T ⊂ [1:N],|T |=T

0
∑

γ=1

H (A
[k]

T
(γ )|Q

[k]
1:N (1 : γ ), A

[k]
1:N (1 : γ − 1), W1:k−1, F, G) (36)

≥ T

0
∑

γ=1

H (A
[k]
1:N(γ )|Q

[k]
1:N (1 : γ ), A

[k]
1:N (1 : γ − 1), W1:k−1, F, G) (Han’s inequality [30]) (37)

(8)(10)
= T

0
∑

γ=1

I (Wk:K ; A
[k]
1:N (γ )|Q

[k]
1:N (1 : γ ), A

[k]
1:N (1 : γ − 1), W1:k−1, F, G) (38)

(7)(9)
= T

0
∑

γ=1

I (Wk:K ; Q
[k]
1:N (γ ), A

[k]
1:N (γ )|Q

[k]
1:N (1 : γ − 1), A

[k]
1:N (1 : γ − 1), W1:k−1, F, G) (39)

= T I (Wk:K ; Q
[k]
1:N (1 : 0), A

[k]
1:N (1 : 0)|W1:k−1, F, G) (40)

(13)
= T I (Wk:K ; Wk, Q

[k]
1:N (1 : 0), A

[k]
1:N (1 : 0)|W1:k−1, F, G) − o(L)T (41)

= T I (Wk:K ; Wk|W1:k−1, F, G) − o(L)T

+ T I (Wk+1:K ; Q
[k]
1:N (1 : 0), A

[k]
1:N (1 : 0)|W1:k, F, G) (42)

(3)(6)
= LT − T o(L) + T I (Wk+1:K ; Q

[k]
1:N (1 : 0), A

[k]
1:N (1 : 0)|W1:k , F, G) (43)

(6)
= LT − T o(L) + T I (Wk+1:K ; Q

[k]
1:N (1 : 0), A

[k]
1:N (1 : 0), F|W1:k , G) (44)

Proof:

I (W2:K ; Q
[1]
1:N (1 : 0), A

[1]
1:N (1 : 0), F|W1, G)

(6)
= I (W2:K ; Q

[1]
1:N (1 : 0), A

[1]
1:N (1 : 0), W1, F, G) (46)

(7)(9)
= I (W2:K ; A

[1]
1:N (1 : 0), W1, F, G) (47)

= I (W2:K ; A
[1]
1:N (1 : 0), F, G)

+ I (W2:K ; W1|A
[1]
1:N (1 : 0), F, G) (48)

(6)(13)
= I (W2:K ; A

[1]
1:N (1 : 0)|F, G) + o(L) (49)

= H (A
[1]
1:N (1 : 0)|F, G)

− H (A
[1]
1:N (1 : 0)|F, G, W2:K ) + o(L) (50)

(12)
≤ L/R − H (A

[1]
1:N (1 : 0)|F, G, W2:K ) + o(L) (51)

(13)
= L/R − H (W1, A

[1]
1:N (1 : 0)|F, G, W2:K ) + o(L)

(52)

≤ L/R − H (W1|F, G, W2:K ) + o(L) (53)
(6)
= L/R − L + o(L)L = L(1/R − 1) + o(L) (54)

Remark: The intuition of Lemma 2 is that among the total

download (L/R symbols), to leave L symbols for the desired

message, the interference about all other messages must have

size no more than L/R − L symbols.
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With Lemma 1 and Lemma 2, we are ready to prove the

converse.

Rate Outerbound: Starting from k = 2 and applying (31)

repeatedly for k ∈ [3 : K ],

I (W2:K ; Q
[1]
1:N (1 : 0), A

[1]
1:N (1 : 0), F|W1, G)

(31)
≥

T

N
I (W3:K ; Q

[2]
1:N (1 : 0), A

[2]
1:N (1 : 0), F|W1, W2, G)

+
LT (1 − o(L)/L)

N
(31)
≥ · · · (55)

(31)
≥

T K−2

N K−2
I (WK ; Q

[K−1]
1:N (1 : 0), A

[K−1]
1:N (1 : 0), F| . . .

. . . W1:K−1, G)

+
LT (1 − o(L)/L)

N
+ · · · +

LT K−2(1 − o(L)/L)

N K−2

(31)
≥

T K−2

N K−2

LT (1 − o(L)/L)

N
+

LT (1 − o(L)/L)

N

+ · · · +
LT K−2(1 − o(L)/L)

N K−2
(56)

= (L − o(L))(T/N + · · · + T K−1/N K−1) (57)

Combining (57) and (45), we have

L(1/R − 1)+o(L)≥ (L − o(L))(T/N +· · · + T K−1/N K−1)

(58)

Normalizing by L and letting L go to infinity gives us

1/R − 1 ≥ T/N + · · · + T K−1/N K−1 (59)

⇒ R ≤ (1 + T/N + · · · + T K−1/N K−1)−1 (60)

thus, the proof is complete.

V. PROOF OF THEOREM 2 – STATEMENT 2.

We show that when K = 2, N = 2, T = 1, 0 = 1 and the

rate equals 2/3, the storage overhead of all zero-error,11 linear,

and single-round PIR schemes is no less than 3/2. Since we

only consider single-round schemes in this section, we will

simplify the notation, e.g., instead of Q
[1]
2 (1) we write simply

Q
[1]
2 . In addition, without loss of generality, let us make the

following simplifying assumptions.

1) We assume that the PIR scheme is symmetric, in that

H (A
[1]
1 |F, G) = H (A

[1]
2 |F, G) = H (A

[2]
2 |F, G) (61)

H (S1) = H (S2) (62)

Given any (asymmetric) PIR scheme that retrieves mes-

sages of size L, a symmetric PIR scheme with the same

rate and storage overhead that retrieves messages of

size N L is obtained by repeating the original scheme

N times, and in the nth repetition shifting the database

indices cyclically by n. This symmetrization process is

described in Lemma 4 (see Section V-A).

2) We assume that Q
[1]
1 = Q

[2]
1 , i.e., the query for the

first database is chosen without the knowledge of the

desired message index. There is no loss of generality in

11Our converse proof extends to the �-error case.

this assumption because of the privacy constraint, which

requires that Q
[θ]
1 is independent of θ .12 Note that this

also means that A
[1]
1 = A

[2]
1 .

Our goal is to prove a lower bound on the storage overhead.

Since the PIR scheme is symmetric by assumption, the storage

overhead is (H (S1) + H (S2))/2L = H (S2)/L. Furthermore,

H (S2) ≥ H (A
[1]
2 , A

[2]
2 |F, G), so we will prove a lower bound

on H (A
[1]
2 , A

[2]
2 |F, G) instead.

Let us start with a useful lemma that holds for all linear

and non-linear schemes.

Lemma 3:

H (A
[1]
1 |W1, F, G) = H (A

[2]
2 |W1, F, G)

= H (A
[2]
2 |W2, F, G)

= L/2 (63)

H (A
[2]
2 |W1, A

[1]
2 , F, G) = H (A

[2]
2 |W2, A

[1]
2 , F, G)

= L/2 (64)

Proof: We prove (63) first. On the one hand, we substi-

tute13 R = 2/3 in Lemma 2. Then from (47) - (54), we have

L/2 ≥ I (W2; A
[1]
1 , A

[1]
2 , W1, F, G) (65)

(6)
= I (W2; A

[1]
1 , A

[1]
2 |W1, F, G) (66)

(7)(8)(4)
= H (A

[1]
1 , A

[1]
2 |W1, F, G) (67)

⇒ L/2 ≥ H (A
[1]
1 |W1, F, G) (68)

and

L/2 ≥ H (A
[1]
2 |W1, F, G) (69)

On the other hand, from (32) - (44), as shown at the top of

the previous page, in Lemma 1, we have

L ≤ I (W2; Q
[1]
1 , A

[1]
1 |W1, G)

+ I (W2; Q
[1]
2 , A

[1]
2 |W1, G) (70)

≤ I (W2; Q
[1]
1 , A

[1]
1 , F|W1, G)

+ I (W2; Q
[1]
2 , A

[1]
2 , F|W1, G) (71)

(6)
= I (W2; Q

[1]
1 , A

[1]
1 |W1, F, G)

+ I (W2; Q
[1]
2 , A

[1]
2 |W1, F, G) (72)

(7)(8)(4)
= H (A

[1]
1 |W1, F, G) + H (A

[1]
2 |W1, F, G) (73)

Combining (68), (69) and (73), we have shown that

H (A
[1]
1 |W1, F, G) = H (A

[1]
2 |W1, F, G) = L/2 (74)

Symmetrically, it follows that H (A
[2]
2 |W2, F, G) = L/2. We

are left to prove H (A
[2]
2 |W1, F, G) = L/2. On the one hand,

12Note that instead of Q
[1]
1 = Q

[2]
1 , we could equivalently assume that

Q
[1]
2

= Q
[2]
2

without of loss of generality (because privacy also requires

that Q
[θ ]
2

is independent of θ ). However, if we simultaneously assume both

Q
[1]
1

= Q
[2]
1

and Q
[1]
2

= Q
[2]
2

, then there is a loss of generality because

together (Q
[θ ]
1 , Q

[θ ]
2 ) is not required to be independent of θ by the privacy

constraint.
13Since we are considering only zero-error schemes, the o(L) term in

Lemma 2 is exactly 0.
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from (68) and (69), we have

L/2 ≥ H (A
[1]
1 |W1, F, G)

= H (A
[2]
1 |W1, F, G) (Using A

[1]
1 = A

[2]
1 ) (75)

L/2 ≥ H (A
[1]
2 |W1, F, G) (76)

(7)
= H (A

[1]
2 |W1, Q

[1]
2 , F, G) (77)

(8)(6)
= H (A

[1]
2 |W1, Q

[1]
2 , G) (78)

(11)
= H (A

[2]
2 |W1, Q

[2]
2 , G) (79)

(8)(6)
= H (A

[2]
2 |W1, Q

[2]
2 , F, G) (80)

(7)
= H (A

[2]
2 |W1, F, G) (81)

where (79) follows from the fact that for single-round PIR,

the desired message index is independent of the messages,

queries and answers. Its detailed proof is presented as follows.

Note that14

I (Q
[θ]
2 , θ, F; W1, W2, G)

(7)
= I (θ, F; W1, W2, G)

(6)
= 0 (82)

H⇒ I (Q
[θ]
2 ; W1, W2, G) = I (Q

[θ]
2 ; W1, W2, G|θ)

= 0 (83)

Next,

I (θ; W1, W2, G, Q
[θ]
2 )

= I (θ; W1, W2, G) + I (θ; Q
[θ]
2 |W1, W2, G) (84)

(6)
= I (θ; Q

[θ]
2 |W1, W2, G) (85)

= H (Q
[θ]
2 |W1, W2, G) − H (Q

[θ]
2 |θ, W1, W2, G)

(86)
(83)
= H (Q

[θ]
2 ) − H (Q

[θ]
2 |θ) (87)

(11)
= 0 (88)

H⇒ W1, W2, Q
[1]
2 , G ∼ W1, W2, Q

[2]
2 , G (89)

(8)(4)
H⇒ A

[1]
2 , W1, W2, Q

[1]
2 , G ∼ A

[2]
2 , W1, W2, Q

[2]
2 , G

(90)

H⇒ A
[1]
2 , W1, Q

[1]
2 , G ∼ A

[2]
2 , W1, Q

[2]
2 , G (91)

(78) and (80) are due to the Markov chain F− (W1, Q
[k]
2 , G)−

A
[k]
2 , k = 1, 2, which is proved as follows.

I (A
[k]
2 ; F|W1, Q

[k]
2 , G)

≤ I (A
[k]
2 , S2; F|W1, Q

[k]
2 , G) (92)

= I (S2; F|W1, Q
[k]
2 , G)

+ I (A
[k]
2 ; F|W1, Q

[k]
2 , G, S2) (93)

(8)
= I (S2; F|W1, Q

[k]
2 , G) (94)

≤ I (S2, W2; F|W1, Q
[k]
2 , G) (95)

= I (W2; F|W1, Q
[k]
2 , G)

14The distribution of Q
[θ ]
2 is a mixture of the distributions of Q

[1]
2 and

Q
[2]
2 . Conditioned on θ = 1, Q

[θ ]
2 = Q

[1]
2 . Conditioned on θ = 2.

Q
[θ ]
2 = Q

[2]
2 . The privacy condition (11) can be equivalently expressed as

I (θ; Q
[θ ]
n , A

[θ ]
n , G, Sn) = 0, n ∈ {1, 2}, in this case.

+ I (S2; F|Q
[k]
2 , G, W1, W2) (96)

(4)
≤ I (W2; F, W1, Q

[k]
2 , G) (97)

(7)(6)
= 0 (98)

On the other hand, from (70), we have

L ≤ I (W2; Q
[1]
1 , A

[1]
1 |W1, G)

+ I (W2; Q
[1]
2 , A

[1]
2 |W1, G) (99)

(11)
= I (W2; Q

[2]
1 , A

[2]
1 |W1, G)

+ I (W2; Q
[2]
2 , A

[2]
2 |W1, G) (100)

≤ I (W2; Q
[2]
1 , A

[2]
1 , F|W1, G)

+ I (W2; Q
[2]
2 , A

[2]
2 , F|W1, G) (101)

(6)
= I (W2; Q

[2]
1 , A

[2]
1 |W1, F, G)

+ I (W2; Q
[2]
2 , A

[2]
2 |W1, F, G) (102)

(7)(8)(4)
= H (A

[2]
1 |W1, F, G) + H (A

[2]
2 |W1, F, G) (103)

Combining (75), (81) and (103), we have shown that

H (A
[2]
2 |W1, F, G) = L/2. The proof of (63) is complete.

Next we prove (64). On the one hand,

H (A
[2]
2 |W1, A

[1]
2 , F, G) ≤ H (A

[2]
2 |W1, F, G)

(63)
= L/2 (104)

On the other hand, from sub-modularity of entropy functions

we have

H (A
[2]
2 , A

[1]
2 |W1, F, G)

≥ −H (A
[1]
2 , A

[1]
1 |W1, F, G)

+ H (A
[1]
1 , A

[2]
2 , A

[1]
2 |W1, F, G)

+ H (A
[1]
2 |W1, F, G) (105)

(67)(13)(74)
≥ −L/2 + H (A

[1]
1 , A

[2]
2 , A

[1]
2 , W2|W1, F, G)

+ L/2 (106)

≥ H (W2|W1, F, G)
(6)
= L (107)

⇒ H (A
[2]
2 |W1, A

[1]
2 , F, G)

= H (A
[2]
2 , A

[1]
2 |W1, F, G) − H (A

[1]
2 |W1, F, G)

(74)
≥ L/2 (108)

Note that the second term of (106) follows from the assump-

tion that A
[1]
1 = A

[2]
1 so that from A

[1]
1 , A

[2]
2 , we can decode

W2 just as from A
[2]
1 , A

[2]
2 , we can decode W2. Combin-

ing (104), (108), we have proved H (A
[2]
2 |W1, A

[1]
2 , F, G) =

L/2. Symmetrically, it follows that H (A
[2]
2 |W2, A

[1]
2 , F, G) =

L/2. Therefore, the desired inequality (64) is obtained.

To proceed, we need Ingleton’s inequality, which is stated

as follows.

Theorem 3 (Ingleton’s Inequality [31]): For four subspaces

of a given finite vector space, A, B, C, D, the following
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inequality holds.15

I (A; B) ≤ I (A; B|C) + I (A; B|D) + I (C; D) (109)

For a given value of F, G, A
[1]
2 , A

[2]
2 are linear combinations

of W1, W2 with constant coefficients as we consider linear

schemes. So we set A = A
[1]
2 , B = A

[2]
2 , C = W1, D =

W2 (for given F, G). Note that from Lemma 3, we know

that I (A
[1]
2 ; A

[2]
2 |W1, F, G) = I (A

[1]
2 ; A

[2]
2 |W2, F, G) = 0.

Plugging in (109) that holds for linear schemes but not for

non-linear schemes, we have

I (A
[1]
2 ; A

[2]
2 |F, G)

≤ I (A
[1]
2 ; A

[2]
2 |W1, F, G) + I (A

[1]
2 ; A

[2]
2 |W2, F, G)

+ I (W1; W2|F, G)
︸ ︷︷ ︸

=0, from (6)

= 0 (110)

H⇒ H (A
[1]
2 , A

[2]
2 |F, G)

= H (A
[1]
2 |F, G) + H (A

[2]
2 |F, G) (111)

(61)
= H (A

[1]
2 |F, G) + H (A

[1]
1 |F, G) (112)

≥ H (A
[1]
1 , A

[1]
2 |F, G) (113)

(13)
= H (W1, A

[1]
1 , A

[1]
2 |F, G) (114)

= H (W1|F, G) + H (A
[1]
1 , A

[1]
2 |W1, F, G) (115)

(6)
≥ L + H (A

[1]
1 |W1, F, G)

(63)
= 3L/2 (116)

H⇒ α = H (S2)/L

≥ H (A
[1]
2 , A

[2]
2 |F, G)/L ≥ 3/2 (117)

A. Symmetrization

Lemma 4: 16Consider the single-round PIR

problem with K = 2 messages and N = 2

databases. Suppose we have a scheme described by

L̄, W̄1, W̄2, S̄1, S̄2, Q̄
[1]
1:2, Q̄

[2]
1:2, Ā

[1]
1:2, Ā

[2]
1:2, F̄, Ḡ. Then we can

construct a symmetric PIR scheme, also for K = N = 2,

described by L, W1, W2, S1, S2, Q
[1]
1:2, Q

[2]
1:2, A

[1]
1:2, A

[2]
1:2, F, G

such that

H (A
[1]
1 |F, G) = H (A

[1]
2 |F, G) = H (A

[2]
2 |F, G) (118)

H (S1) = H (S2) (119)

L = 2L̄ (120)

such that the symmetric PIR scheme has the same rate and

storage overhead as the original PIR scheme.

Proof: Consider two independent implementations of the

asymmetric PIR scheme. Let us use the ‘bar’ notation for the

first implementation and the ‘tilde’ notation for the second

implementation. In the first implementation, there are two

15For subspaces A, B , we follow the convention that H (A) represents
the dimension of subspace A, and H (A, B) represents the dimension of
the vector space spanned by the union of the subspaces A, B . Using this
convention, inequalities on the dimensions of subspaces can be expressed
using information theoretic measures, such as (joint) entropy and (conditional)
mutual information. Ingleton’s inequality has been stated in this form in prior
work in information theory literature, e.g., [32], [33].

16Extensions of this symmetrization lemma to multiple rounds, arbitrary
number of messages and databases may be similarly obtained.

messages W̄1, W̄2, each of length L̄, two databases ¯DB1 and
¯DB2 which store S̄1, S̄2, respectively. In the second implemen-

tation, there are two messages W̃1, W̃2, each of length L̃ = L̄,

two databases ˜DB2 and ˜DB1 which store S̃1, S̃2, respectively.

Note the critical detail that the database indices are switched

in the second implementation. The asymmetric PIR scheme

specifies the queries for each implementation such that the

user can privately retrieve an arbitrarily chosen message from

each implementation.

The symmetric PIR scheme is created by combining the

two implementations. In the combined scheme, there are two

messages W1 = (W̄1, W̃1) and W2 = (W̄2, W̃2), each of length

L = 2L̄ , two databases DB1 and DB2 which store (S̄1, S̃2)

and (S̄2, S̃1), respectively. Retrieval works exactly as before.

For example, if the user wishes to privately retrieve W1 =

(W̄1, W̃1), then it retrieves W̄1 exactly as in the first imple-

mentation, and W̃1 exactly as in the second implementation.

Since the symmetric scheme is comprised of two indepen-

dent implementations of the original PIR scheme, the message

size, total download size, total storage size, are all doubled

relative to the original PIR scheme. As a result the rate and

storage overhead, which are normalized quantities, remain

unchanged in the new scheme. Symmetry is achieved because

each database from the original PIR scheme is equally repre-

sented within each database in the new PIR scheme.

Mathematically,

W1 = (W̄1, W̃1), W2 = (W̄2, W̃2) (121)

S1 = (S̄1, S̃2), S2 = (S̄2, S̃1) (122)

F = (F̄, F̃), G = (Ḡ, G̃) (123)

Q[k]
n = (Q̄[k]

n , Q̃
[k]
3−n), n = 1, 2, k = 1, 2 (124)

A[k]
n = ( Ā[k]

n , Ã
[k]
3−n) (125)

where each random variable with a bar symbol is independent

of and identically distributed with the same random variable

with a tilde symbol. We are now ready to prove the first

equality in (118).

H (A
[1]
1 |F, G) = H ( Ā

[1]
1 , Ã

[1]
2 |F, G) (126)

= H ( Ā
[1]
1 |F̄, Ḡ) + H ( Ã

[1]
2 |F̃, G̃) (127)

= H ( Ã
[1]
1 |F̃, G̃) + H ( Ā

[1]
2 |F̄, Ḡ) (128)

= H ( Ā
[1]
2 , Ã

[1]
1 |F, G) (129)

= H (A
[1]
2 |F, G) (130)

where (127) and (129) follow from the fact that the two copies

of the given scheme are independent and (128) is due to

the property that the two copies are identically distributed.

Consider the second equality in (118).

H (A
[1]
2 |F, G)

(7)
= H (A

[1]
2 |Q

[1]
2 , F, G) (131)

= H (A
[1]
2 |Q

[1]
2 , G) (132)

(11)
= H (A

[2]
2 |Q

[2]
2 , G) (133)

= H (A
[2]
2 |Q

[2]
2 , F, G) (134)

(7)
= H (A

[2]
2 |F, G) (135)
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where (132) and (134) are due to the Markov chain

F − (Q
[k]
2 , G) − A

[k]
2 , k = 1, 2, which is proved as follows.

I (A
[k]
2 ; F|Q

[k]
2 , G)

≤ I (A
[k]
2 , S2; F|Q

[k]
2 , G) (136)

= I (S2; F|Q
[k]
2 , G) + I (A

[k]
2 ; F|Q

[k]
2 , G, S2) (137)

(8)
= I (S2; F|Q

[k]
2 , G) (138)

≤ I (S2, W1, W2; F|Q
[k]
2 , G) (139)

= I (W1, W2; F|Q
[k]
2 , G)

+ I (S2; F|Q
[k]
2 , G, W1, W2) (140)

(4)
≤ I (W1, W2; F, Q

[k]
2 , G) (141)

(7)(6)
= 0 (142)

Finally, we prove (119).

H (S1) = H (S̄1, S̃2) (143)

= H (S̄1) + H (S̃2) (144)

= H (S̃1) + H (S̄2) (145)

= H (S̄2, S̃1) (146)

= H (S2) (147)

where (144) and (146) follow from the fact that the two copies

of the given scheme are independent and (145) is due to the

property that the two copies are identically distributed.

VI. CONCLUSION

We showed that the capacity of MPIR is equal to the

capacity of PIR, both with and without T -privacy constraints.

Our result implies that there is no advantage in terms of

capacity from multiround over single-round schemes, non-

linear over linear schemes, or �-error over zero-error schemes.

We also offered a counterpoint to this pessimistic result

by exploring optimal storage overhead instead of capacity.

Specifically, we constructed a simple multiround, non-linear,

�-error PIR scheme that achieves a strictly smaller storage

overhead than the best possible with any single-round, linear,

zero-error PIR scheme. The simplicity of the scheme makes it

an attractive point of reference for future work toward under-

standing the role of linear versus non-linear schemes, zero-

error versus �-error capacity, and single-round versus multiple

round communications. Another interesting insight revealed by

the scheme is the privacy benefit of reduced storage overhead.

By not storing all the information at each database, and by

optimally compressing the stored information, not only do we

reduce the storage overhead, but also we enable privacy where

it wouldn’t hold otherwise.
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