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Abstract—Hardware Performance Counters (HPCs) have been
available in processors for more than a decade. These counters
can be used to monitor and measure events that occur at the CPU
level. Modern processors provide hundreds of hardware events
that can be monitored, and with each new processor architecture
more are added. Yet, there has been little in the way of systematic
studies on how performance counters can best be utilized
to accurately monitor events in real-world settings. Especially
when it comes to the use of HPCs for security applications,
measurement imprecisions or incorrect assumptions regarding
the measured values can undermine the offered protection.

To shed light on this issue, we embarked on a year-long effort
to (i) study the best practices for obtaining accurate measurement
of events using performance counters, (i/) understand the chal-
lenges and pitfalls of using HPCs in various settings, and (iii)
explore ways to obtain consistent and accurate measurements
across different settings and architectures. Additionally, we then
empirically evaluated the way HPCs have been used throughout
a wide variety of papers. Not wanting to stop there, we explored
whether these widely used techniques are in fact obtaining
performance counter data correctly. As part of that assessment,
we (iv) extended the seminal work of Weaver and McKee from
almost 10 years ago on non-determinism in HPCs, and applied
our findings to 56 papers across various application domains.

In that follow-up study, we found the acceptance of HPCs
in security applications is in stark contrast to other application
areas — especially in the last five years. Given that, we studied
an additional representative set of 41 works from the security
literature that rely on HPCs, to better elucidate how the intri-
cacies we discovered can impact the soundness and correctness
of their approaches and conclusions. Toward that goal, we (i)
empirically evaluated how failure to accommodate for various
subtleties in the use of HPCs can undermine the effectiveness of
security applications, specifically in the case of exploit prevention
and malware detection. Lastly, we showed how (ii) an adversary
can manipulate HPCs to bypass certain security defenses.

Index Terms—Hardware Performance Counters; Malware De-
tection; Exploit Defense; Non-determinism;

I. INTRODUCTION

Modern processors (such as Intel, AMD, ARM) support
a variety of hardware performance counters for monitoring
and measuring events during process execution related to
instructions (e.g., instruction retired, cycles), memory accesses
(e.g., cache hits or misses, main memory hits or misses), and
the execution behavior on the CPU pipeline, among others. In
Intel processors, the functional unit that facilitates the use of
HPCs is called the Performance Monitoring Unit (PMU).

The hardware events supported by performance counters
can be classified as either architectural or non-architectural
events (the latter are also known as micro-architectural events).
Architectural events comprise events that remain consistent

across different processor architectures, e.g., instructions,
branches, cycles. Non-architectural events consist of events
that are specific to the micro-architecture of a given processor,
e.g., cache accesses, branch prediction, and TLB accesses.
Unlike architectural events, non-architectural events vary among
processor architectures and may also change with processor
enhancements. Table I presents a list of commonly used
architectural and non-architectural events in Intel processors.
A more comprehensive list of events is provided by Intel [1].

Although performance counters were initially introduced
for debugging purpose, they have been used in a myriad of
applications, such as dynamic software profiling [2], CPU
power modeling [3], vulnerability research and malware
defenses [4][5][6]. Additionally, several profiling tools (e.g.,
PAPI [7], perf_event [8], VTune [9]) have been designed using
performance counters for different environment settings. These
tools allow for performance counter data to be obtained using
several methods, but that flexibility comes at a price: these
techniques can yield different counter values for the same
application. Consequently, it is imperative that performance
counter implementations, and proposals that rely upon them,
follow certain principals in order to obtain trustworthy values.

To that end, we studied a number of tools, techniques and
papers to understand how issues related to non-determinism
and overcounting in HPCs are commonly dealt with. Our
painstaking analyses led to several intriguing revelations. First,
we found mixed opinions on using HPCs: more than 45% of the
papers in application areas that include performance analysis
and optimizations, high performance computing and OS support
do not recommend using HPCs. The main stated reasons for
dismissing HPCs are the lack of determinism in performance
counter values [10-23] and lack of portability of HPC events
(e.g., some events may be present in one architecture but not
in another [24-27]). These factors limit the applicability of
performance counters in different application domains.

Yet, we found that the use of HPCs for security purposes is
in stark contrast to other areas, as evidenced by the increasing
number of techniques that rely on HPC measurements for
offensive and defensive research. Only 10% of these papers
acknowledged the non-determinism issues in HPCs. None of
them attempt to address the measurement error, and only a
few of the papers [28-31] explicitly argue why their approach
can tolerate non-determinism and overcounting effects.

As we show later, while non-determinism may not have dire
consequences for certain applications (e.g., power estimation
or high performance computing), it can have significant impact
on approaches whose security rests on having accurate and



consistent HPC measurements. For example, malware and
exploit defenses [5, 6, 32] are susceptible to non-determinism
effects and contamination of events. This is mainly because in
security applications, the attack models rely on small variations
in performance counter data to differentiate suspicious from
benign behaviors [6, 32]. Even a minor variation of 1-5% in
counter values [28], can lead to poor performance of those
models. Therefore, it is particularly important that in security
settings, these challenges are addressed.

In bringing these challenges and pitfalls to the forefront, we

make several contributions, including:

o Summarizing proper techniques for instantiating and using
hardware performance counters.

o Studying nearly 100 papers to synthesize how HPCs have
been used and adopted in different application domains.

« Extending the seminal work of Weaver & McKee [33] in
order to better examine what problems persist in modern
processors 10 years after the original study.

o Contrasting HPC-based monitoring techniques and pre-
senting ways to improve them.

« Empirically demonstrating how failure to cover key aspects
in the collection of HPC events can undermine the
correctness of approaches that rely on accurate HPC
measurements for security purposes.

o Demonstrating how an adversary can manipulate HPCs

to bypass certain security defenses.
A set of recommendations regarding the use of HPCs.

II. BACKGROUND AND CHALLENGES

For pedagogical purposes, we present a primer on hardware
performance counters and then discuss the implementation
challenges that are involved in accurately monitoring events.

To obtain performance counter information from the hard-
ware, the counters must first be configured according to the
events of interest. Afterwards, at run time, the counters can be
read using two techniques, namely polling or sampling. We
discuss each step in turn.

1) Configuring the counters: Performance counters must
be configured in kernel mode, but they can be read in user
mode. Moreover, although hundreds of events are available
for monitoring, only a limited number of counters can be
used simultaneously. Therefore, one must carefully pick and
configure which events to monitor using the available counters.
The number of available counters varies between processor
architectures, e.g., modern Intel CPUs support three fixed
and four programmable counters per core [1]. Fixed counters
monitor fixed events such as instruction retired, logical cycles,
and reference cycles, while programmable counters can be
configured to monitor architectural and non-architectural events.
The configuration of performance counters is performed by
writing into model specific registers (MSRs).

2) Reading Counter Values: Performance counters can be
read by either sampling or polling.

« Polling: The counters can be read at any instant. Counters
are read using the MSRs. For that purpose, Intel uses
specific instructions (rdmsr, wrmsr) to read from and
write to MSRs, respectively. Reading counters from user

space can be done using the rdpmc instruction. Fig. 1
presents an example of how polling can be used to measure
a user space process.

« Event-based sampling: HPCs also support sampling of
various metrics based on the occurrence of events. This
feature is enabled in most CPUs through a specific
interrupt, called Performance Monitoring Interrupt (PMI),
which can be generated after the occurrence of a certain
number of events. For instance, one can configure HPCs
with a certain threshold, which will result in the generation
of a PMI once a counter exceeds that threshold. Fig. 2
shows how an event is configured with a specific threshold,
n, for the number of instructions retired that should
generate a PMI. At each PMI (i.e., after every n retired
instructions), the numbers of cycles and arithmetic, call,
direct call, and return instructions are read.

A. Challenges and Pitfalls

Unfortunately, the seemingly simple nature of using HPCs for
performance measurements becomes complicated due to several
sources of contamination, which may lead to discrepancies in
the actual measurement of events'. Reasons that can lead to
inaccurate measurement include:

o External sources: The runtime environment may vary
across runs. For example, OS activity, scheduling of
programs in multitasking environments, memory layout
and pressure, and multi-processor interactions may change
between different runs. Similarly, micro-architectural state
changes may cause discrepancies in the events’ count.

o Non-determinism: Weaver et al. [34] provide an overview
of the impact of non-deterministic events (e.g., hardware
interrupts like periodic timers) in HPC settings. Many
sources of non-determinism can be hard to predict and
mostly depend on OS behavior and the other applications
(besides the measured one) running on the system.

o Overcounting: Performance counters may overcount cer-
tain events on some processors. For instance, on Pen-
tium D processors, the instruction retired event may be
overcounted on several occasions, most notably, during
x87/SSE exceptions, lazy floating point handling by OS,
and execution of certain instructions such as fldcw,
fldenv, and emms [34].

o Variations in tool implementations: Many tools have
been developed to help obtaining performance counter
measurements. Oftentimes, these tools yield different
results even in a strictly controlled environment for the
same application. The variation of measurements may
result from the techniques involved in acquiring them,
e.g., the point at which they start the counters, the reading
technique (polling or sampling), the measurement level
(thread, process, core, multiple cores), and the noise-
filtering approach used.

! Although this paper is mainly focussed on the Intel x86 architecture,
non-determinism due to HPCs has also been observed on AMD x86 processors
[34], and thus our findings may be relevant for those as well.



TABLE I: Hardware Events

Architectural Events  Description Non-architectural Events Description
1. Ins Instruction retired 9. Uops_Retired All micro-operations that retired
2. Clk Unhalted core cycles 10. Mem_Load_Uops_Retired ~ Retired load uops
3. Br Branch instructions 11. Mem_Store_Uops_Retired Retired store uops
4. Arith_Ins Arithmetic instructions 12. Br_Miss_Pred_Retired Mispredicted branches that retired
5. Call Near call instructions 13. Ret_Miss Mispredicted return instructions
6. Call_D Direct near call instructions 14. Call_D_Miss Mispredicted direct call instructions
7. Call_ID Indirect near call instructions 15. Br_Far Far branches retired
8. Ret Near return instructions 16. Br_Inst_Exec Branch instructions executed
17. ITLB_Miss Misses in ITLB
18. DTLB_Store_Miss Store uops with DTLB miss
19. DTLB_Load_Miss Load uops with DTLB miss
20. LLC_Miss Longest latency cache miss
User space ‘ Kernel space User space } Kernel space
®} I | o __HPC_Module
configure_HPCs () 4\> Configure_HPC_counters configure_HPCs () ——+» Conﬂ‘gurefHPCJ:ounters
- B | - Monitor only user space events
@ Execute_program | Monitor only user space events - Initialize fixed Counters:
- | - Initialize fixed Counters: | Ins, Clk
/finteger.c . Ins, Clk . @ Execute_program | |- Initialize programmable counters:
#include <stdio.h> | - In_ltlahze programmable counters: | Arith, Call, Call_D, Ret
int main() | LAvith, Call Call D, Ret /linteger.c - set threshold for PMI on Ins
{ | #include <stdio.h> I | n=512,000
__asm({int Ox2e}; //Probe point 1 | int main() I
int number; | { |
printf("Enter an integer: "); ‘ int number; @ |
scanf("%d", &number); rintf("Enter an integer: "); ™
//D\spflays the emered)integer | gcanf((u%du, &numbger); g PM’1‘ PMI_Handler
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return 0; | return 0; PMI3\
} | } !
@, [Read HPCs () |

read_HPCs () —
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Fig. 1: Polling: First, the counters are configured in kernel
space with the events of interest. Later, they can be read
either in user or kernel space.

III. PROPER INSTANTIATION AND USAGE

Acquiring accurate measurements using performance coun-
ters requires careful consideration of operational aspects.

Context switch monitoring: Performance counters measure
system-wide events and are agnostic to which process is running
on the processor. Most processors support separation of kernel
and user space events, but per-process filtering of counter
values is not available. In order to profile the runtime behavior
of a process, performance counter values must be saved during
context switches to avoid any contamination due to events
from other processes. Monitoring context switches involves
patching the kernel, which is a non-trivial task, especially in
closed-source OSes.

Interrupt handling: Recall that performance counters are
typically used in conjunction with performance monitoring
interrupts (PMI). This feature is is not essential when reading
events in sampling mode; it can also profile events at a finer
granularity. PMIs can be handled in different ways, such as
by writing a callback routine, API hooking, or hooking the
PMI handler [35]. Note that proper PMI handling may be
challenging due to, for example, the lack of documentation or
inability to patch the operating system.

Process filtering upon PMI: Since the performance
monitoring unit operates at the hardware level, it is OS-process
agnostic. Therefore, when PMI is configured, the PMU can
generate hardware interrupts for all processes running on a
given processor core. Consequently, to accurately profile an

Fig. 2: Event-based Sampling: PMI is configured using instruc-
tion retired event in kernel space, with a threshold set at n. Once
instructions retired exceed n, a PMI is triggered; then all the
counters can be read in kernel space.

application, it is necessary to implement a technique for filtering
performance counter data relevant solely to the process of
interest. Otherwise, counter data will be contaminated by the
events of other processes.
Minimizing the impact of non-deterministic events:

As discussed in §II-A, performance counters suffer from
non-determinism and event overcounting. Thus, for several
applications, it is important to consider only deterministic
events. A deterministic event is defined as an event whose
value does not vary between identical runs and matches the
expected values that would be obtained through alternative
means, e.g., through code inspection. Unfortunately, this is a
daunting challenge because some events may be deterministic
in some processor architectures, but not in others [34]. We
return to this later in §VI.

IV. CONTEMPORARY APPROACHES AND TOOLS

Based on our study, we have identified two main strategies in
the literature for recording HPC measurements at runtime. The
first is via source code instrumentation. In this approach, the
source code is instrumented with probing points before and after
the main code. The probing points instruct the kernel module
when to initialize and when to terminate the monitoring of the
performance counters. For example in Fig. 1, the sample code
is instrumented using the probe points __asm{int 0x2e}.
The major challenge of this approach is that it requires source
code modification, which may not always be possible, especially
for closed-source software.



Alternatively, a binary-compatible approach can be taken.
One solution is to create the target process in suspended mode,
and then enable the performance counters. Once the process
terminates, performance counter values for the process are
extracted. The drawback of this method is that monitoring
starts immediately after the process is created, which is much
earlier than the actual program begins. This is because a process
is a container for a set of resources used and follows several
steps before the actual execution of the program begins [36].
An alternative is to monitor a running process by attaching to
and detaching from it after a particular condition is met. This
approach is followed by popular monitoring tools, e.g., Perf,
and Oprofile [37]. In this technique, a new thread is created in
suspended mode in the address space of the existing process,
and then the performance counters are initialized. The counters
are terminated once the process halts or after a predefined state
is reached. One can use this method to monitor events at a
finer granularity, e.g., to monitor a function.

V. DOS AND DON’TS

It should be clear by now that obtaining accurate and reliable
performance counter values can be tricky, if not frustrating.
To lessen the burden on programmers, a number of utilities
and tools have been developed to obtain performance counter
information on different platforms. To study how these tools
and techniques have been used, we selected a set of papers
that mentioned the issues of non-determinism in performance
counters that were initially highlighted by Weaver & McKee
[33]. The papers were normalized based on the citation count
and the ranking of the venue they appeared in, after which we
choose the most cited of these papers in the past 10 years. The
result was a set of 56 papers, listed in Table II.

Performance counter tools facilitate the measurement of
events at three levels of granularity:

Coarse Measurement: logs the aggregate occurrence of
the configured events for the entire execution. The most popular
tool that supports this functionality is Perf_event, which uses
a polling mechanism to read the counters.

Snippet Measurement: analyzes events related to a section
of the program instead of the entire program. To support this
capability, a high-level interface is provided to obtain the
performance counter values. PAPI is one such cross-platform
tool that employs source code instrumentation to measure
events for a section of the program [7]. A polling mechanism
is used to read the counters.

Fine-grained Measurement: samples events using an
interrupt-based mechanism. HPCs are preconfigured to generate
an interrupt every n events. Perf_event and Oprofile support
monitoring of an application based on the number of occur-
rences of specific events. The use of sampling can allow for
the most fine-grained measurement, e.g., when n = 1.

Table II lists a variety of works that rely on common
tools (e.g., Perf_event, Pfmon, perfctr, PAPI, Intel VTune)
or custom implementations for profiling HPC information. As
described earlier, a potpourri of mechanisms are used, including
polling [69-71, 75-77] or event-based sampling [4-6, 28, 32,
68, 78, 79] to measure events at different granularities. Some

proposals [4-6, 28, 32, 78, 79] apply per-process filtering in
order to sample only the events of a specific process. Tools
such as Perf_event and Intel VTune support that feature.

A. Trends and Concerns

Given the major issues of non-determinism and overcounting
in HPCs, we decided to look more closely at the 56 papers
to assess i) whether the authors acknowledged the impact
of these issues in their analysis, i) whether they addressed
the challenges that arise due to non-determinism, and iii) the
extent to which measurement error (due to non-determinism)
was explicitly accounted for in their empirical analysis.

As noted in §I, we found mixed opinions on using HPC in
empirical analyses. The lack of determinism in performance
counter values [10-23] and the lack of portability of HPC
events [7, 25, 26, 99] were two of the main reasons for not
using HPCs in certain domains. Despite the acknowledgment
of these issues by works in all application domains, there has
been virtually no attempt towards resolving the measurement
errors resulting from them. Alas, a few approaches [70-72]
even go as far as arguing that their techniques are not affected,
claiming that measurement variations are insignificant.

That dismissal is juxtaposed by two extreme views on HPCs.
On one hand, Lundberg et al. [61] noted that non-determinism is
a commonly observed behavior in multiple CPU environments
because of OS operations and multiple applications running
on the system. Two different runs of the same program with
exactly same inputs may not be identical. Because of this fact,
the performance counter may record different event counts for
two different runs of the same program, and thus should not
be relied upon. On the other extreme, relying entirely on the
non-deterministic nature of performance counters, Suciu et al.
[73] leverage that “feature” to generate random numbers.

After noticing the rise of HPC usage in security for offensive
(e.g., [109]) and defensive techniques (e.g., [5, 6, 32]), we
decided to extend our analysis to cover 41 security papers
(shown in Table III) that used HPCs and appeared in the
past 10 years®. In Table III, we display whether HPCs were
recommended or not. In order to make that determination,
we used the following criteria for ‘yes’: the authors either
explicitly advocate using HPCs (irrespective of whether they
acknowledge issues related to non-determinism) or HPCs are
used for the main application domain of their approach, even
if the paper disregards HPCs for a specific purpose. For
instance, Gruss et al. [100] showed that HPCs cannot be
used for detecting “flush+flush™ attacks, but explicitly state
that HPCs can be used for their main application domain,
such as for detecting cache attacks, rowhammer attacks, and
also “flush+reload” attacks. Only 4 (10%) out of these papers
acknowledged the non-determinism issues associated with using
HPCs. While all of them recommend using HPCs for security
purposes, none attempt to address the measurement error due
to non-determinism, and only a few [28-31] argue why their
approaches are not affected (e.g., because they observed only
minor variations in the measurement of events). While it may
be true that some approaches (e.g., [31]) may not be adversely

2We normalized the papers based on the citation count and the ranking of
the venue they appeared in.



TABLE II: Hardware Performance Counters Usage in Selected Papers

Application Authors

Non-determinism Non-determinism Measurement Recommend
acknowledged challenges error addressed using HPCs
addressed

Zaparanuks et al. [38]
‘Weaver [8]

Weaver et al. [34]
Weaver & Dongarra [39]
Rohou [40]

Nowak et al. [41]

Lim er al. [42]

Moseley et al. [43]

Auto-tuning/Profiling

Debugging O’Callahan et al. [44]

Chen et al. [45]

Chen et al. [46]

Mushtaq et al. [27]
Tuduce et al. [47]

Segulja & Abdelrahman [48]
Wang et al. [49]

Bird [10]

Michalska et al. [11]
Flater & Guthrie [12]
R&hl er al. [50]

Hoske [51]

Born de Oliveira [52]

Lim et al. [13]

Michalska er al. [14]
Akiyama & Hirofuchi [53]
Chang et al. [15]

Doyle et al. [16]

Stevens et al. [54]

Melhus & Jensen [55]
Wicht et al. [56]

Performance Analysis
and Optimization

Zhou et al. [17]

Bock & Challacombe [57]
Mushtaq et al. [18]
Hussein et al. [58]
Merrifield er al. [59]
Teabe et al. [60]

Pruitt & Freudenthal [19]
Lundberg [61]

Molnar & Végh [20]
Ozdal et al. [62]

Peraza et al. [63]

Torres & Liu [64]
Al-hayanni et al. [65]
Torres & Liu [66]

High Performance
Computing

Bergan et al. [67]
Lu et al. [21]
Stefan et al. [68]
Lu et al. [22]

OS Support

Singh et al. [69]
Davis et al. [25]
Davis et al. [26]
Goel [70]

Singh [71]

Hussein et al. [24]
Da Costa et al. [72]

Power Analysis

Random No. Generation Suciu et al. [73]

Marton et al. [74]
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@ Yes O No X Not Applicable based on column 3 (@ Respondent’s answer inconsistent with description provided in the paper

affected by minor variations in measurements, an adversary
can deliberately skew measurements to have higher variations,
to defeat security defense mechanisms. We show precisely that
later on in §VIII.

As noted earlier, for an accurate profiling of a given
application, its counter data must not be contaminated by
events from other processes. Since security applications will
have significant impact even due to minor variations in the
measurement of events (as discussed in §I), we mainly focused
our attention on security approaches. Our painstaking analysis
of these works revealed several common mistakes. For the

sake of brevity, Table IV highlights some observations for
the security research area. We selected these security papers
because they represent the state of art techniques and their
methodologies are clearly stated.

In short, we found evidence of:

o No per-process filtering: As discussed in §IV, performance
counters measure events across the same CPU core. Any
implementation that does not apply per-process filtering
will capture events from other processes (e.g., [77]).

o PMI-based filtering only: Many approaches [5, 6, 79]
filter performance counter data relevant to a process while



TABLE III: Analysis of security papers using HPCs

Application Authors Non-determinism Non-determinism Measurement error ~ Recommend using
acknowledged challenges addressed HPCs
addressed

Xia et al. [80] O X X [ ]

Yuan et al. [81] O X X (]

Aweke et al. [82] O X X (]

Zhou et al. [77] O X X [ )

Exploit Pfaff et al. [32] O X X [ ]

Torres & Liu [83] O X X [ ]

Wang & Backer [78] O X X [ ]

Das et al. [79] * O X X (]

Herath & Fogh [84] O X X [ ]

Demme et al. [5] T @] X N )

Tang et al. [6] * @) X X [ ]

Wang & Karri [4] O X X [ ]

Bahador et al. [85] O (] (] (]

Wang & Karri [86] O X X (]

Kazdagli et al. [87] T O (] () (]

Malware Wang et al. [88] O X X [ ]

Garcia-Serrano [89] O X X [ ]

Zhang et al. [90] O X X [ ]

Singh et al. [76] = O X X (]

Jyothi et al. [91] O X X [ )

Patel et al. [92] O X X [ ]

Peng et al. [93] * O X X [ ]

Martin et al. [94] O X x °

Uhsadel et al. [95] O X X [}

Bhattacharya & Mukhopad- O X X [ ]

hyay [96]

Chiappetta et al. [97] O X X [ ]

Maurice et al. [98] O X X [ ]

Side-channel Attack Hunger et al. [99] O X X [ ]

Gruss et al. [100] O X X (]

Payer [101] @) X X [ )

Zhang et al. [102] O X X [ ]

Nomani & Szefer [30] [ ] [ ] O [ ]

Gulmezoglu et al. [103] O (] (] [ ]

Irazoqui [29] (] (] O (]

Allaf et al. [104] O X X [ ]

. . . Wang et al. [105] O X X [ )

Firmware Verification Wang et al. [106] o % % °

. . Malone et al. [28] [ ] [ ] O [ ]

Integrity Checking Bruska ef al. [107] o x x °

Virtual Machine Introspection ~ Vogl & Eckert [108] O X X [ ]

Vulnerability Analysis Copos & Murthy [31] [ ] [ ] ) [ ]
@®Yes O No x Not Applicable based on column 3 ( Respondent’s answer inconsistent with description provided in the paper + Windows { Android

Others: Linux

TABLE IV: Subset of Papers in the Security Domain

Authors Per-process filtering ~ PMI-based filtering

Malone et al. [28]
Wang & Karri [4]
Tang et al. [6]
Demme et al. [5]
Singh et al. [76]
Pfaff er al. [32]
Zhou et al. [77]
Wang & Backer [78]
Das et al. [79]

(X JOX X X X X XN )
00000« @0O

® Yes O No O Respondent’s answer inconsistent with description
provided in the paper. Notes: [77] uses polling but with no per-
process filtering of HPCs. [5, 6, 79] filter process at PMI but do not
monitor context switches. [6, 79] explicitly mention the issue of data
contamination due to context switches.

handling PMIs. However, they do not save and restore the
counter data during context switches, thereby suffering
from contamination of counter data from other processes
(8IV). A common solution is to obtain performance
counter data by applying process filtering only at PMI,
but doing so still does not monitor context switching. Not
preserving the performance counter information at context

switches will lead to errors in the HPC measurements. In
§VII, we evaluate the extent to which counter values using
this approach differ from the more accurate measurement
approach that takes context switches into account.

o Lack of compensation for non-determinism and overcount-
ing: As explained in §V-A (also shown in Table III), the
non-determinism and overcounting issues are significant
oversights. We further highlight this problem in §VI by
performing a deeper analysis of the non-determinism and
overcounting issues that can undermine many security
approaches that rely on HPCs.

It is prudent to note that we supplemented our understanding
of these works with responses we received to questions listed
in Appendix A. We sent our questionnaire to the lead authors
of papers listed in Table II and III. Even after repeated attempts,
the response rate was only 28%. Given the recent adoption of
HPCs in security applications, it is not surprising that the
majority of the responses came from the security domain
(>21%). One factor for the lower number of responses from
other areas may be because those works are older.



VI. NON-DETERMINISM AND HPCS — A RE-EXAMINATION
10 YEARS LATER

In the newer generations of processors, hardware perfor-
mance counters are expected to have matured and provide
error-free measurements. Given our observations in §V, we
decided to revisit the HPC accuracy experiments originally
performed by Weaver & McKee [33] to investigate what of the
authors’ findings still hold in modern processors, and whether
new issues have arisen.

A. Experimental Setup

Our experimental platform was based on Linux (Ubuntu-
16.04, x64) running on Intel processors. The experiments were
conducted across different processor architectures, including
Sandy Bridge, Haswell, and Skylake, all configured to use
only a single core. We use only one core to ensure that the
performance counter information obtained is from the same
core that we configured, and to avoid any noise (events) from
other cores. We used the Perf tool v4.4.90 to obtain performance
counter measurements. Perf is incorporated in the Linux kernel
and has an accompanying user-space utility.

To validate the measurements, we also implemented two
additional tools for comparison. The first is based on Intel’s
Pin [110], and the second is a custom instruction debugger
denoted INS-Dbg. Pin is a popular dynamic binary instru-
mentation tool commonly used for profiling the dynamic
behavior of programs. Our Pin tool uses instruction-level
instrumentation to step at each instruction and extract the
necessary information about the program execution. In our
experiments, we intercept each instruction to measure the
number of instructions, branches, and memory operations (store
and load instructions). INS—Dbg traps on each instruction
executed by the program. The trap flag of the processor is set
to single-step on each instruction.

B. Benchmarks

Our set of benchmark programs consists of the original 21
handcrafted assembly programs provided by Weaver & McKee
[33]. A brief description of each program is given below:

o x86_064: executes 1 million instructions.

o brs_predictable: executes 1 million branches.

e brs_random: executes 2 million branches.

o rep_stosb: uses the string instruction with the rep prefix

to repetitively execute 1 million store operations.

o floating_point: reports the instruction retired count when

there is an execution of a floating point operation.

o ins_type: A set of benchmarks that execute specific types

of instructions, as indicated by the benchmark’s name,
e.g., arithmetic, logic, string, SSE, system call.

C. Findings

Our first objective was to investigate the non-determinism
and overcounting issues of performance counters across differ-
ent platforms. Our experiments consisted of measurements of
the most commonly used events, i.e., instructions and branches
retired. Since our benchmark programs consist of a small
amount of handcrafted assembly code, we were able to easily

inspect them and calculate the expected measurement value
in each case. To minimize the reported error, we executed
these programs 100 times and computed the mean value of the
events for each tool. Overall, we found that:

« In all three processor architectures, the reported number
of events is the same, for both instruction and branch
retired events, across all the tools.

o Each benchmark program has a minimum of one overcount
for both instruction and branch retired events using
performance counters, while both Pin and INS—-Dbg yield
the exact number of instructions and branches retired.

« Unlike the findings by Weaver & McKee [33], we do not
see an overcount of instructions retired due to floating
point initialization. Instead, there is an overcount in
instruction and branch retired events, which is seen
regardless of the presence of floating point operations.
Therefore, this overcount cannot be accounted for by
floating point initialization, so that issue may have been
resolved in modern processors.

e The rep stosb instruction shows a large undercount of
instructions retired. Although the store operation stosb
was executed one million times, the performance counter
shows a count of only 253 instructions. More importantly,
despite the absence of branch instructions in the code, the
HPC tool reports 246 branch instructions. While Weaver
& McKee [33] noted the inconsistency of performance
counters in handling the rep instruction prefix, they did
not investigate the root cause of the problem. We return
to this issue later in §VI-D.

o The ins_string program, which solely executes string
instructions, exhibits an undercount of instructions and an
overcount of branch retired events, similar to rep_stosb.
Similarly, ins_branch and ins_systemcall report a signifi-
cant overcount of branch instructions retired.

Our findings related to instructions retired undercount and
branches retired overcount are a cause for concern, as other
events (besides instruction and branch retired events) may
exhibit similar inconsistencies. To better understand why these
discrepancies occur, we further investigated the cases involving
string instructions to uncover their root cause.

D. Analysis of String Instruction Benchmarks

To further investigate the behavior of HPCs with string-
related instructions, we wrote 20 variants of the original
rep_stosb program. These benchmarks comprise all 10 string op-
erations, which include one-byte instructions (Lodsb, stosb,
movsb, scasb, cmpsb) and two-byte instructions (1odsw,
stosw, movsw, scasw, cmpsw). These instructions perform
load, store, copy, scan, and comparison operations. Each of
these variants executes one string operation 1 million times.
We also investigated the implementation of equivalent repeated
string operations using the 1oop instruction, as an alternative to
the rep prefix. Table V presents the results of this experiment
for instruction count and branch retired events. We can make
the following observations:

1) There is an undercount of instructions and an overcount
of branch retired events when the rep prefix is used.



TABLE V: An analysis of rep and loop instructions for instruction and branch retired

‘ Expected values ‘ HPC ‘ Pin ‘ INS-Dbg
Benchmark ‘ Ins Br ‘ Ins Br ‘ Ins Br ‘ Ins Br
rep_lodsb 1000007 0 254 247 1000007 0 1000007 0
rep_stosb 1000007 0 253 246 1000007 0 1000007 0
rep_scasb 1000007 0 254 247 1000007 0 1000007 0
rep_movsb 1000008 0 499 491 1000008 0 1000008 0
rep_cmpsb 1000008 0 498 490 1000008 0 1000008 0
rep_lodsw 1000007 0 497 490 1000007 0 1000007 0
rep_stosw 1000007 0 497 490 1000007 0 | 1000007 0
rep_scasw 1000007 0 497 490 1000007 0 1000007 0
rep_movsw 1000008 0 987 979 1000008 0 1000008 0
rep_cmpsw 1000008 0 986 978 1000008 0 1000008 0
loop_lodsb 2000007 1000000 | 2000253 1000247 | 2000007 1000000 | 2000007 1000000
loop_stosb 2000007 1000000 | 2000252 1000246 | 2000007 1000000 | 2000007 1000000
loop_scasb 2000007 1000000 | 2000253 1000247 | 2000007 1000000 | 2000007 1000000
loop_movsb 2000008 1000000 | 2000501 1000494 | 2000008 1000000 | 2000008 1000000
loop_cmpsb 2000008 1000000 | 2000500 1000493 | 2000008 1000000 | 2000008 1000000
loop_lodsw 2000007 1000000 | 2000496 2000490 | 2000007 1000000 | 2000007 1000000
loop_stosw 2000007 1000000 | 2000497 1000491 2000007 1000000 | 2000007 1000000
loop_scasw 2000007 1000000 | 2000496 1000490 | 2000007 1000000 | 2000007 1000000
loop_movsw | 2000008 1000000 | 2000988 1000981 2000008 1000000 | 2000008 1000000
loop_cmpsw 2000008 1000000 | 2000985 1000978 | 2000008 1000000 | 2000008 1000000

2) Using the rep prefix, string instructions that involve
two memory accesses (e.g., movsb) show nearly twice
the number of instructions and branches than string
instructions with a single memory access (e.g., Lodsb).
Similarly, word (2-byte) instructions (e.g., movsw) have
roughly twice the number of events than their counterpart
byte instructions (e.g., movsb).

3) When the loop instruction is used, HPCs, Pin, and
INS-Dbg have small measurement variations, which
seem to follow a certain pattern. For example, the
loop_lodsb benchmark shows an overcount of 246 in-
structions and 247 branches, compared to the expected
values. Those inconsistencies follow the same pattern that
was observed for the rep cases. Also, the overcounts
double in the case of string instructions with two memory
accesses. Upon further investigation, we noticed that the
amount of overcount in instruction and branch events is
equal to the number of page faults, which explains the
correlation with the number of memory accesses. We
present our detailed analysis to verify the effect of page
faults on event count in Appendix B.

4) To dig deeper, we also investigated the memory load
and store instructions for rep and loop cases. The
measurement for the store instruction event is unaffected
by page faults in both the rep and loop cases, but the
load instruction event is directly affected by page faults
(discussed later in Appendix B).

E. Summary and Impact of Findings

Overall, our analysis sheds light on challenges and pitfalls
stemming from the use of HPCs that were not reported before.
Our findings show that almost 10 years after the initial study
by Weaver & McKee [33], numerous issues related to non-
determinism with HPC measurements still persist in modern
processors. We find that the most commonly used events
(including instruction, branch, and memory load and store
events) are affected by non-determinism and overcounting; the
root cause of the measurement errors in instruction, branch and

load events can be minimized; but the rep string instruction
shows how the performance counter measurements significantly
differ from other non-HPC approaches. We note that our study
is not exhaustive, that there may be more cases of inconsistency
not covered here, and that other hardware events may be
affected, further exacerbating the measurement errors.

Taken as a whole, our investigation indicates that the issues
of non-determinism and overcounting could severely impact the
correctness of any techniques that solely rely on performance
counter measurements. As a matter of fact, for critical use-
cases such as security-related applications, these issues can
have catastrophic consequences. For instance, most of the HPC-
based security defenses we studied [4-6, 32, 77-79, 84, 88,
93, 101, 106], at their core, depend on threshold values of
a particular event. An adversary can induce page faults to
significantly affect the accuracy of the measured events, as
we discuss further in Appendix B. Using such techniques, an
adversary can manipulate the count of events to undermine a
HPC-based defense. Under such an adversarial model, most of
the security defenses listed in Table III can be undermined. We
present a case study on the actual implementation of one such
evasive technique in §VIII. Before doing so, we first provide
guidance to researchers on how to properly use HPCs, with
a key focus on illustrating how the recording methodology
used in a set of representative works can drastically impact the
ability to build robust models.

VII. CASE STUDY I: ON WEAK SECURITY FOUNDATIONS

Two of the most prominent areas of security research that
have used performance counters include exploit protection [32,
77-79, 84, 101] and malware detection [4-6, 88, 93, 106]
(see Table III for others). Accordingly, for our case study, we
selected representative approaches [5, 6, 78] from both areas.

In §V we highlighted three common mistakes that are
encountered in security applications involving HPCs. The first
two are related to the incorrect retrieval of HPC information
for a given process. These mistakes arise due to improper
handling of performance counter information during context
switches. While a PMI-based filtering approach is better than



no per-process filtering at all, it still does not preserve the
event counts during context switches.

For our case study, we implemented a custom module by
augmenting the PMI approach with context switch monitoring.
We refer to our implementation as CS-PMI. An overview of
the CS-PMI implementation is given in Alg. 1 in Appendix C.
In addition to sampling HPCs at performance monitoring
interrupts, our approach monitors context switches in order to
save and restore the counter values of the process of interest.

A. Using HPCs for ROP detection

For applications such as Return-oriented programming
(ROP) attack detection, a PMI-only approach would not have
significant impact on accuracy due to the relatively short
instruction sequences that make up a ROP payload. For instance,
the ROP chain used by the Metasploit exploit for CVE-2012-
4792 consists of only 27 instructions. The odds of encountering
context switches during such a small code segment is very
low. Hence, it is feasible that by setting a low PMI one could
attempt to detect ROP execution, as was done by Wang &
Backer [78]. To substantiate this conjecture, we performed a
case study on a ROP defense model using the PMI approach.

Many ROP defenses [32, 77-79] use heuristics which
leverage branch misprediction events that occur at return
instructions. A ROP chain consists of several gadgets (i.e.,
instruction sequences) that end in return instructions. These
return instructions do not have their corresponding call instruc-
tions, and therefore the CPU encounters branch mispredictions
during their execution.

We evaluated the effectiveness of the CS-PMI and PMI
approaches for detecting a ROP chain using the recently
proposed model of Wang & Backer [78]. We performed the
experiment on a bare-metal environment running Windows 7
(32-bit) on top of a Sandy Bridge processor (Intel 17-2600).
To replicate a realistic real-world environment, we ensured
that CPU utilization is above 60% . We used the Metasploit
exploits for CVE-2012-4792, CVE-2013-1347 and CVE-2012-
1535, which are commonly used to test exploit protections [6,
32, 77-79]. They represent typical examples of ROP attacks,
which in most cases have a small footprint.

Similar to Tang efr al. [6], we instrument the start and
end of the ROP chain using int3 instructions (0xCC) in
order to specifically model the ROP stage of an exploit. We
configured the performance counter to generate a PMI for
every 6 mispredicted return instructions as done by Wang &
Backer [78]. At each PMI, we monitor two additional events —
instruction retired and return instructions, using programmable
counters. A typical ROP chain in Metasploit consists of 12—
13 return instructions, generating the same number of return
mispredictions. Therefore, a ROP execution will likely have
2 PMIs (each of 6 return mispredictions corresponding to 6
gadgets), which will reflect the signature of a ROP attack.

To detect a ROP attack, we set a threshold using the
instruction retired event Wang & Backer [78]. The number of
instructions retired I = number of gadgets * average number of

3To ensure that CPU load is above 60% during the experiments, we executed
a few Chrome processes, running 4K and live videos on YouTube.

instructions in a gadget. For our samples, the average number
of instructions in a gadget is 3. Therefore, for a PMI, if number
of instructions retired <= 6*3, it is considered as a ROP attack.
For true positives, we measured how many of the PMIs between
the start and end of the ROP chain have the signature of a
ROP attack. For false positives, we measured the number of
PMIs that do not occur as a result of the execution of the ROP
chain, but still match the signature of a ROP attack.

Results: We ran each exploit 20 times and averaged the
results. The CS-PMI approach correctly raises an alert 79
times, whereas the PMI approach does so 77 times. Hence both
approaches have ample opportunities to detect the prescribed
signature for a ROP attack. On the other hand, the numbers of
false positives using the two approaches are 2019 and 2078,
respectively. We note that although the heuristics that are used
in these works are too poor to be used in practice, for the
study in this paper, it appears that a PMI-only approach is
not significantly worse than its CS-PMI counterpart. This is
primarily due to the fact that there are not many opportunities
for a context switch to occur during the small number of
instructions that are executed in the ROP chain.

B. Using HPCs for Malware Detection

In contrast to ROP prevention, the PMI approach directly
impacts the accuracy of malware classification techniques due
to the longer execution trace induced by malware. Yet, several
works [5, 6] have employed PMI-based filtering to model
malicious behavior. To highlight the pitfalls of using the PMI
approach in this setting, we performed a case study on malware
classification at a fine-grained level. Similarly to previous
works [5, 6], we use a machine learning (ML) approach for
the classification of malware and benign programs.

Experimental setup: We used a machine with a Sandy
Bridge processor (Intel i7-2600). Performance counter traces
were collected on VMware virtual machines (VMs) running
Windows 7 OS (32-bit), with each VM pinned to a separate
physical core. Performance counters were configured to monitor
events of the guest VM only (hypervisor events are excluded).
Empirically, we verified that there is no contamination of events
between the processor cores.

Dataset: We used 313 malware samples obtained from
Vxheaven [111]. These malware samples were first seen during
2006-2011, as reported by VirusTotal. We labelled the samples
into 137 malware families using the state of the art malware
labeling tool, AVClass [112]. Our benign dataset contains
real world applications, comprising Internet Explorer, Firefox,
VLC player, WMplayer and Adobe Reader. The Alexa top-20
websites were loaded on Internet Explorer and Firefox, 10
media files were played on VLC and WMplayer, and 10 PDF
files were opened using Adobe Reader.

Data collection: To compare the approaches in a real-world
setting, we ensured that the CPU utilization was above 60%
during the experiments. We profiled each malware sample in
a fresh VM to avoid any affect of other malware executions.
Each sample was allowed to run for one minute, during which
the HPC traces were collected.

In this case study, we choose the heuristics proposed by Tang
et al. [6] for malware classification, as they are representative



TABLE VI: Performance evaluation of K-way classification: Decision Tree (J48)

‘ TPR ‘ FPR ‘ Precision ‘ Recall ‘ F-Measure ‘ ROC Area
Class | PMI | A | PMI | A | PMI | A | PMI | A | PMI | A | PMI | A
poshkill | 0.363 | -0.015 | 0.050 | -0.002 | 0.342 0.002 | 0.363 | -0.015 | 0.351 | -0.006 | 0.763 0.001
bonk | 0.345 0.001 | 0.045 0.001 | 0.353 | -0.001 | 0.345 0.001 | 0.349 0.000 | 0.772 0.007
alcaul | 0.358 | -0.016 | 0.044 0.004 | 0.369 | -0.030 | 0.358 | -0.016 | 0.363 | -0.022 | 0.765 0.002
thorin | 0.976 0.022 | 0.002 | -0.002 | 0.970 0.024 | 0.976 0.022 | 0.973 0.023 | 0.988 0.011
toffus | 0.720 0.213 | 0.023 | -0.018 | 0.693 0.236 | 0.720 0.213 | 0.706 0.878 0.098
werly | 0.955 0.009 | 0.003 | -0.001 | 0.959 0.010 | 0.955 0.009 | 0.957 0.980 0.004
afgan | 0.925 0.046 | 0.005 | -0.003 | 0.929 0.044 | 0.925 0.046 | 0.927 0.964 0.023
smee | 0.892 0.043 | 0.008 0.004 | 0.884 0.056 | 0.892 0.043 | 0.888 0.948 0.023
bonding | 0.727 0.221 | 0.019 | -0.014 | 0.731 0.200 | 0.727 0.221 | 0.729 0.875 0.099
delf | 0.624 0.325 | 0.028 | -0.023 | 0.619 0.314 | 0.624 0.325 | 0.621 0.836 0.142
cisum | 0.889 0.041 | 0.008 0.002 | 0.894 0.029 | 0.889 0.041 | 0.891 0.948 0.019
tiraz | 0.931 0.021 | 0.005 0.000 | 0.934 0.009 | 0.931 0.021 | 0.933 0.968 0.010
bube | 0.819 0.079 | 0.012 | -0.004 | 0.836 0.065 | 0.819 0.079 | 0.827 0914 0.041
leniog | 0.873 0.060 | 0.008 0.004 | 0.890 0.057 | 0.873 0.060 | 0.881 0.943 0.030
IE | 0.794 0.050 | 0.014 | -0.005 | 0.806 0.068 | 0.794 0.050 | 0.800 0.906 0.023
Weighted Avg. | 0.746 | 0.078 | 0.018 | 0.006 | 0.747 | 0.076 | 0.746 | 0.078 | 0.746 [WNONOZZN 0.897 | 0.036

A = Difference between the approaches (i.e., CS-PMI - PMI)

of the state of the art. Accordingly, the PMI is set at 512,000
instructions retired and 4 additional events are monitored using
programmable counters — store micro-operations, indirect
call instructions, mispredicted return instructions and return
instructions.* Thus, each PMI consists of a tuple of five events.

Feature construction: To build a feature vector, we use
the temporal model proposed by Tang et al. [6]. We choose
temporal model over non-temporal because Tang et al. [6] show
that malicious behavior cannot be sufficiently represented by
performance counter events of one PMI. A feature vector
consists of N (= 4) consecutive tuples, where each tuple
contains 5 events collected at a PMI, totaling 20 features.

We selected the unique feature vectors in each family. Some
malware families may generate substantially lower numbers
of feature vectors than others. To avoid biasing [113] the
classification, we selected the top 14 malware families that
generated the highest number of feature vectors. To further
negate bias by an individual family, we used an equal number
of feature vectors, randomly selected from each of the 14
families. Similarly, in the case of benign applications, an equal
number of feature vectors was chosen randomly from each
application. The total feature vectors obtained from benign
applications and malware samples were balanced.

1) Classification Results: We use the Weka toolkit [114]
for ML classifier training and testing purposes. Similar to
other works [5, 6], we performed our evaluation using three
standard ML classifiers — Decision Tree, K-Nearest Neighbors
(KNN), and Support Vector Machine. Based on the standard
practices, we selected the J48, IBk, and SMO algorithms
corresponding to the aforementioned classifiers [115] (with the
default configuration parameters of Weka). It is possible that
by fine-tuning the advanced ML classifiers the results can be
improved, but nonetheless, we believe that the same difference
will still persist between the CS-PMI and PMI approaches.
According to widely held practices [116], training and testing
were performed using a 10-fold cross-validation model.

a) Binary classification: First, we perform a coarse-
grained binary classification, where feature vectors are divided

4The corresponding performance events in the Intel manual are
mem_uops_retired.all_stores, br_inst_exec.taken_indirct_near_call,
br_misp_exec.return_near, br_inst_exec.all_indirect_near_return.

into two classes, malware and benign. An equal number
of feature vectors are selected from the benign and malware
samples for both the CS-PMI and PMI approaches. Our results
show that the average classification accuracy (F-Measure) using
the three algorithms is 89% with the CS-PMI approach versus
87% with the PMI approach. However, the difference is far
greater under the more fined-grained K-way classification.

b) K-way classification: A K-way classification across
15 classes, including 14 malware families and one benign
application, Internet Explorer (IE), was performed. The results
for decision tree and KNN classifiers are shown in Table VI
and VIII (Appendix D). The results for the KNN classifier
is also given in Appendix D (e.g., Fig. 5), but we omit the
figures for the support vector machine classifier due to space
limitations. The difference between the two approaches is
also evident from the confusion matrices (i.e., Fig. 4 and 5
in Appendix D). The overall difference using a decision tree
classifier is roughly 8%, but for the individual classes, there is
a substantial improvement: foffus (23%), bonding (21%), delf
(32%), bube (7%), leniog (6%) and IE (6%). Similarly, with
a KNN classifier, we observe a notable improvement: toffus
(10%), bonding (36%), delf (24%), cisum (7%) and leniog (9%).
Support vector machine also shows similar improvement for
the individual classes: smee (17%), bonding (26%), delf (18%),
leniog (16%) and IE (6%). Overall, 30% of the families have
roughly 17% classification improvement for all 3 classifiers.

To see why there is such a large difference between the two
approaches, it is sufficient to note that for Poshkill. 1445, for
example, we observed 11,735 context switches during the one
minute period it ran. For the PMI approach, each time this
sample is restored for execution at the context switch, there
are contaminated events from previous process. Also, at the
time of context switch from the malware to other process, the
events related to this sample are lost because they are not
saved. Therefore, on 2 % 11,735 occasions, the PMI data may
be either contaminated or incomplete. If we assume that the
context switches occurred at a regular interval, for 150,476
feature vectors obtained from this sample, approximately 15%
of them are either contaminated or have incomplete events.
Table VI and VIII also show that 12 out of 15 classes have



better accuracy using the CS-PMI approach for decision tree
and KNN classifiers, while 3 of the classes (i.e., poshkill, bonk
and alcaul) have marginally lower F-measures as compared
to the PMI approach. As depicted by the confusion matrices
(Fig. 4 and 5), these 3 classes also exhibit a higher confusion
rate than others. This is because they use a similar technique
to attach their code to files on the host system or network®
and may not contain enough distinctive behaviors [113].

c) Summary of Findings: Our experiments show that
differences in the way the data is recorded and the approaches
taken to do so, not only affect the accuracy of the resulting
techniques, but also impact the reproducibility of the research
findings. For that reason, we do not recommend the use of PMI-
only approaches, which unfortunately, is a common practice
when using HPCs for security applications (see Table IV).

The observant reader will note that irrespective of which
classifier was used, the confusion between the benign case
(IE) and the malicious samples is beyond what one would
expect in any practical deployment of such detectors. This,
to us, indicates that the use of HPCs for malware detection
is inadequate, since the features commonly built from such
measurements fail to correctly distinguish between benign and
malicious activities in real-world settings. The situation may
improve once we have better support for low-skid interrupts and
sampling [117]. In particular, a known issue with measurements
involving interrupts is “skid,” wherein it takes some amount of
time to stop the processor to pinpoint exactly which instruction
was active at time of the interrupt, resulting in a discrepancy
between the instruction indicated versus the one that actually
caused the interrupt. This is particularly common in modern,
out-of-order, CPU designs. Until then, we suggest that HPCs
are too fragile to be used as the sole source of features for the
studied types of security applications.

VIII. CASE STUDY II:THERE BE DRAGONS

Earlier in §V, we highlighted that the effects of non-
determinism have been overlooked in most security papers.
To shed light on the severity of this oversight, we present two
analysis efforts. The first directly shows how non-determinism
impacts the accuracy of a ROP defense model, while the second
presents a generic approach to evade a ROP defense by inducing
noise during the measurement process.

A. How Non-determinism Affects Accuracy

To concretely demonstrate the impact of non-determinism,
we revisit the ROP detection technique discussed in §VII-A.
Recall that factors that influence the accuracy of such defenses
include skid during PMI delivery, overcounting due to hardware
interrupts, where and when the PMI occurs during the ROP
chain, and the strength of the heuristic itself. The sources of
non-determinism are skid and overcounting of instructions due
to PMI events. The frequency of the PMI will impact the level
of overcounting, leading to our conjecture that as the frequency
of PMIs increases, so does the overcounting of events.

Showing this is challenging since non-determinism is a deep-
rooted issue which cannot be easily compartmentalized because

Shttps://www.pandasecurity.com/homeusers/security-
info/44002/information/PoshKill.B

there is no noise-free platform that can be used to give an
exact measurement. However, based on our understanding of
return-oriented programming, we can control some factors to
show the impact of non-determinism on the detection heuristic.
In what follows, we assume that:

o Similar to Wang & Backer [78], a window of 6 gadgets
(correspondingly, 6 return misses) is used as the trigger
for detecting a ROP chain. Thus, for a chain of 12 gadgets,
there are two windows of opportunity for detection.

« For a given ROP chain, we can compute the threshold
value for the number of instructions retired for an arbitrary
set of gadgets. For example, in the case of the Metasploit
exploit (CVE-2012-4792), for 6 gadgets, the number of
instructions retired is <= 15, whereas, for 7 gadgets, the
number of instructions retired is <= 17.

We used the same setup and exploit samples as in §VII-A.
We obtained HPC measurements using PMI by varying the
number of return misses, i.e., ret_miss = «, for « = 6, 3, 2, 1.
We use the CS-PMI approach for data collection. The exploits
were executed 20 times for each PMI setting. We evaluated
the true positive rate (TPR) and false positive rate (FPR) based
on the criteria above. Each exploit run included the execution
of ROP chain and non-ROP (i.e., benign) code. For example,
when the exploit is run in Internet Explorer, the run consists of
both benign code and the ROP chain execution. A true positive
is specific to the ROP chain execution, whereas a false positive
is specific to the non-ROP part. To demarcate the ROP chain,
we instrument the start and the end of ROP-chain using “int3”
instruction (as also described in §VII-A). The TPR is evaluated
as the number of true positives over all the total windows of
opportunity to detect the ROP chain.

In our evaluation, we ensured that a window of 6 gadgets
was considered, per the original heuristic. For example, in the
case of PMI set to ret_miss = 1, we take 6 consecutive PMIs as
one window of opportunity to detect the ROP exploit. Similarly,
for a PMI set at ret_miss = 3, we take 2 consecutive PMIs
as one window to detect the ROP chain. We do not consider
ret_miss = 4 or 5, since the original heuristic is based on a
window of ret_miss = 6, and 4, 5 are not divisible of 6.

Results: Empirical results show that as the frequency of
PMI increases (smaller values of «), the true positive rate
decreases: TPRs at « = 6, 3, 2, 1 are 19.17%, 11.67%, 9.17%,
0%, respectively. Furthermore, the false positive rate increases
with the increased frequency of PMI; FPRs at o = 6, 3, 2,
1 are 0.007%, 0.007%, 0.011%, 0.009%, respectively. These
results support the earlier conjecture that non-determinism will
significantly impact the performance of a model.

Summary: Taken as a whole, these results show that the
non-determinism of HPCs is indeed a serious factor, significant
enough to undermine the soundness of techniques that rely
on them as a foundation for security defenses. Adjusting the
PMI has a direct impact on the level of noise, leading to
a clear degradation in accuracy. The non-determinism with
HPCs in these experiments arises because PMI is a hardware
interrupt, and each PMI leads to overcounting of instructions.
Additionally, the skid during PMI delivery (as mentioned in
§VII) worsens the overcounting issue. To illustrate that further,
we plot in Fig. 6 (in Appendix E) the observed skid when



PMI is set at different number of ret_miss events. To observe
the skid for a PMI set at ret_miss = «, we collect the actual
number of return misses recorded by HPC at each PMI during
the execution of the exploits. The skid is the difference between
the expected measurement and the measurement reported by
the HPC. For example, if one sets the PMI to be delivered after
six return misses, and the value reported by the measurement
unit equals to eight, than the observed skid is two. The result
shows that skid is inconsistent at every sampling rate.

B. Evading a ROP Defense using Non-determinism

Lastly, we show how non-determinism can be leveraged by
an adversary to evade a ROP defense. To that end, we return to
the heuristic proposed by Wang & Backer [78]. As described in
§VIII-A, the ROP detection is based on the assumption that for
a given number of return misses, «, the number of instructions
retired is lower than some threshold, A.

Our attack simply triggers page faults to manipulate the
number of instructions retired to defeat the ROP detection. As
discussed in §VI, we observe that page faults directly impact
the measurement of instruction retired event. In the attack, we
assume 1) the availability of classes of gadgets — namely,
arithmetic and load gadgets, and a gadget that triggers repeated
demand paging page faults; 2) the availability of a function
pointer to malloc (). Given that, the attack is straightforward:
we deliberately insert points of manipulation within an existing
ROP chain. The points of manipulation produce an overcount
of one instruction for every page fault triggered. The amount
of page faults triggered is controlled by a counter register,
and that counter can be set arbitrarily to accommodate any
parameter values /, o and A assumed by the heuristic. Here, [
specifies the number of gadgets in a ROP chain.

Implementation: First, an adversary allocates a memory
buffer of size m using a return-to-libc technique to call
malloc (). This buffer is allocated but not mapped in memory,
and is used to trigger demand page faults. Next, the existing
ROP chain is modified to include manipulator blocks that
produce an arbitrary overcount for every o gadgets, thus foiling
the detection heuristic. An illustration is shown in Fig. 3.

a-3 Manipulator -2
gadgets gadgets gadgets

Manipulator a-2

Init gadgets
el gadgets gadgets

Fig. 3: Modified ROP chain with manipulator gadgets.

We distinguish between two types of so-called manipulator
blocks: a manipulator initialization block that is executed before
any other gadget in the ROP chain, and regular manipulator
blocks that are inserted every -2 gadgets.

1) The initialization block consists of three gadgets:

o The first gadget (e.g., pop ecx; ret) sets the value
of ecx to m.

e The second gadget (e.g., mov edi, eax; ret)
copies the value returned by malloc () stored in the
register eax to the destination register edi.

o The third gadget (e.g., rep stosd; ret) repeatedly
accesses the memory pointed by edi and triggers page
faults. Memory is accessed m times, thereby triggering
instruction overcount above the detection threshold A.

2) Regular manipulator blocks consist of two gadgets: one
gadget (e.g., pop ecx; ret) that sets a value of the
counter register ecx to m, and other gadget (e.g., rep
stosd; ret) that repeatedly accesses the memory
pointed by edi to trigger page faults.

Our approach increases the overall length of the gadget chain
since we introduce two extra gadgets for every o — 2 gadgets
of the original chain (see Fig. 3). Given any combination of
the parameters o and A used by the heuristic, an adversary
can choose a value m such that the instruction retired count
is always above A. The modified chain will be of length
I'=1+4+3+42x[(l4+3—a)/(a—2)]. Thus, there will be
N = I'/a opportunities for detecting the modified ROP chain.
Consequently, to evade detection, each manipulator block must
produce an overcount of x > A — 2 % « instructions.

Results: The ROP detection mechanism [78] used a detection
window based on the number of return misses o = 6. To
demonstrate the feasibility of hiding the ROP we evaluate
the length of the expanded chain and instructions retired for
different sizes of v <= 6. Our results show that in the worst
case, the manipulators need to generate an overcount that
matches the average number of instructions. For example, for
a = 6, the average number of instructions is 11088, whereas
for a = 3, it is 5614. In the average case (as presented in [78]),
an adversary needs to generate only x > A — 2%« instructions
to defeat the detection mechanism. Hence, for « = 3,4,5,6 an
overcount of z = 20 instructions would be sufficient to defeat
the detection mechanism.

Summary: Our evasive technique demonstrates that regard-
less of the parameters used by the detection mechanism, an
adversary can disguise the execution of a ROP chain by hiding
within deliberately introduced noise.

IX. OTHER RELATED WORK

In the past, several works have highlighted challenges with
using hardware performance counters. The most germane is
the work of Weaver & McKee [33] that showed that the
instruction retired event had a variation of 1% for the CPU
SPEC benchmarks across different x86 architectures. They
noted several sources of variations and showed that by adjusting
the measurements one could reduce the observed variation to
less than 0.002%. Later, Weaver & Dongarra [39] showed that
hardware interrupts (e.g., periodic timers) can lead to significant
overcounting of retired instructions and recommended that the
recorded measurements be compensated by subtracting the
number of hardware interrupts. Although they briefly mentioned
the influence of page faults, they did not perform a detailed
study of the effects of page faults on different events.

Furthermore, Weaver et al. [34] found that many events
on x86_64 architectures are non-deterministic, i.e., their mea-
surements vary between different runs even under strictly
controlled settings. They showed that only a small number of
events are deterministic and have no overcounting issues, e.g.,
branches retired on Sandy Bridge and Westmere architectures.
It was noted that although hardware interrupts are one of
the main sources of variation, the impact may be difficult
to measure in many systems. More recently, Weaver [118]
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summarized the available features and overhead of the most
common performance counter tools.

Other researchers [38, 43, 119] have also noted the inac-
curacy in HPC measurements, specifically for loads, stores,
floating-point operations, and branch mispredictions. However,
these works focused on micro-architectural events and attributed
the inaccuracy to the interface of their performance counter
monitoring tool (i.e., PAPI), and the lack of processor archi-
tecture details. Zaparanuks et al. [38] studied the difference
in counts reported for specific events across common HPC
tools, including perfctr, perfmon2, and PAPIL. In that work, it
was observed that the measurement setup could lead to an
inaccuracy of several thousand instructions. Moseley et al.
[43] reported that HPCs have several practical issues that
hinder their usage in real-world settings, for example, lack of
verification of the events, lack of portability of events across
architectures, sampling skid during the interrupt delivery, and
the high overhead of reading the counters. Recently, O’Callahan
et al. [44] tried to get around the skid issue by interrupting
the processor some number of events earlier than the actual
desired event. Unfortunately, while most of these works do
touch on the non-determinism and inaccuracy of events, none
empirically evaluated the drawback of incorrect data collection,
such as using PMI-based filtering.

Concurrent to our work, Zhou et al. [120] showed that
under realistic settings, HPC information cannot distinguish
between benign software and malware. Interestingly, even after
cross-validating their models multiple times by taking repeated
measurements, the best F-measure obtained was 80.22% using
a Decision Tree model, which is similar to the results we
presented in Table VI. Furthermore, they also showed that
benign application infused with ransomware cannot be detected
by contemporary HPC-based malware detection. Taken together,
these works describe a cautionary tale for using HPCs for
purposes beyond their original intent.

X. RECOMMENDATIONS AND CONCLUSION

Hardware performance counters have been available for
more than a decade. Their inclusion has been a boon for
many application areas, with the biggest benefit being the
ability to identify and understand the behavior of code hotspots.
But, understanding micro-architectural interactions — which
is imperative for various types of security analysis — is
tedious and the potential gains can quickly diminish. As
noted by Moseley et al. [43], because features frequently
have vague documentation, an expert level of understanding is
required to collect and apply data from performance counters.
Consequently, users are often measuring something different
from what they expect. This, in our experience, is particularly
true in that subsequent generations of processors may be
deceptively diverse in what they measure (e.g., [43, Section
3]). Hence, users are left to treat processors as black boxes.

While we disagree with the point of view of Moseley et al.
[43] that, from an academic perspective, one motivation for
the use of hardware performance counters is that it enables
writing of more papers, we understand their frustration. Here,
we take a different approach and suggest some tenable goals

that could help minimize some of the headaches associated
with using HPCs.

o First, (for both reviewers and authors alike) empirical
results based on performance counters should not be
compared with those from other profiling tools (e.g., Pin).
As discussed in §VI, the fact that the design philosophy
varies widely between these tools, coupled with the issues
of non-determinism and overcounting, inevitably leads to
results that are not easily comparable.

e« Modern processors are inherently complex, so it is
important that authors verify HPC-based findings on
different CPU architectures. While certain architectural
events may remain consistent across architectures, many
micro-architectural events vary widely. Moreover, some
events may be present in one architecture, unavailable in
another, or have an entirely different implementation.

« For profiling a specific application, it is imperative that
per-process filtering of events is applied by saving and
restoring the counter values at context switches. Failure
to do so will impact accuracy, and can call into question
the overall soundness of the approach.

« For critical applications such as security defenses, the
issues related to non-determinism and overcounting cannot
be overlooked. This is especially true when considering
adversarial models in which the adversary can freely
manipulate the counters to thwart defenses.

o Lastly, if security is to be taken more seriously as a
science [121], it is important that authors take more
precautions in documenting their work. It was rather
difficult to get even the most basic information about
HPC configuration and usage in many of the papers we
surveyed. Respondents to our survey indicated that our
questions were enlightening, and some agreed that the
lack of detail affected the reproducibility of their work.

Overall, the fact that the number of events being added to

processors is growing faster than the number of counters, is
unsettling. It has come to the point where machine learning® is
required to manage the abundance of information. Researchers
should think carefully about the adoption of HPCs for security
defenses, as this was not the designers’ original intent for them.
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APPENDIX A
QUESTIONS FOR LEAD AUTHORS

For the reproducibility of results we suggest that answers to
the following questions be specifically addressed.

3]

2)

3)

4)

5)

High-level understanding

a) For what purpose did you use HPC?
Q Performance
O Power analysis
Q Security
0 Debugging
U Operating system support
Q Other
How many total counters were used?
Q<=4
O >4 and <=7
a>7
¢) How many configurable/programmable counters were used simulta-
neously?
Q<=4
Q>4
How were the measurements taken?
4 Polling
QO Event-based sampling
Which of the following tools were used?
Q PAPI
O Oprofile
U perfetr
4 perfmon2
Q perf_event
Q LIKWID
Q LiMiT
Q Intel VTune
O Custom
f) Was the performance counter module natively implemented in the
OS kernel (e.g., Perf_event)?
O Yes
4 No
O Unsure

Measurement granularity

b

=

d

=

c

N

a) At what level were measurements collected?
Q Process/Application
Q Processor core
Q4 System-wide
b) Performance counters were configured for the events in:
Q User space only
Q4 Kernel space only
Q Both
QO Unsure

Context-switch monitoring

a) Was context-switching monitored?
Q Yes
4 No
Q Unsure
b) If yes, were performance counter values saved/restored at context
switches?
Q Yes
4 No
Q4 Unsure
Performance monitoring interrupt (PMI)
a) At each PMI, was process-based filtering performed?
Q Yes
4 No
QO Unsure
U Not applicable
b) If measurements were obtained by event-based sampling, how was
the sampling counter configured?
Q For user space only
Q For kernel space only
0 Both
4 Unsure
Q Not applicable

Experimental setup



a) How was the performance counter monitoring module implemented?
Q1 On a bare-metal system

Q In a virtual machine

If a virtual machine was used, which of the following virtualization
software was used?

O VMware

0 KvM

Q Virtualbox

Q Other

Q Not applicable

How many cores were there in your virtual machine or bare-metal
system?

4 One

O More than one

O Unsure

If more than 1 core was present, were HPCs on all cores monitored?
Q Yes

4 No

Q Unsure

O Not applicable

b

=

C

~

d

=

6) Non-determinism and overcounting issues

a) Was the measurement error, resulting from non-determinism and
overcounting of HPCs, addressed in your approach?
Q Yes
4 No
Q Unsure
QO Not applicable
b) Would you recommend using HPCs for the main application domain
of your paper?
Q Yes
4 No
QO Unsure

APPENDIX B
TOWARD MINIMIZING PERFORMANCE COUNTER ERROR

The results in Table V indicated that the overcount for mem-
ory operations using the loop instruction was approximately
1 overcount per 4 KB memory access. Our conjecture was
that every 4 KB memory access there was an overcount in
the branch and instructions retired counts. To validate this,
we examined the number of page faults during the program
execution. Our analysis shows that the number of page faults
directly impacts the instruction and branch count. We used
the Perf tool for measuring page faults. To see if we can
then minimize the reported error, we adjusted the number of
instructions and branches by deducting the number of page
faults that occurred.

Listing 1: Source code for page fault experiment

# Aim: Trigger page fault on memory access

.globl _start
_start :
xor %rcx,%rcx 6
mov $512,%rcx  # Setup a counter
mov $bufferl,%rsi
mem:
mov (%rsi),%rax # Triggers page fault
add $4096,%rsi # Advance to next page 1
loop mem
exit :
xor %rdi,%rdi # we return O
mov $60,%rax # SYSCALL_EXIT
nop 16
syscall # exit
.bss
Jcomm bufferl,8388608

To further comprehend the effect of page faults on instruction
and branch events, we specifically wrote a test program (see
Listing 1) that executes a loop, where a new memory page is
accessed to trigger a page fault in each iteration. After varying
the number of memory accesses and forcing the page faults,
we observed a direct effect of page faults on the overcount of
the instruction and branch events (shown in Table VII).

TABLE VII: Impact of page faults

| Expected values | HPC |  Adjusted-HPC
Benchmark ‘ Ins Br ‘ Ins Br Pf ‘ Ins - Pf  Br-Pf
page_fault_test 10 1 11 3 1 10 2
13 2 15 5 2 13 3
19 4 23 9 4 19 5
31 8 39 17 8 31 9
55 16 71 33 16 55 17
103 32 135 65 32 103 33
199 64 263 129 64 199 65
391 128 519 257 128 391 129
775 256 1031 513 256 775 257
1543 512 | 2055 1025 512 1543 513

Pf: page faults

That analysis led to other findings. First, the adjusted mea-
surement matched the expected values with minor variations,
except rep string instructions. Second, for the rep string
instructions, the overcount in branch events was minimized
by adjusting the page faults, but the instruction retired event
showed a large undercount. We found that HPC considers rep
string instruction as one complex instruction, which performs
similar memory operations repetitively. Therefore, it increments
the instruction retired counter only when rep string instruction
is retired. Pin and INS—-Dbg tools, on the other hand, consider
each memory operation as one instruction and increment the
instruction counter at each repetition.

Digging deeper, we examined the memory load and store
instructions for rep and loop string instructions. Since
the load and store instruction events are only available in
Skylake processors, we conducted this experiment only on
Skylake (Haswell and Sandy Bridge architectures monitor
load and store micro-op events). We found that the store
instruction event is consistent and unaffected by page faults both
for rep and loop cases (e.g., stosb, movsb, stosw,
movsw). Also, the store instruction event is incremented
only once for rep stosb/movsb/stosw/movsw. Con-
versely, the load instruction event is directly affected by
the page faults, but the effect is not consistent, such as in
rep_stosb/movsb/stosw/movsw. Therefore, the number of page
faults cannot be directly deducted in the load instruction
measurement to adjust the values and minimize the error.

APPENDIX C
ALGORITHM FOR CS-PMI APPROACH
In Sec. VII, we presented our case study using CS-PMI ap-

proach, which augments the PMI approach with context switch
monitoring. The CS-PMI approach is shown in Algorithm 1.

APPENDIX D
EXTENDED K-WAY CLASSIFICATION RESULTS

In Sec. VII, we presented our case study on K-way
classification of malware using two approaches, CS-PMI and
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Fig. 4: K-way classification: Decision Tree (J48).
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Algorithm 1 CS-PMI approach

22:
23:

24

25:
26:
27:

R o e

: function MODULE_INITIALIZATION
Hook context switch
Hook PMI interrupt
end function
: function CONTEXT_SWITCH_HOOK
if Next_process == Test_app then

Test_app_flag = TRUE
if Test_app runs for the first time then
Initialize HPC

else
Re
end if

store HPC values

else if Previous_process == Test_app then

Save HPC values

end if

. end function
: function PMI_HOOK

if Test_app_flag == TRUE then

Record HPC values
Reset HPC
Reset threshold value for triggering PMI

end if
end function

: function MODULE_UNLOAD

Record HPC values saved during the last context switch
Remove context switch and PMI hooks
end function
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Fig. 5: K-way classification: KNN (IBk).

PMI. Table VIII presents the results for K-way classification
using KNN algorithm. Fig. 4 and 5 show the corresponding
confusion matrices for decision tree and KNN classifiers using
two approaches.

APPENDIX E
SKID DURING PMI

We discussed the skid issue during the PMI delivery in
§VIII-A. Fig. 6 shows the observed skid when PMI is set at
different number of ret_miss events.

APPENDIX F
CODE AND DATA ARTIFACTS

We provide a stepwise tutorial at https://github.com/
UNCSecLab/hpc.git on how to best use performance counters
under different settings. Our kernel module implementing
the CS-PMI approach is available on GitHub. To promote
reproducibility of our experiments, our extensions to the
benchmark suite by Weaver & McKee [33] are also available.


https://github.com/UNCSecLab/hpc.git
https://github.com/UNCSecLab/hpc.git

TABLE VIII: Performance evaluation of K-way classification: KNN (IBk)

‘ TPR ‘ FPR ‘ Precision ‘ Recall ‘ F-Measure ‘ ROC Area
Class | PMI | A | PMI | A | PMI | A | PMI | A | PMI | A | PMI | A
poshkill | 0.366 | -0.022 | 0.049 | -0.003 | 0.348 | -0.003 | 0366 | -0.022 | 0357 | -0.012 | 0.658 | -0.010
bonk | 0.368 | -0.002 | 0.045 0.002 | 0369 | -0.010 | 0.368 | -0.002 | 0.368 | -0.006 | 0.661 | -0.002
alcaul | 0.359 | -0.015 | 0.046 0.002 | 0360 | -0.019 | 0.359 | -0.015 | 0.359 | -0.017 | 0.657 | -0.009
thorin | 0.951 0.038 | 0.006 | -0.004 | 0918 0.057 | 0.951 0.038 | 0.934 0.973 0.021
toffus | 0.517 0.073 | 0.037 | -0.013 | 0.501 0.134 | 0517 0.073 | 0.509 0.740 0.043
werly | 0.961 0.003 | 0.003 | -0.001 | 0.958 0.009 | 0.961 0.003 | 0.960 0.006 | 0.979 0.002
afgan | 0.910 0.038 | 0.002 | -0.001 | 0.964 0.014 | 0.910 0.038 | 0.936 0.027 | 0.954 0.020
smee | 0.850 0.003 | 0.027 | -0.011 | 0.695 0.105 | 0.850 0.003 | 0.765 0.912 0.007
bonding | 0.434 0.437 | 0.028 | -0.013 | 0.520 0.283 | 0434 0437 | 0472 0.703 0.225
delf | 0.386 0.300 | 0.040 | -0.007 | 0.406 0.187 | 0.386 0.300 | 0.395 0.673 0.153
cisum | 0.811 0.001 | 0.022 | -0.012 | 0.727 0.126 | 0.811 0.001 | 0.767 0.895 0.006
tiraz | 0.897 0.015 | 0.010 0.000 | 0.869 0.000 | 0.897 0.015 | 0.883 0.007 | 0.944 0.008
bube | 0.813 0.040 | 0.013 | -0.001 | 0.821 0.025 | 0.813 0.040 | 0.817 0.032 | 0.900 0.021
leniog | 0.709 0.079 | 0.018 | -0.008 | 0.736 0.106 | 0.709 0.079 | 0.722 0.846 0.044
IE | 0.663 0.025 | 0.012 | -0.003 | 0.804 0.050 | 0.663 0.025 | 0.726 0.036 | 0.826 0.014
Weighted Avg. | 0.666 | 0.073 | 0.024 | 0.005 | 0.666 | 0.075 | 0.666 | 0.073 | 0.665 [JNOO74N 0.821 | 0.039

A = Difference between the approaches (i.e., CS-PMI - PMI)
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Fig. 6: Observed skid at different ret_miss based sampling:
X-axis denotes the value of the return miss counter at which
the interrupt is expected to happen (i.e., o). Y-axis shows the
value of return misses at the PMI delivery. The whiskers of the
box plot, and the dots indicate the skid in the measurement.



