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a b s t r a c t

We consider likelihood ratio like test statistics based onM-estimators for multi-parameter
hypotheses for some commonly used parametric models where the assumptions on which
the standard test statistics are based are not justified. The nonparametric test statistics
are based on empirical exponential families and permit us to give bootstrap methods for
the tests. We further consider saddlepoint approximations to the tail probabilities used in
these tests. This generalizes earlier work of Robinson et al. (2003) in two ways. First, we
generalize from bootstraps based on resampling vectors of both response and explanatory
variables to include bootstrapping residuals for fixed explanatory variables, resulting in a
surprising result for the weighted resampling. Second, we obtain a theorem for tail prob-
abilities under weak conditions providing essential justification for the approximation to
bootstrap results for both cases. We use as examples linear regression, non-linear regres-
sion and generalized linear models under models with independent and identically dis-
tributed residuals or vectors of observations, giving numerical illustrations of the results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let Y1(θ), . . . , Yn(θ) be a sample of independent and identically distributed random vectors, with Yj(θ) from a
distribution F on the sample space Y. Suppose that θ satisfies

E


n


j=1

ψj{Yj(θ), θ}


= 0 (1)

and consider test statistics based on T , the M-estimate of θ , defined by the solution of

n


j=1

ψj{Yj(θ), T } = 0, (2)

where ψj are assumed to be smooth functions from Y × R
p to R

p. The functions ψj are often chosen to make an analysis
more robust.

We have, in particular, two cases in mind, where, for example, in linear regression with response variables Zj and

explanatory variables Xj, Yj(θ) = (Zj, X
⊤
j )

⊤ and

ψj{Yj(θ), t} = Xj(Zj − t⊤Xj),
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or Yj(θ) = Zj − θ⊤xj and

ψj{Yj(θ), t} = xj{Yj(θ)+ (θ − t)⊤xj} = xj(Zj − t⊤xj),

for fixed Xj = xj. Note that it is Yj(θ) that are identically distributed allowing resampling.

Let θ = (θ⊤
1 , θ

⊤
2 )

⊤, where θ1 ∈ R
p1 and θ2 ∈ R

p2 , p1 + p2 = p, and suppose we wish to test the null hypothesis

H0 : θ2 = θ20.

If the common distribution of Yj(θ) belongs to some parametricmodel, then F belongs to a class of distributions such that (1)
holdswith θ2 = θ20, and standard likelihood theory for estimation and inference is available. However,when the sample size
ismoderate to small orwhen themodel is incorrectly specified, the p-values obtained from the asymptotic theory can be very
inaccurate. [10] proposed a new likelihood like statistic based on an empirical exponentially tilted distribution considering
only the case ψj = ψ . Assuming that the density of

n

j=1 ψ{Yj(θ), θ} exists, they gave a saddlepoint approximation with

relative error of order O(n−1). This method can only be used when F is known. Further, they considered a formal approach
to empirical likelihood ratio tests using bootstrap tilting. The saddlepoint approximation to the distribution of the bootstrap
statistic requires a proof of the result without the restrictive condition that a density exists. This proof, given in Section 6, is
of an entirely different character from that of [10].

The two purposes of this paper are to justify the formal approach for saddlepoint approximations of [10] for empirical
likelihood tests and to consider score functions ψj which change with each observation. We note that [4] obtained tests in
the case of one-dimensional parameters for identically distributed score functions but their methods could not be extended
to the case of multi-dimensional parameters. In Section 2, a test statistic related to that from exponential families is derived
from the cumulant generating function of the left hand side of the estimating Eq. (2) when the distribution of Yj(θ) is known
under the null hypothesis. If the distribution is not known, a tilted empirical distribution satisfying the null hypothesis
is obtained as an approximation and its cumulant generating function is used to obtain a natural test statistic. We use
weighted bootstrap sampling from this tilted empirical distribution to obtain p-values for the test. The theorem of Section 3
gives a saddlepoint approximation of this bootstrap p-value and could be used instead of resampling. Bootstrap sampling
requires a double optimization for each bootstrap replicate and so is extremely computationally intensive, so the saddlepoint
approximation may be useful as an alternative. Note that the nonparametric approach depends only on ψj{Yj(θ), t} for all
j ∈ {1, . . . , n}. These functions may have been derived from some parametric model, but this model is not used except to
give these estimating functions. In Section 4 we provide applications to three special cases, linear regression, robust non
linear regression and robust generalized linear models. In Section 5 we give numerical results to illustrate the accuracy of
the approximations for some important cases of tests and compare the power of the tests to the power of the standard tests
in two cases.

2. A nonparametric test

First consider the simpler case in which the distribution F of Yj(θ) is known. Denote the cumulant generating function
of
n

j=1 ψj{Yj(θ), t} by

nK(τ , t) =
n


j=1

Kj(τ , t) =
n


j=1

ln


E


exp[τ⊤ψj{Yj(θ), t}]


. (3)

Let T = (T⊤
1 , T

⊤
2 )

⊤ be the M-estimator, the solution to

n


j=1

ψj{Yj(θ), T } = 0.

Consider a test statistic based on the function h defined by

h(t2) = inf
t1

sup
τ

{−K(τ , t)} = −K [τ {t(t2)}, t(t2)], (4)

where t(t2) = (t1(t2)
⊤, t⊤2 )

⊤ for

τ(t) = arg sup
τ

{−K(τ , t)} and t1(t2) = arg inf
t1

[−K{τ(t), t}].

Note that h(θ20) = 0. So a test can be based on h(T2). This is the statistic considered in [10]. In Section 3.2 of [7] it is shown
that, in the case of generalized linear models with the classical score statistic when t = t2, the test based on h(t2) reduces
to the likelihood ratio statistic.

In practice, the distribution underlying the data sample Y1(θ), . . . , Yn(θ) is often unknown, and hence K is unknown,
and a nonparametric approach is required. An empirical exponential likelihood, equivalent to a tilted bootstrap, provides
empirical versions of the test of H0 : θ2 = θ20. We consider weighted empirical distributions

F̂(x) =
n


k=1

wk1{Yk(θ) ≤ x},



J.E. Kolassa, J. Robinson / Journal of Multivariate Analysis 158 (2017) 103–116 105

where theweights are chosen tominimize the backwardKullback–Leibler distance,
n

k=1wk ln(nwk), between the empirical
distribution and the weighted empirical distribution subject to

n


k=1

wk

1

n

n


j=1

ψj{Yk(θ), θ} = 0 and

n


k=1

wk = 1, (5)

where θ = (θ⊤
1 , θ

⊤
20)

⊤, as in [3]. So we find stationary values of

n


k=1

wk ln(nwk)− β⊤
n


k=1

wk

1

n

n


j=1

ψj{Yk(θ), θ} + γ



n


k=1

wk − 1



(6)

with respect to wk, β , γ and θ1, with θ2 = θ20. Differentiating with respect to each wk, together with the constraints (5),
leads to

wk = 1

n
exp



β⊤ 1

n

n


j=1

ψj{Yk(θ), θ} − κ(β, θ)


, (7)

where

κ(β, θ) = ln
1

n

n


k=1

exp


β⊤ 1

n

n


j=1

ψj{Yk(θ), θ}


. (8)

Then (6) reduces to



k

wk ln(nwk) = −κ(β, θ). (9)

So the minimum of (6) under the constraints (5), is −κ[β{θ(θ20)}, θ(θ20)], where θ(θ20) = (θ1(θ20)
⊤, θ⊤

20)
⊤,

β(θ) = arg sup
β

−κ(β, θ) (10)

and

θ1(θ20) = arg inf
θ1

−κ{β(θ), θ}. (11)

To obtain a test statistic for H0 : θ2 = θ20, take the empirical exponential family,

F̂(y) =
n


k=1

wk(θ20)1[Yk{θ(θ20)} ≤ y], (12)

where, from (7), using (10) and (11),

wk(θ20) = exp


β{θ(θ20)}⊤
1

n

n


j=1

ψj[Yk{θ(θ20), θ(θ20)}] − κ[β{θ(θ20)}, θ(θ20)]


. (13)

Note that when ψj{Yj(θ), θ} are identically distributed, the results in (6)–(13) take the same form as in [10].

Consider tilted bootstrap sampling by drawing Y ∗
j from F̂ . For any value t = (t⊤1 , t

⊤
2 )

⊤, denote the cumulant generating

function of
n

j=1 ψj(Y
∗
j , t) by

nK̂(τ ; t) =
n


j=1

ln


n


k=1

wk(θ20) exp


τ⊤ψj[Yk{θ(θ20)}; t]




. (14)

Then, as in (4), the test statistic is based on the function ĥ(.) defined by

ĥ(t2) = inf
t1

sup
τ

{−K̂(τ ; t)} = −K̂ [τ {t(t2)}; t(t2)], (15)

where t(t2) = (t1(t2)
⊤, t⊤2 )

⊤,

τ(t) = arg sup
τ

{−K̂(τ , t)} and t1(t2) = arg inf
t1

[−K̂{τ(t), t}].
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Note again that ĥ(θ20) = 0. Then the test can be based on ĥ(T2), where T = (T⊤
1 , T

⊤
2 )

⊤ is the solution of (2). A bootstrap

version of the test uses the distribution of ĥ(T ∗
2 ), for T

∗ = (T ∗⊤
1 , T ∗⊤

2 )⊤, the solution of

n


j=1

ψj(Y
∗
j , t) = 0.

Note that ĥ(T ∗
2 ) needs to be calculated from (15) for each T ∗

2 . Now ĥ(T ∗
2 ) has distribution

F̂h(x) = Pr{ĥ(T ∗
2 ) ≤ x},

which can be estimated by a Monte Carlo simulation. A series of B bootstrap samples are drawn from F̂ . If T ∗b
n denotes the

M-estimator for the bth such sample, b ∈ {1, . . . , B}, then the Monte Carlo approximation of the p-value of the test is

1 +
B


b=1

1{ĥ(T ∗b
2 ) ≥ ĥ(T2)}

B + 1
.

3. A saddlepoint approximation

We will derive a saddlepoint approximation for the distribution h(T2) which can be applied directly to give an

approximation to the distribution of ĥ(T ∗
2 ).

Suppose that for any t , Ljt = ψj{Yj(θ), t} has a derivative

Mjt = ∂ψj{Yj(θ), t}/∂t,
with probability 1. We write

L̄t = n−1
n


j=1

ψj{Yj(θ), t},

M̄t = n−1
n


j=1

∂ψj{Yj(θ), t}/∂t,

Q̄t = n−1
n


j=1

(ψj{Yj(θ), t} − E[ψj{Yj(θ), t}])(ψj(Yj(θ), t)− E[ψj{Yj(θ), t}])⊤.

Define

L̂t = M̄−1
t L̄t ,

whenever |M̄t | ≠ 0, where | · | denotes the determinant. Then a first step in Newton’s solution to L̄T = 0, starting from t , is

t − L̂t .
Consider the following assumptions for some θ a solution of (1):

(A1) |E(M̄θ )| ≠ 0, and for some γ > 0,
E(M̄t) is continuous at all t ∈ Bp

γ (θ), a cube with side length 2γ of dimension p centered at θ .

(A2) The elements of ψj{Y1(θ), t} and its first two derivatives with respect to t exist and are continuous with probability 1
and for some υ > 0, K(τ , t) is finite for τ ∈ Bp

υ(0) for all t ∈ Bp
γ (θ).

(A3) 0 < c < |Στ |1/2 < C and if ϕτ (ξ) = E{exp(iξ⊤Uτ )}, then |ϕτ (ξ)| < 1 − ρ, for ρ > 0 and for all 0 < c < |ξ | < Cnd/2,
where d = p + q.

(A4)
n

j=1 exp(ζ
⊤Vjθ ) < ∞ for |ζ | < c for some c > 0.

Under (A1), θ0, the solution of (1), is the unique solution in Bp
γ (θ0). Conceptually, to consider the distribution of L̂θ , we need

to consider the joint distribution of L̄θ and M̄θ , transform to the joint distribution of L̂θ and M̄θ , and then obtain the marginal

distribution of L̂θ . However, in some cases the joint distribution of M̄θ and L̄θ is supported on amanifold of dimension smaller
than the space in which it is embedded. To this end, we construct vectors Vjθ such that Ujθ = (Ljθ , Vjθ ) are independent

random vectors with positive definite covariance matrix and all elements of M̄jθ are smooth functions of (Ljθ , Vjθ ). Let

V̄θ =
n

j=1 Vjθ/n and let the dimensions of the components of Ujθ be p and q, respectively. Let Zθ = (L̂θ , V̄θ ) = g(L̄θ , V̄θ ).

Let FUj
be the distribution of Ujθ under F and define the tilted variable Uτj to have distribution function

F τj (ℓ, v) =


(ℓ′,v′)≤(ℓ,v)
eτ

⊤ℓ′−Kj(τ ,θ)dFUj
(ℓ′, v′).
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Letµτ =
n

j=1 E(U
τ
j /n), where, from (1),µ0 has 0 in the first p components, and letΣτ =

n

j=1 cov(U
τ
j /n). The smoothness

condition, (A3), is used in order to apply an Edgeworth expansion for Ūτ(θ) and (A4) permits us to show that |M̄θ | exceeds a
finite bound with exponentially small probability. The proof of the following theorem is given in Section 6.

Theorem 1. Under assumptions (A1)–(A4),

Pr{2h(T2) ≥ u2} = Q̄p2(nu
2){1 + O(n−1)} + n−1cnu

p2e−nu2/2



G(u)− 1

u2



(16)

and

Pr{2h(T2) ≥ u2} = Q̄p2(nû
2){1 + O(n−1)} (17)

where Qp2 = 1 − Q̄p2 is the distribution function of a chi-squared variate with p2 degrees of freedom,

cn = np2/2

2p2/2−1Γ (p2/2)
, û = u − ln{G(u)/nu},

and

G(u) =


Sp2

δ(u, s)ds = 1 + u2k(u), (18)

for

δ(u, s) = Γ (p2/2)J{t(t2)}|h′′(θ20)|1/2J1(t2)J2(t2)
2πp2/2up2−1|ΣLτ {t(t2)}|1/2|H11{t(t2)}|1/2

, (19)

where ΣLτ(t) is the sub-matrix of Στ(t) from the first p rows and columns, [h′′(θ20)]−1 = [{E(M̄θ(θ20))}−1E(Q̄θ(θ20)){E
(M̄θ(θ20))}−1]22 = var(T2), (r, s) are the polar coordinates corresponding to {h′′(θ20)}1/2(t2 − θ20), r is the radial component

and s ∈ Sp2 , the p2-dimensional sphere of unit radius, H11(t) = d2K{τ(t), t}/dt21 ,

J{t(t2)} = |Eτ {t(t2)}M̄t(t2)| = [∂2K{τ(t), t}/∂τ∂t]t=t(t2),

J1(t2) = rp2−1 and J2(t2) = ru/[h′(t2)⊤{h′′(θ20)}1/2(t2 − θ20)], u =
√
2h(t2), k(u) is bounded and the order terms are uniform

for u < ϵ for some ϵ > 0.

4. Application to special cases

In this section we apply the Monte Carlo and saddlepoint approximations for the bootstrap methods of Sections 2 and 3
to the special cases of linear regression, nonlinear regression and generalized linear models. These models are considered
with fixed and random explanatory variables with corresponding regression and correlation bootstrap methods.

4.1. Linear regression

Consider the linear regression model

Zj = θ⊤Xj + Rj

for j ∈ {1, . . . , n}. Under a correlationmodel we assume that Yj = (Zj, X
⊤
j )

⊤ are independent identically distributed random

variables from F . For the regression model we assume that Xj = xj are fixed and take Yj(θ) as Rj, assumed to be independent
identically distributed random variables from a distribution F .

Using a score function

ψj{Yj(θ), t} = Xjφ(Zj − t⊤Xj), (20)

in the correlation case, and

ψj{Yj(θ), t} = xjφ{Zj − θ⊤xj + (θ − t)⊤xj}, (21)

for the regression case, where φ(x) = x, −b ≤ x ≤ b, and φ(x) is constant for x ≤ −b and x ≥ b. A bootstrap approach
is needed for both the correlation and regression models. The correlation model takes weighted bootstrap samples from
(Z1, X

⊤
1 )

⊤, . . . , (Zn, X⊤
n )

⊤ and the regression model draws weighted bootstrap samples from residuals Z1 − θ⊤x1, . . . , Zn −
θ⊤xn.
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4.1.1. Correlation model

We sample (Z∗
1 , X

∗⊤
1 ), . . . , (Z∗

n , X
∗⊤
n ) from the tilted empirical joint distribution

F̂θ20(y, x) =
n


k=1

wk(θ20)1{(zk, x⊤
k )

⊤ ≤ (y, x⊤)⊤},

wherewk(θ20) is given in (13)withκ(β, θ) from (8) and θ(θ20)defined in (10) and (11). Using (20), the cumulative generating
function of the independent identically distributed random variables ψj{(Z∗

j , X
∗⊤
j )⊤, t} = X∗

j φ(Z
∗
j − t⊤X∗

j ) is

K̂(τ , t) = ln

n


k=1

wk(θ20)e
τ⊤Xkφ(Zk−t⊤Xk). (22)

Note that in this caseψj does not depend on j. Solve
n

j=1 X
∗
j φ(Z

∗
j −t⊤X∗

j ) = 0 to get the bootstrap estimate t∗ = (t∗⊤
1 , t∗⊤

2 )⊤

and obtain ĥ(t∗2 ), calculating this from (15) for each t∗ and solve
n

j=1 Xjφ(Zj − θ⊤Xj) to get t = (t⊤1 , t
⊤
2 )

⊤ and so the test

statistic ĥ(t2). Then a Monte Carlo approximation to the bootstrap approximation to the p-value can be obtained as at the
end of Section 2. A saddlepoint approximation to the bootstrap approximation can be obtained from (16) or (17) of the

theorem taking K̂(τ , t) from (22).

4.1.2. Regression model

For the regression model, we will, without loss of generality, consider the case where the first element of the p elements
of xk is 1 and x̄ = (1, 0, . . . , 0)⊤. The first constraint of (5) is then

n


k=1

wk(1, 0
⊤)⊤φ(Zk − θ⊤xk) = 0,

leading to

wk = 1

n
eβ1φ(Zk−θ

⊤xk)−κ(β1,θ),

from (7) and (8), where

κ(β1, θ) = ln
1

n

n


k=1

eβ1φ̄(Zk−θ
⊤xk)



and where, if β = (β1, β
⊤
2 )

⊤, the p − 1 vector β2 is not estimable. Now we may take β(θ) = (β1(θ), 0
⊤)⊤ from (10) as the

solution to

∂κ(β1, θ)

∂β1

=
n


k=1

φ(Zk − θ⊤xk)e
β1φ(Zk−θ⊤xk) = 0. (23)

Also, θ1(θ0) from (11), is the solution to dκ{β1(θ), θ}/dθ1 = 0, so

dβ1(θ)

dθ1

1

n

n


k=1

φ(Zk − θ⊤xk)e
β1(θ)φ(Zk−θ⊤xk) − β1(θ)

1

n

n


k=1

x
(1)
k 1(|Zk − θ⊤xk| < b)eβ1(θ)φ(Zk−θ

⊤xk) = 0,

where x
(1)
k contains the first p1 elements of xk. The first term here is zero from (23), so β1{θ(θ0)} = 0 and it follows that

wk = 1/n. We require that θ(θ0) satisfies
n

k=1 φ{Zk − θ(θ0)
⊤xk} = 0. This does not uniquely define θ(θ0), but we propose

using the vector (θ1(θ20)
⊤, θ⊤

20)
⊤, where θ1(θ20) is the solution to

n


k=1

x
(1)
k φ(Zk − θ⊤xk) = 0. (24)

Bootstrap replicates R∗
1, . . . , R

∗
n are obtained by sampling from the empirical distribution given by (12), which here can

be written

F̂θ20(x) =
n


k=1

1

n
1{Zk − θ(θ20)

⊤xk ≤ x}. (25)

Then

ψj(R
∗
j , t) = xjφ[R∗

j + {θ(θ20)− t}⊤xj].
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The cumulant generating function of
n

j=1 ψj(R
∗
j , t) is

K̂(τ , t) =
n


j=1

ln



1

n

n


k=1

eτ
⊤xjφ[Zk−θ(θ20)⊤xk+{θ(θ20)−t}⊤xj]



and we can calculate the statistic ĥ(t2) and the bootstrap replicates ĥ(t∗2 ) as in (15), where t = (t⊤1 , t
⊤
2 )

⊤ is the solution of
n

j=1 ψj[Yj{θ(θ20), t}] = 0 and t∗ = (t∗⊤
1 , t∗⊤

2 )⊤ is the solution of
n

j=1 xjφ[R∗
j − {θ(θ20) − t}⊤xj] = 0. Then Monte Carlo

approximations to the p-value can be obtained as at the end of Section 2 or saddlepoint approximations can be obtained
from (16) or (17).

4.2. Nonlinear regression

Consider the non-linear regression model

Zk = g(θ, Xk)+ Rk(θ)

for k ∈ {1, . . . , n}, where g(θ, Xk) is a known function. We assume that either Rk(θ) are independent identically distributed
random variables from a distribution F for the regression case, or that (Zk, X

⊤
k )

⊤ are independent identically distributed
random vectors. Using a score function

ψj{Yj(θ), θ} = ∂g(θ, Xj)

∂θ
φ{Rj(θ)},

where the parameter θ = θ(F) is the solution of

E


n


j=1

ψj{Yj(θ), θ}


= 0,

we have the estimate T of θ , as the solution of

n


j=1

ψi{Yj(θ), t} =
n


j=1

∂g(t, Xj)

∂t
φ{Rj(t)} = 0.

Now that ψj{Yj(θ), θ} is defined the regression and correlation cases can be obtained in exactly the same way as in
Section 4.1.

4.3. Generalized linear models

Generalized linear models allow us to model the relationship between the predictors and a function of the mean of the
response for continuous and discrete response variables. The response variables Z1, . . . , Zn are supposed to come from a
distribution belonging to the exponential family, such that E(Zj) = µj and var(Zj) = V (µj) for all j ∈ {1, . . . , n} and, for all
i ∈ {1, . . . , n},

ηj = g(µj) = X⊤
j θ, (26)

where θ ∈ R
p is the vector of parameters, Xi ∈ R

p, and g is the link function.
We generalize a class of robust estimators of θ of [2] using (2) so that we can consider both fixed and random explanatory

variables. Take

ψj{Yj(θ), θ} = φ(Rj)
∂µj

∂θ
{V (µj)}−1/2 − a(θ), (27)

where

a(θ) = 1

n

n


j=1

E{φ(Rj)}
∂µj

∂θ
{V (µj)}−1/2,

Rj = (Zj − µj)/V
1/2(µj) and φ is defined in Section 4.1. Details of the calculation for a(θ) are given in [2] for the Poisson

and binomial models and tests for parametric cases are developed in [7]. We will only consider here the case φ(x) = x, so
a(θ) = 0.

As in the previous cases, we can consider fixed Xj = xj and Yj(θ) = Rj or random Xj and Yj(θ) = (Zj, X
⊤
j )

⊤. Then
the Yj(θ) are considered as independent and identically distributed variables (although in the regression case they are
independent with common variance but not identically distributed) and we can proceed as in the two previous special
cases to get bootstrap approximations via either Monte Carlo sampling or saddlepoint approximation, by using the results
of Sections 2 and 3 for the score functions given here. If the explanatory variables are constrained to a lattice, condition (A3)
is violated and the discreteness may cause some inaccuracies.
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Table 1

Comparison of bootstrap Monte Carlo results with saddlepoint approximations with an overdispersed

negative binomial generated model, analyzed as a Poisson model.

û .2 .3 .4 .5 .6 .7

BSMC 0.5150 0.2099 0.0567 0.0110 0.0024 0.0003

SPLR 0.5065 0.2121 0.0603 0.0119 0.0013 0.0001

SPBN 0.5043 0.2103 0.0596 0.0117 0.0013 0.0001

χ2
2 0.4493 0.1653 0.0408 0.0067 0.0007 0.0001

Table 2

Comparison of bootstrap Monte Carlo results with saddlepoint approximation for linear regression under

the correlation model.

u 0.1 0.2 0.3 0.4 0.5 0.6

BSMC 0.9448 0.6937 0.3587 0.11267 0.0306 0.0050

SPLR 0.9490 0.7004 0.3643 0.1307 0.0323 0.0055

SPBN 0.9486 0.6982 0.3610 0.1284 0.0313 0.0052

χ2
3 0.9402 0.6594 0.3080 0.0937 0.0186 0.0024

5. Numerical illustrations

We will consider these numerical examples in three subsections. First we demonstrate the accuracy of the saddlepoint
approximation to the distribution of bootstrap tail probabilities. Second,we use tail probability approximations to check that
the bootstrap is appropriate for obtaining p-values for tests, by demonstrating via simulation that, under the null hypothesis,
the p-values obtained by the bootstrapmethod are uniformly distributed. Third,wedemonstrate that using this statisticwith
the bootstrap approximation results in an increase in the power of the test for models deviating from the standard when
compared with standard tests, while retaining the power of standard tests when the standard model holds. The code used
is available at http://www.maths.usyd.edu.au/u/johnr/SPBS.

5.1. Saddlepoint approximation to the bootstrap

We indicated at the end of Section 2 the calculation to obtain the Monte Carlo bootstrap approximation. To obtain the
saddlepoint approximations we calculate directly from Theorem 1.

We note here that the method for a Monte Carlo approximation to the integral in (18) is given in a remark in Section 2
of [6] and a further method can be based on approximate numerical integration over the sphere given by [5].

We illustrate the numerical accuracy of the saddlepoint approximation to the tail areas in threemodels. First, for Table 1,
consider a Poisson regression model, Yi ∼ P (µi), where for each i ∈ {1, . . . , n}, ln(µi) = x⊤

i θ , where xi = (1, xi2, . . . , xi5)
⊤

and θ = (2, 1, 0, 0, 0)⊤, under the correlation model. The (xi2, . . . , xi5) are generated from a uniform distribution on
(0, 1) for each sample and then Zi are obtained as negative binomial variables with expectation µi and size parameter
5, for i ∈ {1, . . . , 40}, giving data from an overdispersed distribution. We consider the estimator for the parameter θ
defined by the estimating Eq. (2) using the scores (27) with µi = exp(X⊤

i θ), and V (µi) = µi and consider the test of

H0 : (θ4, θ5) = (0, 0). Second, for Table 2, consider a linear regression with xi = (1, xi2, . . . , xi5)
⊤ for i ∈ {1, . . . , 40} and

θ = (3, 2, 0, 0, 0)⊤, with exponential errors under the correlation model, with the predictor variables again uniform and
test the hypothesis H0 : (θ3, θ4, θ5) = (0, 0, 0). Third, for Table 3, consider linear regression under a regression model for a
3×2 factorialwith 5 replicates, so the explanatory variables are fixed and bootstrapping pairswould not be appropriate,with
θ = (4, 2, 1, 1, 0, 0)⊤ and exponential errors, where we test the null hypothesis of no interaction or H0 : (θ5, θ6) = (0, 0).

In each of the tableswe use 10,000 bootstrap samples to obtainMonte Carlo approximations to Pr{ĥ(t∗2 ) > u2/2} given by
BSMC, the bootstrapMonte Carlo approximation, we give the first order chi-squared approximation and the Lugannani–Rice
and Barndorff-Nielsen saddlepoint approximations SPLR, defined to be (16), and SPBN, defined to be (17), using the Genz
approximation [5] to the integral (18). The tables demonstrate remarkable accuracy of the saddlepoint approximations
compared to the first order chi-squared approximation, demonstrating that the second order correction of (16) or (17) is
required to obtain appropriate accuracy in the tail. When the sample size is decreased to 20 for Tables 1 and 2 and replicates
are decreased to 3 for Table 3, results still show a large improvement for the saddlepoint approximations over the simple χ2

2

approximation, but, as might be expected for small sample sizes, relative errors are not as small, particularly for the more
extreme tails.

5.2. Accuracy of the bootstrap approximation

The last subsection demonstrated that the saddlepoint approximation can be used in place of the Monte Carlo bootstrap
approximation. Sowe can use the saddlepoint approximation to the bootstrap p-values forMonte Carlo samples drawn from
a givenmodel under the null hypothesis to check that these are uniformly distributed. First we consider plots of the ordered

http://www.maths.usyd.edu.au/u/johnr/SPBS
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Table 3

Comparison of bootstrap Monte Carlo results with saddlepoint approximation for linear regression under

the regression model.

u 0.1 0.2 0.3 0.4 0.5 0.6 0.7

BSMC 0.8386 0.5216 0.2365 0.0806 0.0215 0.0031 0.0006

SPLR 0.8473 0.5200 0.2352 0.0793 0.0200 0.0038 0.0005

SPBN 0.8469 0.5194 0.2348 0.0791 0.0200 0.0038 0.0005

χ2
2 0.8607 0.5488 0.2592 0.0907 0.0235 0.0045 0.0006

Fig. 1. The first panel plots the ordered p-values obtained from 100Monte Carlo sets obtained under the null hypothesis (θ4, θ5) = (0, 0) for test statistics

under the Poisson model with mean exp(θ⊤xj), j ∈ {1, . . . , 40}, with θ⊤ = (2, 1, 0, 0, 0), from the bootstrap test (solid line) and the likelihood ratio

test (dashed line). The second panel gives the same plots based on 100 simulations under the null hypothesis when the data is generated under a negative

binomialmodelwith the samemean and scale parameter 5. The third panel gives p-values for 100Monte Carlo sets for a test of no interaction in 5 replicates

of a 3 × 2 factorial design with exponential errors.

p-values from the nonparametric test proposed here and those for the standard test using the standard likelihood ratio test
with an assumption of a Poisson model. The first panel of Fig. 1 shows that under the Poisson model both the bootstrap test
and the likelihood ratio test give uniformly distributed p-values under the null hypothesis. The second panel has samples
drawn from a negative binomial model with the samemean as for the first panel. Here the bootstrap p-values are uniformly
distributed but the p-values from a standard analysis assuming a Poisson model are far from uniform, implying that major
errors result from using this standard analysis when the errors are negative binomial. The third panel has plots of p-values
from tests based on the statistic h and for the standard F statistic for 100 simulated samples for the model described in
Section 5.1 to give Table 3. Both statistics have uniformly distributed p-values under the hypothesis of no interaction.

5.3. Power comparisons

First, in Table 4, we compare the power of the bootstrap test compared with the likelihood ratio test based on the
assumption of a Poissonmodel for data generated under a Poissonmodel with mean exp(θ⊤xj), j ∈ {1, . . . , 40} and under a

negative binomialmodelwith the samemean and scale parameter 5,where θ⊤ = (2, 1, 0, θ4, θ5). The upper table illustrates
that there is no loss of power in using the bootstrap method compared to the likelihood ratio test when the Poisson model
is true. The lower table demonstrates that, in the case where the errors are negative binomial, the likelihood ratio test gives
major errors but that the bootstrapmethod is appropriate and retains a reduced power compared with the power under the
Poisson model.
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Table 4

Power of bootstrap and standard tests for simulations under Poisson and negative binomial models.

(θ4, θ5) (0, 0) (.1,.1) (.2,.2) (.3,.3) (.4,.4) (.5,.5)

Poisson model

Bootstrap 0.04 0.09 0.32 0.70 0.96 0.99

Likelihood ratio 0.05 0.09 0.33 0.77 0.98 0.99

Negative binomial model

Bootstrap 0.04 0.06 0.04 0.22 0.26 0.54

GLM power 0.44 0.50 0.67 0.87 0.85 0.95

Table 5

Power of bootstrap and standard tests for simulations under regression model with errors

exponential random variables to power 1.5 for 5 replicates of a 3× 2 with null hypothesis of

no interaction.

(θ5, θ6) (0, 0) (.2,.2) (.4,.4) (.6,.6) (.8,.8) (1, 1)

Bootstrap test 0.052 0.176 0.464 0.734 0.874 0.942

F test 0.040 0.152 0.428 0.694 0.846 0.932

Finally we consider comparing the powers for the bootstrap test and the standard F test for the example of 5 replicates
of a 3 × 2 design with exponential errors raised to power 1.5. For each test we took 500 simulated samples for the model
described in Section 5.1 for Table 3 with values of (θ5, θ6) as shown in Table 5. The powers shown in Table 5 demonstrate a
moderate increase in power for the bootstrap test. Similar simulations for the case of normal errors show no loss of power
under the model for which we might expect the F test to be optimal.

6. Proof of Theorem 1

Define L̂θ = M̄−1
θ L̄θ . Let Zθ = (L̂θ , V̄θ ) = g(L̄θ , V̄θ ). Choose ϵ > 0 such that ϵ < 1

4n

n

j=1 |E0



ψ ′
j (Yj, θ0)



|, choose γ > 0
and D > 0, and define the set E by

E =


(Y1, . . . , Yn) : |M̄θ | > ϵ,max |M̄ ′
θ | < D, |L̂θ | <

3

4
γ , for θ ∈ Bp

γ (θ0)



, (28)

where Bp
γ (θ) denotes a cube of dimension p, side 2γ centered at θ . Then the conditions (A1)–(A4) together with Cramér’s

large deviation theorem [8, Theorem 15, Chapter 3] ensure that

Pr0(E) > 1 − e−cn

for some c > 0 depending only on ϵ, γ , and D.
Lemma 1 of [1] ensures that for (Y1, . . . , Yn) ∈ E, there is a unique solution T of

n

j=1 ψj(Yj, θ) = 0 in Bp
γ (θ0).

Since densities for Y1, . . . , Yn might not exist, we find the probability of the tail eventF = {T : h(T2) ≥ λ} by partitioning
the space of (T , Vθ ) into small regions, approximating Pr0(F ) by summing probabilities of the appropriate small regions and
by approximating this sum by an integral. To do this we need to bound the probabilities of these small regions in the space
of (T , Vθ ) by probabilities of regions in the space of Ūθ .

We note that E ⊂ {T ∈ B
p
3
4
γ
(θ0)}, so

Pr0{h(T2) ≥ λ} = Pr0



T ∈ B
p
3
4
γ
(θ0) ∩ F



+ O(e−cn). (29)

For j = Z
p, let

Bj = {x ∈ Rp : (jℓ − 1/2)δ < xℓ ≤ (jℓ + 1/2)δ} ∩


B
p
3
4
γ
(θ0)



,

for k = Z
q let

Dk = {x ∈ Rq : (kℓ − 1/2)δ < xℓ ≤ (kℓ + 1/2)δ} ∩ {(−c, c)q}
and let Ej = Bj ∩ F . Then, under (A4), we have

Pr0{h(T2) ≥ λ} =


j



k

Pr0{(T , V̄θj) ∈ Ej × Dk} + O(e−cn). (30)

For a set B let Bη = {x + y : x ∈ B, y⊤y < η2}. The following lemma is a simpler version of Lemma 1 of [4].
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Lemma 1. For θj ∈ Ej with 0 < δ < γ/4, there is a C > 0, depending only on D and ϵ of (28), such that for δ chosen so that

Cδ < 1/4,

{L̂θj ∈ (Ej − θj)
−} ⊂ {T ∈ Ej} ⊂ {L̂θj ∈ (Ej − θj)

+}, (31)

where (Ej − θj)
− = [{(Ej − θj)

c}Cδ2 ]c and (Ej − θj)
+ = (Ej − θj)Cδ2 .

Proof. We have, for T ∈ Ej,

0 = L̂T = L̄θj + (T − θj)M̄j + O(δ2),

so L̂θj = (θj − T ) + O(δ2) and we can find C such that L̂θ j ∈ (Ej − θj)
+. Also, for any δ ∈ (0, 3γ /4), we can choose C such

that

sup
θ ′
j
∈Ej

|M̄−1
θ ′ M̄θj − Ip| < Cδ.

If L̂θj ∈ (Ej − θj)
− and δ is such that Cδ < 1/4, then from Lemma 1 of [1], LT = 0 has a unique solution T ∈ Ej. �

For θj ∈ Ej, let A
−
jk = (Ej − θj)

− × Dk and A
+
jk = (Ej − θj)

+ × Dk, then the lemma applied to the probability of a cube
gives

Pr0{(L̂θj , V̄θj) ∈ A
−
jk} < Pr0{(T , V̄θj) ∈ Ej × Dk} < Pr0{(L̂θj , V̄θj) ∈ A

+
jk}.

Writing u = (ℓ, v), let

ed(u, F
τ(θ)) = exp(−nu∗Tu∗/2)

(2π/n)(p+q)/2|Στ(θ)|1/2


1 +
d


l=1

Qln(u
∗√n)



, (32)

where u∗ = Σ
−1/2

τ(θ) (u − µτ(θ)). This is the Edgeworth approximation to the tilted probabilities, as introduced by [9]. Let

(L̂θ , V̄θ ) = gθ (L̄θ , V̄θ ) and let

Pjk = Pr0{(L̂θj , V̄θj) ∈ A
−
jk} = Pr0{(L̄θj , V̄θj) ∈ g−1

θj
(A−

jk)}
and using Theorem 1 of [9],

Pjk = enK{τ(θj),θj}




g
−1
θj
(A−

jk
)

e−nℓ⊤τ(θj)ed{(ℓ, v), F τ(θj)}dℓdv + Rjk



= enK{τ(θj),θj}




A
−
jk

Jθj(y)e
−nℓ(y)⊤τ(θj)ed{g−1

θj
(y), F τ(θj)}dy + Rjk



,

where Jθj(y) is the Jacobian of the transformation y = gθj(ℓ, v) and we write g−1
θj
(y) = (ℓ(y), v(y)) and Rjk corresponding

to the residual from Theorem 1 of [9]. Noting that ℓ{(0, v)} = 0 and v{(0, v)} = v, that exp{nℓ(y)⊤τ(θj)} = 1 + O(nδ) and

that vol(A−
jk) = vol(Ej × Dk){1 + O(δ)}, we have, taking δ = n−2,

Pjk = enK{τ(θj),θj}[Jθj{(0, vk)}ed{(0, vk), F τ(θj)}vol(Ej × Dk){1 + O(n−1)} + Rjk],
where vk ∈ Dk. Consider

Ijk =


Ej×Dk

enK{τ(t),t}Jt{(0, v)}ed{(0, v), F τ(t)}dtdv. (33)

Note that (θj, vk) is chosen arbitrarily in Ej × Dk, so by the intermediate value theorem, we can choose (θj, vk) such that

Ijk = enK{τ(θj),θj}Jθj{(0, vk)}ed{(0, vk), F τ(θj)}vol(Ej × Dk).

So

Pjk = Ijk(1 + O(n−1))+ enK{τ(θj),θj}|Στ(θj)|−1/2(n/2π)d/2Rjk. (34)

Now from (30),

Pr0(T ∈ F ) = I(1 + O(n−1))+ R∗,

where, noting that integration outside F × (−c, c)q is exponentially small,

I =


F



Rq
enK{τ(t),t}Jt{(0, v)}ed{(0, v), F τ(t)}dtdv (35)
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and

R∗ =


j,k

enK{τ(θj),θj}Rjk. (36)

Note that in the integral I, integration over the region complementary to B
p
3
4
γ
(θ0) is incorporated in the O(n−1) term as is

the O(e−cn) term of (30).
First consider I. The second term of the Edgeworth expansion in (32) integrates over v to 0 and the higher terms can be

incorporated in the O(n−1) term. So

I =


F



Rq

enK{τ(t),t}−nu∗T
2

u∗
2
/2Jt(0, v)

(2π/n)(p+q)/2|Στ(t)|1/2
dtdv. (37)

Now using a Laplace approximation for the integral over v, we get

I =


{t2:h(t2)≥λ}



Rp1

enK{τ(t),t}J(t)

(2π/n)p/2|ΣLτ(t)|1/2
dt1dt2{1 + O(1/n)}, (38)

where J(t) = |Eτ(t)M̄t |. The relative error is from the Laplace approximation and from replacing Jt(0, Eτ(t) [Vt ]) by J(t).
Next we can use a Laplace approximation to the integral with respect to t1, to obtain

I =


{t2:h(t2)≥λ}

e−nh(t2)J{t(t2)}
(2π/n)p2 |ΣLτ {t(t2)}|1/2|H11{t(t2)}|1/2

dt2{1 + O(n−1)}, (39)

where

t(t2) = (t1(t2), t2) = arg inf
t1

[−K{τ(t), t}], (40)

h(t2) = −K [τ {t(t2)}, t(t2)], (41)

H(t) = d2K{τ(t), t}
dt2

(42)

and H11(t) is the matrix of the first p1 rows and columns of H(t).
To reduce the integral in I to the form in the theorem we need some preliminary results. From (40), by noting that

∂K{τ(t), t}/∂τ = 0, (43)

we have

0 =
dK{τ(t), t}

dt1



t=t(t2)
=
∂K{τ(t), t}

∂t1



t=t(t2)
. (44)

So from (41), using (44) and (43),

h′(t2) = −(t ′1(t2), Ip2)
∂K{τ(t), t}

∂t



t=t(t2)
= −

∂K{τ(t), t}
∂t2



t=t(t2)
. (45)

So, since the unconstrained minimum of K(τ (t), t) is 0, h′(θ20) = 0. Further

h′′(t2) = −(t ′1(t2), Ip2)


τ ′(t)
∂2K{τ(t), t}
∂τ∂t2

+ ∂2K{τ(t), t}
∂t∂t2



t=t(t2)
. (46)

From (43)

τ ′(t) = −∂
2K{τ(t), t}
∂t∂τ

∂2K{τ(t), t}
∂τ 2

−1

, (47)

so, from the definition (42),

H(t) = τ ′(t)
∂2K{τ(t), t}

∂τ∂t
+ ∂2K{τ(t), t}

∂t2

= ∂2K{τ(t), t}
∂t2

− ∂2K{τ(t), t}
∂t∂τ

∂2K{τ(t), t}
∂τ 2

−1 ∂2K{τ(t), t}
∂τ∂t

. (48)

Differentiating (44) with respect to t2 gives

(t ′1(t2), Ip2)


τ ′(t)
∂2K{τ(t), t}
∂τ∂t1

+ ∂2K{τ(t), t}
∂t∂t1



= 0,
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so from (47) and (48),

t ′1(t2) = −H21{t(t2)}H11{t(t2)}−1, (49)

where the subscripts 1 and 2 onH refer to the first p1 and last p2 rows and columns ofH(t). Now, from (46), using (47)–(49),
we have

h′′(t2) = −H22(t2)+ H21{t(t2)}H11{t(t2)}−1H12{t(t2)}. (50)

Now note that

∂K{τ(t), t}
∂t

= 1

n

n


j=1

τ(t)⊤E
∂ψj(Yj, t)

∂t
eτ(t)

⊤ψj(Yj,t)




E


eτ(t)
⊤ψj(Yj,t)



and so, since τ {θ(θ20)} = 0,

∂2K{τ(t), t}
∂t2



t=θ(θ20)
= 0.

Further,

∂2K{τ(t), t}
∂τ∂t



t=θ(θ20)
=
1

n

n


j=1

E
∂ψj(Yj, t)

∂t
eτ(t)

⊤ψj(Yj,t)−K{τ(t),t}


t=θ(θ20)

= 1

n

n


j=1

E



∂ψj(Yj, t)

∂t



t=θ(θ20)
= E{M̄θ(θ20)}

and

∂2K{τ(t), t}
∂τ 2



t=θ(θ20)
= E{Q̄θ(θ20)}.

So from (50), h′′(θ20) = ([E{M̄θ(θ20)}]−1E{Q̄θ(θ20)}[E{M̄θ(θ20)}]−1)−1
22 .

After making the transformations y = {h′′(θ20)}1/2(t2 − θ20), y → (r, s) and (r, s) → (u, s), with Jacobians |h′′(θ20)|1/2,
J1(t2) = rp2−1 and J2(t2) = ru/(h′(t2)⊤[h′′(θ20)]1/2(t2 − θ20)), respectively, the results (16) and (17) follow as in the proofs
of Theorem 1 of [10] and Theorem 2 of [6], if we show that

R∗ = IO(n−1), (51)

where I and R∗ are defined in (35) and (36), respectively.
Theorem 1 of [9] shows that

|Rjk| ≤ R1jk + R1jk,

where

R1jk = Cn(p+q)/2Σ
−1/2

τ(θj)
vol[{g−1

θj
(A−

jk)}2α]


ηs(τ̂)n
−(s−2)/2 + |Στ(θj)|1/2nd/2α−dqτ(1/α)



(52)

and

R2jk = n(p+q)/2|Στ(θj)|−1/2vol[{g−1
θj
(A−

jk)}2α − {g−1
θj
(A−

jk)}−2α]. (53)

Here ηs{τ(θj)} is the standardized sth moment under F τ(θj) and so is bounded by (A2). The definition of qτ(1/α), given in

(1.24) of [9], and (A3) imply that qτ(n
2) = O(e−cn). In E, the determinant of M̄θj is bounded and bounded away from 0, so

for some C1, C2 and C3,

g−1
θj

{(A−
jk)C1α} ⊃ {g−1

θj
(A−

jk)}2α
and

vol[{g−1
θj
(A−

jk)}2α] ≤ C2vol{(A−
jk)C1α} ≤ C2vol[{(Bj ∩ F )× Dk}C3α],

noting that δ2 = n−4. So

R1jk = vol[{(Bj ∩ F )× Dk}C3α]O(n(p+q)/2−(d+1)/2).

Also vol[{g−1
θj
(A−

jk)}2α − {g−1
θj
(A−

jk)}−2α] ≤ 4αsur{g−1
θj
(A−

jk)}, so

R2jk = vol{(A−
jk)C1α}O(1/n) = vol[{(Bj ∩ F )× Dk}C3α]O(n(p+q)/2α/δ).
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So, since δ = n−2, if α = n−(d+5)/2 and d = q/2 + 1,

|Rjk| = vol[{(Bj ∩ F )× Dk}C3α]O(np/2−1).

Using the same device as in [6], let Gjk = (Bj ∩ FC3α)× Dk and let G∗
jk be the union of Gjk and the 3p+q − 1 reflections

across each lower dimensional face of the containing Bj × Dk. Then {(Bj ∩ F )× Dk}C3α ⊂ G∗
jk and so

vol[{(Bj ∩ F )× Dk}C3α] ≤ 3p+qvol(Gjk).

So

R∗ =


jk

enK{τ(θj),θj}vol(Gjk)O(n
p/2−1).

So summing over k, noting that


k vol(Dk) = (2c)q, gives

R∗ =


j

r(θj)vol(Bj ∩ FC3α)O(n
−1),

for

r(θ) = enK{τ(θ),θ}J(θ)

|Στ(θ)|1/2(2π/n)p/2
,

since, in E, J(θ) and det(Στ(θ)) are bounded and bounded away from 0. So

R∗ =


FC3α

r(θ)dθO(n−1) =


F

r(θ)dθO(n−1) = IO(n−1),

since α = n−q/2−3. �
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