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1. Introduction

Let Y1(0),...,Yn,(6) be a sample of independent and identically distributed random vectors, with Y;() from a
distribution F on the sample space Y. Suppose that 6 satisfies

n
E[>_vitv©.0)] =0 ()
=1
and consider test statistics based on T, the M-estimate of 6, defined by the solution of
n
> UY0). Th =0, (2)
=1

where v; are assumed to be smooth functions from ¥ x RP to RP. The functions ; are often chosen to make an analysis
more robust.

We have, in particular, two cases in mind, where, for example, in linear regression with response variables Z; and
explanatory variables X;, Y;(0) = (Z;, X,") " and

YilY;(0), t} = X;(Z; — t T X)),
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orY;(0) =7 — 6"x and
YilY;(0), t} = x{Y;(0) + (0 — ) x;} = x,(Z — t ' x7),

for fixed X; = x;. Note that it is Y;(6) that are identically distributed allowing resampling.
Letd = (6, 92T)T, where 6; € RP1 and 6, € RP2, p; 4+ p, = p, and suppose we wish to test the null hypothesis

Jf() : 02 = 920.

If the common distribution of Y;(6) belongs to some parametric model, then F belongs to a class of distributions such that (1)
holds with 6, = 6,9, and standard likelihood theory for estimation and inference is available. However, when the sample size
is moderate to small or when the model is incorrectly specified, the p-values obtained from the asymptotic theory can be very
inaccurate. [ 10] proposed a new likelihood like statistic based on an empirical exponentially tilted distribution considering
only the case y; = ¥. Assuming that the density of Z}Ll ¥{Y;j(6), 0} exists, they gave a saddlepoint approximation with
relative error of order O(n~!). This method can only be used when F is known. Further, they considered a formal approach
to empirical likelihood ratio tests using bootstrap tilting. The saddlepoint approximation to the distribution of the bootstrap
statistic requires a proof of the result without the restrictive condition that a density exists. This proof, given in Section 6, is
of an entirely different character from that of [ 10].

The two purposes of this paper are to justify the formal approach for saddlepoint approximations of [ 10] for empirical
likelihood tests and to consider score functions ¥; which change with each observation. We note that [4] obtained tests in
the case of one-dimensional parameters for identically distributed score functions but their methods could not be extended
to the case of multi-dimensional parameters. In Section 2, a test statistic related to that from exponential families is derived
from the cumulant generating function of the left hand side of the estimating Eq. (2) when the distribution of Y;() is known
under the null hypothesis. If the distribution is not known, a tilted empirical distribution satisfying the null hypothesis
is obtained as an approximation and its cumulant generating function is used to obtain a natural test statistic. We use
weighted bootstrap sampling from this tilted empirical distribution to obtain p-values for the test. The theorem of Section 3
gives a saddlepoint approximation of this bootstrap p-value and could be used instead of resampling. Bootstrap sampling
requires a double optimization for each bootstrap replicate and so is extremely computationally intensive, so the saddlepoint
approximation may be useful as an alternative. Note that the nonparametric approach depends only on ;{Y;(0), t} for all
j € {1, ..., n}. These functions may have been derived from some parametric model, but this model is not used except to
give these estimating functions. In Section 4 we provide applications to three special cases, linear regression, robust non
linear regression and robust generalized linear models. In Section 5 we give numerical results to illustrate the accuracy of
the approximations for some important cases of tests and compare the power of the tests to the power of the standard tests
in two cases.

2. A nonparametric test

First consider the simpler case in which the distribution F of Y;(0) is known. Denote the cumulant generating function
of X0 wi{Y;(6). t} by

n n
nk(r,t) =Y Ki(r,t) =Y In{E(explt " ¥;{¥;(0), t}1)}. (3)
j=1 j=1
LetT = (T, T, )T be the M-estimator, the solution to

PORIEL

j=1
Consider a test statistic based on the function h defined by
h(ty) = igfsup{—K(f, 0O} = —K[r{t()}, t(t)], (4)

where t(t;) = (t1(tz) T, ) ) T for
T(t) = argsup{—K(z,t)} and t;(t;) = argipf[—]({r(t), t}].
T 1

Note that h(6,9) = 0. So a test can be based on h(T,). This is the statistic considered in [10]. In Section 3.2 of [7] it is shown
that, in the case of generalized linear models with the classical score statistic when t = t,, the test based on h(t,) reduces
to the likelihood ratio statistic.

In practice, the distribution underlying the data sample Y{(#), ..., Y,(0) is often unknown, and hence K is unknown,
and a nonparametric approach is required. An empirical exponential likelihood, equivalent to a tilted bootstrap, provides
empirical versions of the test of ¢, : 8, = 659. We consider weighted empirical distributions

F =) wil{Yu(6) <x},
k=1
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where the weights are chosen to minimize the backward Kullback-Leibler distance, Zzzl wy In(nwy), between the empirical
distribution and the weighted empirical distribution subject to

n -l n n
D we= Y Yiie(®).0} =0 and > w =1, (5)
= i3 =1

where & = (6", 6,5) T, as in [3]. So we find stationary values of

n n 1 n n
> widn(uug) — 7Y Jwi= D Y{Ye®), 0} +y (Z wy — 1) (6)
k=1 k=1 j=1 k=1

with respect to wy, 8, y and 6y, with 6, = 6. Differentiating with respect to each wy, together with the constraints (5),
leads to

1 1<

w = EEXD[IBTE;%{Yk(G),Q} —«(B,0)]. 7)

where
(1S 1y,
€(6.0) =in(0 > exp[ 77 ;wj{vk(e),e}]). (8)
Then (6) reduces to
> wiIn(nuy) = —k (B, 0). 9)
k

So the minimum of (6) under the constraints (5), is —«[8{0(620)}, 6 (620)], Where 0 (620) = (61(620) T, 6,) T,

B©O) = argsgp —k(B,0) (10)
and

61(620) = argi{gf—x{ﬂ(Q), 6}. (11)

To obtain a test statistic for J¢ : 6, = 6, take the empirical exponential family,

F) =) wi(@20)1[Yi{0(620)} < 1, (12)

k=1

where, from (7), using (10) and (11),

-l n
wi(8) = exp(B(OE)) T~ D Y[l @), 00))] — KIBI6 G20)). 0(620)] ). (13)
j=1

Note that when ;{Y;(6), 6} are identically distributed, the results in (6)-(13) take the same form as in [10].

Consider tilted bootstrap sampling by drawing Y]* from F. For any value t = (tlT , tzT )T, denote the cumulant generating
function of Y7, ¥;(Y;*, t) by

nk(z:0) = Y In(} wil0a0) exp(z T YYidO G0} 11))- (14)
j=1 k=1
Then, as in (4), the test statistic is based on the function fl(.) defined by
h(tz) = infsup(~K (z: D} = —Klz{t(e2)}: t(t)]. (15)
1 T
where t(t;) = (t:1(t) T, £)) T,

7(t) = argsup{—K(z,t)} and t;(ty) =argipf[—12{r(t),t}].
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Note again that fl(@zg) = 0. Then the test can be based on fl(Tz), where T = (T/, TZT)T is the solution of (2). A bootstrap
version of the test uses the distribution of h(T3), for T* = (T, T3T)T, the solution of

> v n =o0.
j=1

Note that E(Tz*) needs to be calculated from (15) for each T;. Now ft(Tz*) has distribution
Fr(x) = Pr{h(Ty) < x),
which can be estimated by a Monte Carlo simulation. A series of B bootstrap samples are drawn from F.If T;b denotes the

M-estimator for the bth such sample, b € {1, ..., B}, then the Monte Carlo approximation of the p-value of the test is

B ~ ~
1+ Y (T = h(Ty)}
b=1

B+1

3. A saddlepoint approximation

We will derive a saddlepoint approximation for the distribution h(T,) which can be applied directly to give an
approximation to the distribution of h(T5).
Suppose that for any t, L = v;{Y;(6), t} has a derivative

My = 8y;{Y;(6). t}/at.
with probability 1. We write

Le=n"") y{Y;(6), t),
j=1

M =n"") " 0y;(Y;(0), t}/ot,
j=1

& =n"" Y (WiHY6). t} — E[Ys{Y;(0). D (W (%(0). £) — E[y{¥;(6), t}]) .
j=1

Define
it == M;lit,
whenever |[M;| # 0, where | - | denotes the determinant. Then a first step in Newton’s solution to Ly = 0, starting from t, is
t — Lt'
Consider the following assumptions for some 6 a solution of (1):
(A1) |[E(Mp)| # 0, and for some y > 0,
E(M;) is continuous atall t € B‘;, (), a cube with side length 2y of dimension p centered at 6.
(A2) The elements of v;{Y;(0), t} and its first two derivatives with respect to t exist and are continuous with probability 1
and for some v > 0, K(t, t) is finite for T € BY (0) forall t € B’; ).
(A3) 0 < ¢ < |Z.|"? < Candif . (§) = E{exp(i£ TU")}, then |p; (§)| < 1 — p,for p > 0andforall 0 < ¢ < |&] < Cn%/?,

whered = p +q.
(A4) 2}1:1 exp(;Tng) < oo for |¢| < c for some ¢ > 0.

Under (A1), 6, the solution of (1), is the unique solution in B‘; (6p). Conceptually, to consider the distribution ofie, we need

to consider the joint distribution of Ly and My, transform to the joint distribution of ig and My, and then obtain the marginal
distribution of L,. However, in some cases the joint distribution of My and Ly is supported on a manifold of dimension smaller
than the space in which it is embedded. To this end, we construct vectors Vjg such that Uy = (Ljg, Vjp) are independent
random vectors with positive definite covariance matrix and all elements of 1\_/Ij9 are smooth functions of (L, Vjs). Let
Vy = Zj'?:] Vjg/n and let the dimensions of the components of Uiy be p and q, respectively. Let Z, = (i(,, Vo) = g(Ly, Vp).
Let Fy; be the distribution of Ujy under F and define the tilted variable U/ to have distribution function

Tyt .
Ff (€, v) = / et (TN, (0, ).
' v)=(v)
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Let u, = ZJ'?:] E(Uj’/n), where, from (1), g has 0 in the first p components, and let X, = Z]'?:l cov(Uj’/n). The smoothness

condition, (A3), is used in order to apply an Edgeworth expansion for U, () and (A4) permits us to show that [My | exceeds a
finite bound with exponentially small probability. The proof of the following theorem is given in Section 6.

Theorem 1. Under assumptions (A1)-(A4),

0 Gu) —1
Pr{2h(Ty) > 1%} = Qp, (A){1+ O(n™")} + n~cuurze /2 {(ul),z} (16)
and
Pr{Zh(Tz) > u2} = sz (nﬁz){‘l + O(n—l)} (17)
where Q,, = 1 — Qy, is the distribution function of a chi-squared variate with p, degrees of freedom,
np2/2 .
G = mairgyy LT W Inew/nul,
and
Gw) = / 8(u, s)ds = 1+ u?k(u), s
Spy
for
T (p2/2)J {t(t2)}h" (020) |21 (E2)] (¢
s s) — L@/ G0) P ()alt2) o
2P22uP2 = B e |2 [Hi {E(82) 172
where X, is the sub-matrix of X, from the first p rows and columns, [h"(620)]7" = [{E(Mp(y))} "E(Qa(ay0)){E

(1\_/19@20))}*1]22 = var(Ty), (r, s) are the polar coordinates corresponding to {h” (629)}"/?(t; — 0), 1 is the radial component
and s € Sp,, the p,-dimensional sphere of unit radius, Hy,(t) = d’K{t(t), t}/dt?,

JIE(©)} = [Erieity)Mecey) | = [02K (T (0), £}/8T3tTe—t(ty)
Ji(t) = P2~V and Jo(t;) = ru/[h (&) T{h" (020)}/%(t; — 620)], u = /2h(£,), k() is bounded and the order terms are uniform
for u < € forsome e > 0.

4. Application to special cases

In this section we apply the Monte Carlo and saddlepoint approximations for the bootstrap methods of Sections 2 and 3
to the special cases of linear regression, nonlinear regression and generalized linear models. These models are considered
with fixed and random explanatory variables with corresponding regression and correlation bootstrap methods.

4.1. Linear regression

Consider the linear regression model
Z;=0"X +R;

forj € {1, ..., n}.Under a correlation model we assume that Y; = (Z;, XjT)T are independent identically distributed random
variables from F. For the regression model we assume that X; = x; are fixed and take Y;(0) as R;, assumed to be independent
identically distributed random variables from a distribution F.

Using a score function

YilY(0). t} = Xip(Z — t' X)), (20)
in the correlation case, and
UilY;(0), t} = x0(Z — 0 x4+ (6 — )" x;}, (21)

for the regression case, where ¢(x) = x, —b < x < b, and ¢(x) is constant for x < —b and x > b. A bootstrap approach
is needed for both the correlation and regression models. The correlation model takes weighted bootstrap samples from
(Z1, X7, ..., (Zy, X)) " and the regression model draws weighted bootstrap samples from residuals Z; — 0 Txy, ..., Z, —
07 x,.
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4.1.1. Correlation model
We sample (Z}, X;7), ..., (ZF, X;T) from the tilted empirical joint distribution

Fop@. %) = > wi(020) (@ )" < (.21 T},
k=1

where wy(65) is givenin (13) withx (8, 0) from (8) and 6 (6,9) defined in(10) and (11). Using (20), the cumulative generating
function of the independent identically distributed random variables y;{(Z*, X )T, t} = X*¢(Z* — t X*) is

n
I%(T, t) —In Z w[((ezo)eTTXk‘b(Zk—tTXI()' (22)
k=1

Note that in this case 1/ does not depend onj. Solve ZJ'?:] Xj*¢(Zj* —tTXj*) = 0to get the bootstrap estimate t* = (tTT, t;‘T)T
and obtain h(t}), calculating this from (15) for each t* and solve i Xip(Z — 07X togett = (t],t,)" and so the test
statistic h(t;). Then a Monte Carlo approximation to the bootstrap approximation to the p-value can be obtained as at the
end of Section 2. A saddlepoint approximation to the bootstrap approximation can be obtained from (16) or (17) of the
theorem taking K (z, t) from (22).

4.1.2. Regression model
For the regression model, we will, without loss of generality, consider the case where the first element of the p elements
ofx¢is 1andx = (1,0, ..., 0)". The first constraint of (5) is then

n
> wi(1,01) ¢z — 0Tx) =0,
k=1
leading to
1

Wy = —é¢€
n

B16Z—0 T x1)—K (B1.6)
from (7) and (8), where
1< -
k(Br, 0) = 1n{ - emzkfm,()]
i3

and where, if 8 = (81, B, )T, the p — 1 vector B, is not estimable. Now we may take B(6) = (81(6),07)" from (10) as the
solution to

d ,0 n
K;L ) 3 g - 67w 0@ — o, (23)
P k=1
Also, 61(6p) from (11), is the solution to d« {81(8), 8}/d6; = 0, so
dgi1(0) 1 < 1<
’2‘9( ) Y b= 6 x)eN OYET — g(0) 6V (1Z — 6Tl < byl AT = g
1 k=1 k=1

where x,(f) contains the first p; elements of x,. The first term here is zero from (23), so 81{6(6p)} = 0 and it follows that

wy = 1/n. We require that 6 (6) satisfies ZL] d{Zc — 0(0) Tx¢} = 0. This does not uniquely define 6 (6), but we propose
using the vector (61(620) T, 6,5) T, where 6, (650) is the solution to

n
> X ¢@—0Tx) =0. (24)
k=1
Bootstrap replicates R}, . .., R} are obtained by sampling from the empirical distribution given by (12), which here can
be written
~ "1
Fing (0 = D ~1{Zc = 0(020) 10 < x). (25)
k=1

Then
Vi(RE 6 = 5[R + {0(020) — 1) x;1.
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The cumulant generating function of ZJ'?:] Yi(RY, t) is

n n
I%(‘L', t) = Z In (:l Z eTTXj¢[Zk9(920)T><k+(9(920)E}ij])
= k=1

and we can calculate the statistic ﬁ(tz) and the bootstrap replicates fz(t;‘) asin (15), wheret = (tlT, tzT)T is the solution of
2}1:1 YilYi{0(620), t}] = Oand t* = (77, &5 7) " is the solution of Z};l o[RS — {6(620) — t}"x;] = 0. Then Monte Carlo
approximations to the p-value can be obtained as at the end of Section 2 or saddlepoint approximations can be obtained
from (16) or (17).

4.2. Nonlinear regression

Consider the non-linear regression model
Z = g(0, Xi) + Ri(9)

fork € {1, ..., n}, where g(8, Xy) is a known function. We assume that either R, (6) are independent identically distributed
random variables from a distribution F for the regression case, or that (Z, X,(T)T are independent identically distributed
random vectors. Using a score function

9g(6, X))

VilY;(©), 0} = —— IR (®)}.

where the parameter 8 = 6(F) is the solution of
n
E[Y_witvo.01] =o,
j=1
we have the estimate T of 0, as the solution of

n ng X
> witn@).0 =Y B9 sy <o
= =

Now that v;{Y;(6), 6} is defined the regression and correlation cases can be obtained in exactly the same way as in
Section 4.1.

4.3. Generalized linear models

Generalized linear models allow us to model the relationship between the predictors and a function of the mean of the

response for continuous and discrete response variables. The response variables Z;, ..., Z, are supposed to come from a
distribution belonging to the exponential family, such that E(Z;)) = u; and var(Z;) = V(u;) forallj € {1, ..., n} and, for all
iel{l,...,n},

nj=g(u) =X'6, (26)

where 6 € RP is the vector of parameters, X; € RP, and g is the link function.
We generalize a class of robust estimators of  of [2] using (2) so that we can consider both fixed and random explanatory
variables. Take

a .
VilY;(0), 0} = ¢<R;>8—‘;’{ij)}—”z —a(®), 27)

where
1< oL
a®) = - > E@R)) 2 (v (),
ni= 20

R = (Z — Mj)/V]/2 (uj) and ¢ is defined in Section 4.1. Details of the calculation for a(@) are given in [2] for the Poisson
and binomial models and tests for parametric cases are developed in [7]. We will only consider here the case ¢(x) = x, so
a®) = 0.

As in the previous cases, we can consider fixed X; = x; and Yj(§) = R; or random X; and Y;(0) = (Zj,XjT)T. Then
the Y;(6) are considered as independent and identically distributed variables (although in the regression case they are
independent with common variance but not identically distributed) and we can proceed as in the two previous special
cases to get bootstrap approximations via either Monte Carlo sampling or saddlepoint approximation, by using the results
of Sections 2 and 3 for the score functions given here. If the explanatory variables are constrained to a lattice, condition (A3)
is violated and the discreteness may cause some inaccuracies.
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Table 1
Comparison of bootstrap Monte Carlo results with saddlepoint approximations with an overdispersed
negative binomial generated model, analyzed as a Poisson model.

i 2 3 4 5 .6 7

BSMC 0.5150 0.2099 0.0567 0.0110 0.0024 0.0003

SPLR 0.5065 0.2121 0.0603 0.0119 0.0013 0.0001

SPBN 0.5043 0.2103 0.0596 0.0117 0.0013 0.0001

X22 0.4493 0.1653 0.0408 0.0067 0.0007 0.0001
Table 2

Comparison of bootstrap Monte Carlo results with saddlepoint approximation for linear regression under
the correlation model.

u 0.1 0.2 0.3 0.4 0.5 0.6

BSMC 0.9448 0.6937 0.3587 0.11267 0.0306 0.0050
SPLR 0.9490 0.7004 0.3643 0.1307 0.0323 0.0055
SPBN 0.9486 0.6982 0.3610 0.1284 0.0313 0.0052
X32 0.9402 0.6594 0.3080 0.0937 0.0186 0.0024

5. Numerical illustrations

We will consider these numerical examples in three subsections. First we demonstrate the accuracy of the saddlepoint
approximation to the distribution of bootstrap tail probabilities. Second, we use tail probability approximations to check that
the bootstrap is appropriate for obtaining p-values for tests, by demonstrating via simulation that, under the null hypothesis,
the p-values obtained by the bootstrap method are uniformly distributed. Third, we demonstrate that using this statistic with
the bootstrap approximation results in an increase in the power of the test for models deviating from the standard when
compared with standard tests, while retaining the power of standard tests when the standard model holds. The code used
is available at http://www.maths.usyd.edu.au/u/johnr/SPBS.

5.1. Saddlepoint approximation to the bootstrap

We indicated at the end of Section 2 the calculation to obtain the Monte Carlo bootstrap approximation. To obtain the
saddlepoint approximations we calculate directly from Theorem 1.

We note here that the method for a Monte Carlo approximation to the integral in (18) is given in a remark in Section 2
of [6] and a further method can be based on approximate numerical integration over the sphere given by [5].

We illustrate the numerical accuracy of the saddlepoint approximation to the tail areas in three models. First, for Table 1,
consider a Poisson regression model, Y; ~ £ (u;), where foreachi € {1, ..., n}, In(u;) = x,-TG,where xi=(1,%0,...,%5) "
and & = (2,1,0,0,0)7, under the correlation model. The (x;, ..., x;s) are generated from a uniform distribution on
(0, 1) for each sample and then Z; are obtained as negative binomial variables with expectation u; and size parameter
5 fori € {1,...,40}, giving data from an overdispersed distribution. We consider the estimator for the parameter 6
defined by the estimating Eq. (2) using the scores (27) with u; = exp(XiTG), and V(u;) = wu; and consider the test of
Hy : (84, 65) = (0, 0). Second, for Table 2, consider a linear regression with x; = (1, xi, ..., Xx;5) ' fori € {1,...,40}and
0 = (3,2,0,0,0)7, with exponential errors under the correlation model, with the predictor variables again uniform and
test the hypothesis #;, : (63, 64, 65) = (0, 0, 0). Third, for Table 3, consider linear regression under a regression model for a
3 x 2 factorial with 5 replicates, so the explanatory variables are fixed and bootstrapping pairs would not be appropriate, with
0 = (4,2,1,1,0,0) " and exponential errors, where we test the null hypothesis of no interaction or #, : (65, 65) = (0, 0).

In each of the tables we use 10,000 bootstrap samples to obtain Monte Carlo approximations to Pr{fz(t;‘) > u?/2} given by
BSMC, the bootstrap Monte Carlo approximation, we give the first order chi-squared approximation and the Lugannani-Rice
and Barndorff-Nielsen saddlepoint approximations SPLR, defined to be (16), and SPBN, defined to be (17), using the Genz
approximation [5] to the integral (18). The tables demonstrate remarkable accuracy of the saddlepoint approximations
compared to the first order chi-squared approximation, demonstrating that the second order correction of (16) or (17) is
required to obtain appropriate accuracy in the tail. When the sample size is decreased to 20 for Tables 1 and 2 and replicates
are decreased to 3 for Table 3, results still show a large improvement for the saddlepoint approximations over the simple X22
approximation, but, as might be expected for small sample sizes, relative errors are not as small, particularly for the more
extreme tails.

5.2. Accuracy of the bootstrap approximation
The last subsection demonstrated that the saddlepoint approximation can be used in place of the Monte Carlo bootstrap

approximation. So we can use the saddlepoint approximation to the bootstrap p-values for Monte Carlo samples drawn from
a given model under the null hypothesis to check that these are uniformly distributed. First we consider plots of the ordered
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Comparison of bootstrap Monte Carlo results with saddlepoint approximation for linear regression under
the regression model.

u 0.1 0.2 0.3 0.4 0.5 0.6 0.7
BSMC 0.8386 0.5216 0.2365 0.0806 0.0215 0.0031 0.0006
SPLR 0.8473 0.5200 0.2352 0.0793 0.0200 0.0038 0.0005
SPBN 0.8469 0.5194 0.2348 0.0791 0.0200 0.0038 0.0005
X2 0.8607 0.5488 0.2592 0.0907 0.0235 0.0045 0.0006
Poisson model Negative binomial model regression model
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Fig. 1. The first panel plots the ordered p-values obtained from 100 Monte Carlo sets obtained under the null hypothesis (64, 65) = (0, 0) for test statistics
under the Poisson model with mean exp(Gij),j e {1,...,40}, with 6T = (2, 1,0,0, 0), from the bootstrap test (solid line) and the likelihood ratio
test (dashed line). The second panel gives the same plots based on 100 simulations under the null hypothesis when the data is generated under a negative
binomial model with the same mean and scale parameter 5. The third panel gives p-values for 100 Monte Carlo sets for a test of no interaction in 5 replicates
of a 3 x 2 factorial design with exponential errors.

p-values from the nonparametric test proposed here and those for the standard test using the standard likelihood ratio test
with an assumption of a Poisson model. The first panel of Fig. 1 shows that under the Poisson model both the bootstrap test
and the likelihood ratio test give uniformly distributed p-values under the null hypothesis. The second panel has samples
drawn from a negative binomial model with the same mean as for the first panel. Here the bootstrap p-values are uniformly
distributed but the p-values from a standard analysis assuming a Poisson model are far from uniform, implying that major
errors result from using this standard analysis when the errors are negative binomial. The third panel has plots of p-values
from tests based on the statistic h and for the standard F statistic for 100 simulated samples for the model described in
Section 5.1 to give Table 3. Both statistics have uniformly distributed p-values under the hypothesis of no interaction.

5.3. Power comparisons

First, in Table 4, we compare the power of the bootstrap test compared with the likelihood ratio test based on the
assumption of a Poisson model for data generated under a Poisson model with mean exp(0 "x;),j € {1, ..., 40} and under a
negative binomial model with the same mean and scale parameter 5, where 8T = (2, 1, 0, 04, 05). The upper table illustrates
that there is no loss of power in using the bootstrap method compared to the likelihood ratio test when the Poisson model
is true. The lower table demonstrates that, in the case where the errors are negative binomial, the likelihood ratio test gives
major errors but that the bootstrap method is appropriate and retains a reduced power compared with the power under the
Poisson model.
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-ll’.ngr‘lof bootstrap and standard tests for simulations under Poisson and negative binomial models.
(64, 05) (0,0) (.1.1) (2,2) (.3,3) (.4,.4) (.5,.5)
Poisson model
Bootstrap 0.04 0.09 0.32 0.70 0.96 0.99
Likelihood ratio 0.05 0.09 0.33 0.77 0.98 0.99

Negative binomial model

Bootstrap 0.04 0.06 0.04 0.22 0.26 0.54
GLM power 0.44 0.50 0.67 0.87 0.85 0.95
Table 5

Power of bootstrap and standard tests for simulations under regression model with errors
exponential random variables to power 1.5 for 5 replicates of a 3 x 2 with null hypothesis of
no interaction.

(65, 06) (0,0) (2,2) (.4,4) (.6,.6) (.8..8) (1,1)
Bootstrap test 0.052 0.176 0.464 0.734 0.874 0.942
F test 0.040 0.152 0.428 0.694 0.846 0.932

Finally we consider comparing the powers for the bootstrap test and the standard F test for the example of 5 replicates
of a 3 x 2 design with exponential errors raised to power 1.5. For each test we took 500 simulated samples for the model
described in Section 5.1 for Table 3 with values of (65, 8s) as shown in Table 5. The powers shown in Table 5 demonstrate a
moderate increase in power for the bootstrap test. Similar simulations for the case of normal errors show no loss of power
under the model for which we might expect the F test to be optimal.

6. Proof of Theorem 1

Define Ly = M; 'Ly. Let Z; = (Ly, Vy) = g(Ls, Vi). Choose € > 0 such that ¢ < 3 it [Eo [¥](Y;, 60)] |, choose y > 0
and D > 0, and define the set E by

_ _ A 3
E= {(Yl,...,Y,,) : [Mp| > €, max [My| < D, |Ly| < 2 y, for6 e Bﬁ(@o)} , (28)
where B’;, (6) denotes a cube of dimension p, side 2y centered at 6. Then the conditions (A1)-(A4) together with Cramér’s
large deviation theorem [8, Theorem 15, Chapter 3] ensure that
Pro(E) > 1—¢ &

for some ¢ > 0 depending only on €, ¥, and D.

Lemma 1 of [ 1] ensures that for (Y7, ..., Y,) € E, there is a unique solution T of 2}1:1 ¥i(Y;, 6) =0in B‘; (6o).

Since densities for Yy, . . ., Y, might not exist, we find the probability of the tail event # = {T : h(T,) > A} by partitioning
the space of (T, Vj) into small regions, approximating Pro (¥ ) by summing probabilities of the appropriate small regions and
by approximating this sum by an integral. To do this we need to bound the probabilities of these small regions in the space
of (T, Vy) by probabilities of regions in the space of Uj.

We note thatE C {T € B’;y (@)}, so

4

Pro{h(T2) > A} = Prg {T € B’;y(GO) N 37} + O(e*Cn). (29)
Forj = 7P, let
Bij={xeR :(Ge—1/2)6 <x; < (je +1/2)6} N {B’;y(@o)} ,

for k = Z9 let
Dy ={x € R : (ke —1/2)8 < x¢ < (ke +1/2)8} N {(—c, )%}
and let § = B8; N ¥ . Then, under (A4), we have

Profh(T2) > A} = Y ) Pro{(T, Vg) € & x Di} + 0(e™ ™). (30)
i Kk

ForasetBletB, ={x+y:xe B, y'y < n*}. The following lemma is a simpler version of Lemma 1 of [4].
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Lemma 1. For 6; € & with0 < § < y /4, thereisa C > 0, depending only on D and € of (28), such that for § chosen so that
Cé < 1/4,

Ly € (§—6)7) CT € ) C iy € (§— )T, (1)
where (& — 6)~ = [{(§ — 6)))cs2]° and (& — 6)* = (& — ) cs-
Proof. We have, for T € &,

0= Ly = Lg + (T — 6)M; + 0(8%),

S0 igj =@ —-T)+ 0(82) and we can find C such that i,gj € (& — 6)*. Also, for any § € (0, 3y /4), we can choose C such
that

sup [M,, "M, — 1| < C8.

Qj’EEj
Ifigj € (& — 6;)~ and § is such that C§ < 1/4, then from Lemma 1 of [1], Ly = 0 has a unique solutionT € &. O

For 6; € &, let Ay = (& — 6))” x Dy and AjT( = (§ — )T x Dy, then the lemma applied to the probability of a cube
gives

Pro{(Lg. Vi) € A} < Pro{(T. Vi) € & x D} < Pro{(Ly,. V) € Aj).
Writing u = (£, v), let

exp(—nu*Tu*/2)

T(0)y _
eq(u, F*') = Q@ )PP 5, |12

[+ Q). (2)
=1

where u* = Er_(;gz (u — () This is the Edgeworth approximation to the tilted probabilities, as introduced by [9]. Let
(Lo, Vo) = go(Ls, Vi) and let

P = Prof(Ly, Viy) € Az = Prof(Ly, Vip) € g5 (Ap)
and using Theorem 1 of [9],

Py = enk{r(ej),ej}[/
,1(94’,

e Wey((¢, ), F)dedv + Ry
8o (i)

AR _ T16: _ )
= W] [y e eyl ). F D)y + R
o

where o (y) is the Jacobian of the transformationy = 8y, (¢, v) and we write gH; Ly = (@), v(y)) and Rji corresponding
to the residual from Theorem 1 of [9]. Noting that £{(0, v)} = 0 and v{(0, v)} = v, that exp{nﬁ(y)Tt(Qj)} =1+ 0(nJ) and
that vol(Aj]() = vol(& x Dy){1+ 0(8)}, we have, taking § = n=2,
Py = ™ T[], 10, vi) eal (0, vie), F* @ }vol(&; x Di){1 + 0™ ")} + Rl
where v, € Dg. Consider
Iy = / e™ T O0].{(0, v)}eq{(0, v), F*V}dtdv. (33)
&x Dk
Note that (6;, vi) is chosen arbitrarily in & x Dy, so by the intermediate value theorem, we can choose (6}, vi) such that
Lite = €™ T ((0, vio) ea{ (0, vi), FF P }vol(§ x D).
So
Pic = Ijc(1 4+ 0(n™") + ™ T@B | 50712 (n/27) 7 Ry (34)
Now from (30),
Pro(T € F) = 4(1+0(n"")) +R*,

where, noting that integration outside ¥ x (—c, c¢)? is exponentially small,

] = / ]’;q e”K[r(t),t}][{(O, v)}ea{ (0, v), Fr(t)}dtdv -
F
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and

R =) e @Ry, (36)
j.k

Note that in the integral {, integration over the region complementary to B‘;y (6p) is incorporated in the O(n™') term as is
1

the O(e™") term of (30).
First consider J. The second term of the Edgeworth expansion in (32) integrates over v to 0 and the higher terms can be
incorporated in the O(n~!) term. So

*T

et ®.80—mp 15/21 (0, v)
1=//- ~~dtdv. .
7 Jra Qm /B2 |12

Now using a Laplace approximation for the integral over v, we get

/ / enI({r(t),t}J(t)
1= dt;dt, {1+ 0(1/n)}, (38)
(et =) Jror (270 /P12 | Zpp )| 1/2

where J(t) = |ET([)I\7It|. The relative error is from the Laplace approximation and from replacing J; (0, E; () [V]) by J(£).
Next we can use a Laplace approximation to the integral with respect to t;, to obtain

e "] {t(t)) -
1= dt,{1+0 , 39
/{tzzh(t2)>k} 7 /n)P2| Zpe ety |2 H {E(2) }]1/2 2t ) (39)
where
t(ty) = (t1(t2), ) = arg igf[—K{r(t), t}l, (40)
h(ty) = —K[t{t(t2)}, t(t2)], (41)
_ d?*K{z(t), t}
H(t) = — (42)

and Hq(t) is the matrix of the first p; rows and columns of H(t).
To reduce the integral in { to the form in the theorem we need some preliminary results. From (40), by noting that

K{t(t),t}/dTt =0, (43)
we have
_rdk{z(), t} _ [9K{z(t), t}
0= [ dt; ]t:t(tz) - [ daty :It:t(tz). (44)
So from (41), using (44) and (43),
, , aK{z(t), t} dK{t(t), t}
() = —(t(®2), Ipz)[ at ]t:r(rz) - _[ at, ]r:r(rz)' (45)
So, since the unconstrained minimum of K (z (t), t) is 0, h’(659) = 0. Further
v L KT (), 1) %K{z(), t}
(1) = (60, ) [T 0 = Tl I (46)
From (43)
b 2K {T(t), t} 1 9%K{z(t), t} 71
T =- otat [ at? ] ’ (47)
so, from the definition (42),
2K{T(t), t}  9%K{t(t),t
o - A, PR
ZK{T(t),t}  *K{t(t), t}ra’K{t(t), t}7-19%K{r(¢), t}
= [ ] (48)
ot otdt 012 atat

Differentiating (44) with respect to t; gives
K{t(t),t}  *K{t(t), t}] —o
aTdt atat 7

ICNSIEL0!
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so from (47) and (48),

t1(t2) = —Ho{t () Hu{t(t)) ", (49)

where the subscripts 1 and 2 on H refer to the first p; and last p, rows and columns of H(t). Now, from (46), using (47)-(49),
we have

W' (t) = —Hay(62) + Har{t(62) HH11{t(82)} " Hip{t (62)} (50)

Now note that

aK{t(t), t} _ 1 i r(t)TE{ av;(Y;, t) er(t)ij(Yj,O] E[et(‘)T‘/’J(YJ'”}
ot niS ot

and so, since t{6(6)} = 0,

2K{z (1), t}
[P0 o
at? t=0(620)
Further,
[321({r(t),t}] _ (1 n E[BWJ(YJ"t)er(t>ij(\0vt)fl<{f(t),ﬂ])
dtat t=6(620) niS at t=6(629)
1< avi(Y;, t _
) = E{Mp(oy)}
(620)
niS It lico@n
and
%K{z (1), t} _
_ =E .
[ 972 ]r:e(em) Qo)

So from (50), 1" (620) = ([E{Mo(0,00}] ™ E{Qo(20  E{Ma00)}1 )35 -

After making the transformations y = {h”(620)}"/?(t; — 02),y — (r, s) and (r, s) — (u, s), with Jacobians |h” (60)|"/?,
Ji(t) = rP2~Tand J,(ty) = ru/(h (t;) T[h" (620)]1"%(t; — 620)), respectively, the results (16) and (17) follow as in the proofs
of Theorem 1 of [10] and Theorem 2 of [6], if we show that

R =4g0(n™ "), 1)

where J and R* are defined in (35) and (36), respectively.
Theorem 1 of [9] shows that

[Rik] < Rijic + Rijk;

where

Ruge = Cn”* 972 5080l (g Az [ 1B 7272 4 | B |20, (1/e) | (52)
and

Rojic = nP972| S|~ 2voll{gy, ! (A h2e — (85, (A} -2 (53)

Here ns{7(6;)} is the standardized sth moment under F*™® and so is bounded by (A2). The definition of g, (1/«), given in

(1.24) of [9], and (A3) imply that g, (n?) = 0(e~"). In E, the determinant of ng is bounded and bounded away from 0, so
for some Cyq, C; and Cs,

8, (A cra) D 185 (A2
and

vol[{ggjl(ﬁj})}zm] =< GVol{(Ay)cia} = GVOI[{(B; N F) X Dictezals
noting that §2 = n=. So

Rijic = VOI[{(Bj N F) X Dic;olOPTO/2=EHD2),
Also vol[{gy " (Ay) o — {85 (Ag)}-2al < darsur{gy’ (Ay)}, so

Rojic = VOI{ (Aj) ;o }O(1/n) = Vol[{(B; N F) X Dicdeza 0P P20 /5).
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So,since § =n~2,ifa =n" @2 andd = q/2 + 1,

IRi| = vol[{(B; N F) x DiJeselOM?7).

Using the same device as in [6], let jx = (Bj N Fc;o) X Di and let G be the union of §jk and the 37+9 — 1 reflections

across each lower dimensional face of the containing 8; x Dy. Then {(B; N F) X Dy}cze C 9;;( and so

VOI[{(B; N F) X Diczel < 37 V0l(G10).
So

R =) ™ @ Alvol(gu) 0”1,

jk

So summing over k, noting that ), vol(Dx) = (2¢), gives

R* =) " r(@vol(B; N Fe,a)O(™),

j
for
eK(T®).0)1(9)
| Zeo) | V227 [mypr2”
since, in E, ] (9) and det(X 4)) are bounded and bounded away from 0. So

R*:f
Fc.

30

r@) =

r(©)doon™1) :f r(0)doo(n™") = 40(n™ 1),
F

since @ = n~9273.0
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