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Abstract

This paper presents a modified chi-square approximation to the distribution of test statistics arising from multivariate ranked data. The
modification arises from an improvement to the estimated variance matrix of the responses and from corrections for continuity and skewness and

kurtosis of the rank sum statistics.
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Introduction

Kawaguchi et al. consider tests of equality of means for
multivariate responses, in the presence of covariates, stratification,
and tied and missing data. They propose inference based on
approximating the joint distribution of Wilcoxon rank sum statistics
as multivariate normal, with an estimated covariance matrix. They
present a test statistic that may be expressed as a quadratic form
of Wilcoxon rank sum statistics, with the variance-covariance
matrix estimated using methods derived by Davis and Quade;
they also apply this multivariate normal approximation to derive
univariate confidence intervals. In this paper, we examine the effect
of some alternative variance matrix estimates and also investigate
the usefulness of the approximation of Yarnold, correcting for
discreteness, skewness and kurtosis [1-3].

Null and Alternative Hypotheses

Consider subjects on which two or more variables (Y, ..., Y,))
are observed on each of M + N subjects, here indexed by j. Assume
that the collection of vectors

(Vo VsV )y j = Loeos M 4 N} 1)

are independent, with a continuous distribution. Suppose that
these sub- jects are divided into two groups, with subjectsj=1,.. .,
M in the first group and subjectsj=M + 1,..., M + N in the second
group. This paper presents distributional results of use in certain
hypothesis tests involving the process generating these data. Under
both the null and alternative hypothesis, assume that the collection
of vectors {(Y,;, . .., Y;;), j < M } have the same distribution, and
that the collection of vectors {(Y,;, ..., YjD), j > M} have the same
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distribution, and in the entirety of this paper, the null hypothesis
specifies that these two common distributions are the same. The
alternative hypothesis is that that the common distribution of
the vectors in {(Yﬂ' R Y].D), j < M} is different from the common
distribution of {(le, e ) > M}. Furthermore, alternatives of
interest are those for which values of one group are systematically
higher than those of another. For example, Kolassa and Seifu apply
this to two groups of cancer patients (early vs. advanced) and look
for differences in PSA and Gleason score between these two groups
[4]. As noted above, we test the null hypothesis that all of these
vectors are identically distributed, vs. the alternative hypothesis
that those vectors for which j < M have a distribution different from
that for which j > M, and again, we choose a test statistic expected
to have power when there exists k for which the distribution of Yik‘
with j < M, is stochastically larger or smaller than that of Y, with
j>M.
Multivariate Test Statistic

Testing in this manuscript will be performed by constructing

univariate Mann-Whitney-Wilcoxon statistics for each variable and
combining these statistics into a quadratic form. Let

yik <y/k (2)

M M+N 1 lf
T, :Z Z Ly for Iy :{

prlfer v Ootherwise
Otherwise the two-sample univariate Mann-Whitney statistics

for testing the null hypothesis that the distribution of Yo forj<M,
is the same as that of Y for j > M. As above, j indexes subject, and
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k indexes variable, and i represents a second subject index, when
pairs of subjects must be considered at the same time. The expec-
tations and marginal variances of T, under the null hypothesis are
NM/2 and NM (N + M + 1) /12 respectively. Let 6, be the covariance
between T, and T,. One might test the equality of distribution of (le,
e Y].D), for j<M, and that Oijv . Y].D, for j > M, by rejecting the null
hypothesis for large values of

y i(rk —~NM /2)c* (T~ NM | 2), (3)

k=1 I=1

W=

where ¢ is the entry in row k and column I of the matrix
inverse of the variance-covariance matrix given by o . Again, k
indexes variable, and 1 is a second variable index used when pairs
of variables must be considered.

Covariances between components of
T= (Tl,...,,TD) (4)

must be estimated empirically. In a context generalized by the
presence of missing and tied data, Kawaguchi et al. estimate the
variance of T using a method originating with Davis and Quade.
Kawaguchi and Koch apply these methods to crossover studies
[1,2,5].

P -Value Approximations

Many statistics for testing multivariate statistical hypotheses
can be expressed as quadratic forms of vectors of (often dependent)
means of random quantities, where the matrix defining the
quadratic form is the inverse of the variance-covariance matrix of
entries in this vector. Such statistics are of the form (3). Constructing
a test from such a quadratic form requires the approximation of tail
probabilities for these quadratic forms. The first subsection will
address approximation of probabilities associated with W_when
o, are known exactly; the next subsection will address the added
complexity when o, are estimated.

Known Covariance Structure

Let w be the observed value of W. Represent the critical region
for the test of the null and alternative hypotheses of 1.1 as c, the
compliment of the set

w={(T,_ T <o) )

for W as in (3). Were T of (4) to have arisen as the mean of
independent and identically distributed vectors confined to a unit
lattice, one might use the approximation of Yarnold to adjust for
discreteness, skewness, and variance [3]. Discreteness is adjusted

for by examining the difference between V(w), the volume of

the ellipse @ and N (w), the number of points T in this ellipse.
Skewness and kurtosis are adjusted for using terms calculated from
multivariate third and fourth cumulants. Let K and Ko be joint
third and fourth order cumulants of T. Let

DD D D

[0 I ij <kl
Ps =ilij=tk=iiz K@ O

D D DD D D

JES S VD YD VD M gh —ij kI

P31 =g=th=ti=1 j=1k=1i=1 KgniKjyO~ O O,
D D D D D D il
EEDIDIDIDIDWY WM Il

=l k=l

h=1 =l 1

&

be the invariant multivariate kurtosis and skewness measures
proposed by McCullagh and Cox and Mardia, and let 6, = p,/8 and
5, = py 18+ py, /12,

The approximation to the tail probability that corrects the x?
approximation for continuity, skewness, and kurtosis is

exp(-w/2)

PIT €]~ 7,/ (@)=N(@) V(@) s o

2 3
—512()(—1)“ () amn @ =82 07 (D@, (6)
= =
where X is the matrix with o, inrow i and column j [6,7]. When
(T, ..., T,) arises as the sum of n independent and identically-
distributed random vectors, then §, and §, are of size O(1/n), and
consequently so are the terms they multiply. Yarnold, citing Esseen,
notes that the term adjusting for discreteness is of size O(n™>/(:*D)
and omits another correction for discreteness no larger than O(n™)
[3,8]. This omitted correction is not demonstrated to be smaller
than the included term of size O(n™).

We apply (6) in a situation in which (T,, ..., T)) is not the sum
of n independent and identically-distributed random vectors;
specifically, we examine the case in which these are marginal Mann-
Whitney statistics. Does shows that univariate Edgeworth series
hold in such cases, to order O(1/n), without continuity correction
[9]. Continuity corrections are of size o(1/n) in this case, rather
than O(n"'/?), because, after standardizing to unit variance, lattice
spacings for univariate Mann-Whitney statistics are O(n"/?) rather
than O(n"'/?), as they are for sums of independent and identically
distributed random variables. Asymptotic orders of corrections for
multivariate Mann-Whitney statistics are unknown, but likely to be
also o(n™).

Unknown Covariance Structure

Kawaguchi et al. present an estimator for the variance-
covariance matrix of T, in the presence of a mechanism that
potentially allows missing values in the raw data (1). Their
distributional approximations use the approach of Davis and Quade
[2]. In order to place our result in the proper context, we adopt the
notation of Kawaguchi et al. [1]. The generic data item is denoted
above in §1 by Y. for j representing subject and k representing
variable measured on subject j. Refer to subjects with j < M as being
in group 1, and to subjects with j > M as being in group 2. Let n].be
the number of subjects in the same group as subject j. Define the
array element V' for subjects j and j), and response variable k, to be
1 ifj and j are in different groups, and 0 otherwise. Let U'* be 1 if
Vikis 1, and the value of response k in group 2 exceeds the value in
group 1. Let U be 0 if Vi*is 0, or if the value of response k in group
1 exceeds the value in group 2. Then, in the notation of §,

Ly if
U, =1 1 if
0 otherwise

Jj<Mand j'>M
j>Mand j'>M

Let

U, =Z,.U

J'ET '

/(0 4n, A D) (N =DV, =[Z,. 7

AN

/(n4n, D]/ (N -1),

G, =(U,U VsV )

jloe
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Otherwise, let ¢ be the mean of vectors G, and let s be the
conventional sample variance-covariance matrix of the vectors

G,. Then s-4s/v is the estimated variance matrix for ¢ under
The

propagation of errors method leads one to estimate the variance
matrix of T by

the randomization distribution. Then 7/mv=Gi/Gon...Go/G)

S = HSHT (8)

for H =Diag(T)(I,~I,)Diag(G)" , where | is the identity matrix
with number of rows and columns given by the subscript.

Kawaguchi et al. note that estimation of s extends easily
to the case of independent strata, by adding estimates of this
variance-covariance matrix calculated on a per-stratum basis [1].
Their treatment extends to estimation of the variance-covariance
structure of response variables and covariates and from this
joint structure, to a conditional structure adjusting responses for
covariates. In the absence of tied and missing observations, the
final D components of G in (7) are fixed, and the variances of the
first components are known to be mMn(+N+1)/12, without the

need for estimation. Let o; be the entry of % in row i and column J»

and let B be the D x D diagonal matrix with @wa+¥+y/12)/00 add in
row and column i. We here propose the new estimator

S=BIB )

to estimate the variance-covariance structure of T; ¢ estimates
the variances without error.

Extensions

Kawaguchi et al. apply multivariate Mann-Whitney-Wilcoxon
testing in the presence of independent strata, and, further, suggest
a multiplicative covariance correction different from (9) and trans-
formation techniques to more effectively use T, /(MN ) to estimate
P[Y, < ij] fori<Mandj>M (9) [1]. Zink and Koch provide a SAS
macro, and Kawaguchi and Koch provide an R package, for imple-
menting these procedures, with some refinements [10,11]. Refine-
ment (9), correcting the variance estimate to align with the known
true marginal variances, is available in this case, since the estimator
in the case of stratification is a linear combination of the strata-spe-
cific estimators, and hence so is are the true marginal variances.
Refinement (6) is also available, since third- and fourth- order
cumulants are also linear combinations of the strata-specific cu-
mulants, although the preceding observation that the importance
of correcting for continuity decreases when the variance matrix is
estimated still holds and is magnified by the decrease in the effect
of continuity correction as sample size increases.

Kawaguchi et al. further apply multivariate Mann-Whitney-Wil-
coxon testing in the presence of covariates, by exploiting the multi-
variate normality of these test statistics to remove the covariate ef-
fect by extracting the covariance matrix of statistics associated with
response variables conditional on those of explanatory variables
and regressing the effect of covariates from the test statistics asso-

ciated with response variables [1]. Inference in this case will also be
improved using [9] to improve variance matrix estimate before re-
gression and conditional variance extraction. Cumulant corrections
in (6) will also still be available, but continuity correction will not
be possible, since the resulting test statistic vector will no longer lie
on a lattice. Kawaguchi et al. provide other techniques for improv-
ing the underlying normal approximation to the distribution of the
Mann-Whitney Wilcoxon statistic, most notably by applying a log-
it transform; they also provide a variance matrix estimate for this
transformed statistic. We speculate that our variance improvement
might also be applied to this transformation, but do not pursue this
approach here, as it undermines the underlying lattice nature of the
statistic [1].

Results
Case with Variance Known

When Mann-Whitney statistics are known to be calculated
from independent random variables, the multivariate distribution
of test statistics is supported on a finite number of points. Marginal
probabilities for these points are calculable and multivariate prob-
abilities are calculated using independence. These probabilities are
summed to get probabilities of sets like (5).

Figure 1 shows the error in various approximations to the
Mann-Whitney statistic for independent random variables with
sample sizes M = 5 and N = 5. These sample sizes, while small, are
consistent with numbers of patients in new drug applications to the
U.S. Food and Drug Administration; Ling reports on a study with
12 participants. Again, true probability atoms are calculable exactly,
and so errors are approximation deviations from the truth [12]. In
this case, the covariance is known to be zero, and marginal vari-
ances are calculable in closed form. Discreteness leads to serious
errors in the uncorrected chi-square approximation, defined to be
the first term on the right in (6). Adding a correction for continui-
ty, involving the first two terms on the right in (6), cuts the typical
error in half, and a correction for skewness and kurtosis, involving
all of (6), cuts this error in half again. Another case in which multi-
variate moments can be calculated exactly is the case of sequential
assessments of a single continuous response variable, as described
by Zhong and Kolassa [13].

s B

= —— Chi-square
- Corrected for Continuity
Correctian for Skewness and Kurtosis

0.05

0.04

Approximation Error
0.03

0.0

0.00

=0.01

Ordinate

Figure 1: Errors in Approximations to the distribution of
W of (3) for Independent Wilcoxon Tests with samples of
g size 5 and 5.
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Case with Estimated Variance

Figure 2 shows the chi-square approximation to the distribution
of W using the variance approximation of Kawaguchi et al. the

corrected ap- proximation z of (9), the chi-square approximation
to the distribution of W using a variance calculated by Monte Carlo,

the chi-square approximation using =, corrected according to
the first two terms of (6), labeled “Yarnold A", and the chi-square

approximation using z, corrected according to all terms of (6),
labeled “Yarnold B” [1]. Bivariate continuous normal data were
simulated under the null hypothesis of equality of distribution,
the various test statistics were calculated and the various tail
probability approximations were calculated. Empirical cumulative
distribution functions of the tail probabilities were graphed. Well-
performing approximations should lie close to the line through (0,
0) and (1, 1), also shown. Distribution functions above these 45°
lines represent test methods indicating null hypothesis rejection
more often than expected, and functions below this line represent
test methods indicating null hypothesis rejection less often than

expected.
4 I
4 - Kww
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b Chi Square known variance
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Figure 2: Sizes of Tests with Estimated Second and Higher

Moments.
\_ J

Asinthe previous section, tail probabilities with known variance
(blue) are anti-conservative, because of the lack of continuity

correction. Tail probabilities calculated using = (green, lying
almost indistinguishably from the magenta line) are conservative,
but not extremely so. Since the moments are estimated, standard
results guaranteeing the improved performance of the Yarnold A
(magenta) and Yarnold B (yellow) approximations do not hold.
Indeed, the Yarnold an approximation appears to be only a marginal

improvement over the approximation involving =, probably
because the added continuity arising from variability in estimation
of ¥ negates the need for continuity correction. The Yarnold B
approximation provides an improvement over the approximation

involving x, but requires §, calculated from the known multivariate
distribution of the measurement, and is otherwise unavailable for
general use in the absence of estimates of §..

Example

Fleming and Harrington present a data set on primary biliary
cirrhosis; this data set is available on line at STATLIB [14-15]. We
analyze patients exhibiting edema (including edema controlled
using diuretics), and test whether the joint distribution of
triglycerides and cholesterol depends on whether the subject is in
disease stage 4. This subset of the data contained 43 subjects, of
which 26 were in stage 4. Marginal Mann-Whitney test statistics
for triglycerides and cholesterol are 132 and 233 respectively. The
method of Kawaguchi et al. estimates the marginal variances as
1307.3 and 1631.9, and the covariance as 673.3. The true marginal
variances are both 1620.7 and so the corrected covariance estimate
is 747.1. P-values using the uncorrected and corrected variance-
covariance estimates are 0.013 and 0.029 respectively; this
difference is large enough to be of concern.

Conclusion

We examined various corrections to the standard x?
approximation to a multivariate Mann-Whitney-Wilcoxon statistic.
In the simple case without missing values, and known covariances,
the corrections of Yarnold provide a valuable improvement for
the approximation of p-values [3]. In the case with unknown
covariances, a correction of the approximated variance matrix that
uses the known variances, and re-estimates covariances using the
original implied estimates of correlation and the known variances,

improves the type 1 error rate of the test.
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