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Abstract—Dynamic spectrum access (DSA) is regarded as an
effective and efficient technology to share radio spectrum among
different networks. As a secondary user (SU), a DSA device
will face two critical problems: 1) avoiding causing harmful
interference to primary users (PUs) and 2) conducting effective
interference coordination with other SUs. These two problems
become even more challenging for a distributed DSA network
where there is no centralized controllers for SUs. In this paper,
we investigate communication strategies of a distributive DSA
network under the presence of spectrum sensing errors. To be
specific, we apply the powerful machine learning tool, deep
reinforcement learning (DRL), for SUs to learn “appropriate”
spectrum access strategies in a distributed fashion assuming NO
knowledge of the underlying system statistics. Furthermore, a
special type of recurrent neural network, called the reservoir
computing (RC), is utilized to realize DRL by taking advan-
tage of the underlying temporal correlation of the DSA network.
Using the introduced machine learning-based strategy, SUs could
make spectrum access decisions distributedly relying only on
their own current and past spectrum sensing outcomes. Through
extensive experiments, our results suggest that the RC-based
spectrum access strategy can help the SU to significantly reduce
the chances of collision with PUs and other SUs. We also show
that our scheme outperforms the myopic method which assumes
the knowledge of system statistics, and converges faster than the
Q-learning method when the number of channels is large.

Index Terms—Deep Q-network (DQN), deep reinforcement
learning (DRL), dynamic spectrum access (DSA), echo state
network (ESN), reservoir computing (RC), resource allocation.

I. INTRODUCTION

CCORDING to CISCO [1], global mobile data traffic has
A experienced boosting growth, which will increase seven-
fold between 2016 and 2021 with a compound annual growth
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rate of 46%. Spectrum extension is critical for future wireless
communication networks to cope with this exponential data
traffic growth. However, radio spectrum is a costly and scarce
resource and the use of radio spectrum is usually regulated
by governmental entities. The current shortage of radio spec-
trum makes it hard for wireless operators to obtain sufficient
licensed bands with exclusive ownership. On the other hand,
experimental tests and investigations from both academia and
industries show that the static spectrum allocation policy from
federal communications commission (FCC) causes the under-
utilization of allocated licensed bands [2]-[4]. To be specific,
according to the report from Shared Spectrum Company, the
utilization of most licensed spectrum bands is under 30%, and
more than half of licensed spectrum bands are under 20%
utilized. For example, even in the most crowded cities, like
Washington, DC and Chicago, only 38% of licensed spec-
trum bands are occupied [5]. These investigations and statistics
reflect the fact that radio spectrum resources are under-utilized,
which motivates FCC to reconsider the current static spectrum
allocation policy, and employ dynamic spectrum access (DSA)
to promote spectrum utilizations [6].

A large quantity of public unlicensed frequency bands,
such as the industrial, scientific, and medical (ISM) band
and the unlicensed national information infrastructure band,
were freed up, on which any wireless devices are allowed
to seek for spectrum extension using opportunistic spectrum
access. However, nowadays, these bands are becoming
extremely crowded and over-utilized. To address this issue,
ultra-wideband millimeter wave (mmWave) bands have been
exploited for unlicensed use, such as 24-24.25 GHz ISM
bands and 28-30 GHz local multiple distribution service
bands [7]. Moreover, according to the recent spectrum alloca-
tion policy released by FCC, 14 GHz consecutive mmWave
bands (57-71 GHz) can be used as license-exempt bands [8].
Even though mmWave bands provide a lot of opportunities
for radio spectrum access, it is important to note that the
use of mmWave band usually requires sophisticated signal
processing technologies and hardware.

To provide access opportunities on low frequency bands,
FCC opened up licensed spectrum bands to encourage DSA
of under-utilized spectrum [6]. For example, in 2015, the FCC
conducted an auction of 1695-1710 MHz, 1755-1780 MHz,
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and 2155-2180 MHz, also referred to as the Advanced
Wireless Services-3 (AWS-3) band, on which DSA devices
share the bands with federal systems, such as the federal
meteorological-satellite systems [9]. In addition to the AWS-3
band, the 3.5 GHz band has been opened up and utilized
by the spectrum access system, in which different types of
users will share the spectrum with different spectrum access
priority, including incumbent access, priority access, and gen-
eral authorized access [10]. Undoubtedly, opening up current
licensed frequency bands could significantly improve the uti-
lization of radio spectrum. However, many challenges still
exist. For example, on opened licensed frequency bands, DSA
users should always act as secondary users (SUs) with low
priority. This means DSA users should provide protection to
primary users (PUs) from harmful interference.

To achieve spectrum co-existence between DSA users and
PUs, many strategies have been introduced so far, which can
be classified into two main spectrum access mechanisms.
The first one is listen-before-talk (LBT), also known as the
interweaving scheme, in which an SU can access a frequency
band only if it is detected to be available [11]. Although
this scheme can effectively avoid strong interference to PUs,
opportunities for DSA users to access shared frequency
bands can be rather limited. This is because under LBT the
spectrum access depends completely on current spectrum
sensing outcome. In reality, due to the random nature of
wireless environments, limited/no cooperation among SUs,
and other practical factors spectrum sensing can never be
perfect [12]. This will cause false alarm or miss detection of
PUs’ activities leading SUs to make inappropriate decisions
regarding channel access [12]. The second spectrum access
scheme is spectrum sharing, also known as the underlaying
scheme [13]. In this scheme, SUs coexist with the PUs on
shared frequency bands, and adjust their transmit power level
so that the accumulated interference experienced at PUs is less
than a tolerable interference threshold. This scheme requires a
strong assumption that the channel state information between
transmitters of SUs and the receivers of PUs are known as
a pirori in order to conduct power control. However, in reality,
it is usually difficult to obtain these channel state information
without a central controller. Even under the presence of a
central controller, exchanging these channel state information
may impose a heavy control overhead for the underlying
network making it difficult to be implemented in practice.

In light of these challenges, machine learning-based
approach has recently been introduced in the field of
DSA due to its ability to adapt to dynamic unknown
environments [14]-[16]. To be specific, with machine learn-
ing, spectrum access will be determined not only by current
spectrum sensing outcome but also by the learning result
from past spectrum status. In this way, the negative impact
of imperfect spectrum sensing could be greatly alleviated.
Additionally, machine learning can enable DSA devices to
obtain accurate channel status and useful prediction/statistic
information of channel status, such as the behavior of PUs
and the load of other SUs, the spectrum access based
on which could significantly reduce the collisions between
SUs and PUs.
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In this paper, we investigate machine learning approaches
to obtain artificial intelligence-enabled spectrum access strate-
gies for DSA networks. To reduce the control overhead of
the underlying DSA network, we incorporate the power-
ful machine learning technique, deep reinforcement learning
(DRL), for SUs to learn “appropriate” spectrum access strate-
gies in a distributed fashion assuming NO knowledge of the
underlying system statistics. Furthermore, a special type of
recurrent neural network (RNN), called the reservoir comput-
ing (RC), is utilized to realize DRL by taking advantage of
the underlying temporal correlation of the DSA network. To
be specific, DRL and RC-based DSA scheme is developed to
facilitate DSA systems to perform appropriate channel access,
aiming at protecting PUs from harmful interference and avoid
collisions with other SUs. To the best of our knowledge, this
is the first work to combine DRL and RC for DSA networks.
DRL aims to solve the large state space problem in tradi-
tional reinforcement learning [17]. Traditional reinforcement
learning, such as Q-learning converges slowly when the state
space is large. Meanwhile, DRL utilizes deep neural network
to approximate the expected cumulative reward of the state—
action pairs and accelerate the convergence time. RC is a
special type of RNN that reduces the complexity of train-
ing significantly [18]. RNN is a powerful neural network that
reasons the temporal correlation of input sequences, but the
difficulty of training RNN is a well-known trouble to many
researchers [17], [19]. RC simplifies the training of RNN by
only training the output weights and our previous work in this
field including designing a low-complexity and high-efficiency
RC-based symbol detector for MIMO-OFDM systems [20]. In
this paper, deep Q-network (DQN) and RC are combined to
design DSA strategies for handling the large state space and
taking advantage of the temporal correlation of the underlying
wireless channel as well as the PU’s activities.

It is important to note that DRL has been applied
in [15] and [16] for solving DSA problems. In [15], only one
SU is assumed in the network with perfect spectrum sensing
outcomes (that is, there is no error in spectrum sensing). On
the other hand, [16] assumes no PU in the network, therefore,
the collision with PUs is not considered. Furthermore, [15]
combines DRL with multilayer perceptron (MLP), which is
incapable of learning the temporal correlation of spectrum
sensing outcomes. On the other hand, [16] combines DRL
with RNN resulting in slow convergence rate, especially in
large state space.

In this paper, to better reflect the reality, we assume that
there are multiple PUs and multiple SUs in the DSA network
by jointly considering effects of colliding with PUs or other
SUs. Furthermore, no centralized controller is assumed in
our DSA network to allow fully distributed DSA strategies.
Imperfect spectrum sensing with unknown sensing error proba-
bilities is also considered in this paper. The main contributions
of this paper can be summarized in the following.

1) A distributed DSA strategy for SUs of a DSA network

is introduced based on the integration of DRL and
RC. The strategy takes SUs’ imperfect spectrum sens-
ing outcomes into account and enables SUs to conduct
spectrum access in a fully distributed fashion.
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2) Extensive performance evaluation of the introduced
DSA strategy has been conducted to show that our
machine learning-based spectrum access strategy could
quickly learn PUs’ activities and significantly reduce the
chance of collisions with PUs and SUs in a realistic
environment.

3) Compared with the myopic scheme which assumes
system statistic, our scheme can outperform the myopic
strategy in both the single-SU case and the multiple-SU
case. Compared with Q-learning, our scheme demon-
strates quick convergence rate with better performance.
Compared with DRL+MLP, our DRL+RC strategy can
take advantage of the underlying temporal correlation
of the sensing result to yield substantial performance
improvement.

II. DEEP REINFORCEMENT LEARNING AND
RESERVOIR COMPUTING

When system dynamics are unknown and observations of
the system are not entirely accurate, learning-based methods
can adapt to the unknown environment from the partial obser-
vation of the system by improving performance on a specific
task. Usually, an SU does not know the behaviors of PUs
and its spectrum sensor may make a mistake in determining
the spectrum holes. Therefore, machine learning is suitable
for designing DSA strategies when the system statistics is
unknown. In this paper, we adopt DRL and RC, in particular,
DQN [21] and echo state network (ESN) [22].

DRL has attracted much attention in recent years because
it enables reinforcement learning to efficiently learn in a very
large state and action spaces by providing a good approxima-
tion of Q-value. Due to the difficulties of training RNN, RC is
a new paradigm of RNN training that is simple but powerful.
We use a special type of RC, ESN, as the Q-network of DQN.

A. Reinforcement Learning

Reinforcement learning is an important type of machine
learning where an agent learns how to behave in an envi-
ronment to maximize the cumulative reward. It lies between
supervised and unsupervised learning. The agent is not told
which action to take, which is different from the ground truth
labels in supervised learning. Instead, the agent must explore
the environment to accumulate knowledge of the environment
and exploit its accumulated knowledge to take the best action
it can. The agent gradually develops a policy that maps from
the observed state to the action. In the distributive DSA work
of our interests, each SU is an agent, sensing decision is the
action, sensing outcome is the observed state, and sensing
strategy is the developed policy.

The most wide-used training technique for reinforcement
learning is Q-learning [23]. This technique is a model-free
approach that learns the policy directly through interactions
with the environment without estimating a model of the envi-
ronment. Q-learning is a value iteration approach to find the
Q-value Q7 (s, a) of each state s and action a pairs, which
represents the expected value of the cumulative reward when
taking action a in the initial state s and then following policy
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7 thereafter. 07 : (s, @) is the Q-value with the optimal policy,
and the optimal policy can be derived as

*(s) = argmax Q"*(s, a). )]

Assume that the initial state is s, an agent takes the action
a; following current policy m and gains a reward rqy, then
enters to the next state s;41. The objective is to maximize the
cumulative discounted reward R

o0
R=Y y"'r, @)
=1

where ¥ € [0, 1] is the discounted rate of the reward. The
online update rule of Q-value is

O(st, ar) < Q(sr, ar) + a[rm +vy max O(5t41, A1)
T+

— O(st, ar)] 3)

where @ € (0, 1) is the learning rate and y < [0, 1] is the
discounted rate of the reward. Once the Q-value is updated,
the policy = is also updated using e-greedy method [24]

with probability 1 — €
with probability e

aous — | argmax, O(s, a),
+1 = | Choose random action,

)

where € is a small number between 0 and 1. The Q-value
and the policy updates iteratively to gradually converge to the
optimal policy.

B. Deep Reinforcement Learning

Q-learning performs well for small-scale models but per-
forms poorly for large-scale models. The reason is that
the training algorithm of Q-learning iteratively updates the
Q-table. As the number of possible states increases, the large
(Q-table size makes training difficult or even impossible [17].

Due to the difficulties of updating every element in Q-table
for a large-scale model, DRL exploits the powerful deep neural
network to approximate the Q-value. In 2013, DeepMind team
developed a DQN to challenge seven Atari 2600 games and
won a human expert on three of the games [25]. In this paper,
the size of the state space grows exponentially with the number
of the channels. Each channel is occupied by a PU and each
PU has two possible states: 1) active state or 2) inactive state,
so the state size is 2V for N channels. This motivates us to
use DQN to learn the DSA strategy in an unknown dynamic
system.

C. Reservoir Computing

RNN is a powerful network that is capable of learning the
temporal behavior for a time sequence. Compared with the
MLP, RNN has feedback connections that allow signals to
travel in both directions, which exhibits a dynamic behavior.
Also, RNN has memory that stores the previous neuron activa-
tions. RNN are widely used in the natural language processing
because understanding a sentence highly requires temporal
relationship between words [19], [26]. Although RNN is more
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powerful than the feedforward neural network in terms of the
expressiveness, RNN is more challenging to train [17], [27].
The training algorithms for RNN have the vanishing and the
exploding gradient problem because the gradient values cal-
culated in long temporal range may become too large or too
small, which makes the time for training RNN very long. The
aforementioned large state size of channels in DSA further
makes training RNN more difficult since we have to model
a large-scale dynamic system. Therefore, we need to find an
alternative way of training RNN that have faster convergence.

Due to the difficulties of training RNN, RC is introduced
to simplify the training with comparable performance [18].
The reservoir is a randomly generated RNN, and it has linear
connections to input units and output units, which is shown
in Fig. 1. During the training, only the output weights are
trained, the weights inside the reservoir and the inputs weights
are fixed [28]. The fixed recurrent connections of the reservoir
provide a high dimensional dynamics that is able to create all
possible spatial and temporal combinations of the input history,
which are analogous to cortical dynamics in human brain [29].
The learned output weights determine the best linear combi-
nation of the reservoir’s state and the input signal to perform
the desired task. This approach largely reduces the computa-
tion time because only the read out weights are trained. ESN
is the most popular type of RC system [20], [30]-[32]. In this
paper, we adopt ESN as the Q-network in the DQN.

III. SYSTEM MODEL

We consider a DSA scenario in which primary network con-
sisting of N PUs coexist with DSA secondary network with
L SUs. It is assume that there are totally N wireless channels
so that each PU transmit on one unique wireless channel to
avoid interference among PUs. Furthermore, we assume that
each PU will broadcast warning signals to SUs if the corre-
sponding PU’s signal has been collided. To be specific, the
warning signal contains information related to which channel
has been collided so that the corresponding transmitting SUs
on that channel are aware of the collision. This is the only con-
trol information from the PU to the SU to enable the protection
for the PU. Our proposed method outperforms myopic method
that is required to know the system statistics, and converges
faster than Q-learning method when the number of channels
is large. All wireless channels are shared by all SUs, and an
SU will select proper wireless channels to access according to
its spectrum access strategy. Moreover, on a wireless channel,
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an SU should protect the PU, which is authorized to access
the channel, from harmful interference.

As shown in Fig. 2, on the X-Y 2-D coordinates, (x .Y )
(xRX, yRX), (xfx, Y] TXy  and (x'“ ny) respectively, repre-
sent the position coordinates of the transmitter of SU i, the
receiver of SU i, the transmitter of PU j, and the receiver
of PU j, where i € {1,2,....L} and j € {1,2,...,N}.
Accordingly, the distance of a desired signal link can be cal-
culated by d; = ‘/ (ng — xfx )2 + (ng — yfex )2. Moreover,
the propagation distance of interference signal from and other
SUs are given by dj; = \/(xfx —Jrfv")2 + 0o —)rf”"}.2 and

di = \/ (xgx — )L'fx)2 + (ygx — ysex)Z, respectively, where k €
{1,2,...,L} and k # i. The interference only happens when
PU j and SU k are using the same wireless channel that SU i
is using.

With the propagation distance of d, we adopt the
WINNER II channel model [33] to calculate the path loss
of the desired signal using

PL(d,fc) = E—I—AW . loglo(d[m]) + By - loglo(fc[GSHZ])

(&)

where f; is the carrier frequency of wireless channels. PL, Aw,
and By denote the path loss at a reference distance, path loss
exponent, and path loss frequency dependence, respectively.
Accordingly, the path loss of desired signal PL(d;;, f;) and
interference signals PL(dj;, f) and PL(d;, f.) can be obtained.
It is assumed that a strong line-of-sight (LoS) path exists
between a transmitter and a receiver, therefore the Rician chan-
nel model is employed to derive channel model, which can be

expressed as
/ 1.|' CN O o? (6)

where o2 = 10~ [(PL+Alogio(dlmD)+B-logo([([GHz])/51))/(10)] g

determined by path loss, and « is K-factor which indicate the
ratio between receiver signal power of an LoS path and scat-
tered paths. & ~ U(0, 1) is the phase of arrival signals on LoS
path, which takes value from the uniform distribution between
0 and 1, and CN(-) represents a circularly symmetric complex
Gaussian random variable.
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Thus, the signal to interference plus noise ratio (SINR) of
received signals at the receiver of SU i can be derived by

2
SINR; — Ppij - |hiil

(7
L
2
pi-|mil+ X pyi-lhal® + B-No
k=T ki

where pj, pjj, and py; represent the transmit power of PU j,
SU i, and SU k on the jth wireless channel, respectively. |h,',-|2,
|kj,-|2, and |k;“'|2, respectively, denote the channel gain of the
links between the transmitter i and the receiver i, between
the transmitter j and receiver i, and between the transmitter
k and receiver i. B and Ny stand for channel bandwidth and
noise spectral density, respectively. With the received SINR
of SU i, the channel capacity could be obtained by C; = B -
log,(1 + SINR;/I'). Here, I' is the SINR gap that defines the
gap between the channel capacity and a practical modulation
and coding scheme.

IV. DQN-BASED SPECTRUM ACCESS STRATEGY

In this section, we formulate the distributive DSA as a rein-
forcement learning problem. We define the agent, state, action,
reward, and policy in DSA environment. The learning proce-
dure is shown in Fig. 3. It can be seen that spectrum access
strategies are determined by the results of DQN and current
spectrum sensing. According to the spectrum access strategies,
SUs access wireless channels to carry out data transmissions.
Then, SU receivers feedback reward based on actual wireless
transmission quality, which will be stored by SU transmitters
and used as training data of DQN+RC to update spectrum
access strategies. The aforementioned learning procedure will
be carried out periodically to tackle the variations of wireless
environments.

There are a set of {1,2,..., N} orthogonal channels and a
set of {1,2,...,L} SUs. Each channel is occupied by a PU
and each PU may be in one of the two states: Inactive (1) or
Active (0). The PU with Inactive state means SU is allowed to
access the corresponding channel, and the PU with Active state
means SU cannot access the corresponding channel because
the PU is accessing it. The dynamic of each PU’s activity is
described as a two-state Markov chain as shown in Fig. 4. The
transition probability of the two-state Markov chain on the nth
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channel is denoted as

Po= Mo Th] ®)

0 Pl

where p;; = Pr{next state is jlcurrent state is i} (i, € {0, 1}).
At the beginning of each time slot, every SU performs spec-

trum sensing on all N channels to detect the channel states.

Let the sensing results at time slot ¢ be

() = [s‘ o, ..., sL(x)] ©9)

where S’ (1) is an N-dimensional vector [.sJ] N,..., sf;v (t)]T, and
si(r) € {0, 1} is the sensed state of the /th SU on the nth
channel. The spectrum sensing detector is not perfect, so sﬁ, 03}
may contain error. Let the sensing error probability of the /th
SU on the nth channel be E!

Pr{:r,,(x) - sf,(r)} —1-E (10)

where T,(f) is the true state of the nth channel. The transition
probabilities and the sensing error probabilities of the chan-
nels are both unknown to SUs. The only known information
for the Ith SU is S'(f) representing the observed state in the
environment and the input of the DQN.

After performing spectrum sensing, each SU decides to
access at most one channel or stay idle based on the sensing
result. The action of the /th SU is denoted as

d e{o,...,N} (11)

where al(t) = n(n > 0) means the /th SU decides to access
the nth channel at time slot £, and af(t) = 0 means the /th SU
decides not to access any channel at time slot 7.

After an SU transmitter accesses a channel, channel states
are changed according to its Markov chains. Then the cor-
responding SU receiver feedbacks the received SINR to the
transmitter. As discussed in Section III, the interference will
be based on the locations of PUs and SUs. We consider four
cases for setting up the reward function.

1) An SU accesses a channel that no PU or other SUs are
currently using: in this case, the SU does not experience
any interference. The achievable data transmission rate,
log,(1 + SINR/TI'), is used as the reward function.

2) An SU accesses a channel that is currently occupied by a
PU: in this case, a collision with PU occurs. According
to the system model described in Section III the PU
will broadcast warning signals to all SUs. Therefore,
the corresponding transmitting SUs will be aware of this
collision and we set a negative reward of —C (C > 0)
as an outcome of receiving the warning signal.
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3) More than two SUs access the available channel: in
this case, collisions happen among SUs. Similarly, the
achievable data transmission rate, log,(1 +SINR/I'), is
used as the reward function.

4) An SU decides not to access any channel, and we set
the reward to be zero since log,(1 4+ SINR/T") = 0.

As an outcome, the reward function of the /th SU on the

nth channel can be expressed as

At+1) = [ —C Interference with PU

log,(1 + SINR!/T"),  otherwise.

(12)

The DSA strategy is distributive so that the information of
sensing results and accessing decisions are not shared between
SUs. Each SU has its DQN to make decisions of channel
access independently, and the only input to each SU’s DQN is
sensing results implemented by its sensor. SUs do not know
the transition probabilities of channel states and the probabil-
ities of sensing errors. They can only learn how to access the
channel through the received SINR that they get after access-
ing, based on which their access strategies are developed to
maximize their own cumulative discounted reward R’

oo
R =Y "y e+D)

t=1

(13)

where ¥ € [0, 1] denotes the discounted rate. rl(t + 1) is
defined in (12). The training method for all DQNs is shown
in Algorithm 1.

The architecture of the proposed distributive DSA using
DRL and RC is shown in Fig. 5.

V. PERFORMANCE EVALUATION

In this section, we present the experiment results for the
distributive DQN-based DSA. We first randomly choose the
locations of SUs and PUs in a 150 mx150 m space. The
distance between a SU transmitter and the corresponding
receiver is randomly chosen from 20 m-40 m. As discussed in
Section III, the WINNER II model in (5) and the Rician model

Algorithm 1 DQN Training Process

1) Initialize DQN! and DQN., with the same structure and
initial weights for each SU L

2) Each SU [ inputs S to DQNé and chooses the action
af(r) based on Equation (4).
3) Each SU [ gets a reward r;'+1,
sl +1).

4) Store SX(1), a'(r), r'(t+1), S'(t+1) and replace S'(f) with
sl +1).

5) Repeats step 2 to step 4 for T times at T slots.

6) Given the stored T sequences, S"(I), a (0, rl(t—l— 1), Sl(r+
1), input S'(f) and S'(t + 1) to DQN. and DQN! to gen-
erate Qi(SI(t),a) and Q{(S" (t + 1), a), respectively. Then
update the DQN;(a) to minimize the mean-square-error of
the following function:

[+ 1) + y max Q{(S'(t + 1), @) — Q(S'®), d' )1

and observes the next state

8) Replace DQN! with DQN/:

in (6) are employed to calculate the path loss and our derived
channel model, respectively. For the WINNER II model, we
set f =5 GHz, PL = 41, Aw = 22.7, and By = 20. For the
Rician model, we set « to 8, and o2 is determined by the path
loss obtained from the WINNER II model. Then the received
SINR at an SU’s receiver is given by (7), where the bandwidth
B is 1 MHz, the noise spectral density Ny is 10~47(mW/Hz),
the transmit power of one SU and is 20 mW, and the transmit
power of one PU is 40 mW. All system parameters used in
the channel model are listed in Table I.

As described in Section IV, the dynamics of PUs are mod-
elled as independent two-state Markov chains with states:
Inactive (1) or Active (0). To initialize each Markov chain as
shown in (8), we randomly choose p1; and pgo from a uniform
distribution over [0.7, 1] and [0, 0.3], respectively, for every
channel. Then pjp = 1 — p11 and po1 = 1 — poo can be cal-
culated accordingly. The reason for choosing these ranges for
P11 and pgg is that the utilization of most licensed spectrum
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TABLE I
CHANNEL MODEL PARAMETERS

SU transmit power 20mW
PU transmit power 40mW
Je 5GHz
PL 41
Aw 22.7
Bw 20
K 8
B 1MHz
No 10~ - "(mW/Hz)

bands is low, so the possible value of pgg should be low, and
the possible value of py; should be high.

To demonstrate the effectiveness of our proposed learning
method, we employ the myopic and the Q-learning methods
as referred methods, which will be compared with learning-
based method. In the myopic method, the channel with
the maximum immediate reward will be selected [34], [35].
To calculate the expected immediate reward, the myopic
method needs the information of the transition probabil-
ities of channels and the probabilities of sensing error.
Therefore, we regard the myopic method as a baseline which
has more known information than other learning methods,
such as DQN and Q-learning. In the myopic method, Ith
SU first calculates channel state probabilities with G,(f) =
Pr{the nth channel state at time slot f = 1}

Gty =50 -1 —EY+a—siw)-E (14)

where sﬂl () € [0, 1] is the sensing result of /th SU on nth chan-
nel. Ei represents the sensing error probability of /th SU on
nth channel. Then the myopic method calculates the expected
immediate reward R,(f) of nth channel

Ru(®) = Go(®) - [Py (~) + 1y -ogy (1 4+ SINRL/ T )|

+ (1= Gu(0)) - [p”m (=C) + Pl -1og2(1 + SINRL/ r)]
(15)

Thus, with the myopic method, an SU will access the channel
with maximal R, (7).

On the other hand, Q-learning algorithms have widely been
adopted to solve multi-user DSA problems in [36] and [37].
The main drawback of Q-learning is that it is not able to handle
a large state size. Since DQN approximates the mapping func-
tion from the state space to the Q-value instead of frequently
updating Q-table, it has faster convergence than Q-learning
when the state space is large.

A. Single SU

In this section, we design experiments to measure the con-
vergence speed of our proposed learning method. In the
experiment, we treat the myopic and Q-learning method as the
reference. We set the number of SU and channels to 1 and 22,
respectively. Note that, the number of PUs is the same as that
of channels. Furthermore, the negative reward for colliding
with a PU is set to be —2 and the number of neurons of the
RC is set to be 64. To ensure a fair comparison, we train both
the DQN+RC and Q-learning with the same learning rate of
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0.01. The locations of PUs and SUs in the underlying DSA
network are shown in Fig. 6.

In Fig. 7, we show the average success rate (no collision
with PU or SU), the average collision rate with PUs, and
the average reward versus the training time. In each iteration,
we collect 4000 training sequences (I = 4000 in step 5 of
Algorithm 1) and calculate the arithmetic mean of the success
rate, the collision rate, and the reward. After that we use the
trained DQN to determine the access policy for the following
iteration.

Although Q-learning and DQN+RC have similar
performance when they converge, it can be seen that
Q-learning converges much slower than DQN+RC when
the number of channels is large. This is because Q-learning
needs intensive Q-table updates, and DQN+RC approximates
the Q-value using RC, so DQN+RC converges faster if the
approximation is accurate. In addition, the results show that
DQN+RC and Q-learning can outperform the myopic method
even though the myopic method treats transition probabilities
of channels and probabilities of sensing error as known
information. Therefore, the evaluation result directly suggests
that learning-based methods can better adapt to the network
dynamics than the myopic method, which assumes more
a priori information. To sum up, our proposed DQN+RC has
the advantages of faster convergence speed when the number
of channels is large and better performance than the myopic
method.

B. Multiple SUs

Fig. 9 shows the average success rate, the average collision
rate with PUs and SUs, and the average reward versus the
training time for a DSA network having multiple SUs. The
network geometry of the underlying DSA network is shown
clearly in Fig. 8. Since SUs may collide with each other, each
SU also needs to learn the access strategies of other SUs. We
set the number of channels and SUs to be 6 and 2, respectively.
The negative reward for colliding with PU is set to —2 as
well. For training DQN, we collect 2000 training sequences
in each iteration. In this experiment, we also compare with
the DQN using MLP as its Q-network. For the MLP scheme,
we consider two MLP structures. To be specific, DQN+MLP1
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Fig. 8. DSA network geometry (number of channel = 6 and number
of SU = 2).

has an MLP with one hidden layer, and DQN+MLP2 has an
MLP with two hidden layers. All the hidden layers contain
64 neurons, and the number of neurons of RC is also set to 64.
The learning rates of DQN+RC, DQN+MLP1, DQN+MLP2,
and Q-learning are set to 0.01.

We can observe from Fig. 9 that the myopic method has
better performance than all learning-based approaches at the
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beginning of training because it has full knowledge of the
system dynamics. However, the myopic method cannot ben-
efit the SU from learning the access strategy of other SUs.
Therefore, the myopic method will result a constant collision
rate with other SUs. On the other hand, the learning-based
methods are able to gradually learn from the stochastic envi-
ronment and the interactions among SUs and PUs, therefore,
learning-based methods all develop strategies that have higher
average reward than the myopic method. As shown in Fig. 9,
all learning-based methods have 0O collision among SUs when
their training curves converge, meaning each SU learns the
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access strategy of other SUs perfectly. The performance com-
parison among learning-based methods reflects the following
relationship: DQN+RC =~ Q-learning > DQN+MLP1 =~
DQN+MLP2. To be specific, O-learning and DQN+RC have
similar performance because the number of channels is only
6 in this experiment. Clearly, DQN+RC outperforms both
DQN+MLP1 and DQN+MLP2. This is because the recurrent
structure of RC enables a more complete construction of a
high dimensional functional space to approximate the network
state space than MLP, even though both RC and MLP have
an equal number of neurons. An interesting observation is that
DQN+MLP2 performs slightly worse than DQN+MLP1 even
DQN+MLP2 has more complicated structure. This is mainly
because a deeper network usually needs more training data and
training time to make it converge. Therefore, having more neu-
rons in a neural network does not always translate to having
better performance.

C. Comparison Between DON + RC and DON + MLPI

In this section, we demonstrate the impact of temporal
correlation of the spectrum sensing outcomes on the learn-
ing performance of DQN+MLP1 and DQN+RC. Note that,
we do not include DQN+MLP2 in this comparison since
the performance of DQN+MLP1 is similar to DQN+MLP2
as discussed in Section V-B. It is important to note that in
reality the spectrum sensing outcomes are correlated over
time due to: 1) PUs’ activities have temporal correlation and
2) the wireless channel demonstrates temporal correlation.
A simple experiment is designed where the PUs’ activities
is time dependent. In the experiment, we assume that there
is only one channel, one PU, and one SU for the under-
lying DSA network. The number of training sequences in
each iteration is set to 2000. Instead of using the memo-
ryless two-state Markov chain to model the PU’s behavior,
we assume PU’s activity is time-dependent (that is, it is
governed by a process which has memory). For simplic-
ity, we assume that a PU will access the channel once
every three time slots with {Inactive, Inactive, Active} as a
period.

The structure of the MLP1 contains one hidden layer of
64 neurons. To make a fair comparison, the number of neu-
rons of RC is also set to 64. Besides, the learning rate
of both MLP1 and RC is 0.01. The results are shown in
Fig. 10. Because the expected reward of access the chan-
nel is higher than not accessing the channel, the strategy
of DQN+MLP1 is to always access the channel regardless
of spectrum sensing results, resulting in the success rate to
be 1/3 and the collision rate to be 2/3. On the other hand,
DQN+RC could precisely learn the activity of the PU to access
the channel only when the PU is Inactive. This is because
DQN+RC can effectively learn the temporal correlation of
the sensing outcome, which can be used to improve access
performance. The experiment result clearly demonstrates that
RC is able to learn the underlying temporal correlation, while
MLP can only learn the one-to-one mapping from state to
action.
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VI. CONCLUSION

In this paper, we study spectrum access strategies in a
distributive DSA network under the condition of imperfect
spectrum sensing and no centralized controllers. A new DSA
strategy based on the combination of DQN and RC is intro-
duced, in which DRL is employed to learn the availability of
spectrum resources, and RC is utilized to realize DQN by tak-
ing advantage of the underlying temporal correlation of the
DSA network. Equipped with our DSA strategy, each SU is
able to make proper spectrum access decisions distributedly
relying only on minimal broadcast information from the PUs,
their own spectrum sensing outcomes, as well as the learning
outcomes. Experiments are designed to verify the performance
of our proposed strategy. The experiment results demonstrate
that our learning method could provide higher successful trans-
mission rate and lower transmission collision rate as oppose to
the myopic strategy which generally assumes channel statis-
tics. As compared to the Q-learning, our DQN-based approach
is shown to converge faster with better performance. Due to the
recurrent structure of the RC, our DQN+RC-based scheme can
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outperform DQN+MLP-based scheme when spectrum sensing
outcomes exhibit temporal correlation.
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