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Abstract—This paper investigates the channel access problem
of cognitive radio networks. In the cognitive radio network,
communication channels are assigned to primary users with
priority while secondary users are able to detect the spectrum
holes and switch among the channels for data transmission
opportunities. The channel access problem of this kind of system
can be formulated as a non-cooperative game. However, in prior
works, the secondary users are usually assumed to be able to
switch to any channel instantaneously, which is not possible in
reality because the channel switching will incur transmission
delays. In this paper, we formulate the channel access problem as
a non-cooperative game where each channel can be used by only
one user at a time. Moreover, considering the transmission delays,
we limit the channel switching distance of the secondary users
to a certain scope. In this case, the optimal channel access policy
of each secondary user will depend on the long-term behaviors
of primary users as well as the actions of other secondary users.
For this non-cooperative game, we propose a multiagent Q-
learning algorithm which requires neither the prior knowledge of
channel dynamics nor the negotiations among players. Simulation
examples are provided to demonstrate the effectiveness of the
algorithm.

I. INTRODUCTION

The radio spectrum is necessary for data transmission of
wireless devices. Traditionally, static spectrum access policies
are used to allocate the spectrum to different users, where
the assigned pieces of spectrum can only be accessed by the
corresponding licensed users. In recent years, as the population
of wireless devices increasing dramatically, available radio
spectrum has almost been fully allocated in several countries
[1]. However, it is shown that a lot of assigned radio spectrum
bands are often in an idle status [2], which is a great waste.
Obviously, exploiting the idle assigned spectrum will alleviate
the spectrum shortage problem. The cognitive radio network
(CRN) [3] with opportunistic spectrum access policy has been
proposed as a promising solution to improve the spectrum
utilization efficiency.

In a CRN, the wireless devices are divided into two cate-
gories, i.e., primary users and secondary users, which are also

referred to as licensed users and cognitive users, respectively.
Communication channels are assigned to primary users with
priority such that they can use the channels any time they need.
The use permissions of the communication channels are also
given to secondary users while the channels are not occupied
by primary users, which is known as the opportunistic spec-
trum access. The spectrum utilization efficiency can be largely
improved if secondary users can make use of the idle spectrum
bands appropriately. To adapt to the opportunistic spectrum
access, cognitive users should be able to detect spectrum holes
and share the idle spectrum bands with other cognitive users.
In this paper, we focus on the spectrum access problem while
spectrum sensing ability of the secondary user is assumed to
be perfect to simplify the analysis. However, our method can
be conveniently integrated with traditional channel detection
technique, such as energy detector and matched-filtering [4].

Opportunistic spectrum access can be deemed as an op-
timization problem which involves a group of secondary
users. To solve this kind of problem, game theory is usually
employed and solutions depend on the properties of players
and the optimization objectives. For the secondary users with
cooperative behaviors or the common objective, cooperative
game theory can be applied [5]–[7]. However, secondary users
are not always cooperative in reality as the wireless devices
are usually independent. In this case, some previous works
formulate the channel access problems as non-cooperative
games, in which each secondary user has its own optimization
objective and compete with its peer users for the opportunistic
spectrum bands [8], [9]. Generally, a channel access game is
dynamical since the spectrum opportunities are not constant
and the peer secondary users may access different channels
from time to time. As a result, the optimal channel access
policy of a secondary user depends on the behaviors of
both the primary users and its peers. However, it can be
very difficult for a secondary user to get knowledge of the
behaviors of the primary users or the policies of its peers.
Thus, manually designing an optimal channel selection policy
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is not appropriate.
To deal with this problem, reinforcement learning can be

applied. Reinforcement learning [10] is a machine learning
algorithm which enables an agent to learn an optimal policy
adaptively without environment knowledge. Reinforcement
learning has already been applied to many areas such as
optimal control [11], [12], finance investment [13], smart grid
[14], [15], and social behaviors [16], [17], just to name a
few. Reinforcement learning has also been employed to solve
the spectrum access problems in several prior works [18]–
[20]. In [18], the non-cooperative channel selection problem
of two users and two channels are solved with Q-learning.
The Q-learning algorithm is extended to the case of multiple
users and multiple channels in [20]. The cooperative spectrum
access problem is solved in [19] where the distributed learning
algorithms are proposed to maximize the total throughput
of the cognitive system. In these works, the communication
systems are time slotted and the users could switch to any
channel at every time slot. In this way, the users only need to
consider the current channel state, and select channel based on
the immediate reward. However, switching from one channel
to another will incur a transmission delay which is proportional
to the channel distance in reality [21], [22]. Therefore, it is
necessary to develop a new method for the channel access
problem with considering the channel switching ability.

In this paper, we formulate the opportunistic channel access
problem as a non-cooperative game. In the game, primary
users will use the communication channels dynamically. The
secondary users will access the idle channel with probable
collisions with others. For an idle channel, if more than one
secondary user decides to use it, there will be a collision and
none of them will complete the transmission. Each secondary
user needs to switch among the opportunistic channels to
maximize its data transmission over the whole game. Consid-
ering the transmission delays, the channel switching of each
secondary user is limited to a certain distance. Under these
settings, the secondary users need to make decisions based
on a long-term consideration instead of being attracted by
the immediate payoff. We have two main contributions in
this paper. First, we formulate the channel access problem
as a non-cooperative game and limit the channel switching
ability of the player, which has not been studied in existing
works. Second, a multiagent Q-learning algorithm is designed
to solve the channel access game. The prior knowledge of the
channel dynamics and the negotiations among the players are
not required by the algorithm.

The rest of this paper is organized as follows. In Section II,
the system model studied in this paper is introduced and the
corresponding channel access game is formulated. Section III
presents an overview of the Q-learning algorithm and proposes
a multiagent Q-learning solution to the channel access game.
Simulation experiments are provided to demonstrate the effec-
tiveness of the method in Section IV. Finally, a brief conclusion

is given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the system model of the
cognitive radio network. Then, the non-cooperative channel
access game is formulated.

A. System model

Consider a cognitive radio network containing N secondary
users and M communication channels of the same bandwidth
and different center frequencies. These M channels compose
a sequence {Ci}Mi=1 where Ci is the channel of the i-th lowest
center frequency. Additionally, we define the distance between
Ci and Cj as dij =‖ i − j ‖. The communication system is
discretized into time slots with equal length. At each time slot,
the channels may be occupied by primary users. The state of
a channel is denoted by ‘1’ if it is occupied by a primary user;
otherwise, ‘0’.

The secondary users are allowed to access the channels
which are in ‘0’. The secondary users are located close to
each other and will be influenced by the same group of primary
users. We assume the data transmission of the secondary users
follows the collision mechanism used in [18]–[20], where if
more than one secondary user tries to transmit data through a
same idle channel at one time slot, none of them will succeed.
Therefore, to transmit data as much as possible, the secondary
users should be able to detect the channel state while avoid
colliding with other secondary users. As channel detection
technique is out of the research scope of this paper, we assume
that the secondary users can detect channel states perfectly
to simplify the analysis. The objective of this paper is to
design a learning algorithm that enables secondary users to
find the optimal channel selection policy through which the
data transmission can be maximized.

B. Non-cooperative Channel Allocation Game

For the communication system described above, we design
the following non-cooperative channel access game. The play-
ers in the game are the secondary users and the i-th secondary
user is denoted by ui, i ∈ {1, . . . , N}. The total length of
the game is T . At time slot t, 1 ≤ t ≤ T , the state of the
channels is described by the state vector

st =


st1
st2
...

stM

 , (1)

where sti ∈ {0, 1} is the state of Ci. During the game, the
transition of st is a Markov process [23]. Here, we assume
that the transition matrix of st is unknown to ∀ui. Each
ui can detect st perfectly, however, the secondary users can
only implement channel detection every p time slots since
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the channel detection is an energy consuming process [24].
Based on the channel detection results, ui can select a channel
to transmit data for the following p time slots. The timing
structure of the game is illustrated in Fig. 1. Due to the

 

time slot 2

 

time slot p

channel 
selection

time slot 1 time slot p+1

channel 
detection

data 
transmission

Fig. 1. Timing structure of the channel access game. The players can perform
the channel detection and channel selection every p time slots.

hardware limitation, switching from one channel to another
will induce a transmission delay which is proportional to the
channel distance [21], [22]. Therefore, given a player currently
accessing Ci, we set it can only switch to the channel that is
in {Cj | ‖ i − j ‖≤ 1}. If ui transmits data through channel
j at time slot t, it will receive a reward about whether its
transmission is successful or not, which is

rtij =

{
1, if the transmision success;
0, if the transmision fail. (2)

In one game, the total reward of user i is
∑T
t=0 r

t
ij , which is

the objective to maximize. It should be noted that in the time
slots where the secondary users perform channel detection
and selection, the data transmission length is shorter than that
of the normal time slot so that it is more reasonable to set
the success reward in these time slots less than 1. However,
we neglect this difference since the channel detection and
selection are not frequently performed.

It can be observed that the channel access game is non-
cooperative since the reward of each player just concerns about
its own data transmission. Additionally, since the channel
access of one secondary user will influence others’ data
transmission, the optimal policy of a player depends on the
actions of all its peers. To deal with this problem, previous
works usually introduce the negotiation process [25], [26].
However, the negotiation is time-consuming and inefficient so
that it should be avoided in a realistic communication system.
To search the optimal policy without negotiations, we set that
during the channel detection process, each player can get the
information of other players’ current channel selections, which
can be achieved by the broadcast technique introduced in [27],
[28]. Thus, if a player learns the policy of others, it can predict
their future behaviors based on their current channel selections.
In the following section, we propose a multiagent Q-learning
algorithm that enables the secondary users to maximize the
data transmission.

III. MULTIAGENT Q-LEARNING FOR THE CHANNEL
ACCESS GAME

In this section, we first introduce the framework of Q-
learning for optimization problems. Then, we extend the Q-
learning to solve the non-cooperative channel access game.

A. Q-learning
Q-learning is a reinforcement learning algorithm that en-

ables an agent to learn the optimal policy of a Markov decision
process (MDP) from the interactions with the environment.
Generally, the agent-environment interaction in a reinforce-
ment learning process can be illustrated by Fig.2. At time step

Environment

Agent

at=π(st)rtst
state reward action

Fig. 2. The general agent-environment interaction process [10].

t, the agent will observe the environment sate st and take an
action at correspondingly, which can be described by

at = π(st) (3)

where π(·), also known as the policy, is a mapping from the
environment state to the action space. Then, the environment
transits to the next state with probability of P (st+1|st, a) and
returns a feedback reward rt+1 = r(st, at, st+1) to the agent.
Under policy π and state s, the expected discounted cumulative
rewards over an infinite time horizon is defined as

Vπ(s) = E[
∞∑
i=0

γirt+i+1)|st = s]. (4)

In reinforcement learning, the objective of an agent is to find
an optimal policy to maximize the cumulative rewards. Let the
action value, or the Q value, be defined as

Qπ(s, a) = Eπ[
∞∑
i=0

γirt+i+1|st = s, at = a] (5)

which represents the expected discounted rewards of taking
action a under state s. Given all action values of a certain
state, the optimal policy should be selecting the action with
the highest expected returns. Therefore, the optimal policy can
be expressed by

π∗(s) = argmax
a
{Qπ∗(s, a)}. (6)
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Additionally, the expected cumulative rewards of the optimal
policy under state s is

Vπ∗(s) = argmax
a

Qπ∗(s, a). (7)

Furthermore, we can obtain the relation of Qπ∗ and Vπ∗ which
is

Qπ∗(s, a) =
∑
s′

P (s′|s, a)r(s, a, s′) +
∑
s′

P (s′|s, a)Vπ∗(s′).

(8)

Q-learning is an off policy algorithm that aims to find the op-
timal policy by approximating Qπ∗ recursively. In Q-learning,
the agent take actions randomly and keep updating the Q value
of each action with

Q(st, at)← (1− α)Q(st, at) + α(rt+1 + γmax
a

Q(st+1, a))

(9)

where α is the learning rate. As demonstrated in [29], Qπ will
converge to Qπ∗ with probability 1.

B. Multiagent Q-learning Scheme

Since the channel access game we formulated is a MDP,
it is reasonable to solve it with Q-learning. As described in
Section II, each secondary user will implement the channel
selection every p time steps so that the total number of the
actions taken by ui in a game of length T is

K = bT
p
c+ 1 (10)

where b·c is the floor function. Let the kth action of ui be
represented by aki , k ∈ {1, 2, · · · , K}. It can be observed
that action index and the time slot index are not consistent. To
make the expression clear, we use the following expression

kt = (k − 1)p+ 1 (11)

where kt is the time slot index when the kth action is
performed. Since an action of ui is selecting a channel to
transmit data, we define the action space of the player by the
channel index, i.e., aki ∈ {1, 2, · · · ,M}. According to the
game setting, the kth channel option of ui is related to the
channel it selects at k − 1, which can be described by

aki ∈


{ak−1i − 1, ak−1i , ak−1i + 1}, 1 < ak−1i < M ;

{ak−1i , ak−1i + 1}, ak−1i = 1;

{ak−1i − 1, ak−1i }, ak−1i =M.
(12)

Define i− as the set that contains all players other than i.
Additionally, let ai− be the collection of actions taken by the
users in i−. Based on the system property, the reward of ui at
time slot t is determined by the channel state and the actions
of all players together, which indicates the action value of ui

should be in the form of Qi(skt , aki−, a
k
i ). Moreover, it can be

inferred that the optimal policy of ui should be

π∗i (s
kt , aki−) = argmax

a
{Qi(skt , aki−, a)}. (13)

Obviously, the optimal action of ui depends on other players’
actions. If all players make their decisions based on others’
actions, it will incur an iterative process. However, as com-
munications among the players are not allowed in the game,
it is not possible to get the value of Qi(skt , aki−, a

k
i ). An

alternative approach is considering the peer users as a part
of the environment. In this case, for ui, the game state can be
deemed as

ŝkti ≡ (skt , ak−1i− ). (14)

As a result, ui only needs to learn the dynamics of ŝkti .
Accordingly, the Q value of ui under policy πi can be written
as Qπi

(ŝkti , a
k
i ). Similar as (8), the optimal policy should fulfill

Qπ∗i (ŝ
kt
i , a

k
i ) =E[

kt+p−1∑
t=kt

rti ]+∑
ŝ
(k+1)t
i

P (ŝ
(k+1)t
i |ŝkti ))Vπ∗i (ŝ

(k+1)t
i ). (15)

Here, the discounted factor is set to γ = 1. Base on (15),
we design a multiagent Q-learning algorithm for the non-
cooperative channel access game which is shown in Table I.

TABLE I
PSEUDO CODE OF MULTIAGENT Q-LEARNING FOR CHANNEL ACCESS

GAME

Initialization:
(1) ε, α, p, m, T , K;
(2) Qk

i (ŝi, ai) = 0 and Rk+1
i = 0 for ∀i ∈ {1, · · · N}, ∀k ∈

{1, · · · K + 1} ;
(3) m = 1;

while m ≤ m do
reset s(1) and a0i for ∀ui; t = 1 and k = 1;
for t ≤ T do

if (t− 1)%p == 0

choose action from Qk
i (ŝ

kt
i , ai) with ε-greedy policy;

if k ≥ 2

update Q value with:
Qk−1

i (ŝ
(k−1)t
i , ak−1

i )

= (1− α)Qk−1
i (ŝ

(k−1)t
i , ak−1

i )+

α(Rk
i +maxQk

i (ŝ
(k−1)t
i , aki ))

end if
k = k + 1;

end if
Rk+1

i = Rk+1
i + rti ;

t = t+ 1;
end for
m = m+ 1;

end while
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In the algorithm, m is the trial index and m is the maximum
trial number; ‘%’ is the modulo operation; and ε-greedy policy
is applied, where the action will be randomly selected with the
probability of ε. a0i represents the channel position of ui at the
beginning of the game, which is random set. We can see that
the Q value is related to index k because the channel access
game is of finite length rather than infinite length.

IV. SIMULATIONS AND ANALYSIS

In this section, we apply the multiagent Q-learning al-
gorithm to three simulated non-cooperative channel access
games. The simulation settings and the simulation results are
discussed in detail.

A. Simulation Settings

In our simulation, the cognitive radio network consists six
channels with four different states. Specifically, these states
are 

s1 = [1 0 1 0 0 0]T

s2 = [0 1 0 1 1 0]T

s3 = [1 0 0 1 0 1]T

s4 = [0 0 1 0 1 1]T

where ‘1’ means the channel is occupied by the primary user
and ‘0’ denotes the channel is idle. During the game, the
transition of the four states is a Markov process with the
transition matrix

M =

 0.8506 0.0906 0.0408 0.0180
0.0037 0.9267 0.0502 0.0194
0.0564 0.0235 0.8496 0.0705
0.1065 0.0728 0.0221 0.7986

 .
The length of the game is set to T = 200 and the channel
selection interval is set to p = 10. Through Monte Carlo ex-
periments, we can obtain the expected idle time slots quantity
of each channel in one game which is shown in Fig.3. It can
be observed that channel 3 is the idlest one with being idle for
132 time slots on average; channel 4 is the busiest one; and
the average expected value of all channels is 106. Moreover,
we can conclude that for the game where there is only one
secondary user with fixed channel access policy, on average,
if the user always choose channel 3, it will receive the total
rewards of 132; if the user choose channel 4, it will get the
total rewards of 67; and if the user selects channel randomly,
the total rewards will be 106. We will show that, with the
training of the Q-learning algorithm, the secondary user will
learn a much better dynamic channel selection policy.

B. Simulation Results

First, we study the situation where there is only one player.
In this case, this secondary user only needs to consider the
dynamics of the primary users and switch its transmission
channel adaptively. The simulation results are shown in Fig. 4.
As we can see, the secondary user improves its performance
gradually. Finally, the learned policy enables the user to get
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Fig. 3. The expected amount of the idle time slots of each channel in one
game. The value will also be the expected total rewards of statically selecting
the corresponding channel in an one-player game.

the average total rewards over 160. If the player applied fixed
channel access policy, and keep accessing the idlest channel,
which is channel 3, the expected total rewards will be 132.
Therefore, with the training of the Q-learning algorithm, the
expected success transmission rate is enhanced from 66% to
81%. Then, we simulate the channel access games of multiple
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total rewards obtained under the Q-learning algorithm

expected idle time slots of channel 3

Fig. 4. The total rewards estimation of the user under the Q-learning
algorithm in a one-player game. Trained by the Q-learning algorithm, the
user’s performance improves gradually and the total rewards converges to
the value around 160. If the user applies the static channel access policy, on
average, the high expected total rewards will be 132 which is the dashed line
in the figure.

players. As the secondary users may collide with each other in
the game, besides the dynamic of the primary users’ behaviors,
the players also need to learn the policy of its peers. We
apply the multiagent Q-learning algorithm to the game of two-
player and three-player, respectively. The simulation results are
shown in Fig. 5.

Fig. 5 (a) shows the results of the two-player game. It can
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Fig. 5. The expected total reward estimations of the multiple-player game
under the multiagent Q-learning algorithm. (a) In the two-player game, the
users’ performances improve gradually and the total rewards converge to the
value around 145. (b) In the three-player game, the expected total rewards
increase to the values over 132. In the figure, the dash line denotes the
expected total rewards of the fixed channel access policies.

be observed that the multiagent Q-learning algorithm improves
the performances of the players. With the learned channel
access policies, both of the users will get an expected total
rewards around 145, which is higher than the expected total
rewards of selecting channel 3 and channel 6 statically. In
the three-player game, if the three players access the idlest
three channels, which are channel 6, channel 3, and channel 1,
they will obtain the expected total rewards around 132, 127,
and 116, respectively. From Fig. 5 (b), we can see that the
performances of all players get improved through the training,
and the expected total rewards of any player is higher than the
highest value of the fixed channel access policy.

Comparing simulation results of the three games, we can
find that the expected total rewards of the multiple-player
games are lower than that of the one-player game, and the
total rewards decrease with the player population increasing.
Obviously, this decreasing is due to the collision among the
secondary users. However, in all the three games, the trained
dynamic channel access policies perform better than the fixed
channel access policies.

V. CONCLUSIONS AND FUTURE WORKS

This paper studies the channel access problem of the cogni-
tive radio network. The channel access problem is formulated
as a non-cooperative game of multiple players. The players
can detect the spectrum opportunities and select a channel to
transmit data. During the game, the players take actions with a
certain interval and negotiations are not allowed. Considering
the transmission delay, each player can only switch to the
channels which are close to its current selection. To improve
the performance of the players, we design a multiagent Q-
learning algorithm in which each player deems its peers as
a part of the environment. Simulation results demonstrate the
effectiveness of the algorithm.

In this paper, we use Q tables to implement the proposed al-
gorithm, which work effectively in our numerical experiments.
However, the size of the Q table increases exponentially with
the secondary users’ quantity. In the future, we will employ
artificial neural network as the approximator of the Q-table
[30] to solve this problem.
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