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The neutron-capture reaction plays a critical role in the synthesis of the elements in stars and
is important for societal applications including nuclear power generation and stockpile-stewardship
science. However, it is difficult — if not impossible — to directly measure neutron capture cross
sections for the exotic, short-lived nuclei that participate in these processes. In this Letter we
demonstrate a new technique which can be used to indirectly determine neutron-capture cross
sections for exotic systems. This technique makes use of the (d, p) transfer reaction, which has long
been used as a tool to study the structure of nuclei. Recent advances in reaction theory, together
with data collected using this reaction, enable the determination of neutron-capture cross sections
for short-lived nuclei. A benchmark study of the 95Mo(d, p) reaction is presented, which illustrates
the approach and provides guidance for future applications of the method with short-lived isotopes
produced at rare isotope accelerators.

Essentially all of the heavy elements are synthesized
in astrophysical environments by processes that involve
neutron capture. The slow neutron-capture process (the
s process) occurs predominantly in the low neutron flux
in AGB stars, yielding a nucleosynthesis path that typi-
cally deviates only one or two neutrons from β-stability.
In contrast, the rapid neutron-capture process (the r pro-
cess) involves exotic neutron-rich nuclei and requires ex-
plosive stellar scenarios with high neutron fluences. The
r process is responsible for the creation of roughly half of
the elements between iron and bismuth and synthesizes
heavy nuclei through the rapid production of neutron-
rich nuclei via neutron capture and subsequent β decay.

The recent observation of the gravitational waves asso-
ciated with a neutron-star merger [1], and the subsequent
kilonova understood to be powered by the decay of lan-
thanides [2, 3], demonstrated that neutron-star mergers
are an important r -process site, especially for the heav-
iest elements. However, r -process abundance patterns
are sensitive to astrophysical conditions (c.f. [4]). In a
“cold” r process (which could occur in a neutron star
merger or with the highly accelerated neutrino-driven
winds following a core-collapse supernova), equilibrium
between neutron capture (n, γ) and photo-dissociation
(γ, n) rapidly breaks down, so the rate at which neu-
tron capture proceeds will affect the final r -process abun-
dance pattern. The timescales of the cold r process are

such that competition between neutron capture and β
decay occurs during the bulk of the r -process nucleosyn-
thesis. Neutron-capture rates on unstable nuclei affect
the final observed abundance patterns even in the tradi-
tional “hot” r process (thought to occur in the neutrino-
driven winds in a proto-neutron star resulting from a
core-collapse supernova) during the eventual freeze-out,
when (n, γ) � (γ, n) equilibrium no longer occurs. Ac-
cordingly, neutron capture is influential in determining
the final r -process abundance pattern, especially beyond
(n, γ) � (γ, n) equilibrium. Therefore, measuring (n, γ)
rates on key neutron-rich nuclei continues to be an impor-
tant component in understanding r -process abundance
patterns and constraining the astrophysical sites for r -
process nucleosynthesis as a function of mass [5].

Cross sections for neutron capture on the nuclei that
participate in the r process have proven to be difficult
to determine because neither the heavy nucleus nor the
neutron can serve as a target due (in part) to their short
lifetimes. Of the nuclear data used to predict the final
abundance pattern produced by r -process nucleosynthe-
sis, the (n, γ) rates are the most poorly constrained. Ex-
perimental constraints on these rates are necessary, as
the final abundance pattern calculated by global nucle-
osynthesis models is sensitive to them [4, 6, 7]. Uncer-
tainties in (n, γ) cross sections on unstable nuclei also
impact applications in nuclear energy, nuclear forensics,
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and stockpile-stewardship science (c.f. [8]). A number
of indirect methods for extracting or constraining these
critically-important cross sections have been developed in
recent years, among them the “Beta-Oslo” method [9]
and the γ-ray strength function method [10].

In this Letter, we demonstrate that the Surrogate
Reactions Method (SRM) [11], which was first intro-
duced to infer cross sections for neutron-induced fis-
sion [12], can be used to determine (n, γ) cross sec-
tions using experimentally-accessible charged-particle re-
actions. The method uses the fact that the neutron-
induced reaction of interest proceeds through the forma-
tion of an intermediate compound nucleus (CN), which
subsequently decays. In a surrogate-reaction experiment,
a target-projectile pair is chosen to form a CN that has
the same excitation energy and neutron and proton num-
bers as the one produced in the desired (neutron-induced)
reaction.

The (d, p) reaction has long been used as a probe of
single-particle nuclear structure. Most of these measure-
ments were conducted in normal kinematics; a deuteron
beam was used to interrogate a stable or long-lived tar-
get. However, the outlook for (d, p) reaction measure-
ments with exotic nuclei in inverse kinematics, in which
a radioactive beam is impinged on a deuterated target,
is bright. Radioactive ion accelerators are beginning to
be able to provide high-intensity beams at rates ≥ 104

particles per second, necessary for these measurements.
In addition, (d, p) in inverse kinematics yields a relatively
clean measurement in which the only reaction particles at
back angles in the laboratory are (d, p) protons; particles
from (in)elastic scattering and other reaction channels
are emitted at angles forward of 90◦ in the laboratory.

Calculations of the (d, p) reaction can be made more
tractable by approximating the many-body d+A system
as a three-body problem: p+n+A. Deuterons are weakly
bound; when a deuteron encounters a massive nucleus
(A), it can either undergo elastic breakup (EB), in which
A is left in its ground state (A(d, pn)A), or non-elastic
breakup (NEB), which has several possible exit channels
and proceeds as A(d, p)X [13]. Interest in developing a
robust description of the (d, p) reaction has recently been
renewed, in part by the promise this reaction shows as
an (n, γ) surrogate reaction (c.f. [13, 14] and references
therein).

Before the SRM can be used to deduce (n, γ) cross sec-
tions on unstable nuclei, the technique must be validated
in normal kinematics against known cross sections. The
95Mo target was chosen to validate this method for sur-
rogate reaction analysis because the (n, γ) cross section
has been directly measured at neutron energies up to 200
keV [15] and the level scheme of 96Mo is established up
to relatively high excitation energy [16]. Modeling the
γ cascade is simplified if the final nucleus is even-even,
with a strong 2+1 → 0+g.s. transition collecting most of
the γ-ray strength depopulating higher-lying excited lev-

els populated by the surrogate reaction, as is the case in
96Mo.

Early applications of the surrogate approach employed
the “Weisskopf-Ewing” (WE) approximation, in which
the decay of a CN is considered to be independent of
its spin and parity, i.e. it is assumed that the decay of
the CN is identical in both cases. This approximation
has been successfully used to indirectly determine (n, f)
cross sections (see, e.g. [17–25]). However, attempts to
extract an (n, γ) cross section from surrogate-reaction
data through the WE approximation resulted in large dis-
agreements between the extracted and known cross sec-
tions [22, 26, 27]. This has been attributed to differences
in the angular momentum (spin and parity) distributions
with which compound nuclei are formed in the desired
(n, γ) and surrogate reactions (see, e.g. [11, 13, 28, 29]).
Such differences would strongly influence the decay of the
CN, which invalidates the premise of the WE approxima-
tion.

In the present Letter, we move beyond the WE ap-
proximation by utilizing a recently-developed (d, p) reac-
tion description to account for the spin-parity mismatch
and its effects on the observed CN decay. This new de-
scription of the (d, p) reaction [13, 14] allows the reac-
tion channel forming the desired CN to be selected and
the formation of the CN, including the spins and parties
of the states populated, to be calculated as a function
of excitation energy. Therefore, the predicted forma-
tion and subsequent decay can be used to connect the
experimentally-measured surrogate decay to the cross-
section calculations that need to be constrained. In this
Letter we demonstrate that an accurate neutron-capture
cross section can be obtained from surrogate-reaction
data using this method.

The largest source of uncertainty in neutron-capture
calculations arises from insufficient knowledge of the
nuclear-structure properties that enter the description
of the CN decay. Specifically, nuclear level densities
(NLD) and γ-ray strength functions (γSF) determine
whether the CN decays primarily by neutron or γ-ray
emission. A newly-developed method by Escher and col-
leagues [30, 31] constrains the parameters in the decay
models via Bayesian fits to the experimentally-measured
surrogate coincidence probabilities. The constrained pa-
rameters are subsequently used to calculate the cross sec-
tion for the (n, γ) reaction.

The neutron-capture reaction cross section can be ex-
pressed in the Hauser-Feshbach formalism as [11, 30]:

σαχ (En) =
∑
J,π

σCNα (Eex, J, π)GCNχ (Eex, J, π) . (1)

Here, σCNα (Eex, J, π) is the cross section for forming a
CN with some excitation energy Eex and spin-parity Jπ

through the entrance channel α = n+ AZ. The individ-
ual σCN (Eex, J, π) can be calculated with an appropriate



3

4 6 8 10 12 14
Excitation Energy (MeV)

0

5

10

15

20

25

30

35

40
d

CN
/d

E 
(m

b/
M

eV
)

Total
Total EB
Total NEB
NEB for =0
NEB for =1
NEB for =2
NEB for =3
NEB for >3

FIG. 1. (Color online). Calculations of the 95Mo(d, p) cross
section as a function of excitation energy decomposed into
total elastic breakup (EB, red line) and nonelastic breakup
(NEB, dashed lines) components. The NEB component is
further decomposed into contributions with different orbital
angular momenta of the captured neutron. The vertical dot-
ted line corresponds to the SN in the 96Mo CN. These cal-
culations are integrated over the experimental center-of-mass
angular range of 29◦–59◦.
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FIG. 2. (Color online). (A) Calculations of the cumu-
lative probability of forming the CN through 95Mo(d, p)
(
∑
FCN95Mo(d,p)). The shaded region, from E0 = 8.55 MeV to

E1 = 10.65 MeV, indicates the excitation energies over which
the surrogate data are fit. The states are plotted from largest
contribution over the fitting range (3−) to least (≥ 5+). The
vertical dotted line represents SN . (B) Histogram of the total
contribution to CN formation over the shaded range in (A) as
a function of angular momentum, decomposed into positive
and negative parities, and normalized to one over the inte-
gration region. Negative-parity, low-J states dominate near
SN .

neutron-nucleus optical potential, such as that described
in [32]. However, the branching ratios GCNχ (Eex, J, π) for
the decay of the CN through the exit channel χ (here γ-
ray emission), depend on uncertain structural properties
of the nucleus, in particular upon the NLD and γSF, and
thus need to be constrained. This is done with the aid of
surrogate reaction data. The probability of forming the
CN (A+1Z) through a surrogate reaction through the en-
trance channel δ = d + AZ and subsequently decaying
through the exit channel of interest, χ = p + A+1Z, is
given by:

Pδχ(Eex, θp) =
∑
J,π

FCNδ (Eex, J, π, θp)G
CN
χ (Eex, J, π) .

(2)
θp represents the angle between the outgoing proton and
the beam axis. FCNδ (Eex, J, π, θp) is the probability of
forming the CN in the surrogate reaction and is deter-
mined by treating the deuteron-induced reaction as a
two-step process [13, 14]: in the first step the deuteron
breaks up, releasing the neutron. The second step de-
scribes the interaction of the neutron with the target nu-
cleus. The reaction cross section can then be decomposed
into components due to EB and NEB (which includes
neutron capture). The fusion of the d + A system and
subsequent evaporation of a proton is not included in
these calculations. In the energy region of interest (near
SN ) contributions from this process are expected to be
very small, based on the analysis in [14]. The NEB
component is then further decomposed by the transfer of
angular momentum (see Fig. 1), which gives the CN en-
try spin-parity distribution FCNδ (Eex, J, π). The single-
particle structure of the CN strongly affects its spin-
parity distribution, as shown in [33]. This dependence
is included in the description of the neutron-target inter-
action. For the 95Mo(d, pγ) reaction the FCNδ (Eex, J, π)
are shown in Fig. 2 as a function of the excitation energy
in the 96Mo CN.

In the case of a (d, pγ) reaction, the coincidence prob-
ability (Eq. 2) can be measured as:

Ppγ(Eex) = Npγ(Eex)/(Np(Eex)εγ). (3)

Here, Np is the number of detected (d, p) protons, εγ
is the γ-ray photopeak detection efficiency, and Npγ is
the number of coincidences between a proton and a γ
ray from the decay of the CN (Fig. 3). Escher’s ap-
proach uses Bayesian fits to the experimentally-extracted
Ppγ(Eex) (Eq. 3) to constrain standard expressions for
the NLD and γSF, which, with FCN , are used to de-
termineGCNχ (Eex, J, π). The experimentally-constrained
parameters are used as inputs for an HF model which is
subsequently used to calculate the (n, γ) cross section
(Eq. 1) (for details see [30, 31]). The SRM is thus unique
among indirect techniques for determining (n, γ) cross
sections in that it provides an experimentally-constrained
cross section without relying on auxiliary data such as the
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FIG. 3. (Color online). Gamma rays in coincidence with
protons corresponding to excitation energies in 100-keV bins
below SN (blue, decays in 96Mo) and above SN (red, decays
in 95,96Mo). 96Mo transitions used to determine Ppγ are la-
beled. The single transition which significantly bypasses the
2+
1 state is indicated in parentheses. The persistence of 96Mo

transitions at Eex ∼1 MeV above SN highlights the competi-
tion between γ-ray and neutron emission in the CN.

average radiative width (〈Γγ〉) or average s-wave neu-
tron spacing (D0), which are unavailable for exotic nu-
clei [30, 31].

The (d, pγ) reaction was measured in regular kine-
matics using enriched (98.6%) 95Mo targets and a 12.4-
MeV deuteron beam produced by the Cyclotron Insti-
tute on the College Station campus of Texas A&M Uni-
versity. The beam had an average intensity of ∼0.3
nA and impinged on a 0.96-mg/cm2 95Mo target. The
reaction protons and coincident γ rays were measured
with the Silicon Telescope Array for Reactions with
Livermore, Texas A&M, Richmond (STARLiTeR) appa-
ratus [25, 34]. The energies of the light-ion ejectiles were
measured by a silicon detector telescope located 2.1 cm
downstream of the target. The telescope was composed
of a thin detector (∆E, 140 µm thick) for measuring en-
ergy loss and a thick detector (E, 1000 µm thick) to stop
protons with energies up to ∼18 MeV. Each detector was
electronically segmented; the angular resolution was ∼1◦.
The target chamber was surrounded by four Compton-
suppressed high-purity germanium (HPGe) “clover” de-
tectors. The trigger condition for data acquisition re-
quired that both the ∆E and E detectors detect a signal
above a ∼400-keV threshold. When this trigger condi-
tion was satisfied, particle detectors and any coincident
HPGe detectors were read out. The intrinsic energy reso-
lution of the silicon detectors was determined to be ∼20
keV through calibration with an 226Ra source and the
in-beam energy resolution was measured as ∼60 keV.

The probability (Ppγ) that a CN formed in a state with
energy Eex in the 95Mo(d, pγ) reaction subsequently de-
cays via γ-ray emission was determined via Eq. 3. At
12.4 MeV this reaction populates states above and be-
low SN = 9.15432(5) MeV [16] (γ rays in 96Mo) and
above SN (γ rays in 96Mo and in 95Mo above the 204-

6 7 8 9 10 11
Excitation Energy (MeV)

10 3

10 2

10 1

100

P p
(E

ex
)

fitting
range

2+
1 0+

g. s. : 778 keV
2+

2 2+
1 : 720 keV

6+
1 4+

1 : 812 keV (× 0.5)
4+

2 2+
1 : 1091 keV (× 1.5)

3+
1 2+

1 : 1200 keV

FIG. 4. (Color online). Gamma-ray emission probabilities as
a function of excitation energy (Ppγ(Eex)) for γ rays emitted
in the decay of excited states in 96Mo. The vertical dashed
line corresponds to SN . Data points are experimentally-
determined Ppγ . Solid lines represent Bayesian fits to the
emission probabilities (same color as the data for each tran-
sition). The agreement between data and fits extends well
beyond the fitting range.

keV threshold). Emission probabilities for discrete γ rays
emitted from the decay of the CN (96Mo) were extracted
as a function of excitation energy by analyzing particle-
γ coincidences in 100-keV increments of Eex. Gamma-
ray yields were obtained from these spectra (Fig. 3) by
Gaussian fits to the photopeaks. Probabilities for several
transitions in 96Mo are shown in Fig. 4 as a function of
the Eex of the CN. The 2+1 → 0+g.s. transition is indeed
a strongly collecting transition representing, almost unit
probability. In cases where there is not a strong collect-
ing transition, more detailed modeling of the γ cascade
would be required. This could lead to additional uncer-
tainty, which could, however, be reduced by fitting simul-
taneously to multiple γ transitions (as we have done in
this work), measuring the total γ-ray emission spectrum,
or obtaining more structure information.

Several experimentally-measured γ-ray emission prob-
abilities (Ppγ) were fit simultaneously to constrain the
decay of the CN. The decay model contained a Gilbert-
Cameron level density and a γ-ray strength function
with an energy- and temperature-dependent Lorentzian
for the E1 component and an M1 contribution of the
Lorentzian shape [35]. The parameters in these func-
tions were adjusted via a Bayesian fit to the data, whose
prior encompasses the literature results for this mass
region [35]. The fitting results are shown in Fig. 4,
with the measured surrogate coincidence probabilities
Ppγ displayed with statistical uncertainties. The agree-
ment between the data and the fits is excellent over the
fitting range used, both above and below SN . These
constrained HF-model parameters were then used with
Eq. 1 to deduce the cross section for 95Mo(n, γ), shown
in Fig. 5. The σCN values were calculated using the
neutron-nucleus optical potential parameters from [32].
The resulting cross section is shown with an uncertainty
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FIG. 5. (Color online). Cross sections for the 95Mo(n, γ)
reaction. The (n, γ) cross section obtained from the SRM
(solid blue curve) is in excellent agreement with direct mea-
surements of the cross section [15, 36] (red circles and black
squares). The uncertainty due to experimental data and fit-
ting error is indicated by the shaded band. The result ob-
tained using the WE approximation is also shown (gold dia-
monds).

band that arises from the experimental uncertainties and
the error in the Bayesian fit. Uncertainties arising from
the choice of the deuteron and neutron optical potentials
are expected to be negligible for this case, as they have
been found to have little impact on the entry spin dis-
tribution. For applications away from stability, where
the optical potentials are less well known, this has to
be revisited. However, the simultaneous measurement of
the angular distributions of reaction protons and elastic
scattering from a (d, p) measurement in inverse kinemat-
ics could constrain the optical potentials. Overall, the
present result is in excellent agreement with previous di-
rect measurements of the 95Mo(n, γ) cross section [15, 36]
and to the cross section reported in the ENDF/B-VIII.0
evaluation [37].

To demonstrate the importance of the proper treat-
ment of the spin-parity distribution produced in the sur-
rogate reaction (shown in Fig. 1), we also show (Fig. 5)
the cross section obtained when the WE approximation
is employed. Obviously it is not appropriate to employ
the WE approximation when determining (n, γ) cross
sections from the (d, p) data. This over-estimation of
the (n, γ) cross section was also observed in previous
studies employing the WE approximation [22, 26, 27].
The current work confirms previous suggestions (c.f.
[11, 13, 22, 26–29]) that a proper treatment of such differ-
ences is critical to accurately constrain the (n, γ) reaction
cross section through the SRM.

In summary, we have demonstrated that a measure-
ment of the (d, p) reaction, when combined with the
proper theoretical treatment, can be used to indirectly
determine (n, γ) cross sections. The 95Mo(d, pγ) reac-
tion was measured to validate the (d, pγ) reaction as a
surrogate for neutron capture, a reaction important for
the synthesis of almost all of the elements heavier than

iron and for applications in nuclear energy and secu-
rity. This Letter shows the power of the SRM devel-
oped in Refs. [11, 30, 31] with the proper treatment of
the spin-parity distribution [13, 14] of the CN created
in (d, p). This approach moves beyond the WE approxi-
mation which has been previously shown, and here con-
firmed, to be inadequate for neutron capture [22, 26, 27].
We show that a robust model of the formation of the
CN [13, 14] and proper treatment of its decay [30, 31]
within the framework of the SRM [11, 30, 31] is neces-
sary to extract from (d, pγ) data a capture cross section
that agrees with the directly-measured (n, γ) cross sec-
tion. We note that the kinematics of the (d, p) reaction
are ideal for measurements with short-lived beams in in-
verse kinematics. Therefore, the (d, pγ) surrogate reac-
tion is a promising tool to extract (n, γ) reaction cross
sections for exotic, r -process nuclei and for nuclei created
in other high-neutron-fluence environments. The bench-
marking of the Surrogate Reactions Method for (n, γ)
with measurements of the (d, pγ) reaction presented here
opens the door to important measurements in an exciting
area of the nuclear chart which is becoming increasingly
accessible at modern accelerator facilities.
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