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1. Introduction

Stochastic networks arise in many areas of research and applications and are
used, for example, to study brain connectivity, gene regulatory networks, protein
signaling networks, to monitor cyber and homeland security, and to evaluate and
predict social relationships within groups or between groups such as countries.
Many of those networks evolve in time and therefore require modeling by time-
dependent random graphical models. While the literature on statistical modeling
of time-independent random graphs is immense (see, e.g., recent surveys [21]
and [14]), dynamic stochastic network models are much more recent and less
explored. In this paper, we study a dynamic version of the stochastic block model
where the probability of a connection between a pair of nodes is determined by
a cluster to which the nodes belong, and our main goal is to obtain the time-
dependent cluster assignment for each node.

Specifically, we consider a dynamic network defined as an undirected graph
with n nodes with connection probabilities changing in time. We observe adja-
cency matricesAt of the graph at time instances τt where 0 < τ1 < · · · < τT = b.
Here, At(i, j) are the Bernoulli random variables with Pt(i, j) = Pr(At(i, j) =
1) that are independent for any 1 ≤ i < j ≤ n and At(i, j) = At(j, i) = 1
if a connection between nodes i and j is observed at time τt, and At(i, j) =
At(j, i) = 0 otherwise. For simplicity, we assume that time instances are equi-
spaced and the time interval is scaled to one, i.e. b = 1 and τt = t/T . As we
show later (see Remark 1), our method can be modified (in a straightforward
manner) to handle the case of non-equal intervals.

Furthermore, we assume that the network can be described by a Dynamic
Stochastic Block Model (DSBM): at each time instant τt the nodes are grouped
into K classes Gt,1, · · · , Gt,K , where K is fixed (i.e., independent of t) and
the probability of a connection Pt(i, j) is entirely determined by the groups to
which the nodes i and j belong at the moment τt. In particular, if i ∈ Gt,k and
j ∈ Gt,k′ , then Pt(i, j) = Bt(k, k

′), where Bt is the connectivity matrix at time
τt with Bt(k, k

′) = Bt(k
′, k). In this case, for any t = 1, . . . , T , one has

Pt = ΘtBtΘ
T
t (1.1)

where Θt is a clustering matrix such that Θt has exactly a single 1 per row,
and Θt(i, k) = 1 if and only if node i belongs to the class Gt,k and is zero
otherwise. One of the main problems in this setting is to cluster the nodes and
identify the groups that have common probabilities of connections. If one had
an oracle that would give the membership assignments (matrices Θt), then one
could obtain accurate estimators of matrices Bt and Pt by averaging elements
of the adjacency matrices.

The objective of the present paper is to suggest a modification of a popular
spectral clustering procedure to the case of the DSBM and study its precision
at a time instant τt in a non-asymptotic setting.

The DSBM can be viewed as a natural extension of a Stochastic Block Model
(SBM) which was extensively studied in the last decade. Indeed, after After
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Olhede and Wolfe [30] showed that SBM provides a kind of a network histogram
that can be used for summarizing any network, many authors worked on various
problems associated with the SBM such as community detection and clustering
(see, e.g., [3], [6], [8], [13], [18], [19], [24], [32], [33], [35], [44], [45] among others)
or estimation of the probability matrix (see, e.g., [12] and [20]).

By contrast, there are many fewer results concerning the DSBM model. Al-
though approaches developed for time-independent networks can be applied to
a temporal network frame-by-frame, they totally ignore temporal continuity of
the network structures and parameters. Nonetheless, by taking advantage of
continuity and observations at multiple time instances, one can gain a better in-
sight into a variety of issues and significantly improve precision of the inference
(see [16] and [31]).

A survey of the papers published before 2010 can be found in Goldenberg et
al. [14]. In the last few years, several authors have investigated the SBM in this
dynamic setting. The majority of them described changes in the memberships
via Markov-type structures that allow modeling of smooth evolution of groups
across times. For example, Yang et al. [41] assumed that, for each node, its
membership forms a Markov chain independent of other nodes; however, the
connection probabilities do not change in time. Xu and Hero III [39] allowed
both the connection probabilities and the group memberships to change with
time via a latent state-space model. Later, Xu [38] and Xu et al. [40] further
refined the model by introducing a Markov structure on the memberships. In
both papers, the logits of connection probabilities are modeled via a dynamical
system model. Some authors [17], [41] presented Bayesian variants of similar
ideas. We should also mention Fu et al. [11] and Xing et al. [37] who extended
the DSBM to the case of the mixed memberships under the assumption that
data follows the multivariate logistic-normal distribution. For example, Xing
et al. [37] assumed that the data followed the dynamic logistic-normal mixed
membership block model and inferred parameter values by using a Laplace vari-
ational approximation scheme which generalizes the variational approximation
developed in Airoldi et al. [1].

None of the papers cited above inferred the number of classes. This shortcom-
ing was corrected by Matias and Miele [28] who propose a Markov chain model
for the membership transitions and infer the unknown parameters including the
unknown number of classes via variational approximations of the EM algorithm.
The approach of [28] was further extended by a very recent paper of Zhang et
al. [43] who assumed the Poisson model on the number of connections with the
time-independent probabilities of edges appearing or disappearing at any time
instant. We should also cite an early work of Chi et al. [7] that made no assump-
tions on the mechanism that governs changes in the cluster memberships and
deals with a problem by introducing two cost functions: the snapshot cost asso-
ciated with the error of current clustering, and the temporal cost that measures
how the clustering preserves continuity in terms of cluster memberships, where
both cost functions are based on the results of the k-mean clustering algorithm.

While some of the procedures described in these papers show good com-
putational properties, they come without any guarantees of the accuracy of
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estimation and clustering. To the best of our knowledge, the only paper that
investigates precision of temporal clustering is [16], where the authors apply
the spectral clustering to the matrix of averages under the assumption that the
sequences Bt(k, k

′), t = 1, . . . , T form stationary ergodic processes for each k
and k′, and then prove consistency of the procedure as T and n tend to infinity.

In this paper, we likewise consider a dynamic network that possesses some
kind of continuity in a sense that neither connection probabilities Bt in (1.1),
nor class memberships, change drastically from one time instant to another. The
setting is motivated by analysis of social networks data where a set of individuals
(nodes) can be partitioned into several groups and one can record interactions
between the nodes over regular intervals of time (hours, days, weeks). Examples
of such data include company e-mails (e.g., ENRON emails), children’s interac-
tions during recess, or analysis of Facebook data to name a few. Usually these
data are combined over a period of time. We are, however, interested in temporal
analysis of such data. For data of this sort it is natural to assume its evolution
in time, but temporal changes occurring gradually.

In particular, we assume that, for any pair k and k′ of classes, the connection
probabilities Bt(k, k

′) represent values of some smooth function at time τt and,
therefore, can be treated as functional data. In addition, we suppose that at
most s nodes can switch their class memberships between two consecutive time
points. Both assumptions guarantee some degree of stability of the network in
time. Under those assumptions, we extract group memberships of the nodes at
every time point by using a spectral clustering procedure and evaluate the error
of this procedure. The clustering technique is applied to kernel-type estimators
of the edge probability matrices Pt that we construct in the paper. By using
Lepskii’s method, we achieve adaptivity of the suggested procedure to the un-
known temporal smoothness of the functional connection probabilities Bt(k, k

′)
and to the rate s of membership switching. Finally, by setting a threshold on
the ratio of the eigenvalues of the estimated probability matrix, we find K̂, the
estimated number of clusters, that coincides with the true number of clusters
K with high probability.

Our paper makes several key contributions. We present a computationally
viable methodology for estimating an edge probability matrix and clustering of
a time-dependent network that follows the DSBM. The procedure is adaptive
to the set of unknown parameters, and is accompanied by non-asymptotic guar-
antees for the precision of estimation and clustering. In order to obtain those
results, we develop a variety of new mathematical techniques. In particular, we
develop a discrete kernel estimator for an unknown matrix and obtain its adap-
tive version using Lepskii’s method. To the best of our knowledge, neither of
these methods have been used in the discrete matrix setting so far. In addition,
in Lemma 1, we adapt the methodology used by Lei and Rinaldo [24, Theorem
1.1 in the Supplement], for construction of the upper bound for the spectral
norm of a random matrix to derive an upper bound for the spectral norm of a
weighted sum of independent random matrices (this methodology was originally
introduced in Friedman et al. [10] and Feige and Ofek [9]). Finally, we estimate
the number of clusters, and provide guarantees of the accuracy of the estimator.
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Our upper bounds for the clustering error are tight. In particular, we show that
in the case when the nodes do not switch their memberships in time, under our
assumptions, we deliver tighter upper bounds for the error that in the recent
paper [5] (see Remark 4).

The rest of the paper is organized as follows. Section 2 introduces notations
and the main assumptions of the paper. Section 3 describes the construction
of a kernel-type estimator of the probability matrix Pt at each time point t
and evaluates its error. While Sections 3.1 and 3.2 assume that the degree of
smoothness β of the connection probabilities and the rate s of switching of nodes’
memberships are known, Section 3.3 utilizes the Lepskii method for construc-
tion of adaptive estimators of the connection probability matrices Pt. Section 4
studies the spectral clustering algorithm and evaluates its error. In particular,
Section 4.1 provides an expression for the clustering error at time t in terms
of the estimation error of the matrix of the connection probabilities Pt. Fur-
thermore, Section 4.2 presents upper bounds for the clustering errors in terms
of the model parameters and discusses when application of the discrete kernel
estimator derived in Section 3 improves the clustering accuracy. Section 5 offers
an estimator for the number of clusters and provide precision guarantees for the
clustering procedure with the estimated number of clusters. Section 6 concludes
the paper with a limited simulation study that proves that, over a large variety
of model parameters, our technique leads to smaller clustering errors than the
two baseline methods which, respectively, cluster the adjacency matrices them-
selves or their averages. The Appendix (Section 7) describes construction of a
discrete kernel and also contains proofs of all statements in the paper.

2. Notations and assumptions

For any a, b ∈ R, denote a∨b = max(a, b), a∧b = min(a, b). For any two positive
sequences {an} and {bn}, an ≍ bn means that there exists a constant C > 0
independent of n such that C−1an ≤ bn ≤ Can for any n. For any set Ω, denote
cardinality of Ω by |Ω|. For any x, ⌊x⌋ is the largest integer strictly smaller than
x, ⌈x⌉ is the largest integer no larger than x.

For any vector t ∈ R
p, denote its ℓ2, ℓ1, ℓ0 and ℓ∞ norms by, respectively,

‖t‖, ‖t‖1, ‖t‖0 and ‖t‖∞. Denote by 1 and 0 vectors that have, respectively,
only unit or zero elements. Denote by ej the vector with 1 in the j-th position
and all other elements equal to zero.

For a matrix Q, its i-th row and j-th columns are denoted, respectively, by
Qi,∗ andQ∗,j . Similarly, reductions ofQ to a set of rows or columns in a setG are
denoted, respectively, by QG,∗ and Q∗,G. For any matrix Q, denote its spectral
and Frobenius norms by, respectively, ‖Q‖ and ‖Q‖F , Denote the largest in
absolute value element of Q by ‖Q‖∞ and the number of nonzero elements of
Q by ‖Q‖0. Let λmax(Q) and λmin(Q) be the largest and the smallest nonzero
eigenvalues of Q.

Denote by Mn,K the collection of clustering matrices Θ ∈ {0, 1}n×K . De-
note by nt(k) = |Gt,k| the number of elements in class Gt,k and let nt,max =
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maxk nt(k) and nt,min = mink nt(k), k = 1, . . . ,K. We assume that there exists
αn independent of T and an absolute constant Cα independent of n and T such
that

C−1
α αn ≤ ‖Bt‖∞ ≤ Cα αn, 1 ≤ Cα < ∞. (2.1)

If the network is sparse, then αn is small for large n and ‖Pt‖∞ ≤ Cα αn,
otherwise, one can just set αn = 1. Denote

Ht = α−1
n Bt, Bt = αn Ht.

We shall carry out time-dependent clustering of the nodes in the situation
where neither the connection probabilities nor the cluster memberships change
drastically from one time point to another. In addition, to make successful clus-
tering possible, the values of probabilities of connection should be sufficiently
different from each other, which is guaranteed by the smallest eigenvalues of
matrices Ht being separated from zero.

In order to quantify those notions, we consider a Hölder class Σ(β, L) of
functions f on [0, 1] such that f are lβ times differentiable and

|f (lβ)(x)− f (lβ)(x′)| ≤ L|x− x′|β−lβ for any x, x′ ∈ [0, 1], (2.2)

where lβ = ⌊β⌋ is the largest integer strictly smaller than β. We suppose that
the following assumptions hold.

(A1). For any 1 ≤ k ≤ k′ ≤ K, there exist a function f(·; k, k′) such that
Ht(k, k

′) = f(t/T ; k, k′) and f(·; k, k′) ∈ Σ(β, L).
(A2). At most s nodes can change their memberships between any consec-

utive time instances.
(A3). There exists an absolute constant Cλ, 1 ≤ Cλ < ∞, independent of

n and T such that

C−1
λ ≤ λmin(Ht) ≤ λmax(Ht) ≤ Cλ.

Clustering of the nodes can be recovered only up to column permutations.
However, in order condition A1 can hold, we shall assume that the node’s labels
are fixed and do not depend on t. We denote the set of K × K permutation
matrices by EK and, following [24], consider two measures of clustering precision
at time τt. The first is the overall relative clustering error at time τt

Rt(Θ̂t,Θt) = n−1 min
J∈EK

‖Θ̂tJ−Θt‖0 (2.3)

that measures the overall proportion of mis-clustered nodes. The second measure
is the highest relative clustering error over the communities at time τt

R̃t(Θ̂t,Θt) = min
J∈EK

max
1≤k≤K

n−1
t,k ‖(Θ̂tJ−Θt)Gt,k,∗‖0. (2.4)

In addition, we study two global measures of clustering accuracy such as the
overall highest relative error over the communities and the overall highest rela-
tive error

R̃max = max
1≤t≤T

R̃t(Θ̂t,Θt), Rmax = max
1≤t≤T

Rt(Θ̂t,Θt) (2.5)
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In order to take advantage of the temporal continuity of the network, we
construct estimators of the matrices Pt at every point t ∈ {1, · · · , T}. It follows
from [24] that the clustering errors depend on the error of estimation of matrices
Pt in operational norm.

3. Estimation of the edge probability matrices

3.1. Construction of the estimators

In order to estimate Pt, we choose an integer r ≥ 0, the width of the window,
and consider three pairs of sets of integers

Fr,1 = {−r, · · · , r}, Dr,1 = {1 + r, · · · , T − r};
Fr,2 = {0, · · · , r}, Dr,2 = {1, · · · , r};
Fr,3 = {−r, · · · , 0}, Dr,3 = {T − r + 1, · · · , T}.

If r = 0, then D0,2 and D0,3 are just empty sets. If t ∈ Dr,j , we construct
an estimator of Pt on the basis of At+i where i ∈ Fr,j , j = 1, 2, 3. For this

purpose, we introduce discrete kernel functions W
(j)
r,l (i) of an integer argument

i that satisfy the following assumption:

(A4). Functions W
(j)
r,l , j = 1, 2, 3, are such that |W (j)

r,l (i)| ≤ Wmax, where
Wmax is independent of r, j and i, and for j = 1, 2, 3, one has

1

|Fr,j |
∑

i∈Fr,j

ik W
(j)
r,l (i) =

{
1, if k = 0,
0, if k = 1, . . . , l.

(3.1)

Here |Fr,j | is the cardinality of the set Fr,j .

One can easily see that function W
(j)
r,l are discrete versions of order l con-

tinuous kernels, where W
(1)
r,l corresponds to a regular kernel designed for the

internal points of the interval while W
(j)
r,l , j = 2, 3, mimic the boundary kernels

(the left boundary kernel for j = 2 and the right boundary kernel for j = 3).

Section 7.1 provides an algorithm for the explicit construction of W
(j)
r,l for any

values of r, l and j. We ought to point out that the dependence of W
(j)
r,l on r is

a weak one, especially as r grows. We estimate the edge probability matrix Pt

by

P̂t,r =

3∑

j=1

I(t ∈ Dr,j)

⎧
⎨
⎩

1

|Fr,j |
∑

i∈Fr,j

W
(j)
r,l (i)At+i

⎫
⎬
⎭ . (3.2)

Note that since the sets Dr,j are disjoint for different values of j, the estimator
of Pt always involve just one expression in figure brackets in formula (3.2).

Remark 1. Note that our method can be modified to handle the case of non-
equal intervals. Indeed, in this case, one needs to modify condition (3.1) by
introducing weights that account for the differences in the values of Δτ,i = τi+1−
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τi, i = 0, . . . , T − 1, the same manner as it is done in non-equispaced regression
estimation. However, while this modification adds very little conceptually, it
would make the paper very technical and hard to follow.

3.2. Estimation error

In order to figure out how to choose the value of r, we evaluate the error ‖P̂t,r−
Pt‖. Denote

Pt,r =

3∑

j=1

I(t ∈ Dr,j)

⎧
⎨
⎩

1

|Fr,j |
∑

i∈Fr,j

W
(j)
r,l (i)Pt+i

⎫
⎬
⎭

and observe that

Δt(r) = ‖P̂t,r −Pt‖ ≤ ‖P̂t,r −Pt,r‖+ ‖Pt,r −Pt‖ ≡ Δ1,t(r) + Δ2,t(r), (3.3)

where Δ1,t(r) = ‖P̂t,r−Pt,r‖ and Δ2,t(r) = ‖Pt,r−Pt‖ represent, respectively,
the variance and the bias portions of the error. The following statements provide
upper bounds for those quantities.

Lemma 1. Let (2.1) be valid and Assumption A4 hold with l ≥ lβ = ⌊β⌋. If
αn ≥ C−1

α c0 log n/n, then, for any τ > 0 there exists a set Ωt,τ and a constant
C0,τ = C(τ, c0, Cα,Wmax) such that Pr(Ωt,τ ) ≥ 1−4n−τ and, for any ω ∈ Ωt,τ ,
one has

‖P̂t,r −Pt,r‖ ≤ C0,τ

√
nαn/(r ∨ 1). (3.4)

The exact expression for C0,τ is given by formula (7.16) in the Appendix.

The proof of Lemma 1 generalizes the methodology used by Lei and Rinaldo
[24, Theorem 1.1 of the Supplement], from derivation of an upper bound for

the spectral norm of Pt − At (i.e., ‖P̂t,r − Pt,r‖ with r = 0) to the upper

bound of the spectral norm of ‖P̂t,r −Pt,r‖, the weighted sum of independent
matrices Pi −Ai with i ∈ Fr,j . While one can use a simpler method applying
[24, Theorem 1.1 of the Supplement] to each Pi −Ai and then combining these
upper bounds together by a matrix concentration inequality such as the matrix
Bernstein inequality [34], the result of this more straightforward technique is
looser by a logarithmic factor logn.

Lemma 2. Let l ≥ lβ = ⌊β⌋. Then, under Assumptions A1–A4 and (2.1), one
has

‖Pt,r −Pt‖ ≤ L

(lβ)!
Wmax αnn

( r
T

)β
+ 2

√
2Wmax Cλ αn

√
nmax rs. (3.5)

Lemmas 1 and 2 together with inequality (3.3) provide an upper bound for
Δt(r). Since Δ1,t(r) is decreasing and Δ2,t(r) is increasing in r, there exist a
value r∗ that ensures the best bias-variance balance. Denote

r∗ = argmin
r

(
‖Pt,r −Pt‖+ C0,τ

√
nαn/(r ∨ 1)

)
, (3.6)
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δ1 =
√
nαn, δ2 =

(
αβ+1
n nβ+1

T β

) 1
2β+1

+ (α3
n nnmax s)

1
4 , (3.7)

Then, the following lemma yields an upper bound for Δt(r).

Lemma 3. Let (2.1) be valid and Assumptions A1–A4 hold with l ≥ lβ = ⌊β⌋
and αn ≥ C−1

α c0 logn/n. Then, the optimal value of r is

r∗ ≤ min
(⌈

CT

(
n−1αnT

2β
)1/(2β+1)

⌉
,
⌈
Cs

√
(αnnmax s)−1 n

⌉)
(3.8)

where ⌈x⌉ is the largest integer no greater than x and CT and Cs are positive
constants independent of n, T , nmax, s and αn. Also, with probability at least
1− 4n−τ one has

Δt(r
∗) ≤ C∆ min(δ1, δ2), (3.9)

where constant C∆ depends on τ, c0,Wmax, β, L, Cα and Cλ.

Recall that r∗ is the value that ensures the best bias-variance balance in the
right-hand side of (3.6). Since we have only an upper bound for the bias, we
obtain an upper bound for the optimal value in (3.6), and hence, we have an
inequality in (3.8). Furthermore, we have two possible scenarios in (3.6): r∗ = 0
and r∗ ≥ 1. We obtain the values of Δt(r

∗) by plugging the upper bound for
r∗ into the expression (3.4) for the variance. If r∗ = 0, then the right-hand
side of (3.6) reduces to C0,τ

√
nαn ∝ δ1. If r

∗ ≥ 1, then we choose the value
of r that minimizes the sum of the upper bound for the bias (3.5) and the
variance C0,τ

√
nαn r−1. Since the bias in (3.5) consists of two terms, we obtain

respective two terms in the expression (3.6) for r∗. The estimation error in this
case is Δt(r

∗) ≤ C∆ δ2.
Note that δ1 < δ2 corresponds to the case where r∗ = 0 and this situation

occurs only if T is rather small or s is large. Otherwise, r∗ ≥ 1 and one can take
an advantage of the smoothness of the connection probabilities and the relative
stability of group memberships.

3.3. Adaptive estimation

Observe that the value of r∗ depends on the values of s, nmax, αn and β that
are unknown, therefore, in practice, the value r∗ in (3.8) is unavailable. In order
to construct an adaptive estimator we use the Lepskii method [25], [26]. For any
t, set r̂ ≡ r̂t where

r̂t = max

{
0 ≤ r ≤ T/2 : ‖P̂t,r − P̂t,ρ‖ ≤ 4C0,τ

√
nαn

ρ ∨ 1
, ∀ρ < r

}
(3.10)

Observe that evaluation of r̂ does not require the knowledge of s, nmax or β. If
the network is not sparse, one can set αn = 1. Otherwise, one needs to know αn

for choosing an optimal value of r. If αn is known, the following lemma ensures
that the replacement of r∗ by r̂ changes the upper bound by a constant factor
only.
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Lemma 4. Let (2.1) be valid and Assumptions A1–A4 hold with l ≥ lβ = ⌊β⌋
and αn ≥ C−1

α c0 logn/n. Then, for any τ > 0, with probability at least 1−4n−τ ,
one has

‖P̂t,r̂−Pt‖ ≤ 10 min
r

{
‖Pt,r −Pt‖+ C0,τ

√
nαn/(r ∨ 1)

}
≤ 10Δt(r

∗). (3.11)

Lemma 4 implies that the error of the adaptive procedure lies within a constant
multiple of the optimal error Δt(r

∗). The idea of the proof is based on the fact

that if r̂ < r∗, then ‖P̂t,r̂ − Pt,r∗‖ ≤ C0,τ

√
nαn/(r∗ ∨ 1), which guarantees

(3.11). On the other hand, due to Lemma 1, the probability of the opposite
inequality is very low. See the proof of Lemma 4 for details.

4. Spectral clustering and its error

4.1. Spectral clustering algorithm

Spectral clustering is a common method for community recoveries (see, e.g.,
[29], [18], [19], [24], [27], [32] and [33] among others). The accuracy of spectral
clustering depends on how well one can relate the eigenvectors of Pt = ΘtBtΘ

T
t

to the eigenvectors of its estimator P̂t. For this reason, our first goal will be to
obtain an estimator P̂t of Pt. Subsequently we shall apply the spectral clustering
based on the approximate k-means algorithm suggested by Lei and Rinaldo
[24]. Although one can read a description of the algorithm in their paper, for
completeness we review it here.

Given a matrix P ∈ R
n×n, let U ∈ R

n×K be the matrix that consists
of the first K eigenvectors of P. Then [24] suggested to investigate the (1 +
ǫ)−approximate solution to the k-means problem applied to the n row vectors

of U, specifically, finding Θ̂ ∈ Mn,K and X̂ ∈ R
K×K that satisfy

‖Θ̂X̂−U‖2F ≤ (1 + ǫ) min
Θ∈Mn,K

X∈RK×K

‖ΘX−U‖2F . (4.1)

Then the cluster assignments are given by the estimated Θ̂t. There exist efficient
algorithms for solving (4.1), see, e.g., [22]. The procedure is summarized as
Algorithm 1.

Algorithm 1 Spectral clustering in the dynamic stochastic block model
Input: Adjacency matrices At, t = 1, . . . , T ; number of communities K;

approximation parameter ǫ.
Output: Estimators of the membership matrices Θ̂t for any t = 1, . . . , T .
Steps:

1: Estimate Pt by P̂t,r defined in (3.2).

2: Let Ût ∈ R
n×K be a matrix representing the first K eigenvectors of P̂t,r .

3: Apply the (1 + ǫ)-approximate k-means algorithm to the row vectors of Ût

4: Obtain the solution Θ̂t.
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The difference between Algorithm 1 and the one suggested in [24] is that
spectral clustering is applied not to the adjacency matrix directly but to the
estimators of the probability matrices P̂t,r.

The clustering errors Rt(Θ̂t,Θt) in (2.3) and R̃t(Θ̂t,Θt) in (2.4) are deter-

mined by the precision of estimation of Pt by P̂t. In particular, the following
statement (which is a straightforward modification of arguments in [24]) holds.

Lemma 5. Let clustering be carried out according to the Algorithm 1 on the
basis of an estimator P̂t,r of Pt. Let Θt ∈ Mn,K . Then,

R̃t(Θ̂t,Θt) ≤
64(2 + ǫ)K

λ2
min(Pt)

‖P̂t,r −Pt‖2 (4.2)

and

Rt(Θ̂t,Θt) ≤
64(2 + ǫ)K

λ2
min(Pt)

nt,max

n
‖P̂t,r −Pt‖2. (4.3)

Here, λmin(Pt) is the smallest nonzero eigenvalue of Pt.

Remark 2. The value of αn. Observe that the only unknown parameter in
our algorithm is the value of αn. In general, αn is difficult to estimate. One of
the possible approaches may be to construct an initial estimator of αn as the
maximum of the infinity norm of the moving average estimator

α̃n =
1

2r + 1
max

t

∥∥∥∥∥

r∑

i=−r

At+i

∥∥∥∥∥

and then validate it by finding α̂n = maxt ‖B̂t‖∞ after the clustering procedure
is completed and changing the value of r if necessary.

4.2. The clustering error

Lemmas 4 and 5 allow to obtain upper bounds for the clustering errors.

Theorem 1. Let clustering be carried out according to the Algorithm 1. Let
Pt = ΘtBtΘ

T
t where Bt = αnHt. If (2.1) and Assumptions A1–A4 hold with

αn ≥ C−1
α c0 logn/n, then for any τ > 0, with probability at least 1−4n−τ , one

has

R̃t(Θ̂t,Θt) ≤ CR(2 + ǫ)
K min(δ21 , δ

2
2)

α2
n n2

min

(4.4)

Rt(Θ̂t,Θt) ≤ R̃t(Θ̂t,Θt)
nmax

n
, (4.5)

where δ1 and δ2 are defined in (3.7) and CR = CR(τ, c0,Wmax, β, L, Cα, Cλ).
In addition, if T grows at most polynomialy with n, so that T ≤ nτ1 for some

τ1 < ∞, then for any τ > 0, with probability at least 1− 4n−(τ−τ1), one has

R̃max ≤ CR (2 + ǫ)
K min(δ21 , δ

2
2)

α2
n n2

min

, Rmax ≤ R̃max
nmax

n
. (4.6)
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Theorem 1 provides upper bounds for the local clustering errors at time τt as
well as for the maximum clustering errors on the whole time interval. In order
to assess when employing the kernel estimator is beneficial, recall that the latter
happens when r∗ ≥ 1 in (3.8) and δ2 < δ1 in (4.4)–(4.6). In particular, it follows
from (4.4)–(4.6) that the ratio ΔR of the clustering errors when Pt is estimated
by the kernel estimator (3.2) with r = r∗ > 1 and Pt is estimated by At (which
corresponds to the direct application of Lei and Rinaldo’s procedure [24]) is

ΔR ≍ min

(
1;

δ22
δ21

)
= min

{
1;
(nαn

T 2β

) 1
2β+1

+

√
nmax αns

n

}
. (4.7)

Hence, (4.7) yields that application of the kernel estimator is advantageous if
ΔR < 1, which is equivalent to

T ≥ (n/αn)
1
2β and s ≤ (nmaxαn)

−1 n. (4.8)

Therefore, as long as (4.8) holds, the clustering errors obtained by our algorithm
will be smaller than those obtained by separately clustering snapshots of the
network at each individual time point as in [24]. This is true for the clustering
errors at every time instance τt as well as overall. Specifically, one can formulate
the following corollary.

Corollary 1. Under the assumptions of Theorem 1, for any τ > 0, with prob-
ability at least 1− 4n−τ , one has

R̃t(Θ̂t,Θt) ≤ CR(2 + ǫ)
Kn

αn n2
min

ΔR, (4.9)

where CR = CR(τ, c0,Wmax, β, L, Cα, Cλ) and ΔR is defined in (4.7). Moreover,
(4.5) holds provided the right hand side of (4.9) is bounded by one. In addition,
if T ≤ nτ1 for some τ1 < ∞, then, with probability at least 1 − 4n−(τ−τ1), one
has

R̃max ≤ C̃R(2 + ǫ)
Kn

αn n2
min

ΔR.

If the community sizes are balanced, i.e. there exist positive constants C1 and
C2 such that

C1
n

K
≤ nmin ≤ nmax ≤ C2

n

K
, (4.10)

one can obtain more transparent upper bounds for the clustering errors.

Corollary 2. If the assumptions of Theorem 1 and condition (4.10) hold, then,
for any τ > 0, with probability at least 1− 4n−τ , one has

R̃t(Θ̂t,Θt) ≤ C̃R(2 + ǫ)
K3

nαn
ΔR. (4.11)

where C̃R = C̃R(τ, c0,Wmax, β, L, Cα, Cλ) and ΔR is defined in (4.7). Moreover,
(4.5) holds provided the right hand side of (4.11) is bounded by one. In addition,
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if T ≤ nτ1 for some τ1 < ∞, then, with probability at least 1 − 4n−(τ−τ1), one
has

R̃max ≤ C̃R(2 + ǫ)
K3

nαn
ΔR.

Remark 3. Dense network. Inequalities (4.4), (4.5), (4.11) and (4.6) imply
that precision of clustering is better when αn is larger. Indeed, if the network
is dense, then αn = 1, the estimator P̂t,r̂ is fully adaptive and with probability
at least 1− 4n−(τ−τ1),

R̃max ≤ CR (2 + ǫ)
K n

n2
min

min

(
1;
( n

T 2β

) 1
2β+1

+

√
nmax s

n

)
.

Remark 4. Constant memberships and comparison with [5]. If group
memberships of the nodes remain unchanged over time, then s = 0 and one can
cluster the average P of edge probability matrices on the basis of its observed
counterpart P̂ where

P = T−1
T∑

t=1

Pt, P̂ = T−1
T∑

t=1

At

rather than the individual matrices Pt. In this case, 2r+ 1 = T , Wmax = 1 and
the bias portion of the error disappears, hence,

‖P̂−P‖ ≤ C0,τ

√
nαn/T . (4.12)

Observe that λmin(P̂) ≥ C−1
λ αn nmin. Therefore, for any τ > 0, with probability

at least 1− 4n−τ , one has

R̃t(Θ̂t,Θt) ≡ R̃(Θ̂,Θ) ≤ 64(2 + ǫ)C2
0τ C

2
λ

K n

T αnn2
min

,

(4.13)

R(Θ̂,Θ) ≤ R̃(Θ̂,Θ)
nmax

n
.

Recently, the case of constant memberships was considered by Bhattacharyya
and Chatterjee [5] in the context of multiple networks. Below, we compare our
clustering error with the clustering error in [5] under Assumption (A3). Under
this assumption, Bhattacharyya and Chatterjee [5] define fk, k = 1, · · · ,K, the
proportion of misclassified nodes in community k, k = 1, · · · ,K, and provide an
upper bound for their sum. In the case of the balanced model satisfying (4.10),
if K5 ≤ CTnαn and Tnαn → ∞, Theorem 3.1 in [5] yields the following upper
bound (with a high probability)

K∑

k=1

fk ≤ CK3 (Tnαn)
−1/2. (4.14)
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In comparison, inequality (4.13) implies that

K∑

k=1

fk ≤ K R̃(Θ̂,Θ) ≤ CKK3(Tnαn)
−1 ≤ CK3(Tnαn)

−4/5

which is a tighter upper bound than (4.14). However, the upper bounds are
obtained under different assumptions.

Remark 5. Constant matrix of connection probabilities. Consider the
situation where nodes of the network can switch memberships in time (s > 0)
but the matrix of the connection probabilities is constant: Bt ≡ B. In this
case, Assumption A1 is valid with β = ∞ and one can choose Cα = 1 in
(2.1). Then, for r < T one has ‖Pt,r −Pt‖ ≤ 2

√
2Wmax Cλ αn

√
nmax rs. Hence,

δ2 = (α3
n nnmax s)

1
4 and for any τ > 0, with probability at least 1− 4n−τ , the

clustering error at time τt appears as

R̃t(Θ̂t,Θt) ≤ CR(2 + ǫ)
Kn

αn n2
min

min

(
1;

√
nmax αns

n

)

5. Estimating the number of clusters

Estimating the number of clusters is a frequent problem in data clustering, and
is a distinct issue from the process of actually solving the clustering problem
with a known number of clusters. A common method for finding the number of
clusters is the so called “elbow” method that looks at the fraction of the variance
explained as a function of the number of clusters. The method is based on the
idea that one should choose the smallest number of clusters such that adding
another cluster does not significantly improve fitting of the data by a model.
There are many ways to define the “elbow”. For example, one of the methods is
based on evaluation of the clustering error in terms of an objective function [42],
while another one monitors the eigenvalues of the non-backtracking matrix or
the Bethe Hessian matrix [23]. In the present paper, we employ a very simply
strategy of finding the number of clusters by checking the eigen-gaps of matrices
P̂t,r̂, the technique that has been discussed in [36]. The intuition behind the
technique is that, for the error-free case where the (i, j)-th entry of the adjacency
matrix is 1 when the i-th node and the j-th node are in the same cluster, and
0 otherwise, the rank of the adjacency matrix should be K. Combining this
observation with Lemma 4, one derives that the eigenvalues of P̂t,r̂ can be used
to estimate the true number of clusters K as long as there exists a sufficient
eigen-gap between the K-th and the (K + 1)-th eigenvalues.

Indeed, denote the sorted eigenvalues of any symmetric matrix X ∈ R
n×n by

λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X). Then, due to the matrix perturbation inequality
|λi(X)− λi(Y)| ≤ ‖X−Y‖ (see, e.g., Corollary III.2.6 of [4]), obtain

λK+1(P̂t,r̂) ≤ ‖P̂t,r̂ −Pt‖, λj(P̂t,r̂) ≥ λj(Pt)− ‖P̂t,r̂ −Pt‖, j = 1, · · · ,K.
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Denote λj,t = λj(Pt), λ̂j,t = λj(P̂t,r̂) and

ǫt = Δt(r̂t)/λK,t with Δt(r̂t) = ‖P̂t,r̂ −Pt‖.

Then, one has

λ̂j+1,t

λ̂j,t

≥ 1− ǫt
λj,t/λj+1,t + ǫt

, j = 1, · · · ,K − 1,
λ̂K+1,t

λ̂K,t

≤ ǫt
1− ǫt

. (5.1)

Hence, if ǫt is small enough, then there exists a threshold ̟ such that

λ̂j+1,t

λ̂j,t

> ̟, j = 1, · · · ,K − 1,
λ̂K+1,t

λ̂K,t

≤ ̟ (5.2)

while λ̂j+1,t/λ̂j,t can exhibit chaotic behavior for j ≥ K +1. Therefore, one can
estimate K by

K̂ = min

{
k :

T∑

t=1

λ̂k+1,t < ̟

T∑

t=1

λ̂k,t

}
(5.3)

where ̟ is a tuning parameter. Note that the expression for K̂ is somewhat
similar to the one suggested by Le and Levina [23] with the difference that we
use the eigenvalues of the adjacency matrix in the situation of a time-dependent
network while they use the eigenvalues of the non-backtracking matrix in the
stationary case.

The following statement shows that if eigenvalues of Pt grow at most expo-
nentially and λK,t = λmin(Pt) is large enough, then K̂ is an accurate estimator
of K with high probability.

Proposition 1. Let Assumptions A1–A3 hold and αn ≥ C−1
α c0 logn/n. Let

for some w > 0

λj(Pt) ≤ (1 + w)λj+1(Pt), j = 1, · · · ,K − 1, (5.4)

where K is the true number of clusters. If T ≤ nτ1 for some τ1 < ∞,

λmin(Pt) ≥ (40 + 10w)Δt(r
∗) (5.5)

where Δt(r
∗) is defined in (3.9), then for any τ > 0, with probability at least

1− 4T n−(τ−τ1), inequalities (5.2) hold with ̟ = (3 + w)−1 and K̂ = K.

Observe that condition (5.5) on the lowest nonzero eigenvalue of Pt is essen-
tially a necessary condition required for accurate clustering. Indeed, Δt(r

∗) ≤
C∆ min(δ1, δ2) by (3.9) and, by Assumption A3, λmin(Pt) ≥ C−1

λ αnnmin, so
that (5.5) is guaranteed by

ℵ =
min(δ21 , δ

2
2)

α2
nn

2
min

≤ C̃ = [C∆ Cλ (40 + 10w)]−2. (5.6)
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On the other hand, the clustering error in (4.4) is bounded above by R̃t(Θ̂t,Θt) ≤
CR(2+ǫ)K ℵ where ℵ is defined in (5.6). Therefore, a small value R̃t(Θ̂t,Θt) ≤ δ
of the clustering error implies that ℵ ≤ (CR(2 + ǫ))−1δ/K which ensures (5.6)
provided that K is large enough.

Note also that assumption (5.4) is not restrictive. Indeed, since λK(Pt) =
λmin(Pt) ≥ C−1

λ αnnmin and λ1(Pt) = λmax(Pt) ≤ Cλ αnnmax, obtain that

λ1(Pt)

λK(Pt)
≤ C2

λ

nmax

nmin
,

so condition (5.4) always holds, for example, in the case of a balanced model
satisfying (4.10).

Combination of Theorem 1 and Proposition 1 immediately yield the following
corollary.

Corollary 3. Let clustering be carried out according to the Algorithm 1 with K̂
clusters. Let assumptions of Theorem 1 and conditions (5.4) and (5.5) be valid.
Then, for any τ > 0, with probability at least 1− 4n−(τ−τ1), inequalities (4.4),
(4.5) and (4.6) hold.

6. Simulations

In this section, we evaluate the accuracy of Algorithm 1 via a limited simulation
study and compare it with two other “baseline” methods. Specifically, the first
method applies spectral clustering separately to each observed adjacency matrix
At (instead of P̂t,r in Algorithm 1), thus, essentially following Lei and Rinaldo
[24]. The second method applies spectral clustering to the sum of all observed
adjacency matrices

∑n
t=1 At as it is done in [5]. The precision is measured in

terms of overall relative clustering error defined in (2.3).
In the simulations, we set αn = 1 and use n = 100, T = 1000, K = 3. We

set all the diagonal entries of matrices Bt to be f1(t/T ) and all the off-diagonal
entries of Bt to be f2(t/T ), with the choices of f1 and f2 given later. For t = 1,
we randomly assign each of the n nodes to one of the K clusters with equal
probabilities, and for each t > 1, we randomly choose s nodes from the previous
time step and assign their memberships at random.

We generate the kernel in (3.2) following Section 7.1 with the parameters
(l,m,m0) = (4, 2, 1). Furthermore, we replace the (1 + ǫ)-approximate k-means
algorithm in the step 3 of Algorithm 1 with the standard iterative refinement
K-means algorithm, which is used in the built-in kmeans function in MATLAB.
Since it performs well empirically, we do not expect that application of the
(1 + ǫ)-approximate k-means algorithm will lead to notably different results.

Furthermore, we study the performances of our technique and the two base-
line methods under the following five models

1. f1(x) = 0.5 + 0.1 sin(2πx+ 0.1π), f2(x) = 0.3 + 0.1 sin(2πx), n = 100;
2. f1(x) = 0.5 + 0.1 sin(2πx+ 0.1π), f2(x) = 0.3 + 0.1 sin(2πx), n = 400;
3. f1(x) = 0.45 + 0.1 sin(2πx+ 0.1π), f2(x) = 0.3 + 0.1 sin(2πx), n = 100;
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Table 1

The overall relative clustering errors of Algorithm 1, Baseline 1 (point-per-point clustering)
and Baseline 2 (clustering of the sum) algorithms for various values of s and r.

s 0 1 2 4 8 16 32 50 100
Model 1

Baseline 1 21.52 21.97 23.75 20.90 23.14 24.15 23.43 23.87 23.13
Baseline 2 0.00 13.31 19.83 31.88 41.67 53.09 56.35 58.83 60.26

Algorithm 1 0.00 0.32 0.71 1.46 2.71 5.79 11.57 20.17 24.41
Model 2

Baseline 1 0.33 0.33 0.34 0.30 0.27 0.35 0.33 0.30 0.30
Baseline 2 0.00 4.96 7.48 14.27 22.30 33.06 43.02 49.37 57.31

Algorithm 1 0.00 0.01 0.03 0.03 0.09 0.17 0.28 0.44 0.78
Model 3

Baseline 1 41.85 41.84 41.48 43.38 43.24 41.48 40.89 42.01 41.41
Baseline 2 0.00 12.48 23.74 40.16 45.59 54.36 58.59 59.79 59.92

Algorithm 1 0.08 0.87 1.39 2.83 5.62 12.17 26.54 36.75 42.06
Model 4

Baseline 1 17.19 17.25 18.42 17.10 17.69 18.32 17.55 18.23 17.26
Baseline 2 0.00 13.42 26.57 39.68 45.15 51.98 56.21 57.67 58.50

Algorithm 1 0.03 0.42 1.03 1.79 4.50 8.72 14.36 18.72 18.82
Model 5

Baseline 1 26.60 24.13 28.30 24.18 23.37 21.35 23.25 24.16 22.40
Baseline 2 0.00 11.51 24.16 36.62 42.29 52.31 57.84 58.30 59.58

Algorithm 1 0.00 0.29 0.87 1.41 2.48 5.17 11.90 19.88 23.66

4. f1(x) = 0.6− 0.1 sin(2πx+ 0.1π), f2(x) = 0.3 + 0.1 sin(2πx), n = 100;
5. f1(x) = 0.5 + 0.1 sin(20πx+ π), f2(x) = 0.3 + 0.1 sin(20πx), n = 100;

and various choices of s and r. The Model 1 can be viewed as a basic model;
the Model 2 represents a more difficult case with a larger “signal to noise ratio”
(since f1 is smaller than in Model 1); the Model 3 is similar to Model 1 with
larger variations of connection probabilities (i.e., less smoothness) in time.

Table 1 presents the overall relative clustering errors for the three methods,
three models and various choices of the number of membership switches s. In our
study, r are chosen appropriately according to each model, from the choices of
r = 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30. Empirically, our choices of r decreases
as s increases: it is intuitive that when s = 0, the membership does not change
over time and the largest r would perform best; and when s = 100, any two
consecutive membership vectors do not have any correlation and the optimal r
should be small.

Table 1 shows that Algorithm 1 delivers better precision than the baseline
methods for the most cases. Indeed, Baseline 1 method is more accurate than
Algorithm 1 only when s is very large and close to T , i.e., when the membership
vector changes almost completely between two consecutive time points. On the
other hand, Baseline 2 method is more accurate than Algorithm 1 only when s is
very small and close to 0, i.e., when the membership vector is almost fixed across
all time points. Moreover, even when one of the baseline algorithm outperforms
our method, the differences in the clustering errors are very minor.

Table 1 also shows that some settings are more difficult than the others.
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For example, all methods have larger errors under Models 3 and 5 than under
Model 1 since the differences between f1 and f2 are smaller in Model 3, and
f1 and f2 are less “smooth” in Model 5. On the other hand, all methods have
smaller errors under Model 2 than under Model 1 since a larger n with fixed
K provides more information about the underlying matrix Bt, which in turn
leads to a better clustering precision. In Model 4, the difference f1 − f2 has a
larger mean and a larger variance than Model 1, which leads to the clustering
precision similar to Model 1. Nevertheless, the advantage of our algorithm over
the two baseline methods is consistent across all models.

The computational cost of the Algorithm 1 can be summarized as follows:
Step 1 requires O(n2r) and Step 2 requires O(n2K) operations. The computa-
tional cost of Step 3 depends on the empirical implementation of the K-means
method. In particular, the standard iterative refinement procedure used in the
simulations above requires O(n2K) operations per iteration, while the approxi-
mate algorithm in [22] has a computational cost of O(n) for any fixed K.

7. Appendix

7.1. Construction of kernels of integer arguments

First consider construction of the kernel W
(1)
r,l designed for internal points. Since

it has symmetric domain, we construct a symmetric version of the kernel

W
(1)
r,l (i) =

m∑

j=0

aj(r − |i|)j+m0r−(j+m0), i = −r, . . . , r, (7.1)

where m0 is a nonnegative integer and coefficients aj , j = 0, 1 . . . ,m, are to

be determined. Note that if m0 ≥ 1, then W
(1)
r,l (±r) = 0. We need to find

aj , j = 0, . . . ,m, such that

r∑

i=−r

W
(1)
r,l (i) = 2r + 1;

r∑

i=−r

ik W
(1)
r,l (i) = 0, k = 1, . . . , l. (7.2)

Note that due to the symmetry of the kernel, the second equation in (7.2) holds
for any odd value of k, hence, we need to consider only even values k = 2k0. The
latter also means that we can consider l = 2l0 and l = 2l0 + 1 simultaneously:
any order 2l0 kernel is also automatically an order 2l0+1 kernel. Plugging (7.1)
into (7.2) and simplifying the expressions, we rewrite (7.2) as

m∑

j=0

aj

[
1 + 2r−(j+m0)

r−1∑

i=0

ij+m0

]
= 2r + 1,

m∑

j=0

ajr
−(j+m0+2k0)

r−1∑

i=0

ij+m0(r − i)2k0 = 0, k0 = 1, . . . , l0.
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Denote

Ph,k(r) = r−(h+k+1)
r−1∑

i=0

ih(r − i)k, h = 0, 1, . . . , k = 0, 1, 2 (7.3)

Observe that Ph,k(r) are polynomials in 1/r of degree h + k + 1 and that ex-
pressions for Ph,k(r) can be found exactly for every h and k using, e.g., [15],
formula 0.121.

Then, vector a = (a0, a1, · · · , am)T can be found as a solution of the following
system of linear equations

Ka = (2r + 1)e1, (7.4)

where e1 = (1, 0, . . . , 0)T is the canonical vector in R
m+1 and matrix K ∈

R
(l0+1)×(m+1) has elements

K0,j = 1 + 2rPj+m0,0, Kk0,j = Pj+m0,2k0 , j = 0, . . . ,m+ 1, k0 = 1, . . . , l0.

Since the rows of matrix K are linearly independent, the system of equations
(7.4) has a solution whenever m ≥ l0. If m = l0, then this solution is unique. If
m > l0, then (7.4) has multiple solutions and one can find vector a such that,

for example, ‖W (1)
r,l ‖∞ = maxi |W (1)

r,l (i)| takes the minimal value. The latter can
be accomplished by solving the following linear programming problem

w ⇒ min s.t. Ka = (2r+1)e1, q(i)a ≤ w; −q(i)a ≤ w, i = 0, . . . , r. (7.5)

where q(i) are vectors with components q
(i)
j = r−(j+m0)(r − i)j+m0 , j =

0, . . . ,m.

Construction of the boundary kernels W
(j)
r,l , j = 2, 3, are very similar to W

(1)
r,l .

For the sake of brevity, we describe only construction of W
(2)
r,l . Write W

(2)
r,l in a

form

W
(2)
r,l (i) =

m∑

j=0

aj(r − i)j+m0r−(j+m0), i = 0, . . . , r,

and choose the coefficients, so that the kernel satisfies condition (3.1). The latter
leads to the system of (l + 1) linear equations of the form

m∑

j=0

aj (1+rPj+m0,0(r))=1+r,

m∑

j=0

ajPj+m0,k(r)=0, k=1, . . . , l, j=0, . . . ,m,

which can be written in a matrix form as Ka = (r + 1)e1 where e is as before
and and matrix K ∈ R

(l+1)×(m+1) has elements

K0,j = 1 + rPj+m0,0, Kk0,j = Pj+m0,k, j = 0, . . . ,m+ 1, k = 1, . . . , l.

Similarly to the case of construction of W
(1)
r,l , one can obtain an unique solution

of the system of equations by choosing m = l or find it as a solution of a linear
programming problem similarly to (7.5).
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7.2. Proofs of the statements in the paper

Proof of Lemma 5. The proof of Lemma 5 can be split into two steps. In the
first step, it bound the difference of the eigenvectors of Pt and P̂t by ‖P̂t−Pt‖.
In the second step, it applies the analysis from [24] to bound the classification
error by the difference of eigenvectors.

If Pt = UDUT and P̂t = ÛD̂ÛT , then, by Lemma 5.1 of [24], obtain that
there exists and orthogonal matrix O such that

‖Û−UO‖ ≤ 2
√
2K

λmin(Pt)
‖P̂t −Pt‖.

Let St,k is a subset of nodes in class Gt,k that are misclassified. Then, Lemma 5.3
and Theorem 3.1 of Lei and Rinaldo (2015) imply that

K∑

k=1

|St,k|
nt(k)

≤ 8(2 + ǫ) ‖Û−UO‖2 ≤ 64K(2 + ǫ)

[λmin(Pt)]2
‖P̂t −Pt‖2. (7.6)

In order to derive (4.3), observe that

Rt(Θ̂t,Θt) =

K∑

k=1

|St,k| ≤
nt,max

n

K∑

k=1

|St,k|
nt(k)

.

Proof of Lemma 1. Since the case r = 0 follows directly from Theorem
1.1 in the Supplementary material of [24], we can assume that r ≥ 1. Also,

in order to simplify the proof, we do not consider kernels W
(j)
r,l for each j =

1, 2, 3, separately, but instead remove the index j since the proofs are practically
identical for all three values of j.

We remark that while the proof of Lemma 1 is a generalization of and based
on the proof of Lemma 2.1 in the Supplementary material of [24], some steps
still require nontrivial derivation. For example, Lemma 9 is derived specifically
for our setting.

Lemma 2.1 in the Supplementary material of [24] (with δ = 1/2) implies that

‖P̂t,r −Pt,r‖ ≤ 4 sup
x,y∈T

|xT (P̂t,r −Pt,r)y|, (7.7)

where

T = {x = (x1, · · · , xn) ∈ R
n, ‖x‖ = 1, 2

√
nxi are all integers.} (7.8)

Hence, we bound above the right-hand side of (7.7) by dividing the coordinates
of x and y into “light pairs” and “heavy pairs” as follows

L(x,y) =
{
(i, j) : |xiyj | ≤

√
Cααnr

n

}
, L̄(x,y) =

{
(i, j) : |xiyj | >

√
Cααnr

n

}
.
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Note that here the definition is different from the proof in [24] by a factor of r,
since we consider weighted sum of random matrices (instead of a single random

matrix). Partitioning |xT (P̂t,r −Pt,r)y| into the portions containing the “light
pairs” and the “heavy pairs”, obtain

∣∣∣xT (P̂t,r −Pt,r)y
∣∣∣ ≤

∣∣∣
∑

(i,j)∈L(x,y)

xi[P̂t,r −Pt,r](i, j)yj

∣∣∣

+
∣∣∣

∑

(i,j)∈L̄(x,y)

xi[P̂t,r −Pt,r](i, j)yi

∣∣∣. (7.9)

In order to obtain upper bounds for the right-hand side of (7.9), we need three
supplementary statements, Lemmas 6, 7 and 8, that generalize, respectively,
Lemmas 3.1, 4.1 and 4.2 of Lei and Rinaldo [24] to our setting. The proofs of
Lemmas 6, 7, 8 and 9 are deferred till Section 7.3.

Lemma 6. Under assumptions of Lemma 1, with probability at least 1− 2n−τ ,
one has

sup
x,y∈T

∣∣∣
∑

(i,j)∈L(x,y)

xiyj [P̂t,r(i, j)−Pt,r(i, j)]
∣∣∣ ≤ Cτ,1Wmax

√
Cα nαn

r

provided

Cτ,1 ≥ max
{
2
√

(τ + log 14), 8(τ + log 14)/3
}
. (7.10)

Lemma 7. Let dt(i) be the degree of the i-th node in the network with connection
probabilities given by the matrix Pt. Denote

dt,r(i) =
∑

k∈Fr

Wr,l(k)dt+k(i).

Then, under assumptions of Lemma 1, one has

Pr

{
max
1≤i≤n

dt,r(i) ≤ 3Cα (WmaxCτ,2 + 1)nαnr

}
≥ 1− n−τ (7.11)

provided

Cτ,2 ≥ max

⎛
⎝
√

2(τ + 1)

c0
,
τ + 1

3c0

⎞
⎠ . (7.12)

Lemma 8. Let I, J ⊆ {1, · · · , n} with |I| ≤ |J |. Denote

μ̄(I, J) = Cααn|I||J | |Fr|, et,r(I, J) =
∑

k∈Fr

Wr,l(k)et+k(I, J),

where el(I, J) represents the number of distinct edges between I and J in the
network at time l. Assume that the event in (7.11) holds. Then with probability
at least 1− n−τ , at least one of the following is true:
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1. et,r(I, J) ≤ eCτ,3 μ̄(I, J),

2. et,r(I, J) log
(

et,r(I,J)
µ̄(I,J)

)
≤ Cτ,4 |J | log

(
n
|J|

)
.

Here

Cτ,3 = max{3(WmaxCτ,2 + 1), e3Wmax + 1}, Cτ,4 = 8Wmax(τ + 6). (7.13)

Lemma 9. Let {Xi}ni=1 be independent random variables such that Pr(Xi =
1 − pi) = pi, Pr(Xi = −pi) = 1 − pi for some pi > 0. Let X =

∑n
i=1 wiXi,

p = 1
n

∑n
i=1 pi, pmax = max1≤i≤n pi, wmax = max1≤i≤n wi, then for k >

max(e3wmax , 2),

Pr(X ≥ kpmaxn) < e−(k+1)pmaxn ln(k+1)/2wmax .

The first term in the right-hand side of (7.9) corresponding to the “light
pairs” is bounded by Lemma 6. In order to bound the “heavy pairs” in the
second term, observe that

∣∣∣∣∣∣

∑

(i,j)∈L̄(x,y)

xiyj Pt,r(i, j)

∣∣∣∣∣∣
≤ 1

|Fr|
∑

(i,j)∈L̄(x,y)

∑

k∈Fr

x2
i y

2
j

|xiyj |
|Wr,l(k)| Pt+k(i, j)

(7.14)

≤ 1

|Fr|

√
n

Cααnr

∑

k∈Fr

|Wr,l(k)| Cααn

∑

(i,j)∈L̄(x,y)

x2
i y

2
j ≤ Wmax

√
Cα nαn

r
.

Applying Lemmas 7 and 8, and the same argument as in Section 4 in the
Supplementary material of [24] with (with Cα nαn r replacing d), we derive

Pr

⎧
⎪⎪⎨
⎪⎪⎩

1

|Fr|

∣∣∣∣∣∣∣∣

∑

(i,j)∈L̄(x,y)

k∈Fr

xi yj Wr,l(k)At+k(i, j)

∣∣∣∣∣∣∣∣
≤ C̃τ

√
Cαnαn

r

⎫
⎪⎪⎬
⎪⎪⎭

≥ 1− 2n−τ ,

(7.15)

where C̃τ = 8 {16δ−2+eCτ,3δ
−2+24 (WmaxCτ,2+1)+40Cτ,4+8} with δ = 1/2.

Combining (7.14) and (7.15), obtain that the second term in the right-hand side
of (7.9) is bounded above by (Wmax+C̃τ )

√
Cα nαn/r, with probability at least

1− 2n−τ .
Combining (7.7), (7.9), Lemma 6, (7.14) and (7.15), we derive

Pr

{
‖P̂t,r −Pt,r‖ ≤ 4(Wmax +WmaxCτ,1 + C̃τ )

√
Cα nαn

r

}
≥ 1− 4n−τ ,

and obtain the expression for C0,τ in (3.4):

C0,τ = 4
√
Cα {Wmax(1+Cτ,1)+32(24WmaxCτ,2+4eCτ,3+40Cτ,4+96)} (7.16)
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where Cτ,1, Cτ,2, Cτ,3 and Cτ,4 are defined in (7.10), (7.12) and (7.13), respec-
tively.

Proof of Lemma 2. First, let us prove that under Assumption A2, one has
for any k such that 1 ≤ t+ k ≤ T one has

‖Θt −Θt+k‖ ≤
√

2|k|s. (7.17)

Let, without loss of generality, k > 0. Note that matrix Θt −Θt+k at most ks
nonzero rows in which one entry is 1 and another is -1. If we permute the rows of
matrix Θt −Θt+k so that those nonzero rows are the first ones, we obtain that
(Θt −Θt+k)(Θt −Θt+k)

T is the block-diagonal matrix with the only nonzero
block matrix Λ ∈ R

ks×ks in the top left corner that has elements with absolute
values equal to 0,1 or 2. Then

λmax

[
(Θt −Θt+k)(Θt −Θt+k)

T
]
= λmax(Λ) ≤ max

1≤i≤ks

ks∑

j=1

Λi,j ≤ 2|k|s

which implies (7.17). Note that the upper bound is tight (to see this, consider
the case where s elements move from class i to class j at each of k time points.

Next, note that Δ2,t in (3.3) can be decomposed as

‖Pt,r −Pt‖ ≤ ‖Pt,r − P̃t,r‖+ ‖P̃t,r −Pt‖ ≡ Δ2,1,t +Δ2,2,t, (7.18)

where

Pt,r = r−1
r∑

i=−r

Wr,l(i)Pt+i

P̃t,r = r−1
r∑

i=−r

Wr,l(i)ΘtBt+iΘ
T
t

Let us show that

Δ2,1,t = ‖Pt,r − P̃t,r‖ ≤ 2
√
2Wmax Cλ αn

√
nmax rs (7.19)

For this purpose observe that ‖Θt‖ ≤ √
nmax and that

Δ2,1,t = ‖r−1
r∑

i=−r

W (i)
[
Θt+iBt+iΘ

T
t+i −ΘtBt+iΘ

T
t

]
‖

≤ Wmax max
|i|≤r

‖Θt+iBt+iΘ
T
t+i −ΘtBt+iΘ

T
t ‖

where ‖Θt+iBt+iΘ
T
t+i − ΘtBt+iΘ

T
t ‖ ≤ [‖Θt+i‖ + ‖Θt‖] ‖Bt+i‖ ‖Θt+i − Θt‖.

The last two inequalities together with (7.17) imply (7.19).
Now, let us prove that

Δ2,2,t = ‖P̃t,r −Pt‖ ≤ L

(lβ)!
Wmax αnn

( r
T

)β
. (7.20)
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Let j = 1, 2 or 3 be determined by the value of t. Denote

Qr,t = |Fr,j |−1
∑

i∈Fr,j

W
(j)
r,l (i) (Ht+i −Ht) .

Observe that by Assumptions A1 and A4, for any k, k′ = 1, . . . ,K, using Tay-
lor’s expansion at i = 0, one derives

Qr,t(k, k
′)=|Fr,j |−1

∑

i∈Fr,j

W
(j)
r,l (i)

[
f

(
t+ i

T
; k, k′

)
−f

(
t

T
; k, k′

)]

=

lβ∑

h=1

1

h!
f (h)

(
t

T
; k, k′

)⎡
⎣1
r

∑

i∈Fr,j

(
i

T

)h

W
(j)
r,l

⎤
⎦

+
1

|Fr,j |(lβ)!
∑

i∈Fr,j

W
(j)
r,l

(
i

T

)l [
f (lβ)

(
t

T
+ξ; k, k′

)
−f (lβ)

(
t

T
; k, k′

)]
,

where |ξ| ≤ r/T . Due to Assumption A1, the first sum is equal to zero and

|Qr,t(k, k
′)| ≤ 1

|Fr,j | (lβ)!
∑

i∈Fr,j

(
i

T

)lβ

|W (j)
r,l (i)|L|ξ|β−l ≤ LWmax

(lβ)!

( r
T

)β
.

(7.21)
Recall that Bt+i −Bt = αn(Ht+i −Ht) and that the spectral norm of a matrix
is dominated by the l1 norm. Therefore,

Δ2,2,t ≤ αn max
1≤j′≤n

n∑

j=1

|(ΘtQr,tΘ
T
t )(j, j

′)|

≤ αn max
k,k′

|Qr,t(k, k
′)| max

1≤j′≤n

K∑

k=1

K∑

k′=1

⎡
⎣ ∑

j∈Gt,k

Θt(j, k)

⎤
⎦ Θt(j

′, k′)

= αn nmax
k,k′

|Qr,t(k, k
′)|

Combination of the last inequality with (7.21) yields (7.20) while (7.18), (7.19)
and (7.20) together complete the proof of the lemma.

Proof of Lemma 3. If r∗ = 0, then results of the Lemma follow directly from
[24]. Consider r ≥ 1. Then,

Δt(r) ≤ C

[
n
( r
T

)β
+ αn

√
2rnmax s+

√
nαn/r

]

where C depends on τ, c0,Wmax, l, L and λmax. Denote

F1(r) = n(r/T )β , F2(r) = αn

√
2rnmax s, F3(r) =

√
nαn/r.

It is easy to see that F1(r) and F2(r) are growing in r while F3(r) is declin-
ing. Therefore, the minimum is reached at the point r where F1(r) + F2(r) ≍
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max(F1(r), F2(r)) = F3(r). Observe that F1(r) = F3(r) if r = r1 where r1 =(
n−1αnT

2β
)1/(2β+1)

and F2(r) = F3(r) if r = r2 where r2 =
√
(αnnmax s)−1 n.

Moreover, max(F1(r), F2(r)) occurs at r∗ = min(r1, r2) and we need r∗ to be
an integer. Then, minr(F1(r) + F2(r) + F3(r)) ≍ F3(r

∗) and plugging r∗ into
F3(r), we obtain (3.7).

Proof of Lemma 4. Note that (3.10) implies that for any r0 ≥ r̂ one has

‖P̂t,r̂ − P̂t,r0‖ ≤ 4C0,τ

√
nαn/(r0 ∨ 1). (7.22)

On the other hand, for any r0 > r̂, there exists r̃ < r0 such that

‖P̂t,r̃ − P̂t,r0‖ > 4C0,τ

√
nαn/(r̃ ∨ 1). (7.23)

Denote, for convenience, δ1(r) = ‖Pt,r −Pt‖ and δ2(r) = 4C0,τ

√
nαn/(r ∨ 1).

Note that δ1(r) growing in r since using Pt,r as approximations of Pt are less
accurate for larger r due to changes in the underlying probability values and
switching of group memberships of nodes in time. Since δ2(r) is decreasing in r,
there exists r0 such that

δ1(r0) < δ2(r0), δ1(r0 + 1) ≥ δ2(r0 + 1)

Then,

δ1(r
∗) + δ2(r

∗) = min
r

[δ1(r) + δ2(r)] ≥ min
r

max[δ1(r), δ2(r)]

= max[δ1(r0 + 1), δ2(r0)] ≥ δ2(r0) > [δ1(r0) + δ2(r0)]/2,

so that
δ1(r0) + δ2(r0) < 2[δ1(r

∗) + δ2(r
∗)] ≤ 2[δ1(r0) + δ2(r0)]. (7.24)

Let Ωτ be the set defined in Lemma 1 and let ω ∈ Ωτ . Now consider two cases:
r̂ ≥ r0 and r̂ < r0.

If r̂ ≥ r0, then by (7.22) one has

‖P̂t,r̂ −Pt‖ ≤ ‖P̂t,r̂ − P̂t,r0‖+ ‖P̂t,r0 −Pt‖
≤ 4C0,τ

√
nαn/(r0 ∨ 1) + δ1(r0) + δ2(r0)

= 5δ2(r0) + δ1(r0) ≤ 5[δ1(r0) + δ2(r0)],

so it follows from (7.24) that

‖P̂t,r̂ −Pt‖ < 10 min
r

[δ1(r) + δ2(r)]. (7.25)

On the other hand, if r̂ < r0, then there exist r̃ < r0 such that (7.23) holds.
Therefore, due to δ1(r̃) < δ1(r0) < δ2(r0) < δ2(r̃), obtain

‖P̂t,r0 − P̂t,r̃‖ ≤ ‖P̂t,r0 −Pt‖+ ‖P̂t,r̃ −Pt‖
≤ δ1(r0) + δ2(r0) + δ1(r̃) + δ2(r̃) < 4 δ2(r̃)
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which contradicts (7.23). Hence, r̂ ≥ r0 for ω ∈ Ωτ and validity of Lemma 4
follows from (7.25).
Proof of Theorem 1. Recall that Pt = αnΘtHtΘ

T
t with λmin(Ht) ≥ C−1

λ .

Since ΘT
t Θt = Λ2

t , the diagonal matrix with nt,1, · · · , nt,K on the diagonal,

Θt = ŨtΛt where Ũt = ΘtΛ
−1
t is an orthogonal matrix. Therefore, in (4.2)

and (4.3)
λmin(Pt) ≥ C−1

λ αn nmin.

Combining the last inequality, (4.2) and (4.3) with Lemma 3, immediately obtain
(4.4) and (4.5).
Proof of Proposition 1. Let Ωt,τ be a set with Pr(Ωt,τ ) ≥ 1 − 4n−τ where
(3.11) hold. Then, due to (3.11) and (5.5), ǫt ≤ 10Δt(r

∗)/λK,t ≤ (4 + w)−1.
Therefore, (5.1) and (5.4) yield that

λ̂j+1,t

λ̂j,t

≥ 1− (4 + w)−1

1 + w + (4 + w)−1
>

1

3 + w
, j = 1, · · · ,K − 1,

λ̂K+1,t

λ̂K,t

≤ 1

3 + w

which completes the proof.

7.3. Proofs of supplementary lemmas

For Lemmas 6, 7 and 8, their proofs are mainly based on the proofs of (7.26),
(7.27) and (7.29), which in turn are based on the measure concentration. In
particular, (7.26) and (7.27) are based on Bernstein’s inequality and (7.29) are
based on the proof of Lemma 9, which estimates the summation of poisson
distributions.

Proof of Lemma 6. First, it is suffient to prove that for any C > 0,

Pr
{

sup
x,y∈T

∣∣∣
∑

(i,j)∈L(x,y)

xiyj [P̂t,r(i, j)−Pt,r(i, j)]
∣∣∣ ≥ C

√
nCααn

r

}
(7.26)

≤ 2 e
−n

(
C2

4W2
max+4C Wmax/3

−log 14

)

.

If (7.26) holds, then C = Cτ,1Wmax with (7.10) guarantees that the right-hand
side in (7.26) is bounded by 2n−τ , and Lemma 6 is proved.

To prove (7.26), denote uij = xiyj I(|xiyj | ≤
√
Cααnr/n) + xjyiI(|xjyi| ≤√

Cααnr/n). Consider

S =
∑

(i,j)∈L(x,y)

xiyj (P̂t,r(i, j)−Pt,r(i, j))

=
1

|Fr|
∑

1≤i<j≤n

∑

k∈Fr

uij Wr,l(k)(At+k(i, j)−Pt+k(i, j)).

Note that the right-hand side is the sum of n(n− 1)|Fr| independent variables

ξi,j,k = uijWr,l(k)(At+k(i, j)−Pt+k(i, j))/|Fr|
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with zero means and absolute values bounded by |ξi,j,k| ≤ 2Wmax

√
Cααn/n |Fr|,

due to |uij | ≤ 2
√
Cααnr/n and |At+k(i, j) − Pt+k(i, j)| ≤ 1. Applying Bern-

stein’s inequality and using the fact that
∑

i<j u
2
ij ≤ 2 (as proved in the end of

Section 3 in the Supplementary material of [24]), obtain

Pr

⎧
⎨
⎩

∣∣∣∣∣∣

∑

1≤i<j≤n

∑

k∈Fr

ξi,j,k

∣∣∣∣∣∣
≥ C

√
nCααn

r

}

≤ 2 exp

⎛
⎜⎝−

C2nCααn

2r

2CαW 2
maxαn

|Fr|
+ 2Wmax

3

√
Cααn

n|Fr|
C
√

nCααn

r

⎞
⎟⎠

≤ 2 exp

(
− C2n

4W 2
max +

4C
3 Wmax

)
,

since |Fr| ≥ 1+r. Using the fact that cardinality |T | ≤ exp(n log 14) (see Section
3 in the Supplementary material of [24] with δ = 1/2), (7.26) is proved.

Proof of Lemma 7. First, it is sufficient to prove that for any c1 > 1, one has

Pr

{
max
1≤i≤n

dt,r(i) ≤ c1 Cα nαn r

}
≥ 1− n

1−
3(c1−1)2c0 r

6W2
max+2Wmax(c1−1) . (7.27)

If (7.27), then c1 = 3(WmaxCτ,2 + 1), the inequality (7.12) and max(r, 2) ≤
|Fr| ≤ 3r for r ≥ 1 guarantees that the right hand side of (7.27) is bounded
below by 1− n−τ , and Lemma 7 is proved.

For a fixed node i, using Bernstein’s inequality and Cααnn ≥ c0 logn, obtain

Pr(dt,r(i) > c1nCααn|Fr|)

≤Pr
( n∑

j=1

∑

k∈Fr

Wr,l(k)[At+k(i, j)−Pt+k(i, j)] ≤ (c1 − 1)Cαnαn|Fr|
)

≤exp
(
−

1
2 (c1 − 1)2C2

α n2α2
n|Fr|2

Cα|Fr|W 2
maxnαn + 1

3Wmax(c1 − 1)Cαnαn|Fr|
)
≤n

−
3 (c1−1)2c0|Fr |

6W2
max+2Wmax(c1−1) .

Taking the union bound over i = 1, · · · , n, (7.27) is proved.
Proof of Lemma 8. First, if we divide the weights Wr,l(k) into two groups:
K1 = {k ∈ Fr : Wr,l(k) > 0} and K2 = {k ∈ Fr : Wr,l(k) ≤ 0}. Define

Yijk = I(Ak(i, j) = 1) · I(k ∈ K1).

Then each Yijk is a Bernoulli random variable with expectation Pk(i, j) · I(k ∈
K1), and by definition

et,r(I, J) =
∑

k∈Fr

Wr,l(k)et+k(I, J) ≤
∑

k∈K1

Wr,l(k)et+k(I, J) (7.28)
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=
∑

k∈Fr

∑

i∈I

∑

j∈J

Wr,l(k)Yijk.

Applying Lemma 9 with Xi replaced by Yijk − EYijk, wmax replaced by Wmax,
pmax replaced by αn, k replaced by t and n = |Fr||I||J |, obtain for t ≥
max(e3Wmax , 2):

Pr {
∑

k∈Fr,i∈I,j∈J

Wr,l(k)[Yijk − EYijk] > t μ̄(I, J)

⎫
⎬
⎭

≤ exp

[
− (t+ 1) ln(t+ 1)Cααn|Fr||I||J |

2Wmax

]
. (7.29)

Second, since EYijk < Cααn, application of (7.28) and (7.29) with t ≥
max(e3Wmax , 2) +Wmax yields

Pr {et,r(I, J) > t μ̄(I, J)} ≤ Pr

⎧
⎨
⎩
∑

k∈Fr

∑

i∈I

∑

j∈J

Wr,l(k)Yijk > t μ̄(I, J)

⎫
⎬
⎭

≤Pr

⎧
⎨
⎩
∑

k∈Fr

∑

i∈I

∑

j∈J

Wr,l(k)[Yijk − EYijk] > (t−Wmax)μ̄(I, J)

⎫
⎬
⎭ (7.30)

≤ exp
[
− (t+ 1−Wmax) ln(t+ 1−Wmax)Cααn|Fr||I||J |

2Wmax

]

=exp
[
− (t+ 1−Wmax) ln(t+ 1−Wmax)μ̄(I, J)

2Wmax

]
.

When s > max(a, 2), (s + a) ln(s + a) ≤ (s + a)[ln s + lnmax(a, 2)] ≤ 4s ln s.
Setting a = Wmax− 1 and s = t+1−Wmax, we have that when t+1−Wmax >
max(Wmax − 1, 2),

(t+ 1−Wmax) ln(t+ 1−Wmax)μ̄(I, J)

2Wmax
≥ t ln tμ̄(I, J)

8Wmax
. (7.31)

If t > Cτ,5 with Cτ,5 = max(e3Wmax ,Wmax−1, 2)+Wmax, then (7.31) holds and
(7.30) implies

Pr {et,r(I, J) > tμ̄(I, J)} ≤ exp
[
− t ln t μ̄(I, J)

8Wmax

]
.

The rest of the proof repeats the proof of Lemma 4.2 in [24] (start from the fourth
paragraph in Section 4.2, note that the constant 8 is replaced by Cτ,5,

1
2 in the

exponent is replaced by 1
8Wmax

, c, c1, c2 and c3 are replaced, respectively, by τ ,
3(WmaxCτ,2 + 1), Cτ,3 and Cτ,4). In particular, by following their calculation,
we can show that if Cτ,3 = max{3(WmaxCτ,2 + 1), Cτ,5} and Cτ,4 is chosen so
that Cτ,4/(8Wmax) − 6 = τ , that is Cτ,4 = 8Wmax(τ + 6), then Lemma 8 is
valid. To complete the proof, note that max(Wmax − 1, 2) ≤ 3(WmaxCτ,2 + 1).
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Proof of Lemma 9. By definition, E(eλXi) = pie
wi(1−pi)λ + (1− pi)e

−wipiλ.
Following the same proof as Lemma A.1.8 in [2], we have

E(eλX) ≤ e−
∑n

i=1 wipiλ[pewmaxλ + (1− p)]n. (7.32)

Let a be any positive real number and λ = 1
wmax

ln[1 + a/pn], then using

pewmaxλ + (1 − p) = 1 + a/n and (1 + a/n)n ≤ ea, the right hand side of
(7.32) is bounded by

ea−
1

wmax

∑n
i=1 wipi ln[1+a/pn].

The Chernoff bound then implies that

Pr(X ≥ a) < e−aλE(eλX) ≤ ea−( 1
wmax

∑n
i=1 wipi+a) ln[1+a/pn].

Let a = kpmaxn, Lemma 9 is proved as follows:

Pr(X ≥ kpmaxn) < ekpmaxn−( 1
wmax

∑n
i=1 wipi+kpmaxn) ln[1+k]

< e
1

wmax
kpmaxn(1−ln(k+1))

< e−
1

2wmax
(k+1)pmaxn ln(k+1),

where the last inequality holds when k > max(e3wmax , 2).
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