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1. Introduction
Consider an equation
t
Y(t, x) = q(t, x) + €&(t,x) with q(t, x) =/ gt — 2)f(z, x)dz. (1.1)
0

where X = (X1, X2), (t, X1, X2) € U = [0, 00) x [0, 1] x [0, 1] and &(z, x4, x;) is the three-dimensional Gaussian white noise
such that

Cov {&(z1, X11, X12), §(22, X21, X22)} = (21 = 22) I(X11 = X21) I(X12 = X22).

Here and in what follows, I(A) denotes the indicator function of a set A. Formula (1.1) can be viewed as a noisy version of a
functional Laplace convolution equation. Indeed, if x is fixed, then (1.1) reduces to a noisy version of the Laplace convolution
equation

t) = q(t) + €&(t) with q(t)=/ g(t — 2)f(2)dz, (1.2)
0

that was recently studied by Abramovich et al. (2013), Comte et al. (2017) and Vareschi (2015).
Eq. (1.1) represents a white-noise version of the Laplace convolution equation which corresponds to the observational
version of the equation

G
Y(ti, X1, X2,1) = / g(ti — 2)f(z, X1, xo,)dz + 0 &, (1.3)
0
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wherei=1,...,n9,j=1,...,n1,1=1,...,ny, t; = iT /ng are equispaced on the interval [0, T],x; j = j/ny and x, ; = I/n;
and §;j; are standard normal variables that are independent for different i, j and . If ng, ny and n, are large, then Eq. (1.1)
serves as an “idealized” version of Eq. (1.3). This result is rigorously proved in the case of the Gaussian regression model (see,
e.g. Brown and Low (1996)), and it is well known that it holds for a large variety of settings. Abramovich et al. (2013) studied
a one-dimensional (n; = n, = 1) version of Eq. (1.3). It follows from the upper and lower bounds in their paper that the
correspondence between Egs. (1.2) and the one-dimensional version of Eq. (1.3) holds with e = o T//n where n = ngnn;
(since ny = ny = 1).

Comteetal.(2017)also studied solution of Eq. (1.3) in the case of n; = n, = 1andrigorously investigated the implications
of the fact that observations are taken on the finite interval [0, T] rather than on the positive part of the real line. They showed
that the latter leads to a much more involved mathematical arguments. On the other hand, Vareschi (2015) considered
Eq.(1.2) and, building upon an earlier version of Comte et al. (2017), derived the lower and the upper bounds for the error in
the white noise version of the Laplace deconvolution problem. Our paper can be regarded as an extension of Vareschi's (2015)
results to the case when Laplace convolution equation has a spatial component and the function of interest is anisotropic,
i.e., may have different degrees of smoothness in different directions. Therefore, our objective is to show how utilizing the
spatial smoothness of the unknown function f leads to its more precise recovery.

Our study is motivated by the analysis of Dynamic Contrast Enhanced (DCE) imaging data. DCE imaging provides a non-
invasive measure of tumor angiogenesis and has great potential for cancer detection and characterization, as well as for
monitoring, in vivo, the effects of therapeutic treatments (see, e.g., Bisdas et al. (2007), Cao (2011), Cao et al. (2010) and
Cuenod et al. (2011)). The common feature of DCE imaging techniques is that each of them uses the rapid injection of a
single dose of a bolus of a contrast agent and monitors its progression in the vascular network by sequential imaging at
times t;,i = 1, ..., n. This is accomplished by measuring the pixels’ gray levels that are proportional to the concentration of
the contrast agent in the corresponding voxels. At each time instant t;, one obtains an image of an artery as well as a collection
Y(t;, X) of measurements for each voxel x. For example, in the case of a CT scan, Y(t;, X) are the Hu units which represent
the opacity of the material to X-rays. The images of the artery allow to estimate the so called Arterial Input Function, AIF(t),
which quantifies the total amount of the contrast agent entering the area of interest. Comte et al. (2017) described the DCE
imaging experiment in great detail and showed that the cumulative distribution function F(z, x) of the sojourn times for the
particles of the contrast agent entering a tissue voxel x satisfies the following equation

-8
Y(t,x) = / g(t —z) B(x)(1 — F(z, X))dz + &(t, X). (1.4)
0

Here the errors &£(t, X) are independent for different t and x = (x1, x2), g(t) = AIF(t), a positive coefficient B(x) is related
to a fraction of the contrast agent entering the voxel x and § is the time delay that can be easily estimated from data. The
function of interest is f(z, x) = B(x)(1 — F(z, x)) where the distribution function F(z, X) characterizes the properties of the
tissue voxel x and can be used as the foundation for medical conclusions.

Since the Arterial Input Function can be estimated by denoising and averaging the observations over all voxels of the
aorta, its estimators incur much lower errors than those of the left hand side of Eq. (1.4). For this reason, in our theoretical
investigations, we shall treat function g in (1.4) as known. In this case, Eq. (1.4) reduces to the form (1.1) that we study
in the present paper. If one is interested in taking the uncertainty about g into account, this can be accomplished using
methodology of Vareschi (2015).

Laplace deconvolution equation (1.2) was first studied in Dey et al. (1998) under the assumption that f has s continuous
derivatives on (0, oo). However, the authors only considered a very specific kernel, g(t) = be~, and assumed that s is
known, so their estimator was not adaptive. Abramovich et al. (2013) investigated Laplace deconvolution based on discrete
noisy data. They implemented the kernel method with the bandwidth selection carried out by the Lepskii’'s method. The
shortcoming of the approach is that it is strongly dependent on the exact knowledge of the kernel g. Recently, Comte et
al. (2017) suggested a method which is based on the expansions of the kernel, the unknown function f and the observed
signals over Laguerre functions basis. This expansion results in an infinite system of linear equations with the lower triangular
Toeplitz matrix. The system is then truncated and the number of terms that are kept in the series expansion of the estimator
is controlled via a complexity penalty. One of the advantages of the technique is that it considers a more realistic setting
where Y(t) in Eq. (1.2) is observed at discrete time instants on an interval [0, T] with T < oo rather than at every value of t.
Finally, Vareschi (2015) derived a minimax optimal estimator of f by thresholding the Laguerre coefficients in the expansions
when g is unknown and is measured with noise.

In the present paper, we consider the functional version (1.1) of the Laplace convolution equation (1.2). The study is
motivated by the DCE imaging problem (1.4). Due to the high level of noise on the left hand side of (1.4), a voxel-per-voxel
recovery of individual curves is highly inaccurate. For this reason, the common approach is to cluster the curves for each
voxel and then to average the curves in the clusters (see, e.g., Rozenholc and Reif3 (2012)). As the result, one does not
recover individual curves but only their cluster averages. In addition, since it is impossible to assess the clustering errors,
the estimators may be unreliable even when estimation errors are small. On the other hand, the functional approaches,
in particular, the wavelet-based techniques, allow to denoise a multivariate function of interest while still preserving its
significant features.

The objective of this paper is to solve the functional Laplace deconvolution problem (1.1) directly. In the case of the
Fourier deconvolution problem, Benhaddou et al. (2013) demonstrated that the functional deconvolution solution usually
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has a much better precision compared to a combination of solutions of separate convolution equations. Below we adopt
some of the ideas of Benhaddou et al. (2013) and apply them to the solution of the functional Laplace convolution equation.
Specifically, we assume that the unknown function belongs to an anisotropic Laguerre-Sobolev space and recover it using a
combination of wavelet and Laguerre functions expansion. Similar to Comte et al. (2017), we expand the kernel g over the
Laguerre basis and f(t, x), q(t, X) and Y(t, X) over the Laguerre-wavelet basis and carry out denoising by thresholding the
coefficients of the expansions, which naturally leads to truncation of the infinite system of equations that results from the
process. We derive the minimax lower bounds for the L?-risk in the model (1.1) and demonstrate that the wavelet-Laguerre
estimator is adaptive and asymptotically near-optimal within a logarithmic factor in a wide range of Laguerre-Sobolev balls.
We carry out a limited simulation study and then finally apply our technique to recovering of f(z, X) in Eq. (1.4) on the bases
of DCE-CT data.

Although, for simplicity, we only consider the white noise model for the functional Laplace convolution equation (1.1),
the theoretical results can be easily generalized to its observational version ( 1.3) by following Comte et al. (2017). However,
as it is evident from Comte et al. (2017), the latter will lead to much more complex calculations and will make the paper
very difficult to read while adding very little to the paper conceptually. For this reason, in the present paper, we avoid this
extension.

The rest of the paper is organized as follows. In Section 2, we describe the construction of the wavelet-Laguerre estimator
for f(t,x) in Eq. (1.1). In Section 3, we derive the minimax lower bounds for the [2-risk for any estimator of f in (1.1)
over anisotropic Laguerre-Sobolev balls. In Section 4, we demonstrate that the wavelet-Laguerre estimator is adaptive and
asymptotically minimax near-optimal (within a logarithmic factor of ¢) in a wide range of Laguerre-Sobolev balls. Section 5
presents a limited simulation study followed by a real data example in Section 6. The proofs of the statements of the paper
are placed in Section 7. Finally, Section 8 provides some supplementary results from the theory of banded Toeplitz matrices.

2. Estimation algorithm

In what follows we are going to use the following notations. Given a matrix A, let AT be the transpose of A, |A[f =
VTr(ATA) and ||A|| = Amax(ATA) be, respectively, the Frobenius and the spectral norm of a matrix A, where Ama(U) is the
largest, in absolute value, eigenvalue of U. We denote by [A],, the upper left m x m sub-matrix of A. Given a vector u € R, we
denote by |[u]| its Euclidean norm and, for p < k, the p x 1 vector with the first p coordinates of u, by [u],. For any function
t € [,(R,), we denote by ||t], its L, norm on R. For vectors, whenever it is necessary, we use the superscripts to indicate
dimensions of the vectors and subscripts to denote their components. Also, a V b = max(a, b) and a A b = min(a, b).

Consider a finitely supported periodized ro-regular wavelet basis (e.g., Daubechies) v; x(x) on [0, 1]. Form a product
wavelet basis ¥, (X) = ¥j, k, (X1)¥j, k,(X2) on [0, 1] x [0, 1] where @ € §2 with

2 ={w="{(1 ki;ja. ko) j1.j2=0,...,00 k =0,..., 277" ky=0,..., 227} (2.1)

Denote functional wavelet coefficients of f(t, X), q(t, X), Y(t, X) and &(t, X) by, respectively, f,,(t), o(t), Yo(t) and &,(t). Then,
forany t € [0, 00), Eq. (1.1) yields

Yo(t) = qo(t) + e&,(t) with qm(t)zf g(t — s)fu(s)ds (2.2)
0
and function f(t, X) can be written as
= wa(t)%(X), fot) = ft, X)Pu(x)dx X = (X1, X2). (2.3)
weR (0,172

Now, consider the orthonormal basis that consists of a system of Laguerre functions

@t)=e 2L (t), 1=0,1,2,..., (2.4)
where Li(t) are Laguerre polynomials (see, e.g., Gradshtein and Ryzhik (1980), Section 8.97)

l .
aAw:
=1 (§) 5 ez
= i/
It is known that functions ¢,(-), I = 0, 1, 2, ..., form an orthonormal basis of the L?(0, co) space and, therefore, functions

fo(-), 8(-), qu(-) and Y,(-) can be expanded over this basis with coefficients 6., &, q.» and Y., | = 1, ..., oo, respectively.
By plugging these expansions into formula (2.2), we obtain the following equation

mewl Zzglwgk‘/o @kt — S)pi(s)ds (2.5)

=0 k=0
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Following Comte et al. (2017), for each w € £2, we represent coefficients of interest 6., = 0, 1, ..., as a solution of an
infinite triangular system of linear equations. Indeed, it is easy to check that (see, e.g., 7.411.4 in Gradshtein and Ryzhik
(1980))

/ SNt — X)dx = e / LOOL(E — X)dx = dis(t) — Beayon ().
0 0

Hence, Eq. (2.5) can be re-written as

[e9) [e9) k—1
Z Q0 Pr(E) = Z |:9I<;w g + Z(gk—l - gk—l—1)91;w:| oi(t).
k=0

k=0 1=0

Equating coefficients for each basis function, we obtain an infinite triangular system of linear equations. In order to use this
system for estimating f, we choose a fairly large M and define the following approximations of f and g based on the first M
Laguerre functions

M-1
=D Oror(t)¥u(X),  qult, X) ZZ%&M W, (x). (2.6)

we2 1=0 weR =0

Let G(M) ¢™ and q(M be M-dimensional vectors with elements 6;.,, g and q;.,, | = 0,1,..., M — 1, respectively. Then
for any M and any @ € 2, one has q;; M) — GM) 0“‘/’ where GM) is the lower triangular Toeplltz matrix with elements G,] ,
0<i,j<M-1

. [& if i =j,
G =1 (g —gijo1). ifj<i, (2.7)
0, if j > i.

In order to recover f in (1.1), we estimate coefficients qy.,, in (2.6) by
o0
Gl = [ VuOa(d 1=0.2..... 28)
0

and obtain an estimator 8 of vector 8™ of the form

O M

600 — (G 1g(". (2.9)
Denote by £2(J1, J») a truncation of a set £2 in (2.1):

QUrh)={o=(1.kijk):0<ji<Ji—1, k=0,.... 2" i=12}. (2.10)

—

If we recovered f from all its coefficients 02’,‘”) with ® € £2(J;, J2), the estimator would have a very high variance. For this
reason, we need to remove the coefficients that are not essential for representation of f. This is accomplished by constructing
a hard thresholding estimator for the function f(t, x)

Fex=Y" Y Ol (Brol > i) @it) WalX), (2.11)

=0 wesf(1.)2)

where the values of J1, J,, M and A; . will be defined later.
3. Minimax lower bounds for the risk

In order to determine the values of parameters J4, J,, M and A, ¢, and to gauge the precision of the estimatorf, we need to
introduce some assumptions on the function g. Let r > 1 be such that

dgt)] o, ifj=0,....r—2, a1
dv |, |B-#0. ifj=r—1. '
with the obvious modification g(0) = B; # 0 for r = 1. We assume that function g(x) and its Laplace transform

fo e g(x)dx satisfy the following conditions:
Assumption Al. g € L1[0, co) is r times differentiable with g™ e 1[0, c0).

Assumption A2. Laplace transform G(s) of g has no zeros with nonnegative real parts except for zeros of the form s = co—+ib.
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Assumptions A1 and A2 are difficult to check since their verification relies on the exact knowledge of g and the value of
r. Therefore, in the present paper, we do not use the value of r in our estimation algorithm and aim at construction of an
adaptive estimator that delivers the best convergence rates that are possible for the true unknown value of r without its
knowledge. Hence, we need to derive the smallest error that any estimator of f can attain under Assumptions A1 and A2.

For this purpose, we consider the generalized three-dimensional Laguerre-Sobolev ball of radius A, characterized by its
wavelet-Laguerre coefficients 6., = 61, j, k; .k, as follows:

00 00 o0 211 221
BB (A) =) Y D ey aprexp 2y IF) Y > 0, <A, (3.2)
=0 j1=0j,=0 k1=0 ky=0

where we assume that 8 = 0if y =0and 8 > 0ify > 0.

Note that if f were a function of x and y only, inequality (3.2) would contain only sums over j; and j, and would state
that function f belongs to a two-dimensional Sobolev ball. On the other hand, the sum over [ provides upper bounds on
the functional Laguerre coefficients. Observe that, unlike in the case of the wavelet coefficients that are usually bounded by
powers of 2/1 and 272, it is feasible for Laguerre coefficients to decrease exponentially with I (see, e.g., Comte and Genon-
Catalot (2015) for examples). Recall also, that the original equation (1.1) requires solution of an ill-posed problem in time
variable (that corresponds to index [ in (3.2)) while represents functional regression in space. The value of r in Assumption A1l
serves as the degree of ill-posedness and, therefore, affects only the precision of recovery of f in the time but not the space
domain. For this reason, in the expressions for the upper and the lower bounds of the error, the values of s; and s, are
compared with s3/(2r) rather than ss. In particular, in what follows we shall assert that both the lower and the upper bounds
for the risk are expressed via

A’ [A72e?]EHT, i s; < min(sy, s3/(2r)), y =B =0
e [A’zez]hz;z“, if s, < min(sy, s3/(2r)), ¥ = B =0
A(s1,52,83, 7, B, A) = 1 A2 [A7%e?] 255:‘2”, if s3 < min(2rsy,2rs;), y =B =0 (33)
A [A—Zez]z?il, if51 <5, 7>08>0
A’ [A2e?] %2, ifs; <sp, ¥y > 0,8>0.

In order to construct minimax lower bounds, we define the maximum L?-risk over the set V of an estimator f as

R(f. V) = sup E(f —fI. (3.4)

The following theorem provides the minimax lower bounds for the L?-risk of any estimator f of f.

Theorem 1. Let min{s, s} > 1/2 ands; > 1/2if y = B = 0. Then, if ¢, is small enough, under Assumptions A1 and A2, for
some absolute constant C > 0 independent of ¢, one has

i?f Re(f. B3 2(A)) = C A(s1. 52. 53, ¥ B. A). (3.5)

Note that the one-dimensional version (1.2) of the problem (1.1) corresponds to the situation when s; = s, = oo.
Vareschi (2015) derived the upper and the lower bounds for the error in the case of y = 0. His lower bounds coincide with
the lower bound given by (3.3) when y = 0 and s; = s, = oo.

4. Upper bounds for the risk

In order to derive an upper bound for R.(f, B));>(A)), we need some auxiliary statements. Consider G, the lower

triangular Toeplitz matrix defined by formula (2.7) with M = m. The following results follow directly from Comte et al.
(2017) and Vareschi (2015).

Lemma 1 (Lemma 4, Comte et al. (2017), Lemma 5.4, Vareschi (2015)). Let conditions A1 and A2 hold. Denote the elements of the

last row of matrix (G/™)~" by v, j = 1,..., m. Then, there exist absolute positive constants Cg1, Co, C1 and C,, independent of
m such that
Cam®™ < (G™)P* < I(G™) I < Ceum™, (4.1)

Cu‘l er—l

IA

m
> v < Com? (4.2)
j=1
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Using Lemma 1, one can obtain the following upper bounds for the errors of estimators 6;.,:

Lemma 2. Let @;w be the Ith element of the vector 08‘/’) defined in (2.9). Then, under the Assumptions A1 and A2, one has

var (O] < C2 €217, (4.3)

E[Bho — O]’ < 3C% 61472, (4.4)

Pr([Bro — 6ol > ev/2010ge=) - IG0) 1)) < &, (45)
provided v > tC,,/Cs1 where Cgq and C,; are defined in (4.1) and (4.2), respectively.
Following Lemma 2 we choose J1, J», M such that

=22 =p? M=max{m=1: I(G™)~ 1) < e 2}, (4.6)
and thresholds A; . of the forms

M = 2¢v/2vlog(e=1) -1 (GO, (4.7)
where the value of v is large enough, so that it satisfies the inequality

v > 12Cy,/Ce1, (4.8)

and C,, and C¢q and C,, are defined in (4.1) and (4.2), respectively. Then, the following statement holds.

-~

Theorem 2. Let min{sy,s;} > 1/2ands; > 1/2if y = B = 0. Let f(t, X) be the wavelet-Laguerre estimator defined in
(2.11), with ]y, J, and M given by (4.6). Let A > 0, and let condition (3.2) hold. If v in (4.7) satisfies inequality (4.8), then, under
Assumptions A1 and A2, if e, is small enough, for some absolute constant C > 0 independent of ¢, one has

Rr (B523(A)) < T Als1, 52,53, 7, B, A) [log(1/6)]",

where A = A(sq1, S2, S3, ¥, B, A) is defined in (3.3) and

(4.9)

s
251/(2s1 + 1)+ 1(sy = $;) + I(s3 = 2rsy),  if s; < min(sz, 2—1), y=8=0
. . s
255/(252 + 1) + 1(s1 = s2) + I(s3 = 2r52), if s» < min(sy, 2—1), y=p=0
d=
2s3/(2s3 + 2r) 4+ 1(s3 = 2rs1) + I(s3 = 2rsy), if s3 < min(2rsqy, 2rs3), y =B =0

251/(2s1 + 1)+ I(sy = s2),
253/(2s2 + 1) + 1(s1 = s2),

if s1<s, y>0,8>0
if $9<s1,y>0,8>0.

5. Simulation studies

In order to study finite sample properties of the proposed estimation procedure, we carried out a limited simulation
study. For each test function f(t, x) and a kernel g(t), we obtained exact values of q(t, X) in Eq. (1.1) by integration. We
considered n equally spaced points t, = Tk/n,k = 1, ..., n, on the time interval [0; T]. We created a uniform grid {xlqi, xz,j}
on[0, 1] x [0, 1Jwithi=1,...,n;andj = 1,..., ny, and obtained the three-dimensional array q; xj = q(x1,, X2 j, tx). After
fixing the Signal-to-Noise Ratio (SNR), we evaluated the value of o as ¢ = n~'/? std (q)/SNR, where std (q) is the standard
deviation of the tensor with values q; i j reshaped as a vector. Finally, we obtained a sample Y; ; , of the left-hand side of Eq.
(1.1) by adding independent Gaussian N(0, o) noise to each value Qirjpi=1,...,n,j=1,...,mk=1,...,n

We constructed a system of M Laguerre functions of the form (2.4). For each time point k = 1, ..., n, we found the
matrix of wavelet coefficients using the Daubechies 6 wavelets and constructed estimators oy, k = 1,...,n, of o as the
standard deviations of the wavelet coefficients at the highest resolution level. Subsequently, we obtained & as the average
of 6, k = 1, ..., n.Finally, for each of the indices @ € $2(J;, J>), we evaluated the sample wavelet-Laguerre coefficients ’6\1;,,),
I=0,...,M — 1, as solutions of the linear regression problems.

Next, for each | = 0, ..., M — 1, we derived the threshold A,z of the form (4.7) with® = T&'//n and n = ngnyn,, and
obtained the thresholded estimators ’9\1;,,, I (@wl > )»,3) of the coefficients 6., | = 0,...,M — 1, w € §2(J1, J2). Finally we
constructed the estimatorfof the form (2.11) by the Laguerre reconstruction and the subsequent inverse wavelet transforms.
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Table 1
The standard deviations, the norms and the average values of the relative errors A(f) (with the standard errors of the means in parentheses) evaluated
over 100 simulation runs for the four test functions. The test functions are defined in formula (5.1).

Function std(f) If1 SNR =3 SNR=5 SNR =7
fi(t,x) 0.0025 0.5084 0.1107 (0.0110) 0.0694 (0.0066) 0.0511 (0.0049)
f(t,X) 0.3334 61.8367 0.1224 (0 0100) 0.0761 (0. 0071) 0.0567 (0.0051)
f5(t,%) 0.3342 62.0261 0.1107 (0.0112) 0.0680 (0.0068) 0.0511 (0.0048)
falt, x) 0.3366 62,6863 0.1080 (0.0117) 0.0690 (0.0058) 0.0519 (0.0046)

In our simulations, we used ny = n, = n = 32,M = 8and T = 5. We chose g(x) = exp(—x/2) and carried out
simulations with the following test functions

fi(t,x) =te {(x; — 0.5)* (x, — 0.5)%,

H(t,x) = e"t? cos(2mx1x2), (5.1)
fa(t,X) =te {(x; — 0.5)% (%, — 0.5)* + 72 cos(2mx1x2),

falt, x) = e7/2 cos(27x1%2) + (X1 — 0.5)? (x, — 0.5).

We also considered three noise scenarios: SNR = 3 (high noise level), SNR = 5 (medium noise level) and SNR = 7 (low
noise level). In order for the values of the errors of our estimators to be independent of the norms of the test functions, we
evaluated the average relative error as the average L>-norm of the difference between f and its estimator divided by the
norm of f:

A = If = FI/IF1.

Table 1 reports the mean values of those errors over 100 simulation runs (with the standard errors of the means presented
in parentheses) for the four test functions and the three noise levels. The errors are reported together with the standard
deviations and the norms of each of the functions.

Table 1 confirms that our method allows to solve the functional deconvolution problem with high accuracy. As it is
expected, the precision of estimation improves when SNR grows and o declines. Note also that reporting the relative errors
for each of the test functions and arranging them in accordance with the SNR values allows us, in some way, to characterize
precision of the method rather than the complexity of the recovery of a particular test function. Indeed, the relative errors
of estimators of all four test functions are similar to each other in spite of variations in their norms and standard deviations.

6. Real data example

As an application of the proposed technique we studied the recovery of the unknown function f(t, x) = (1 — F(t, X))
in Eq. (1.4) on the basis of the DCE-CT (Computerized Tomography) images of a participant of the REMISCAN cohort
study (REMISCAN, 2015) who underwents anti-angiogenic treatment for renal cancer. The data consist of the arterial images
and images of the area of interest (AOI) at 37 time points over approximately 4.6 min interval. The first 15 time points
(approximately the first 30 s) correspond to the time period before the contrast agent reached the aorta and the AOI (so
8 = 0inEq. (1.4)). We used those data points for the evaluation of the base intensity.

Since the images of the aorta are extremely noisy, we evaluated the average values of the gray level intensity at each time
point and then used Laguerre functions smoothing in order to obtain the values of the Arterial Input Function AIF(t). The
images of AOI contain 49 x 38 pixels. Since our technique is based on periodic wavelets and hence application of the method
to a non-periodic function is likely to produce Gibbs effects, we cut the images to the size of 32 x 32 pixels. Furthermore, in
order to achieve periodicity, we obtained symmetric versions of the images (reflecting the images over the two sides) and
applied our methodology to the resulting spatially periodic functions. Conssquently, the estimator obtained by the technique
is spatially symmetric, so we record only the original part as the estimator f. Fig. 1 shows the averages of the aorta intensities
at each time point and its de-noised version that was used as AIFE(t). Fig. 2 presents the values offat 34 s (corresponds to
the first time point when the contrast agent reaches the AOI), 95 s (the 12th time point) and 275 s (the last time point).

7. Proofs
7.1. Proof of the lower bounds for the risk

In order to prove Theorem 1, we use Lemma A1 of Bunea et al. (2007), which we will reformulate for the squared risk
case.

Lemma 3. Let © be a set of functions of cardinality card (©) > 2 such that
()If —gl* = 48, forf,g €O, f #¢g,
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Fig. 1. Left: the averages of the aorta intensities (blue) and the estimated Arterial Input Function AIF(t) (red). Right: two curves for distinct spatial locations.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The values offat 34 s (corresponds to the first time point), 95 s (the 12th time point) and 275 s (the last time point).

(ii) the Kullback divergences K(Ps, Py ) between the measures Py and P, satisfy the inequality K(Py, Py) < log(card (©))/16, for

f.ge0b.
Then, for some absolute positive constant Cy, one has

inf sup E¢||fn —fI? = ;82
fa feo

where inff, denotes the infimum over all estimators.

In order to obtain lower bounds, we introduce a triangular Toeplitz matrix associated with Laurent series (1 — z)™" (see
Section 8 for more detailed explanations) and denote by Q) = T; ((1 — z)™") its reduction to the set of indices 0 < | < L—1.
Following Vareschi (2013), consider function

o o (=1 =12\ T3 T (G+)
h(t)—ghl‘pl(t) Wlthhl—m( I >—W (7.1)

Denote 8 = (6, ..., 0,_1)" = QWh® where h; is the vector of the first L coefficients of function h in (7.1). In what follows
we shall use Lemma 6.5 of Vareschi (2013) that was in the original version of the paper posted on ArXiv but did not make it
to the published version of Vareschi (2015).

Lemma 4. Let h(t) be as defined in (7.1) and 6" = QWh®) where Q) = T; ((1 — z)™") and h® are reductions of the infinite-
dimensional Toeplitz matrix T ((1 - z)‘r) and vector h of coefficients of h(t) to the set of indices 0 < | < L — 1. Then, h(t) is
square integrable and there exist positive constants C,, and C,, that depend on r only such that for allr > 1 and any | > 0 one
has

r—1/2
1 % <6 <Cap(vi1y 2 (7.2)
Let ¢ be a matrix with components o, x, = {—1,1}, k; =0, 1, ..., 21 -1,k =0,1,...,22 — 1. Denote the set of all
possible values of ¢ by © and let functions f; ;, j, be of the form

fL,j],jz(tvxhxz) =p ql(t)pjl,jz(xlsxz)» (73)

-1 2J1-1 221
Q@)=Y 0p(t), P p®x) =Y D ity Vi (1) Yk (X2), (7.4)

1=0 k1=0 ky=0
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where 0 is the vector with components 6, [ =0, ..., L — 1 where 8 = Q®Wh® and Q® and h!¥) are defined above. Since
fiivi, € B3P (A), Lemma 4 implies that one can choose

,02 — CrA22—2j1(51+%)—212(52+%) (Lv 1)—2(T+53) exp {—2)/[/3} , (7.5)

where 0 < G < Cr22/2r. IffLJ-1 4 is of the form (7.3) but with 5,“,;{2 € O instead of ¥y, x,, then, by Lemma 4, the [?-norm of
the difference is of the form

-1 21-1 221 2 21 (5 or
. - C2p*H (9, 9) (L 1)
L. o2 — A2 2 r1
”fL,Jl,]z fL,]l,Jz 2 =p (; 0: b ) kzo kzo I (ﬂk]’kz = ﬁkl’kZ) = 2r [log(L v e)]?
— 1=0 k=

Here H (f?, 19) is the Hamming distance between the binary sequences vec() and vec( ) where vec(#?) is a vectorized version
of matrix 9.

Observe that matrix ¥ has & = 2/1*2 components, and hence, card (©) = 2®. In order to find a lower bound for H (%, ¥),
we apply the Varshamov-Gilbert lemma which states that one can choose a subset ® of @, of cardinality of at least 28/8)
and such that H (19, 19) > % forany 9, 9 € ©;.Hence, forany 9, ¥ € ©;, one has the following expression for 6 defined in
Lemma 3:

Cr21p22h+jz(L Vi ])2r
161 [log(L Vv e)]?
Let Py be the djstribution of the process {f * g(t, x) + edW(t, X), (t, X) € U} whenf is true, where W(t, x) is a Wiener process.
Then, since |19,,k’k/ - ﬁ,,k’kﬂ < 2, and due to the multiparameter Girsanov formula (see, e.g., Dozzi (1989), p. 89), (7.3) and

(7.4), the Kullback divergence can be bounded as

K(Pr, P;) = Ep, [log (Pf/P;)] = —Ep |:8_1 /((f — F)yxg)(t, x)dW(t, x)]
0]

= 452, (7.6)

7 2
”fl-,jl,jz _fl,fl,jz” z

_ - 2
+ (262 ‘/ ((f -f *g) (t, X)dtdx
u
7‘1 ~
= (2¢%) I = f)=zl3
< 2677 p?2 R g x g = 2677 p?2 2 GOV, (7.7)
where matrix G and vector 8 are defined in (2.7) and Lemma 4, respectively. By Lemma 5 in Section 8, and under
Assumptions A1 and A2, one obtains that G = T;((1 — z)"v(2)) and [Ty (v(2))II? = Amax T} (V(@)Ti(v(2))] < |Jv]|%, < oo
Therefore, GROY = GUQMRD = T,((1 — 2) v(Z))TL((1 — z)~")h™® and
IG5 = T (o) < [T (u@)I*IhD]3 < [vl1Z, 1113 < oo (7.8)

where ||h||§~is the [?-norm of the fgnction h(t) and ||h|l; < oo due to Lemma 4. Combination of (7.7) and (7.8) yields
K(Py, P) < Ce~2p?21472 /16 where C = 32||v||%,. Ih]l3. Application of Lemma 3 requires the constraint

K(Py;, P;) < log(card (©))/16 = log(2)2"' "2 /16.
Therefore, one can choose p? = 82/6, so that, by Lemma 3 for some C; > 0 one has

infsup Ey [y — f1I* = Cie?2 2 (Lv 1) [log(L v e)] 2, (7.9)
n fe®

where L, j; and j, are such that
23202 43) (L 112049 exp 2y 18} = A% 2, (7.10)

with G; = Crf/log(Z). Thus, one needs to choose j;, j; and L that maximize 2172 (L v 1)*" [log(L v e)] 2 subject to condition
(7.10). Denote

7, = log(A%72). (7.11)
It is easy to check that the solution of the above linear constraint optimization problem is of the form {ji,j,,L} =
1
{0, 0, Azs—2]253+zr} if s3 < min{2rsy, 2rs;} and y = B = 0, {j1.jo, L} = {0, (log(2)) '(2s; + 1) 'z, e} if 51 > 55, 53

\%

215, —2s; —land y = B =0, {ji, jo, L} = {(log(2)) "' (2s1 + 1) "', 0, e} if sy < s;and s3 > 2rsy — 25y — land y = g = 0.
{1 j2. 1} = {0, (log(2)) ' 2s; + 1) 'z, e} if sy = s and y > 0, 8 > 0,and {j1, jo, L} = {(log(2)) ' (251 + 1) "'z, 0, e} if
s1 <syand y > 0, 8 > 0. By noting that

{ 252 251
n

2$2+1’251+1

< } , if s3 < min{2rsy, 2153}, y =B =0, (7.12)
S3 +r



280 R. Benhaddou et al. / Journal of Statistical Planning and Inference 199 (2019) 271-285

2 i 22 3 s < mingsy2rs). v =g =0, (7.13)
2s1+1 7 255+ 1 s3+r1 -
25 . 251 S3 . .
< min s , if s, < min{s3/2r, s1}, =p8=0, 7.14
211 ° {251+1Sa+r} if s {s3/2r,s1}, v =8 (7.14)
and
2s 2s:
L < 2 ifs1<s, y>0p8>0, (7.15)

251+1 - 252+1’
we then choose the highest lower bounds in (7.9). This completes the proof of the theorem.

7.2. Proof of the upper bounds for the risk

The proof of Lemma 2. Denote the quantities 6., — 6., by 8, and notice that ¥, = 6, — 6., = se] (G(’))qé(’), where
£ is the I-dimensional Gaussian vector such that £ ~ N(0, I;), and ey is the Ith standard basis vector of dimension I. Also,
note that ee (G)~1&) = 82;;101)1{5/(. where vy is defined in Lemma 1. Then, by (4.2), the variance of &, ,, is
-1
E[Ro]" =Y 0f < Ce?P (7.16)
k=0
Now, for the fourth moment of ¥ ,,, and using properties of Gaussian random variables, one has

-1 4
¢'E |:Z vkék:|

k=0

E[N0]"
-1

1-1
=gt Z VeE(ED) + 3 Z v,%] v,fz
k=0

k] ,’(2:0,’(1 ;ékz

-1 2
= 3¢* |:Z v,f:| < 384[Cv212r’1]2.
k=0

This completes the proof of (4.4). In order to prove formula (4.5), recall that &;, ~ N(O, 8225;101),3). Therefore, by the
Gaussian tail probability inequality, one obtains

Pr| |Rio| > /27 In(e~1)e (7.17)
Now, since

-1 c c

D ovp <GP < 221G, P < 26O, (7.18)

k=0 Co, Co,
(4.5) follows, provided v > rggz .

1
The proof of Theorem 2. Denote
S 2s 2s
min: > == },ify=/3=0,
B s3+r1r 2s5+1 251+ 1
"= (7.19)
. 2s, 251 .
min { ————, , if y>0p8=>0.
252 +1 251 +1

Xen = [A7%e% log(1/¢)], (7.20)

. _ ; T

2i10 — [XE,A] 37 Do — [Xg,A] e (7.21)
and

e .
[Xea] 2 if y=p=0
(7.22)

Mo = |:log(1/s)i|l/ﬂ ify>0,8>0
> , ,
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and notice that with the choices of J1, J, and M given by (4.6), the estimation error can be decomposed into the sum of three
components as follows

[e]
Elfa =17 < DY Elfol (ol > Are) = Oroll® < Ry + Ra + Rs, (7.23)
w 1=0

where

Ji=12-1M-1

Ri= 3003 D8 o = b1 (o] > 1)

Jj1=0j,=0 I=0 kK
Ji—1—-1M~-1

Ro=) > 3> 10l Pr([fr] < Are).

Jj1=0j,=0 I=0 kk'
oo 00 00 Ji-1 o o oo h—1 oo oo oo M-1
= 22>+ > M+Z]ZZ+ZZ ) S .
h=h

1=l i=h =M  j1=0jo=) I= }2=01=M  j1=)1j2=) =0 kK’

For R3, one uses assumption (3.2) to obtain,

J1i-12-1 o J1-1 o0 M 0o Jp—-1 M

(03033553 302385 3) 3ol LSRR EEUEYY

J1=0j2=01=M  j1=0j=), I=1  j1=J1j2=0 I=1
= 0 (A2 + A%27%2%2 4 A’M % exp{—2yM*}). (7.24)

Ify = B =0, then since M < [52]_1/2r, R; becomes

=
&
I

2s
0 (A2 [A22]"" + A[A 262" 4 A2 [A—zgz]z%>
= 0Whxal’). (7.25)
Ify > 0,8 > 0,then
R3 =0 (Az[z‘\_zez]zs1 +A2[A_282]252>
. 255 251
=0 (AZ [XE,A]mln{252+] 259+1 ]) . (7.26)

To evaluate the remaining two terms, notice that both R; and R, can be partitioned into the sum of two error terms as
follows

Ri <Ri1 +Riz, Ry <Ry +Rxp, (7.27)

where

Ji-1p-1 M . [ 1
Rll = Z Z Z ZE |:|911w - 9[:w| I <|011m - 9[:w| > 5)\1;5>i| B (728)

j1=0j2=0 I=1 kK

Ji=1p=-1 M
Riz = ZZZZE[|9M) _91w| H(wlw' > )\ls)] s (729)

=0j,=0 I=1 kK

J1i—1p-1 M
Rt =Y 33" 16l Pr(\m Oro| > Aze>, (7.30)

J1=0j2=0 I=1 kK

Ji-1p-1 M
Ro =Y > 3" loral’ H<|9,m| < m). (7.31)

j1=0j=0 I=1 kK
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= [¢?] " vields

282
Combining (7.28) and (7.30) and applying Cauchy-Schwarz inequality, Lemma 2 and the fact that M

J1—1)2—-1

M
E 2]1+]28212r 1 1'/2 +8 § |91w|
=1 kK’

Ri1+Ry =0
AZ 1')

J1=0j2=0
=0 (s 2\ (e )

= 0(A%(e?) "+ a%7).

Hence, for ¢ > 12 and under condition (4.8), as ¢ — 0, one has
(7.32)

Rii+ Ry = 0(£%) = 0 (A*[xen]") -

Now, combining (7.29) and (7.31), and using (4.3) and (4.7), one obtains

h=1p-1 M
A=Rip+Rp =0 ZZZme {16101, € log(1/e)1 " 1(6™) 117}
=0j,=0 I=1 kK
h—1p-1 M
=0 ZZme D 1ral?, 21267 log(1/e)P" ! (7.33)
=0j,=0 I=1 kK

Then, A can be decomposed into three components, Ay, A, and As, as follows
(7.34)

Ji-1-1 M

h—-1 p-1 M h—-1 -1 M
Ar=0(( D2 22 >0 D0 A2 2wl
J1=j10+t12=0 I=1  j1=0jo=j20+1 I=1  j1=0jp=01=Mo J kK
j1i0 J20 Mo
B =0 SN S WP [ P (o) | (7.35)
J1=0j2=0 I=1
j1o a0 Mo
As=0Y 33D 10kl | T (ms) | - (7.36)
j1=0j,=0 I=1 | kK
where 1, j, = {1j1,d2 : 279227 > [xe4] } For A4, it is easy to see that for jio, joo and My given in (7.21) and (7.22)

respectively,
_ O<A2 Ziost 4 A2-20%2 | A2M —2s3 exp{—2yM5}>

Consequently, ify = 8 = 0,as ¢ — 0, one has

A1 =0(A[x:a]").

Ify > 0,8 >0, then
=0 (A22 2j1081 +A22 212052)

Aq
O(A [ .A]min[;zsfrl 2521511 )

For A, in (7.35), as ¢ — 0, one obtains

2= 0 (a4 [A7610g(1/6)] [x0a] ") = 0 (A2[x24]")

(7.

37)

(7.38)

(7.39)
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In order to evaluate (7.36), we need to consider five different cases.

251
2s1+1°

Jjio Mo j2o [X A]M_l
-0 AZZZZZ 215120252 | =253 (211 2 Jz‘glr)

j1=0 I=1 j»=0

Case1: y = 8 = 0,s; < min{s,, > > ). In this case, u =

(7.36) becomes, as ¢ — 0

J20
—0 AZ 231(1 ) 2 :172(33 512r) E 2= 22(s2-51)
J2=0
251

-0 (A2 [X A] 251 +1 [log( 1)]H(S1:Sz)+ﬂ(51:53/2r)) )

Case2:y = =0,s, < min{s;, > 5 }.In this case, u = 2Szzsil,(7.36) becomes,ase — 0
, jio Mo j2o N , [X;A]Mil
Ay =0|A 2222 15120282 | =253 (2}2 2 11“)
J1=0 I=1 jo=0
-0 A2 232(1 1) Zl 2(s3—s2r) iz 2j1(s1-52)
j1=0

252 = =
-0 (Az [Xs,A] 25,41 [log(gfl)]ﬂ(ﬁ 52)+1(s2 53/2r)) )

Case 3: y = B = 0, s3 < min{2rsy, 2rs,}. In this case, u = Zsifin, (7.36) becomes, as ¢ — 0
Jjio Mo Jjoo
As = 0| A2 ZZZZ 21s1- 2]252[—253H(12r > 27172y, 4] 1)
j1=0 I=1 j,=0
-0 A2 253 ZZ L (2rsy—s3) ZZ (2r52—53)

j1=0 J2=0
=0 (A2 [Xe,A] 538% [lOg(E_l )]MSZ:%QHH(S]253/2r)) .

251
2s1+1°

jio Mo Jjoo [ ]M—1
A; =0 | A? 2222—21151—21252[—253 exp{—Zylﬂ}]I (2j1 ~ 272 X&;r )

7120 I=1 j=0

Case4:y > 0,8 > 0,s; < s;.In this case, u = (7.36) becomes, as ¢ — 0

%, J20
-0 AZ[X " 251+1 Zz 2ja(s2—s1)
J2=0

_ 2 % —1y7Ms1=52)
= O A*[xea] ™1+ [loge™h)] .

252
2s5+17

j10 Mo Jjoo [ ]M—l
A; = 0| A? 2222—21151—212521—253 exp{—2ylﬂ}]l (zjz <~ 270 X&;r )

7120 I=1 j=0

Case5:y > 0,8 > 0,s, < sq.Inthis case, u = (7.36) becomes, as ¢ — 0

2, J10
-0 AZ[X 9 252+1 22 2j1(s1—s2)
1=0

_ 2 % —1y7is1=52)
= 0 A*[Xea] %2 [log(e™ )] .

283

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)
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Now, to complete the proof, combine formulae (7.25)-(7.44).

8. Introduction to the theory of banded Toeplitz matrices

The proof of asymptotic optimality of the estimator f relies heavily on the theory of banded Toeplitz matrices developed
in Bottcher and Grudsky (2000, 2005). In this subsection, we review some of the facts about Toeplitz matrices which were
used in the proofs in Section 7.

Consider a sequence of numbers {by}p2__ such that Z;:ifoo |bk] < oco. An infinite Toeplitz matrix T = T(b) is the matrix
with elements T;; = b;_;,i,j =0, 1, ...

LetC = {z € C : |z| = 1} be the complex unit circle. With each Toeplitz matrix T(b) we can associate its symbol

[o]
= Z bz*, z ec. (8.45)
k=—o00
Since, B(A) = b(e??) = Zk— bkef"g, numbers by, are Fourier coefficients of function B(8) = b(e'). For any function b(z) with

an argument on a unit circle C denote
Ibllcire = max b(z).
lz]=1
There is a very strong link between properties of a Toeplitz matrix T(b) and function b(z). In particular, if b(z) # 0forz € C

and wind(b) = J,, then b(z) allows Wiener-Hopf factorization b(z) = b_(z) b, (z)Z» where b, and b_ have the following
forms

— i b:szk7 + Zb+ k
k=0

(see Theorem 1.8 of Bottcher and Grudsky (2005)).

If T(b) is a lower triangular Toeplitz matrix, then b(z) = b (z) with b,j = by. In this case, the product of two Toeplitz
matrices can be obtained by simply multiplying their symbols and the inverse of a Toeplitz matrix can be obtained by taking
the reciprocal of function b (z):

T(bydy) = T(b)T(dy), T '(by) =T(1/bs). (8.46)

Let T(b) = T(by) € R™™ be a banded lower triangular Toeplitz matrix corresponding to the Laurent polynomial
z)= Y0 bt
In practice, one usually uses only finite, banded, Toeplitz matrices with elements T;;, i,j = 0,1,...,m — 1. In this
case, only a finite number of coefficients b, do not vanish and function b(z) in (8.45) reduces to a Laurent polynomial
b(z) = fo:_]bkz", z € C, where J and K are nonnegative integers, b_; # 0and by # 0.1f b(z) # 0 for z € C, then
b(z) can be represented in a form
Ko

)=1z leHz—MJ [ [z — v with [1 <1, [uel > 1. (8.47)
k=1

In this case, the wmdmg number of b(z) is wind(b) = Jo —J.

Let Ty(b) = Tn(by) € R™™ be a banded lower triangular Toeplitz matrix corresponding to the Laurent polynomial
b(z) = ,Tz_olbkz". If b has no zeros on the complex unit circle ¢ and wind(b) = 0, then, due to Theorem 3.7 of Béttcher and
Grudsky (2005), T(b) is invertible and limy,_, o, sup p(T,,1(b)) < oco. Moreover, by Corollary 3.8,

lim (T, (b)) = p(T~' (b)) (8.48)
m—o0
In the paper, we need the following result that is a combination of Lemmas 3 and 4 of Comte et al. (2017).

Lemma 5. Let function g in (1.1) satisfy Assumptions A1 and A2. Then, GV = Ty ((1 — z) v(z)) where function v(z) has all its

zeros outside the complex unit circle, so that ||T,(v(z))||*> = kmaX[TLT( ZNT(v(2))] < ||v||m < oQ.
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