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a b s t r a c t

In the present paper we consider the problem of estimating a three-dimensional func-

tion f based on observations from its noisy Laplace convolution. Our study is motivated

by the analysis of Dynamic Contrast Enhanced (DCE) imaging data. We construct an

adaptive wavelet-Laguerre estimator of f , derive minimax lower bounds for the L2-risk

when f belongs to a three-dimensional Laguerre–Sobolev ball and demonstrate that the

wavelet-Laguerre estimator is adaptive and asymptotically near-optimal in a wide range

of Laguerre–Sobolev spaces. We carry out a limited simulations study and show that

the estimator performs well in a finite sample setting. Finally, we use the technique for

the solution of the Laplace deconvolution problem on the basis of DCE Computerized

Tomography data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Consider an equation

Y (t, x) = q(t, x) + εξ (t, x) with q(t, x) =
∫ t

0

g(t − z)f (z, x)dz. (1.1)

where x = (x1, x2), (t, x1, x2) ∈ U = [0,∞) × [0, 1] × [0, 1] and ξ (z, x1, x2) is the three-dimensional Gaussian white noise
such that

Cov {ξ (z1, x11, x12), ξ (z2, x21, x22)} = I(z1 = z2) I(x11 = x21) I(x12 = x22).

Here and in what follows, I(A) denotes the indicator function of a set A. Formula (1.1) can be viewed as a noisy version of a
functional Laplace convolution equation. Indeed, if x is fixed, then (1.1) reduces to a noisy version of the Laplace convolution
equation

Y (t) = q(t) + εξ (t) with q(t) =
∫ t

0

g(t − z)f (z)dz, (1.2)

that was recently studied by Abramovich et al. (2013), Comte et al. (2017) and Vareschi (2015).
Eq. (1.1) represents a white-noise version of the Laplace convolution equation which corresponds to the observational

version of the equation

Y (ti, x1,j, x2,l) =
∫ ti

0

g(ti − z)f (z, x1,j, x2,l)dz + σξi,j,l, (1.3)
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where i = 1, . . . , n0, j = 1, . . . , n1, l = 1, . . . , n2, ti = iT/n0 are equispaced on the interval [0, T ], x1,j = j/n1 and x2,l = l/n2

and ξi,j,l are standard normal variables that are independent for different i, j and l. If n0, n1 and n2 are large, then Eq. (1.1)
serves as an ‘‘idealized’’ version of Eq. (1.3). This result is rigorously proved in the case of the Gaussian regressionmodel (see,
e.g. Brown and Low (1996)), and it is well known that it holds for a large variety of settings. Abramovich et al. (2013) studied
a one-dimensional (n1 = n2 = 1) version of Eq. (1.3). It follows from the upper and lower bounds in their paper that the
correspondence between Eqs. (1.2) and the one-dimensional version of Eq. (1.3) holds with ε = σT/

√
n where n = n0n1n2

(since n1 = n2 = 1).
Comte et al. (2017) also studied solution of Eq. (1.3) in the case ofn1 = n2 = 1 and rigorously investigated the implications

of the fact that observations are taken on the finite interval [0, T ] rather than on the positive part of the real line. They showed
that the latter leads to a much more involved mathematical arguments. On the other hand, Vareschi (2015) considered
Eq. (1.2) and, building upon an earlier version of Comte et al. (2017), derived the lower and the upper bounds for the error in
thewhite noise version of the Laplace deconvolution problem. Our paper can be regarded as an extension of Vareschi’s (2015)
results to the case when Laplace convolution equation has a spatial component and the function of interest is anisotropic,
i.e., may have different degrees of smoothness in different directions. Therefore, our objective is to show how utilizing the
spatial smoothness of the unknown function f leads to its more precise recovery.

Our study is motivated by the analysis of Dynamic Contrast Enhanced (DCE) imaging data. DCE imaging provides a non-
invasive measure of tumor angiogenesis and has great potential for cancer detection and characterization, as well as for
monitoring, in vivo, the effects of therapeutic treatments (see, e.g., Bisdas et al. (2007), Cao (2011), Cao et al. (2010) and
Cuenod et al. (2011)). The common feature of DCE imaging techniques is that each of them uses the rapid injection of a
single dose of a bolus of a contrast agent and monitors its progression in the vascular network by sequential imaging at
times ti, i = 1, . . . , n. This is accomplished by measuring the pixels’ gray levels that are proportional to the concentration of
the contrast agent in the corresponding voxels. At each time instant ti, one obtains an image of an artery aswell as a collection
Y (ti, x) of measurements for each voxel x. For example, in the case of a CT scan, Y (ti, x) are the Hu units which represent
the opacity of the material to X-rays. The images of the artery allow to estimate the so called Arterial Input Function, AIF(t),
which quantifies the total amount of the contrast agent entering the area of interest. Comte et al. (2017) described the DCE
imaging experiment in great detail and showed that the cumulative distribution function F (z, x) of the sojourn times for the
particles of the contrast agent entering a tissue voxel x satisfies the following equation

Y (t, x) =
∫ t−δ

0

g(t − z)β(x)(1 − F (z, x))dz + εξ (t, x). (1.4)

Here the errors ξ (t, x) are independent for different t and x = (x1, x2), g(t) = AIF(t), a positive coefficient β(x) is related
to a fraction of the contrast agent entering the voxel x and δ is the time delay that can be easily estimated from data. The
function of interest is f (z, x) = β(x)(1 − F (z, x)) where the distribution function F (z, x) characterizes the properties of the
tissue voxel x and can be used as the foundation for medical conclusions.

Since the Arterial Input Function can be estimated by denoising and averaging the observations over all voxels of the
aorta, its estimators incur much lower errors than those of the left hand side of Eq. (1.4). For this reason, in our theoretical
investigations, we shall treat function g in (1.4) as known. In this case, Eq. (1.4) reduces to the form (1.1) that we study
in the present paper. If one is interested in taking the uncertainty about g into account, this can be accomplished using
methodology of Vareschi (2015).

Laplace deconvolution equation (1.2) was first studied in Dey et al. (1998) under the assumption that f has s continuous
derivatives on (0,∞). However, the authors only considered a very specific kernel, g(t) = be−at , and assumed that s is
known, so their estimator was not adaptive. Abramovich et al. (2013) investigated Laplace deconvolution based on discrete
noisy data. They implemented the kernel method with the bandwidth selection carried out by the Lepskii’s method. The
shortcoming of the approach is that it is strongly dependent on the exact knowledge of the kernel g . Recently, Comte et
al. (2017) suggested a method which is based on the expansions of the kernel, the unknown function f and the observed
signals over Laguerre functions basis. This expansion results in an infinite systemof linear equationswith the lower triangular
Toeplitz matrix. The system is then truncated and the number of terms that are kept in the series expansion of the estimator
is controlled via a complexity penalty. One of the advantages of the technique is that it considers a more realistic setting
where Y (t) in Eq. (1.2) is observed at discrete time instants on an interval [0, T ] with T < ∞ rather than at every value of t .
Finally, Vareschi (2015) derived aminimax optimal estimator of f by thresholding the Laguerre coefficients in the expansions
when g is unknown and is measured with noise.

In the present paper, we consider the functional version (1.1) of the Laplace convolution equation (1.2). The study is
motivated by the DCE imaging problem (1.4). Due to the high level of noise on the left hand side of (1.4), a voxel-per-voxel
recovery of individual curves is highly inaccurate. For this reason, the common approach is to cluster the curves for each
voxel and then to average the curves in the clusters (see, e.g., Rozenholc and Reiß (2012)). As the result, one does not
recover individual curves but only their cluster averages. In addition, since it is impossible to assess the clustering errors,
the estimators may be unreliable even when estimation errors are small. On the other hand, the functional approaches,
in particular, the wavelet-based techniques, allow to denoise a multivariate function of interest while still preserving its
significant features.

The objective of this paper is to solve the functional Laplace deconvolution problem (1.1) directly. In the case of the
Fourier deconvolution problem, Benhaddou et al. (2013) demonstrated that the functional deconvolution solution usually
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has a much better precision compared to a combination of solutions of separate convolution equations. Below we adopt

some of the ideas of Benhaddou et al. (2013) and apply them to the solution of the functional Laplace convolution equation.

Specifically, we assume that the unknown function belongs to an anisotropic Laguerre–Sobolev space and recover it using a

combination of wavelet and Laguerre functions expansion. Similar to Comte et al. (2017), we expand the kernel g over the

Laguerre basis and f (t, x), q(t, x) and Y (t, x) over the Laguerre-wavelet basis and carry out denoising by thresholding the

coefficients of the expansions, which naturally leads to truncation of the infinite system of equations that results from the

process. We derive the minimax lower bounds for the L2-risk in the model (1.1) and demonstrate that the wavelet-Laguerre

estimator is adaptive and asymptotically near-optimal within a logarithmic factor in a wide range of Laguerre–Sobolev balls.

We carry out a limited simulation study and then finally apply our technique to recovering of f (z, x) in Eq. (1.4) on the bases

of DCE-CT data.

Although, for simplicity, we only consider the white noise model for the functional Laplace convolution equation (1.1),

the theoretical results can be easily generalized to its observational version (1.3) by following Comte et al. (2017). However,

as it is evident from Comte et al. (2017), the latter will lead to much more complex calculations and will make the paper

very difficult to read while adding very little to the paper conceptually. For this reason, in the present paper, we avoid this

extension.

The rest of the paper is organized as follows. In Section 2, we describe the construction of the wavelet-Laguerre estimator

for f (t, x) in Eq. (1.1). In Section 3, we derive the minimax lower bounds for the L2-risk for any estimator of f in (1.1)

over anisotropic Laguerre–Sobolev balls. In Section 4, we demonstrate that the wavelet-Laguerre estimator is adaptive and

asymptotically minimax near-optimal (within a logarithmic factor of ε) in a wide range of Laguerre–Sobolev balls. Section 5

presents a limited simulation study followed by a real data example in Section 6. The proofs of the statements of the paper

are placed in Section 7. Finally, Section 8 provides some supplementary results from the theory of banded Toeplitz matrices.

2. Estimation algorithm

In what follows we are going to use the following notations. Given a matrix A, let AT be the transpose of A, ∥A∥F =√
Tr(ATA) and ∥A∥ = λmax(A

TA) be, respectively, the Frobenius and the spectral norm of a matrix A, where λmax(U) is the

largest, in absolute value, eigenvalue ofU. We denote by [A]m the upper leftm×m sub-matrix ofA. Given a vector u ∈ R
k, we

denote by ∥u∥ its Euclidean norm and, for p ≤ k, the p × 1 vector with the first p coordinates of u, by [u]p. For any function

t ∈ L2(R+), we denote by ∥t∥2 its L2 norm on R+. For vectors, whenever it is necessary, we use the superscripts to indicate

dimensions of the vectors and subscripts to denote their components. Also, a ∨ b = max(a, b) and a ∧ b = min(a, b).

Consider a finitely supported periodized r0-regular wavelet basis (e.g., Daubechies) ψj,k(x) on [0, 1]. Form a product

wavelet basis Ψω(x) = ψj1,k1 (x1)ψj2,k2 (x2) on [0, 1] × [0, 1] where ω ∈ Ω with

Ω =
{
ω = (j1, k1; j2, k2) : j1, j2 = 0, . . . ,∞; k1 = 0, . . . , 2j1−1, k2 = 0, . . . , 2j2−1

}
. (2.1)

Denote functional wavelet coefficients of f (t, x), q(t, x), Y (t, x) and ξ (t, x) by, respectively, fω(t), qω(t), Yω(t) and ξω(t). Then,

for any t ∈ [0,∞), Eq. (1.1) yields

Yω(t) = qω(t) + εξω(t) with qω(t) =
∫ t

0

g(t − s)fω(s)ds (2.2)

and function f (t, x) can be written as

f (t, x) =
∑

ω∈Ω
fω(t)Ψω(x), fω(t) =

∫

[0,1]2
f (t, x)Ψω(x)dx x = (x1, x2). (2.3)

Now, consider the orthonormal basis that consists of a system of Laguerre functions

ϕl(t) = e−t/2Ll(t), l = 0, 1, 2, . . . , (2.4)

where Ll(t) are Laguerre polynomials (see, e.g., Gradshtein and Ryzhik (1980), Section 8.97)

Ll(t) =
l∑

j=0

(−1)j
(
l

j

)
t j

j! , t ≥ 0.

It is known that functions ϕl(·), l = 0, 1, 2, . . . , form an orthonormal basis of the L2(0,∞) space and, therefore, functions

fω(·), g(·), qω(·) and Yω(·) can be expanded over this basis with coefficients θl;ω , gl, ql;ω and Yl;ω , l = 1, . . . ,∞, respectively.

By plugging these expansions into formula (2.2), we obtain the following equation

∞∑

l=0

ql;ω ϕl(t) =
∞∑

l=0

∞∑

k=0

θl;ω gk

∫ t

0

ϕk(t − s)ϕl(s)ds. (2.5)
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Following Comte et al. (2017), for each ω ∈ Ω , we represent coefficients of interest θl;ω , l = 0, 1, . . . , as a solution of an

infinite triangular system of linear equations. Indeed, it is easy to check that (see, e.g., 7.411.4 in Gradshtein and Ryzhik

(1980))
∫ t

0

φk(x)φj(t − x)dx = e−t/2

∫ t

0

Lk(x)Lj(t − x)dx = φk+j(t) − φk+j+1(t).

Hence, Eq. (2.5) can be re-written as

∞∑

k=0

qk;ω ϕk(t) =
∞∑

k=0

[
θk;ω g0 +

k−1∑

l=0

(gk−l − gk−l−1) θl;ω

]
ϕk(t).

Equating coefficients for each basis function, we obtain an infinite triangular system of linear equations. In order to use this

system for estimating f , we choose a fairly large M and define the following approximations of f and q based on the first M

Laguerre functions

fM (t, x) =
∑

ω∈Ω

M−1∑

l=0

θl;ωϕl(t)Ψω(x), qM (t, x) =
∑

ω∈Ω

M−1∑

l=0

ql;ωϕl(t)Ψω(x). (2.6)

Let θ
(M)
ω , g(M) and q(M)

ω be M-dimensional vectors with elements θl;ω , gl and ql;ω , l = 0, 1, . . . ,M − 1, respectively. Then,

for any M and any ω ∈ Ω , one has q(M)
ω = G(M)

θ
(M)
ω where G(M) is the lower triangular Toeplitz matrix with elements G

(M)

i,j ,

0 ≤ i, j ≤ M − 1

G
(M)

i,j =
{
g0, if i = j,

(gi−j − gi−j−1), if j < i,

0, if j > i.
(2.7)

In order to recover f in (1.1), we estimate coefficients ql;ω in (2.6) by

q̂l;ω =
∫ ∞

0

Yω(t)ϕl(t) dt, l = 0, 2, . . . , (2.8)

and obtain an estimator θ̂
(M)
ω

of vector θ
(M)
ω

of the form

θ̂
(M)
ω

= (G(M))−1q̂
(M)
ω . (2.9)

Denote byΩ(J1, J2) a truncation of a setΩ in (2.1):

Ω(J1, J2) =
{
ω = (j1, k1; j2, k2) : 0 ≤ ji ≤ Ji − 1, ki = 0, . . . , 2ji−1; i = 1, 2

}
. (2.10)

If we recovered f from all its coefficients θ̂
(M)
ω

with ω ∈ Ω(J1, J2), the estimator would have a very high variance. For this

reason, we need to remove the coefficients that are not essential for representation of f . This is accomplished by constructing

a hard thresholding estimator for the function f (t, x)

f̂ (t, x) =
M−1∑

l=0

∑

ω∈Ω(J1,J2)

θ̂l;ω I

(
|̂θl;ω| > λl,ε

)
ϕl(t)Ψω(x), (2.11)

where the values of J1, J2, M and λl,ε will be defined later.

3. Minimax lower bounds for the risk

In order to determine the values of parameters J1, J2,M and λl,ε , and to gauge the precision of the estimator f̂ , we need to

introduce some assumptions on the function g . Let r ≥ 1 be such that

djg(t)

dt j

⏐⏐⏐⏐
t=0

=
{
0, if j = 0, . . . , r − 2,
Br ̸= 0, if j = r − 1,

(3.1)

with the obvious modification g(0) = B1 ̸= 0 for r = 1. We assume that function g(x) and its Laplace transform

G(s) =
∫∞
0

e−sxg(x)dx satisfy the following conditions:

Assumption A1. g ∈ L1[0,∞) is r times differentiable with g (r) ∈ L1[0,∞).

Assumption A2. Laplace transformG(s) of g has no zeroswith nonnegative real parts except for zeros of the form s = ∞+ib.
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Assumptions A1 and A2 are difficult to check since their verification relies on the exact knowledge of g and the value of

r . Therefore, in the present paper, we do not use the value of r in our estimation algorithm and aim at construction of an

adaptive estimator that delivers the best convergence rates that are possible for the true unknown value of r without its

knowledge. Hence, we need to derive the smallest error that any estimator of f can attain under Assumptions A1 and A2.

For this purpose, we consider the generalized three-dimensional Laguerre–Sobolev ball of radius A, characterized by its

wavelet-Laguerre coefficients θl;ω = θl;j1,j2,k1,k2 as follows:

B
s1,s2,s3
γ ,β (A) =

⎧
⎨
⎩f :

∞∑

l=0

∞∑

j1=0

∞∑

j2=0

22js1+2j′s2 (l ∨ 1)2s3 exp
(
2γ lβ

) 2j1−1∑

k1=0

2j2−1∑

k2=0

θ2l;ω ≤ A2

⎫
⎬
⎭ , (3.2)

where we assume that β = 0 if γ = 0 and β > 0 if γ > 0.

Note that if f were a function of x and y only, inequality (3.2) would contain only sums over j1 and j2 and would state

that function f belongs to a two-dimensional Sobolev ball. On the other hand, the sum over l provides upper bounds on

the functional Laguerre coefficients. Observe that, unlike in the case of the wavelet coefficients that are usually bounded by

powers of 2j1 and 2j2 , it is feasible for Laguerre coefficients to decrease exponentially with l (see, e.g., Comte and Genon-

Catalot (2015) for examples). Recall also, that the original equation (1.1) requires solution of an ill-posed problem in time

variable (that corresponds to index l in (3.2))while represents functional regression in space. The value of r in Assumption A1

serves as the degree of ill-posedness and, therefore, affects only the precision of recovery of f in the time but not the space

domain. For this reason, in the expressions for the upper and the lower bounds of the error, the values of s1 and s2 are

comparedwith s3/(2r) rather than s3. In particular, in what followswe shall assert that both the lower and the upper bounds

for the risk are expressed via

∆(s1, s2, s3, γ , β, A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2
[
A−2ε2

] 2s1
2s1+1 , if s1 ≤ min(s2, s3/(2r)), γ = β = 0

A2
[
A−2ε2

] 2s2
2s2+1 , if s2 ≤ min(s1, s3/(2r)), γ = β = 0

A2
[
A−2ε2

] 2s3
2s3+2r , if s3 ≤ min(2rs1, 2rs2), γ = β = 0

A2
[
A−2ε2

] 2s1
2s1+1 , if s1 ≤ s2, γ > 0, β > 0

A2
[
A−2ε2

] 2s2
2s2+1 , if s2 ≤ s1, γ > 0, β > 0.

(3.3)

In order to construct minimax lower bounds, we define the maximum L2-risk over the set V of an estimator f̃ as

Rε(f̃ , V ) = sup
f∈V

E∥f̃ − f ∥2. (3.4)

The following theorem provides the minimax lower bounds for the L2-risk of any estimator f̃ of f .

Theorem 1. Let min{s1, s2} ≥ 1/2 and s3 ≥ 1/2 if γ = β = 0. Then, if ε, is small enough, under Assumptions A1 and A2, for

some absolute constant C > 0 independent of ε, one has

inf
f̃

Rε(f̃ , B
s1,s2,s3
γ ,β (A)) ≥ C ∆(s1, s2, s3, γ , β, A). (3.5)

Note that the one-dimensional version (1.2) of the problem (1.1) corresponds to the situation when s1 = s2 = ∞.

Vareschi (2015) derived the upper and the lower bounds for the error in the case of γ = 0. His lower bounds coincide with

the lower bound given by (3.3) when γ = 0 and s1 = s2 = ∞.

4. Upper bounds for the risk

In order to derive an upper bound for Rε (̂f , B
s1,s2,s3
γ ,β (A)), we need some auxiliary statements. Consider G(m), the lower

triangular Toeplitz matrix defined by formula (2.7) with M = m. The following results follow directly from Comte et al.

(2017) and Vareschi (2015).

Lemma 1 (Lemma 4, Comte et al. (2017), Lemma 5.4, Vareschi (2015)). Let conditions A1 and A2 hold. Denote the elements of the

last row of matrix (G(m))−1 by υj, j = 1, . . . ,m. Then, there exist absolute positive constants CG1, CG2, Cυ1 and Cυ2 independent of

m such that

CG1m
2r ≤ ∥(G(m))−1∥2 ≤ ∥(G(m))−1∥2

F ≤ CG2m
2r , (4.1)

Cυ1m
2r−1 ≤

m∑

j=1

υ2
j ≤ Cυ2m

2r−1. (4.2)
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Using Lemma 1, one can obtain the following upper bounds for the errors of estimators θ̂l;ω:

Lemma 2. Let θ̂l;ω be the lth element of the vector θ̂
(M)
ω

defined in (2.9). Then, under the Assumptions A1 and A2, one has

Var
[̂
θl;ω
]

≤ Cυ2 ε
2 l2r−1, (4.3)

E

[̂
θl;ω − θl;ω

]4 ≤ 3C2
υ2 ε

4 l4r−2, (4.4)

Pr
(
|̂θl;ω − θl;ω| > ε

√
2ν log(ε−1) l−1 ∥(G(l))−1∥

)
≤ ετ , (4.5)

provided ν ≥ τCυ2/CG1 where CG1 and Cυ2 are defined in (4.1) and (4.2), respectively.

Following Lemma 2 we choose J1, J2,M such that

2J1 = 2J2 = A2ε−2, M = max
{
m ≥ 1 : ∥(G(m))−1∥ ≤ ε−2

}
, (4.6)

and thresholds λl,ε of the forms

λl,ε = 2ε
√
2 ν log(ε−1) l−1 ∥(G(l))−1∥, (4.7)

where the value of ν is large enough, so that it satisfies the inequality

ν ≥ 12Cυ2/CG1, (4.8)

and Cυ2 and CG1 and Cυ2 are defined in (4.1) and (4.2), respectively. Then, the following statement holds.

Theorem 2. Let min{s1, s2} ≥ 1/2 and s3 ≥ 1/2 if γ = β = 0. Let f̂ (t, x) be the wavelet-Laguerre estimator defined in

(2.11), with J1, J2 and M given by (4.6). Let A > 0, and let condition (3.2) hold. If ν in (4.7) satisfies inequality (4.8), then, under

Assumptions A1 and A2, if ε, is small enough, for some absolute constant C > 0 independent of ε, one has

R̂f , ε(B
s1,s2,s3
γ ,β (A)) ≤ C ∆(s1, s2, s3, γ , β, A) [log(1/ε)]

d, (4.9)

where∆ = ∆(s1, s2, s3, γ , β, A) is defined in (3.3) and

d =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2s1/(2s1 + 1) + I(s1 = s2) + I(s3 = 2rs1), if s1 ≤ min(s2,
s3

2r
), γ = β = 0

2s2/(2s2 + 1) + I(s1 = s2) + I(s3 = 2rs2), if s2 ≤ min(s1,
s3

2r
), γ = β = 0

2s3/(2s3 + 2r) + I(s3 = 2rs1) + I(s3 = 2rs2), if s3 ≤ min(2rs1, 2rs2), γ = β = 0

2s1/(2s1 + 1) + I(s1 = s2), if s1 ≤ s2, γ > 0, β > 0

2s2/(2s2 + 1) + I(s1 = s2), if s2 ≤ s1, γ > 0, β > 0.

5. Simulation studies

In order to study finite sample properties of the proposed estimation procedure, we carried out a limited simulation

study. For each test function f (t, x) and a kernel g(t), we obtained exact values of q(t, x) in Eq. (1.1) by integration. We

considered n equally spaced points tk = Tk/n, k = 1, . . . , n, on the time interval [0; T ]. We created a uniform grid
{
x1,i, x2,j

}

on [0, 1]× [0, 1] with i = 1, . . . , n1 and j = 1, . . . , n2, and obtained the three-dimensional array qi,k,j = q(x1,i, x2,j, tk). After
fixing the Signal-to-Noise Ratio (SNR), we evaluated the value of σ as σ = n−1/2 std (q)/SNR, where std (q) is the standard

deviation of the tensor with values qi,k,j reshaped as a vector. Finally, we obtained a sample Yi,j,k of the left-hand side of Eq.
(1.1) by adding independent Gaussian N(0, σ 2) noise to each value qi,k,j, i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n.

We constructed a system of M Laguerre functions of the form (2.4). For each time point k = 1, . . . , n, we found the

matrix of wavelet coefficients using the Daubechies 6 wavelets and constructed estimators σ̂k, k = 1, . . . , n, of σ as the

standard deviations of the wavelet coefficients at the highest resolution level. Subsequently, we obtained σ̂ as the average

of σ̂k, k = 1, . . . , n. Finally, for each of the indices ω ∈ Ω(J1, J2), we evaluated the sample wavelet-Laguerre coefficients θ̂l;ω ,
l = 0, . . . ,M − 1, as solutions of the linear regression problems.

Next, for each l = 0, . . . ,M − 1, we derived the threshold λl,̂ε of the form (4.7) with ε̂ = T σ̂ /
√
n and n = n0n1n2, and

obtained the thresholded estimators θ̂l;ω I

(
|̂θl;ω| > λl,̂ε

)
of the coefficients θl;ω , l = 0, . . . ,M − 1, ω ∈ Ω(J1, J2). Finally we

constructed the estimator f̂ of the form (2.11) by the Laguerre reconstruction and the subsequent inversewavelet transforms.



R. Benhaddou et al. / Journal of Statistical Planning and Inference 199 (2019) 271–285 277

Table 1

The standard deviations, the norms and the average values of the relative errors ∆(̂f ) (with the standard errors of the means in parentheses) evaluated

over 100 simulation runs for the four test functions. The test functions are defined in formula (5.1).

Function std (f ) ∥f ∥ SNR = 3 SNR = 5 SNR = 7

f1(t, x) 0.0025 0.5084 0.1107 (0.0110) 0.0694 (0.0066) 0.0511 (0.0049)

f2(t, x) 0.3334 61.8367 0.1224 (0.0100) 0.0761 (0.0071) 0.0567 (0.0051)

f3(t, x) 0.3342 62.0261 0.1107 (0.0112) 0.0680 (0.0068) 0.0511 (0.0048)

f4(t, x) 0.3366 62,6863 0.1080 (0.0117) 0.0690 (0.0058) 0.0519 (0.0046)

In our simulations, we used n1 = n2 = n = 32, M = 8 and T = 5. We chose g(x) = exp(−x/2) and carried out

simulations with the following test functions

f1(t, x) = t e−t (x1 − 0.5)2 (x2 − 0.5)2,

f2(t, x) = e−t/2 cos(2πx1x2), (5.1)

f3(t, x) = t e−t (x1 − 0.5)2 (x2 − 0.5)2 + e−t/2 cos(2πx1x2),

f4(t, x) = e−t/2 cos(2πx1x2) + (x1 − 0.5)2 (x2 − 0.5)2.

We also considered three noise scenarios: SNR = 3 (high noise level), SNR = 5 (medium noise level) and SNR = 7 (low

noise level). In order for the values of the errors of our estimators to be independent of the norms of the test functions, we

evaluated the average relative error as the average L2-norm of the difference between f and its estimator divided by the

norm of f :

∆(̂f ) = ∥̂f − f ∥/∥f ∥.
Table 1 reports the mean values of those errors over 100 simulation runs (with the standard errors of the means presented

in parentheses) for the four test functions and the three noise levels. The errors are reported together with the standard

deviations and the norms of each of the functions.

Table 1 confirms that our method allows to solve the functional deconvolution problem with high accuracy. As it is

expected, the precision of estimation improves when SNR grows and σ declines. Note also that reporting the relative errors

for each of the test functions and arranging them in accordance with the SNR values allows us, in some way, to characterize

precision of the method rather than the complexity of the recovery of a particular test function. Indeed, the relative errors

of estimators of all four test functions are similar to each other in spite of variations in their norms and standard deviations.

6. Real data example

As an application of the proposed technique we studied the recovery of the unknown function f (t, x) = β(1 − F (t, x))

in Eq. (1.4) on the basis of the DCE-CT (Computerized Tomography) images of a participant of the REMISCAN cohort

study (REMISCAN, 2015)who underwents anti-angiogenic treatment for renal cancer. The data consist of the arterial images

and images of the area of interest (AOI) at 37 time points over approximately 4.6 min interval. The first 15 time points

(approximately the first 30 s) correspond to the time period before the contrast agent reached the aorta and the AOI (so

δ = 0 in Eq. (1.4)). We used those data points for the evaluation of the base intensity.

Since the images of the aorta are extremely noisy, we evaluated the average values of the gray level intensity at each time

point and then used Laguerre functions smoothing in order to obtain the values of the Arterial Input Function AIF(t). The

images of AOI contain 49× 38 pixels. Since our technique is based on periodic wavelets and hence application of themethod

to a non-periodic function is likely to produce Gibbs effects, we cut the images to the size of 32 × 32 pixels. Furthermore, in

order to achieve periodicity, we obtained symmetric versions of the images (reflecting the images over the two sides) and

applied ourmethodology to the resulting spatially periodic functions. Consequently, the estimator obtained by the technique

is spatially symmetric, sowe record only the original part as the estimator f̂ . Fig. 1 shows the averages of the aorta intensities

at each time point and its de-noised version that was used as AIF(t). Fig. 2 presents the values of f̂ at 34 s (corresponds to

the first time point when the contrast agent reaches the AOI), 95 s (the 12th time point) and 275 s (the last time point).

7. Proofs

7.1. Proof of the lower bounds for the risk

In order to prove Theorem 1, we use Lemma A1 of Bunea et al. (2007), which we will reformulate for the squared risk

case.

Lemma 3. Let Θ be a set of functions of cardinality card (Θ) ≥ 2 such that

(i) ∥f − g∥2 ≥ 4δ2, for f , g ∈ Θ, f ̸= g,
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Fig. 1. Left: the averages of the aorta intensities (blue) and the estimated Arterial Input Function AIF(t) (red). Right: two curves for distinct spatial locations.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The values of f̂ at 34 s (corresponds to the first time point), 95 s (the 12th time point) and 275 s (the last time point).

(ii) the Kullback divergences K (Pf , Pg ) between themeasures Pf and Pg satisfy the inequality K (Pf , Pg ) ≤ log(card (Θ))/16, for
f , g ∈ Θ .

Then, for some absolute positive constant C1, one has

inf
fn

sup
f∈Θ

Ef ∥fn − f ∥2 ≥ C1δ
2,

where inffn denotes the infimum over all estimators.

In order to obtain lower bounds, we introduce a triangular Toeplitz matrix associated with Laurent series (1 − z)−r (see
Section 8 formore detailed explanations) and denote byQ (L) = TL

(
(1 − z)−r

)
its reduction to the set of indices 0 ≤ l ≤ L−1.

Following Vareschi (2013), consider function

h(t) =
∞∑

l=0

hlϕl(t) with hl = (−1)l

log(l ∨ e)

(−1/2

l

)
=

Γ
(
1
2

)
Γ
(
1
2

+ l
)

Γ (l + 1) log(l ∨ e)
. (7.1)

Denote θ
(L) = (θ0, . . . , θL−1)

T = Q (L)h(L) where hL is the vector of the first L coefficients of function h in (7.1). In what follows
we shall use Lemma 6.5 of Vareschi (2013) that was in the original version of the paper posted on ArXiv but did not make it
to the published version of Vareschi (2015).

Lemma 4. Let h(t) be as defined in (7.1) and θ
(L) = Q (L)h(L) where Q (L) = TL

(
(1 − z)−r

)
and h(L) are reductions of the infinite-

dimensional Toeplitz matrix T
(
(1 − z)−r

)
and vector h of coefficients of h(t) to the set of indices 0 ≤ l ≤ L − 1. Then, h(t) is

square integrable and there exist positive constants Cr1 and Cr2 that depend on r only such that for all r ≥ 1 and any l ≥ 0 one
has

Cr1

(l ∨ 1)r−1/2

log(l ∨ e)
≤ θl ≤ Cr2 (l ∨ 1)r−1/2. (7.2)

Let ϑ be a matrix with components ϑk1,k2 = {−1, 1}, k1 = 0, 1, . . . , 2j1 − 1, k2 = 0, 1, . . . , 2j2 − 1. Denote the set of all

possible values of ϑ byΘ and let functions fL,j1,j2 be of the form

fL,j1,j2 (t, x1, x2) = ρ qL(t) pj1,j2 (x1, x2), (7.3)

qL(t) =
L−1∑

l=0

θl ϕl(t), pj1,j2 (x1, x2) =
2j1−1∑

k1=0

2j2−1∑

k2=0

ϑk1,k2 ψj1,k1 (x1)ψj2,k2 (x2), (7.4)
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where θ
(L) is the vector with components θl, l = 0, . . . , L − 1 where θ

(L) = Q (L)h(L) and Q (L) and h(L) are defined above. Since
fL,j1,j2 ∈ B

s1,s2,s3
γ ,β (A), Lemma 4 implies that one can choose

ρ2 = CrA
22−2j1(s1+ 1

2
)−2j2(s2+ 1

2
) (L ∨ 1)−2(r+s3) exp

{
−2γ Lβ

}
, (7.5)

where 0 < Cr ≤ C2
r2/2r . If f̃L,j1,j2 is of the form (7.3) but with ϑ̃k1,k2 ∈ Θ instead of ϑk1,k2 , then, by Lemma 4, the L2-norm of

the difference is of the form

∥f̃L,j1,j2 − fL,j1,j2∥2
2 = ρ2

(
L−1∑

l=0

θ2l

) ⎛
⎝

2j1−1∑

k1=0

2j2−1∑

k2=0

I

(
ϑ̃k1,k2 ̸= ϑk1,k2

)
⎞
⎠ ≥

C2
r1ρ

2H
(
ϑ̃, ϑ

)
(L ∨ 1)2r

2r [log(L ∨ e)]2 .

HereH
(
ϑ̃, ϑ

)
is theHammingdistance between the binary sequences vec(ϑ) and vec(ϑ̃)where vec(ϑ) is a vectorized version

of matrix ϑ .
Observe that matrix ϑ has ℵ = 2j1+j2 components, and hence, card (Θ) = 2ℵ. In order to find a lower bound for H

(
ϑ̃, ϑ

)
,

we apply the Varshamov–Gilbert lemma which states that one can choose a subset Θ1 of Θ , of cardinality of at least 2ℵ/8,
and such that H

(
ϑ̃, ϑ

)
≥ ℵ

8
for any ϑ, ϑ̃ ∈ Θ1. Hence, for any ϑ, ϑ̃ ∈ Θ1, one has the following expression for δ2 defined in

Lemma 3:

∥f̃L,j1,j2 − fL,j1,j2∥2 ≥ C2
r1ρ

22j1+j2 (L ∨ 1)2r

16r [log(L ∨ e)]2 = 4δ2. (7.6)

Let Pf be the distribution of the process {f ∗ g(t, x) + εdW (t, x), (t, x) ∈ U}when f is true,whereW (t, x) is aWiener process.

Then, since
⏐⏐ϑ̃l,k,k′ − ϑl,k,k′

⏐⏐ ≤ 2, and due to the multiparameter Girsanov formula (see, e.g., Dozzi (1989), p. 89), (7.3) and
(7.4), the Kullback divergence can be bounded as

K (Pf , Pf̃ ) = EPf

[
log
(
Pf /Pf̃

)]
= −EPf

[
ε−1

∫

U

((f − f̃ ) ∗ g)(t, x)dW (t, x)

]

+
(
2ε2
)−1

∫

U

(
(f − f̃ ) ∗ g

)2
(t, x)dtdx

=
(
2ε2
)−1∥(f̃ − f ) ∗ g∥2

2

≤ 2ε−2 ρ22j1+j2∥qL ∗ g∥2
2 = 2ε−2 ρ22j1+j2∥G(L)

θ
(L)∥2

2, (7.7)

where matrix G(L) and vector θ
(L) are defined in (2.7) and Lemma 4, respectively. By Lemma 5 in Section 8, and under

Assumptions A1 and A2, one obtains that G(L) = TL((1 − z)rv(z)) and ∥TL(v(z))∥2 = λmax[T T
L (v(z))TL(v(z))] < ∥v∥2

circ < ∞.

Therefore, G(L)
θ
(L) = G(L)Q (L)h(L) = TL((1 − z)rv(z))TL((1 − z)−r )h(L) and

∥G(L)
θ
(L)∥2

2 = ∥TL(v(z))h(L)∥2
2 ≤ ∥TL(v(z))∥2∥h(L)∥2

2 ≤ ∥v∥2
circ ∥h∥2

2 < ∞, (7.8)

where ∥h∥2
2 is the L2-norm of the function h(t) and ∥h∥2 < ∞ due to Lemma 4. Combination of (7.7) and (7.8) yields

K (Pf , Pf̃ ) ≤ C̃ε−2ρ22j1+j2/16 where C̃ = 32∥v∥2
circ∥h∥2

2. Application of Lemma 3 requires the constraint

K (Pf , Pf̃ ) ≤ log(card (Θ))/16 = log(2)2j1+j2/16.

Therefore, one can choose ρ2 = ε2/C̃ , so that, by Lemma 3 for some C1 > 0 one has

inf
fn

sup
f∈Θ

Ef ∥fn − f ∥2 ≥ C1ε
22j1+j2 (L ∨ 1)2r [log(L ∨ e)]−2, (7.9)

where L, j1 and j2 are such that

22j1(s1+ 1
2
)+2j2(s2+ 1

2
) (L ∨ 1)2(r+s3) exp

{
2γ Lβ

}
= C2A

2ε−2, (7.10)

with C2 = Cr C̃/log(2). Thus, one needs to choose j1, j2 and L that maximize 2j1+j2 (L∨ 1)2r [log(L∨ e)]−2 subject to condition
(7.10). Denote

τε = log(A2ε−2). (7.11)

It is easy to check that the solution of the above linear constraint optimization problem is of the form {j1, j2, L} ={
0, 0,

[
A2ε−2

] 1
2s3+2r

}
if s3 ≤ min{2rs1, 2rs2} and γ = β = 0, {j1, j2, L} =

{
0, (log(2))−1(2s2 + 1)−1τε, e

}
if s1 ≥ s2, s3 ≥

2rs2 − 2s2 − 1 and γ = β = 0, {j1, j2, L} =
{
(log(2))−1(2s1 + 1)−1τε, 0, e

}
if s1 ≤ s2 and s3 ≥ 2rs1 − 2s1 − 1 and γ = β = 0.

{j1, j2, L} =
{
0, (log(2))−1(2s2 + 1)−1τε, e

}
if s1 ≥ s2 and γ > 0, β > 0, and {j1, j2, L} =

{
(log(2))−1(2s1 + 1)−1τε, 0, e

}
if

s1 ≤ s2 and γ > 0, β > 0. By noting that

s3

s3 + r
≤ min

{
2s2

2s2 + 1
,

2s1

2s1 + 1

}
, if s3 ≤ min{2rs1, 2rs2}, γ = β = 0, (7.12)
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2s1

2s1 + 1
≤ min

{
2s2

2s2 + 1
,

s3

s3 + r

}
, if s1 ≤ min{s3/2r, s2}, γ = β = 0, (7.13)

2s2

2s2 + 1
≤ min

{
2s1

2s1 + 1
,

s3

s3 + r

}
, if s2 ≤ min{s3/2r, s1}, γ = β = 0, (7.14)

and

2s1

2s1 + 1
≤ 2s2

2s2 + 1
, if s1 ≤ s2, γ > 0, β > 0, (7.15)

we then choose the highest lower bounds in (7.9). This completes the proof of the theorem.

7.2. Proof of the upper bounds for the risk

The proof of Lemma 2. Denote the quantities θ̂l,ω − θl,ω by ℵl,ω , and notice that ℵl,ω = θ̂l,ω − θl,ω = εeTl

(
G(l)
)−1
ξ (l), where

ξ (l) is the l-dimensional Gaussian vector such that ξ (l) ∼ N(0, Il), and el is the lth standard basis vector of dimension l. Also,

note that εeTl (G
(l))−1ξ (l) = ε

∑l−1
k=0vkξk, where vk is defined in Lemma 1. Then, by (4.2), the variance of ℵl,ω is

E

[
ℵl,ω

]2 = ε2
l−1∑

k=0

v2k ≤ Cv2ε
2l2r−1. (7.16)

Now, for the fourth moment of ℵl,ω , and using properties of Gaussian random variables, one has

E

[
ℵl,ω

]4 = ε4E

[
l−1∑

k=0

vkξk

]4

= ε4

⎡
⎣

l−1∑

k=0

v4kE(ξ
4
k ) + 3

l−1∑

k1,k2=0,k1 ̸=k2

v2k1v
2
k2

⎤
⎦

= 3ε4

[
l−1∑

k=0

v2k

]2

≤ 3ε4
[
Cv2 l

2r−1
]2
.

This completes the proof of (4.4). In order to prove formula (4.5), recall that ℵl,ω ∼ N(0, ε2
∑l−1

k=0v
2
k ). Therefore, by the

Gaussian tail probability inequality, one obtains

Pr

⎛
⎝|ℵl,ω| >

√
2τ ln(ε−1)ε

√
l−1∑

k=0

v2k

⎞
⎠ ≤

[
τπ ln(ε−1)

]−1/2
ετ . (7.17)

Now, since

l−1∑

k=0

v2k ≤ Cv2 l
2r−1 ≤ Cv2

CG1

l−1CG1 l
2r ≤ Cv2

CG1

l−1∥(G(l))−1∥, (7.18)

(4.5) follows, provided ν ≥ τ
Cv2
CG1

.

The proof of Theorem 2. Denote

µ =

⎧
⎪⎪⎨
⎪⎪⎩

min

{
s3

s3 + r
,

2s2

2s2 + 1
,

2s1

2s1 + 1

}
, if γ = β = 0,

min

{
2s2

2s2 + 1
,

2s1

2s1 + 1

}
, if γ > 0, β > 0.

(7.19)

χε,A =
[
A−2ε2 log(1/ε)

]
, (7.20)

2j10 =
[
χε,A

]− µ
2s1 , 2j20 =

[
χε,A

]− µ
2s2 , (7.21)

and

M0 =

⎧
⎪⎨
⎪⎩

[
χε,A

]− µ
2s3 if γ = β = 0[

log(1/ε)

γ

]1/β
if γ > 0, β > 0,

(7.22)
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and notice that with the choices of J1, J2 andM given by (4.6), the estimation error can be decomposed into the sum of three

components as follows

E∥̂fn − f ∥2 ≤
∑

ω

∞∑

l=0

E∥̂θl:ωI
(
|̂θl:ω| > λl,ε

)
− θl:ω∥2 ≤ R1 + R2 + R3, (7.23)

where

R1 =
J1−1∑

j1=0

J2−1∑

j2=0

M−1∑

l=0

∑

k,k′
E

[⏐⏐̂θl:ω − θl:ω
⏐⏐2I
(⏐⏐̂θl:ω

⏐⏐ > λl,ε
)]
,

R2 =
J1−1∑

j1=0

J2−1∑

j2=0

M−1∑

l=0

∑

k,k′
|θl:ω|2 Pr

(⏐⏐̂θl:ω
⏐⏐ < λl,ε

)
,

R3 =

⎛
⎝

∞∑

j1=J1

∞∑

j2=J2

∞∑

l=M

+
J1−1∑

j1=0

∞∑

j2=J2

∞∑

l=M

+
∞∑

j1=J1

J2−1∑

j2=0

∞∑

l=M

+
∞∑

j1=J1

∞∑

j2=J2

M−1∑

l=0

· · ·

⎞
⎠∑

k,k′
|θl:ω|2.

For R3, one uses assumption (3.2) to obtain,

R3 = O

⎛
⎝
⎛
⎝

J1−1∑

j1=0

J2−1∑

j2=0

∞∑

l=M

+
J1−1∑

j1=0

∞∑

j2=J2

M∑

l=1

+
∞∑

j1=J1

J2−1∑

j2=0

M∑

l=1

⎞
⎠ A22−2j1s1−2j2s2 l−2s3 exp{−2γ lβ}

⎞
⎠

= O
(
A22−2J1s1 + A22−2J2s2 + A2M−2s3 exp{−2γMβ}

)
. (7.24)

If γ = β = 0, then sinceM ≍
[
ε2
]−1/2r

, R3 becomes

R3 = O

(
A2
[
A−2ε2

]2s1 + A2
[
A−2ε2

]2s2 + A2
[
A−2ε2

] 2s3
2r

)

= O
(
A2
[
χε,A

]µ)
. (7.25)

If γ > 0, β > 0, then

R3 = O

(
A2
[
A−2ε2

]2s1 + A2
[
A−2ε2

]2s2)

= O

(
A2
[
χε,A

]min
{

2s2
2s2+1

,
2s1

2s1+1

})
. (7.26)

To evaluate the remaining two terms, notice that both R1 and R2 can be partitioned into the sum of two error terms as

follows

R1 ≤ R11 + R12, R2 ≤ R21 + R22, (7.27)

where

R11 =
J1−1∑

j1=0

J2−1∑

j2=0

M∑

l=1

∑

k,k′
E

[⏐⏐̂θl:ω − θl:ω
⏐⏐2I
(⏐⏐̂θl:ω − θl:ω

⏐⏐ > 1

2
λl;ε

)]
, (7.28)

R12 =
J1−1∑

j1=0

J2−1∑

j2=0

M∑

l=1

∑

k,k′
E

[⏐⏐̂θl:ω − θl:ω
⏐⏐2I
(

|θl:ω| > 1

2
λl;ε

)]
, (7.29)

R21 =
J1−1∑

j1=0

J2−1∑

j2=0

M∑

l=1

∑

k,k′
|θl:ω|2 Pr

(⏐⏐̂θl:ω − θl:ω
⏐⏐ > 1

2
λl;ε

)
, (7.30)

R22 =
J1−1∑

j1=0

J2−1∑

j2=0

M∑

l=1

∑

k,k′
|θl:ω|2I

(
|θl:ω| < 3

2
λl;ε

)
. (7.31)
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Combining (7.28) and (7.30) and applying Cauchy–Schwarz inequality, Lemma 2 and the fact thatM ≍
[
ε2
]−1/2r

, yields

R11 + R21 = O

⎛
⎝

J1−1∑

j1=0

J2−1∑

j2=0

M∑

l=1

⎛
⎝2j1+j2ε2l2r−1ετ/2 + ετ

∑

k,k′
|θl:ω|2

⎞
⎠
⎞
⎠

= O

(
ε22J1+J2M2r

(
ε2
) τ

4 + A2ετ
)

= O

(
A4
(
ε2
) τ

4
−2 + A2ετ

)
.

Hence, for τ ≥ 12 and under condition (4.8), as ε → 0, one has

R11 + R21 = O
(
ε2
)

= O
(
A2
[
χε,A

]µ)
. (7.32)

Now, combining (7.29) and (7.31), and using (4.3) and (4.7), one obtains

∆ = R12 + R22 = O

⎛
⎝

J1−1∑

j1=0

J2−1∑

j2=0

M∑

l=1

∑

k,k′
min

{
|θl:ω|2, ε2 log(1/ε)l−1∥(G(l))−1∥2

}
⎞
⎠

= O

⎛
⎝

J1−1∑

j1=0

J2−1∑

j2=0

M∑

l=1

min

⎧
⎨
⎩
∑

k,k′
|θl:ω|2, 2j1+j2ε2 log(1/ε)l2r−1

⎫
⎬
⎭

⎞
⎠ . (7.33)

Then,∆ can be decomposed into three components,∆1,∆2 and∆3, as follows

∆1 = O

⎛
⎝
⎛
⎝

J1−1∑

j1=j10+1

J2−1∑

j2=0

M∑

l=1

+
J1−1∑

j1=0

J2−1∑

j2=j20+1

M∑

l=1

+
J1−1∑

j1=0

J2−1∑

j2=0

M∑

l=M0

⎞
⎠∑

k,k′
|θl:ω|2

⎞
⎠ , (7.34)

∆2 = O

⎛
⎝

j10∑

j1=0

j20∑

j2=0

M0∑

l=1

A22j1+j2
[
χε,A

]
l2r−1

I

(
ηcl:j1,j2

)
⎞
⎠ , (7.35)

∆3 = O

⎛
⎝

j10∑

j1=0

j20∑

j2=0

M0∑

l=1

⎡
⎣∑

k,k′
|θl:ω|2

⎤
⎦ I

(
ηl:j1,j2

)
⎞
⎠ , (7.36)

where ηl:j1,j2 =
{
l, j1, j2 : 2j1+j2 l2r >

[
χε,A

]µ−1
}
. For ∆1, it is easy to see that for j10, j20 and M0 given in (7.21) and (7.22),

respectively,

∆1 = O

(
A22−2j10s1 + A22−2j20s2 + A2M

−2s3
0 exp{−2γM

β

0 }
)
.

Consequently, if γ = β = 0, as ε → 0, one has

∆1 = O
(
A2
[
χε,A

]µ)
. (7.37)

If γ > 0, β > 0, then

∆1 = O
(
A22−2j10s1 + A22−2j20s2

)

= O

(
A2
[
χε,A

]min
{

2s2
2s2+1

,
2s1

2s1+1

})
. (7.38)

For∆2 in (7.35), as ε → 0, one obtains

∆2 = O

(
A2
[
A−2ε2 log(1/ε)

] [
χε,A

]µ−1
)

= O
(
A2
[
χαε,A

]µ)
. (7.39)
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In order to evaluate (7.36), we need to consider five different cases.

Case 1: γ = β = 0, s1 ≤ min{s2, s3
2r

}. In this case, µ = 2s1
2s1+1

, (7.36) becomes, as ε → 0

∆3 = O

⎛
⎝A2

j10∑

j1=0

M0∑

l=1

j20∑

j2=0

2−2j1s1−2j2s2 l−2s3I

(
2j1 > 2−j2

[
χε,A

]µ−1

l2r

)⎞
⎠

= O

⎛
⎝A2

[
χε,A

]2s1(1−µ)
M0∑

l=1

l−2(s3−s12r)

j20∑

j2=0

2−2j2(s2−s1)

⎞
⎠

= O

(
A2
[
χε,A

] 2s1
2s1+1

[
log(ε−1)

]I(s1=s2)+I(s1=s3/2r)

)
. (7.40)

Case 2: γ = β = 0, s2 ≤ min{s1, s3
2r

}. In this case, µ = 2s2
2s2+1

, (7.36) becomes, as ε → 0

∆3 = O

⎛
⎝A2

j10∑

j1=0

M0∑

l=1

j20∑

j2=0

2−2j1s1−2j2s2 l−2s3I

(
2j2 > 2−j1

[
χε,A

]µ−1

l2r

)⎞
⎠

= O

⎛
⎝A2

[
χε,A

]2s2(1−µ)
M0∑

l=1

l−2(s3−s22r)

j10∑

j1=0

2−2j1(s1−s2)

⎞
⎠

= O

(
A2
[
χε,A

] 2s2
2s2+1

[
log(ε−1)

]I(s1=s2)+I(s2=s3/2r)

)
. (7.41)

Case 3: γ = β = 0, s3 ≤ min{2rs1, 2rs2}. In this case, µ = 2s3
2s3+2r

, (7.36) becomes, as ε → 0

∆3 = O

⎛
⎝A2

j10∑

j1=0

M0∑

l=1

j20∑

j2=0

2−2j1s1−2j2s2 l−2s3I

(
l2r > 2−j1−j2

[
χε,A

]µ−1
)
⎞
⎠

= O

⎛
⎝A2

[
χε,A

]− µ−1
2r

2s3

j10∑

j1=0

2− 2j1
2r

(2rs1−s3)

j20∑

j2=0

2− 2j2
2r

(2rs2−s3)

⎞
⎠

= O

(
A2
[
χε,A

] s3
s3+r

[
log(ε−1)

]I(s2=s3/2r)+I(s1=s3/2r)

)
. (7.42)

Case 4: γ > 0, β > 0, s1 ≤ s2. In this case, µ = 2s1
2s1+1

, (7.36) becomes, as ε → 0

∆3 = O

⎛
⎝A2

j10∑

j1=0

M0∑

l=1

j20∑

j2=0

2−2j1s1−2j2s2 l−2s3 exp{−2γ lβ}I
(
2j1 > 2−j2

[
χε,A

]µ−1

l2r

)⎞
⎠

= O

⎛
⎝A2

[
χε,A

] 2s1
2s1+1

j20∑

j2=0

2−2j2(s2−s1)

⎞
⎠

= O

(
A2
[
χε,A

] 2s1
2s1+1

[
log(ε−1)

]I(s1=s2)

)
. (7.43)

Case 5: γ > 0, β > 0, s2 ≤ s1. In this case, µ = 2s2
2s2+1

, (7.36) becomes, as ε → 0

∆3 = O

⎛
⎝A2

j10∑

j1=0

M0∑

l=1

j20∑

j2=0

2−2j1s1−2j2s2 l−2s3 exp{−2γ lβ}I
(
2j2 > 2−j1

[
χε,A

]µ−1

l2r

)⎞
⎠

= O

⎛
⎝A2

[
χε,A

] 2s2
2s2+1

j10∑

j1=0

2−2j1(s1−s2)

⎞
⎠

= O

(
A2
[
χε,A

] 2s2
2s2+1

[
log(ε−1)

]I(s1=s2)

)
. (7.44)
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Now, to complete the proof, combine formulae (7.25)–(7.44).

8. Introduction to the theory of banded Toeplitz matrices

The proof of asymptotic optimality of the estimator f̂ relies heavily on the theory of banded Toeplitz matrices developed

in Böttcher and Grudsky (2000, 2005). In this subsection, we review some of the facts about Toeplitz matrices which were

used in the proofs in Section 7.

Consider a sequence of numbers {bk}∞k=−∞ such that
∑∞

k=−∞|bk| < ∞. An infinite Toeplitz matrix T = T (b) is the matrix

with elements Ti,j = bi−j, i, j = 0, 1, . . ..

Let C = {z ∈ C : |z| = 1} be the complex unit circle. With each Toeplitz matrix T (b) we can associate its symbol

b(z) =
∞∑

k=−∞
bkz

k, z ∈ C. (8.45)

Since, B(θ ) = b(eiθ ) =
∑∞

k=−∞bke
ikθ , numbers bk are Fourier coefficients of function B(θ ) = b(eiθ ). For any function b(z) with

an argument on a unit circle C denote

∥b∥circ = max
|z|=1

b(z).

There is a very strong link between properties of a Toeplitzmatrix T (b) and function b(z). In particular, if b(z) ̸= 0 for z ∈ C

and wind(b) = Jb, then b(z) allows Wiener–Hopf factorization b(z) = b−(z) b+(z) z Jb where b+ and b− have the following

forms

b−(z) =
∞∑

k=0

b−
−kz

−k, b+(z) =
∞∑

k=0

b+
k z

k

(see Theorem 1.8 of Böttcher and Grudsky (2005)).

If T (b) is a lower triangular Toeplitz matrix, then b(z) ≡ b+(z) with b+
k = bk. In this case, the product of two Toeplitz

matrices can be obtained by simply multiplying their symbols and the inverse of a Toeplitz matrix can be obtained by taking

the reciprocal of function b+(z):

T (b+d+) = T (b+)T (d+), T−1(b+) = T (1/b+). (8.46)

Let Tm(b) = Tm(b+) ∈ Rm×m be a banded lower triangular Toeplitz matrix corresponding to the Laurent polynomial

b(z) =
∑m−1

k=0 bkz
k.

In practice, one usually uses only finite, banded, Toeplitz matrices with elements Ti,j, i, j = 0, 1, . . . ,m − 1. In this

case, only a finite number of coefficients bk do not vanish and function b(z) in (8.45) reduces to a Laurent polynomial

b(z) =
∑K

k=−Jbkz
k, z ∈ C, where J and K are nonnegative integers, b−J ̸= 0 and bK ̸= 0. If b(z) ̸= 0 for z ∈ C, then

b(z) can be represented in a form

b(z) = z−JbK

J0∏

j=1

(z − µj)

K0∏

k=1

(z − νk) with |µj| < 1, |νk| > 1. (8.47)

In this case, the winding number of b(z) is wind(b) = J0 − J .

Let Tm(b) = Tm(b+) ∈ Rm×m be a banded lower triangular Toeplitz matrix corresponding to the Laurent polynomial

b(z) =
∑m−1

k=0 bkz
k. If b has no zeros on the complex unit circle C and wind(b) = 0, then, due to Theorem 3.7 of Böttcher and

Grudsky (2005), T (b) is invertible and limm→∞ sup ρ(T−1
m (b)) < ∞. Moreover, by Corollary 3.8,

lim
m→∞

ρ(T−1
m (b)) = ρ(T−1(b)) (8.48)

In the paper, we need the following result that is a combination of Lemmas 3 and 4 of Comte et al. (2017).

Lemma 5. Let function g in (1.1) satisfy Assumptions A1 and A2. Then, G(L) = TL((1 − z)rv(z)) where function v(z) has all its

zeros outside the complex unit circle, so that ∥TL(v(z))∥2 = λmax[T T
L (v(z))TL(v(z))] < ∥v∥2

circ < ∞.
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