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ABSTRACT

Mobile two-factor authentication (2FA) has become common-
place along with the popularity of mobile devices. Current
mobile 2FA solutions all require some form of user effort
which may seriously affect the experience of mobile users,
especially senior citizens or those with disability such as
visually impaired users. In this paper, we propose Proximity-
Proof, a secure and usable mobile 2FA system without involv-
ing user interactions. Proximity-Proof automatically trans-
mits a user’s 2FA response via inaudible OFDM-modulated
acoustic signals to the login browser. We propose a novel
technique to extract individual speaker and microphone fin-
gerprints of a mobile device to defend against the power-
ful man-in-the-middle (MiM) attack. In addition, Proximity-
Proof explores two-way acoustic ranging to thwart the co-
located attack. To the best of our knowledge, Proximity-Proof
is the first mobile 2FA scheme resilient to the MiM and co-
located attacks. We empirically analyze that Proximity-Proof
is at least as secure as existing mobile 2FA solutions while
being highly usable. We also prototype Proximity-Proof and
confirm its high security, usability, and efficiency through
comprehensive user experiments.
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1 INTRODUCTION

Mobile two-factor authentication (2FA) is pervasive along
with the popularity of mobile devices. Mobile 2FA adds your
smartphone or other mobile devices as the second layer of se-
curity to your online accounts, as passwords are increasingly
easy to steal, guess, or hack [1, 16]. When you try to log into
an online system employing mobile 2FA, enter your user-
name and password as usual. Then the online system will
verify whether you have the pre-registered mobile device
and let you in if so. So mobile 2FA lets your mobile device
serve as another proof of your identity and can keep your
account safe even if your password is compromised.
Commercial mobile 2FA solutions such as Google 2-step

verification [7], Duo [4], and Encap Security [5] all require
user involvement. For example, Duo is a leading mobile 2FA
service and has been integrated into numerous online sys-
tems. A Duo user needs to enroll his1 phone and install the
Duo Mobile app there. There are three authentication meth-
ods for the online system to verify the user’s possession of
the enrolled phone. First, the system can send a notification
(called Duo Push) that the user needs to approve in Duo
Mobile. Second, the system can call the enrolled phone for
the user to answer and press a key to approve the login. Fi-
nally, the user can enter a passcode on the login interface,

1No gender implication.
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which can be texted to the enrolled phone by the system
or generated in Duo Mobile. Other mobile 2FA solutions all
adopt similar authentication methods. Such demand for user
interactions seriously affects the experience of mobile users
[17, 33], especially senior citizens or those with disability
such as blind and visually impaired users.

There are recent efforts to improve the usability of mobile
2FA schemes by eliminating user interactions. The systems
in [12, 27] execute cryptographic challenge-response proto-
cols over a Bluetooth channel between an enrolled phone
and the login device. Authy [3] is another Bluetooth-based
2FA method and requires extra software on the computer.
Such Bluetooth functionalities may not be supported by stan-
dard web browsers [18]. Sound-Proof [18] leverages ambient
sound to detect the proximity between the phone and login
device, but it fails if the adversary can induce sound that dom-
inate ambient noise [28]. The absence of user interactions
also introduces potential risks to the 2FA system. As men-
tioned in [18], these schemes [12, 18, 27] are not designed
to withstand the man-in-the-middle (MiM) attack, in which
the adversary stealthily relays the messages between the en-
rolled phone and his remote login device, and the co-located
attack where the login device used by the adversary is near
the enrolled phone and can thus bypass proximity checks. It
is very challenging to improve the usability of mobile 2FA
schemes without sacrificing overall system security.

In this paper, we propose Proximity-Proof, a novel mobile
2FA scheme with four important goals in mind. First, it is
zero-effort (usable) and requires no user interactions with the
enrolled phone. Second, it is secure against various attacks
on mobile 2FA schemes, including the MiM and co-located
attacks. Third, it is deployable in the sense that it can be
easily implemented in web browsers and smartphones. Last,
it is compatible, meaning that it can be easily integrated
into commercial mobile 2FA solutions. To the best of our
knowledge, Proximity-Proof is the first mobile 2FA scheme
with all these desirable properties.

Proximity-Proof is motivated by the observation that the
user response in each aforementioned mobile 2FA technique
is equivalent to transmitting some information either di-
rectly or indirectly via the login device to the online system.
Proximity-Proof achieves zero user effort by fully automat-
ing user-response transmission via high-frequency acoustic
signals inaudible to humans. Specifically, Proximity-Proof
lets the speaker of the enrolled phone emit high-frequency
acoustic signals that contain the user response; and the login
device receives such acoustic signals via its microphone to
decode the user response and finally send it to the online
system for verification. Proximity-Proof employs OFDM and
error-correction codes to ensure reliable acoustic transmis-
sions even in very noisy environments.

Proximity-Proof defends against theMiM attack by speaker
and microphone fingerprinting. In particular, the speaker
and microphone in each phone have unique mechanical and
electronic features due to manufacturing imperfection, so
they can identify the phone. After authenticating the user
response, the login device in Proximity-Proof needs to as-
certain that the enrolled phone is indeed nearby to detect
possible MiM attacks. We propose a novel method for the
login device to extract the speaker and microphone finger-
prints of a phone (prover) for comparison with stored copies.
In the presence of the MiM attack, the login device would
obtain the speaker and microphone fingerprints of an adver-
sarial device, in which case the proximity check fails. There
are prior efforts [11, 13, 34] to fingerprint microphones and
speakers, but the fingerprint obtained in [11, 13, 34] is actu-
ally tied to a microphone-speaker pair. These schemes are
thus less applicable to our context in which the login device
can be an arbitrary one not known a priori (e.g., a library
computer) with regard to the enrolled phone. In contrast, our
method is the first work that generates individual speaker
fingerprints and microphone fingerprints.
Proximity-Proof thwarts the co-located attack by acous-

tic distance ranging while verifying that the prover phone
indeed has legitimate speaker and microphone fingerprints
for being the enrolled phone with overwhelming probabil-
ity. If the measured distance between the login device and
the prover phone (purportedly the enrolled phone) is larger
than a system threshold, the co-located attack is detected, in
which case the login request is rejected.

We analyze the security of Proximity-Proof and evaluate
its performance through comprehensive experiments on a
variety of smartphones and tablets. Our experiments show
that Proximity-Proof can automatically execute the authen-
tication procedure without user interactions and is resilient
against the MiM and co-located attacks. In particular, our
experiment results show that Proximity-Proof can detect
the MiM attack and decline illegitimate login attempts in
all cases via accurate acoustic fingerprinting. In addition,
Proximity-Proof can detect all co-located attacks launched
by attackers 60cm away from the user’s device via cross-
device ranging. Moreover, when using a 6-digit passcode
as in Duo, Proximity-Proof incurs an average authentica-
tion latency of less than 2s, which is significantly shorter
than that of Duo’s fastest push option. In addition, using
long passcodes does not introduce any noticeable increase in
the authentication latency of Proximity-Proof. These results
confirm the high usability and security of Proximity-Proof.
The rest of this paper is organized as follows. Section 2

introduce the system and adversary models. Section 3 illus-
trates the design of Proximity-Proof. Section 4 analyzes the

Session: Lock it Down! Security, Countermeasures, and Authentication MobiCom’18, October 29–November 2, 2018, New Delhi, India

402



username, password

challenge

second authentication 
factor

 

 login 
accepted or rejected

   web server login device prover phone

forward second 
authentication factor

Figure 1: 2FA system model.

security of Proximity-Proof. Section 5 presents the experi-
mental evaluation of Proximity-Proof. Section 6 reviews the
related work. Section 7 concludes this paper.

2 SYSTEM AND ADVERSARY MODELS

2.1 System Model

Now we introduce a standard mobile 2FA system model
based on Duo [4] to lay out the foundation for subsequent
illustrations. The descriptions also apply to other mobile 2FA
solutions such as Google 2-step verification [7] and Encap
Security [5] after very minor modifications.

As shown in Fig. 1, we assume a general scenario in which
a web server processes login requests via a browser-based
interface. The web server integrates a Duo 2FA module. The
server-browser communications are secured with traditional
TLS-like mechanisms. Each legitimate user enrolls his phone
and also install the Duo Mobile app.

A user can log into the system via an arbitrary networked
device, such as a phone, a tablet, a personal desktop or laptop,
or even a public computer like one in a library. When he
attempts to log in, he inputs the usual username and pass-
word on the browser interface, which are then relayed to the
web server via the secure channel. Once the username and
password are verified, the web server sends a challenge to
the enrolled mobile device associated with the username. If
a genuine response is received in a give time window (say,
30 seconds), the web server admits the user who is trusted
to possess the enrolled device.

The challenge and response can take three possible forms
in Duo Mobile, all involving user interactions. In the first
case, the challenge is a push notification to the Duo Mobile

app on the enrolled phone, and the response corresponds
to the user’s manual approval, which is then submitted by
Duo Mobile to the server via a secure channel. In the second
case, the challenge is a prerecorded phone call to the enrolled
phone, and the response corresponds to the user pressing a
key according to the voice instruction. The phone call and
user response are both transmitted via the secure cellular
channel. In the third case, the challenge and response are
the same passcode the user must type in manually on the
browser interface. The passcode can be generated by the
web server and texted to the registered device; it can also be
generated by the user pressing a button in Duo Mobile.

Duo[4] also supports devices other than smartphones. For
example, a user can enroll a tablet and install Duo Mobile
there, in which case the second authentication method above
does not apply. Proximity-Proof supports tablets as well and
aims at easy integration with Duo Mobile. Other devices sup-
ported by Duo—such as hardware tokens, landline phones,
and non-smart phones—are out of scope.

2.2 Adversary Model

Proximity-Proof aims to enhance the usability of commer-
cial mobile 2FA solutions rather than completely replacing
them, so we adopt the following assumptions as in the prior
work [3, 12, 18, 27] that targets zero-effort 2FA interactions
between the user device and the login device. The adver-
sary has compromised the victim’s username and password,
with which he attempts to log into the victim’s account via
a web browser on an arbitrary networked device. The at-
tack is successful if the web server is convinced that the
adversary has the enrolled phone associated with the user-
name. The login browser is a standard one such as Chrome
or FireFox and is assumed to be secure. Attacks targeting
the browser, like phishing attacks, are beyond the scope of
this paper. In addition, the browser-server communication
channel is secured using traditional TLS-like mechanisms,
and so is the channel between the enrolled phone and the
web server. Furthermore, the legitimate user always pos-
sesses his enrolled phone where the installed 2FA app like
Duo Mobile is not compromised, and there is a line-of-sight
channel between the enrolled phone and the login device.
Since commercial off-the-shelf (COTS) mobile devices pose
more realistic threats to the 2FA system, we assume that the
adversary leverages COTS mobile devices to launch attacks.
If a zero-effort mobile 2FA solution like in [3, 12, 18, 27]

is employed, a login attempt (legitimate or not) will trigger
an automatic 2FA response from the enrolled phone, which
makes the following two attacks possible.

• Man-in-the-Middle (MiM) attack: Fig. 2 illustrates
the MiM attack, in which the adversary is far from
the victim and his enrolled phone. But the adversary
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Figure 2:Man-in-the-middle (MiM) attack illustration.
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Figure 3: Co-located attack illustration.

sets up a high-speed, invisible channel between the
enrolled phone and the adversarial login device, e.g., by
having an accomplice or hidden eavesdropping device
near the victim. When the adversary attempts to log in,
the web server triggers the enrolled phone to generate
an automatic 2FA response which is relayed in real
time to the login device via the adversarial channel.

• Co-located attack: As shown in Fig. 3, the adversary
in this scenario is physically co-located with the victim
such as in a library, a bar, a train, a campus cafeteria,
or other often crowded public venues. The adversary’s
attempted login again triggers an automatic response
from the enrolled phone, which can be directly re-
ceived by the adversary’s login device.

The server considers the enrolled phone near the login device
and then admits the adversary by mistake under both MiM

and co-located attacks. As mentioned in [18], the prior work
[3, 12, 18, 27] cannot deal with MiM and co-located attacks.
In contrast, Proximity-Proof is designed to thwart them.
More traditional attacks on mobile 2FA systems are be-

yond our scope. For example, Proximity-Proof, the prior work
[3, 12, 18, 27], and all commercial mobile 2FA systems cannot
deal with lost/stolen enrolled phones, which can be partially
mitigated by iLock [20]. In addition, we do not consider DoS
attacks in which the adversary only wants to induce endless
interactions between the enrolled phone and the web server
instead of logging into the victim’s account. The web server
can often alleviate such DoS attacks by rate-limiting unsuc-
cessful login attempts. We do not consider acoustic jamming
attacks either, which lead to unsuccessful logins by legiti-
mate users rather than illegitimate logins. Such jamming
attacks can be easily thwarted by sophisticated techniques
such as spread-spectrum communications.

3 PROXIMITY-PROOF DESIGN

In this section, we overview Proximity-Proof and then de-
tail three key system components: acoustic transmission,
acoustic fingerprinting, and cross-device ranging,

3.1 Overview

Proximity-Proof aims to eliminates user-phone interactions
in mobile 2FA. To achieve this goal, we observe that the user
response in each Duo authentication method mentioned in
Section 2.1 can be considered transmitting some information
to the server for verification. We refer to such user infor-
mation as the 2FA response for convenience, which is the
passcode in the third Duo authentication method or some un-
forgeable data incurred by the legitimate user’s approval of
the login attempt in the first and second Duo authentication
methods. Zero user-phone interaction can thus be achieved
by automatically generating and then transmitting the 2FA
response to the server.

The immediate question is should the enrolled phone trans-
mit the 2FA response to the web server directly via a WiFi or
cellular Internet link or indirectly through the login browser?
The direct approach is simple and straightforward, but it is
intuitively vulnerable to both MiM and co-located attacks.
So we opt for the indirect approach and develop effective
countermeasures against MiM and co-located attacks, with
which the login browser can check whether the 2FA response
indeed comes from the enrolled phone nearby.
Which communication interface should we use for zero-

effort phone-browser communications? Smartphones have
Bluetooth and WiFi interfaces as well as microphones and
speakers, and so do most modern login devices such as
tablets, desktops, and laptops. Previous efforts [3, 12, 27]
use unpaired Bluetooth communications, but they require
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the browser to expose a Bluetooth API that is not currently
available in any standard browser [18]. The phone and the
browser can also communicate over WiFi [27], but they have
to be on the same WiFi network. In addition, WiFi and Blue-
tooth communication ranges are relatively large, making
it much harder to defend against co-located attacks. So we
choose speakers and microphones for acoustic communica-
tions between the login browser and the phone. No sensitive
information is transmitted over the acoustic channel, so our
scheme does not cause any additional privacy concern.
Proximity-Proof leverages speaker and microphone fin-

gerprints in the enrolled phone to counteract the MiM attack.
In particular, each speaker is unique due to manufacturing
imperfection, and so is each microphone. In Proximity-Proof,
the web server stores the speaker and microphone finger-
prints of each enrolled phone, which can be periodically
refreshed to deal with device aging. After verifying the 2FA
response from amobile device—referred to as a prover phone—
purportedly to be the enrolled phone, the login browser fur-
ther involves a novel protocol developed by us to extract
the speaker fingerprint and microphone fingerprint of the
prover phone. If the extracted fingerprints match the stored
copies, the web server considers that the 2FA response was
not subject to the MiM attack. There is prior work [10, 13, 34]
to identify smartphones with acoustic hardware fingerprints,
but each extracted fingerprint in [10, 13, 34] is actually tied
to a pair of microphone and speaker. If these schemes were
directly applied to 2FA, the web server needs to extract the
acoustic fingerprint associated with the enrolled phone and
every possible login device the legitimate user may use; this
is highly unrealistic. In contrast, our fingerprinting proto-
col allows extracting individual speaker fingerprints and
individual microphone fingerprints for the first time in the
literature, thus much more feasible for 2FA.
Proximity-Proof thwarts the co-located attack by acous-

tic distance ranging. More specifically, while extracting the
speaker and microphone fingerprints of the prover phone,
the browser further measures the distance to the prover
phone by exchanging a few acoustic signals. If the estimated
distance is above a user-chosen safety threshold, the browser
considers that the co-located attack may have happened.

The web server only admits the attempted user when the
2FA response, the speaker and microphone fingerprints, and
the distance measurement all pass verifications. Otherwise,
it invokes the traditional mobile 2FA process as the fallback.

3.2 Acoustic Transmission of 2FA
Response

Proximity-Proof transmits the 2FA response via acoustic
signals emitted by the enrolled phone’s speaker and received
by the login device’s microphone. Note that web browsers

can access the host device’s speaker and microphone via
the standard Web Audio API. We use OFDM-based acoustic
signals to cope with severe channel conditions. The 2FA
response is encrypted and authenticated as in the current
Duo Mobile system, which can be eventually decrypted and
verified by the web server. For the sake of Proximity-Proof,
we shall ignore such cryptographic operations hereafter.

3.2.1 OFDM-based acoustic transmission. We use high-
frequency inaudible signals to avoid disturbing users and
also explore the fact that the high-frequency band is usually
very quiet according to the prior work [34] and our measure-
ments in various environments. Our implementation and
experiments use the frequency band between 18 kHz and
20 kHz, which is thus used in our subsequent illustrations as
an example. We divide [18, 20] kHz into 20 non-overlapping
sub-channels with each spanning 100 Hz. The OFDM sub-
carrier frequencies are fm = 18 + 0.1m kHz form ∈ [1, 20].
As in [30], we use On-Off Keying as the modulation scheme
for its simplicity, and the phone generates the n-th (n ≥ 1)
time-domain sample [23] as

xn = A
20∑

m=1

Xm cos(2πnfm) , (1)

where A denotes the signal amplitude, and Xm is them-th
binary bit to transmit. xn is sent via the phone speaker.
After receiving xn via its microphone, the browser per-

forms a Fast Fourier transform (FFT) to extract the amplitude
of each sub-carrier signal component, denoted by Im for sub-
carrier fm . Since no signal is transmitted at 18 kHZ, we
denote the signal amplitude detected at 18 kHz by I0 and use
it as a reference. The browser then decodes Xm by compar-
ing Im with I0. If the difference between Im and I0 exceeds a
predefined system threshold (e.g., 10 dB in our experiments),
Xm is decoded as bit-1 and otherwise bit-0.

3.2.2 Packet format for 2FA response. We construct a vir-
tual packet from the 2FA response, which consists of a pre-
amble followed by data segments. The preamble is to help
the login browser locate the beginning of the virtual packet.
Similar to [30], we use a chirp signal (20ms long in our ex-
periments) from 17 kHz to 19 kHz as the preamble. A silence
period (20ms in our experiments) is also added after the pre-
amble to avoid interference with the following data segment.
We also apply the Reed-Solomon code RS(15,11) [21] to en-
code the raw 2FA response to mitigate transmission errors.
The RS-coded 2FA response is further divided into data seg-
ments of 20 bits with one for each OFDM sub-carrier. Each
data segment is converted into an OFDM symbol of duration
10ms, and a silence period of 10ms is added between adjacent
OFDM symbols to combat the inter-symbol-interference (ISI)
and the multipath effect. We found in our experiments that
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the audio is initially heavily distorted, so we let the speaker
send a random audio signal of 20ms long before the preamble
to “warm up” itself.
The performance of our 2FA transmission scheme above

can be briefly analyzed as follows. Assume that the RS-coded
2FA response is L bits, where L is an integer multiple of 20
after possible padding. It takes 20 + 20 + 20 + 10 ∗ L/20 +
10 ∗ (L/20 − 1) = (50 + L)ms to transmit one virtual packet,
corresponding to an effective data rate of L

50+L kb/s. Suppose
that the virtual packet can be successfully decoded with
probability p. The phone speaker keeps sending the virtual
packet form ≥ 1 times, wherem is a system parameter. If
the login browser still cannot successfully decode a virtual
packet with probability (1−p)m , it notifies the web server to
invoke the traditional mobile 2FA authentication method.

3.3 Acoustic Fingerprinting

Now we present a novel technique for the login browser
to extract the speaker and microphone fingerprints of the
prover phone which purports to be the enrolled phone.

3.3.1 Background on acoustic fingerprinting. The feasibil-
ity of speaker and microphone fingerprinting is rooted in
the imperfect manufacturing process that introduces unique
mechanical and electronic features into each speaker (or mi-
crophone). So each speaker (or microphone) has a unique fre-
quency response which measures the gain or attenuation at
each frequency and can identify the affiliated mobile device.
The prior work [10, 13, 34] explores the frequency response
as a hardware fingerprint to identify a smartphone, but the
extracted frequency response is associated with a speaker-
microphone pair (i.e., the emitting speaker and the recording
microphone) rather than with an individual speaker or mi-
crophone. We highlight this issue with a simple experiment.
Fig.4 shows the frequency responses of the speaker on a
Samsung Galaxy S5 smartphone, measured by two Nexus
7 tablets with the same method in [10, 13, 34]. As we can
see, the two microphones yield very different frequency re-
sponses for the same speaker.
Why does the above observation matter? In the mobile

2FA context, the speaker is on the enrolled phone, while the
microphone is on an arbitrary login device available to the
user (e.g., a personal computer or a shared one in a library).
If we use the same method in [10, 13, 34] to identify the
enrolled phone, the extracted frequency response is tied to
the speaker of the enrolled phone and the microphone of a
particular login device. It follows that the online systemmust
obtain the frequency response associated with the enrolled
phone and every possible login device the user may use in
the enrollment phase, which is highly unrealistic. So the
prior work [10, 13, 34] is not applicable to our context.
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Figure 4: Frequency response curves of the speaker on

a Samsung Galaxy S5, measured by two Nexus 7.

3.3.2 Our fingerprinting technique. Our fingerprinting
technique explores the following acoustic propagation model
for frequency f proposed in [29] and then refined in [11],

P(f ,x) = L(f )L′(f )P0(f )eλ(x ) + noise (2)

where P0(f ) represents the transmitted signal power, P(f ,x)
denotes the received signal power at distance x from the
speaker, L(f ) and L′(f ) denote the energy loss due to the
speaker and microphone, respectively, and λ(x) is a function
of x that can be obtained by fitting experimental data.
The above propagation model can be further simplified.

In particular, we have observed from our experiments that
the ambient noise is insignificant at any frequency beyond
18 kHZ. We further conducted an experiment to evaluate
the SNR in a noisy coffee house. We set the volume of a
Samsung Galaxy S5 to 30 percent of its maximum volume
and used a flat stimulation (to be explained shortly) as the
input to its speaker. We used the other Samsung Galaxy S5,
which was placed half a meter away (the expected maximum
safe working distance of Proximity-Proof), to record the
audio. We found that the received audio signal power is
more than 20 dB higher than the ambient noise. To minimize
the impact of noise, we the leverage AudioManager API to
set the volume to the maximum.
We can obtain a refined acoustic propagation model as

P(f ,x) ≈ L(f )L′(f )P0(f )eλ(x ) . (3)

Proximity-Proof explores an interactive protocol for the
login browser to extract the speaker and microphone finger-
prints of the prover phone. Our protocol uses a flat stimula-
tion as the input to the speakers of both the prover phone
and login device. The flat stimulation is composed of 20 sine
waves whose frequencies range from 18.1 kHz to 20 kHz in
an equal increase of 0.1 kHz. In particular, the speaker of
the prover phone generates an audio to the flat stimulation,
which is recorded by the microphones on both the prover
phone and the login device; then the speaker of the login
device generates an audio to the flat stimulation, which is
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recorded by the microphones on both the prover phone and
the login device as well. LetD denote the prover phone and B
the login device. We also use PXY (f ) to denote the received
power at frequency f of the audio signal emitted by X and
recorded byY , whereX andY can be either of B andD. Then
we have the following equations

PDD (f ) = LD (f )L′D (f )PD (f )eλ(xDD ), (4)

PDB (f ) = LD (f )L′B (f )PD (f )eλ(xDB ), (5)

PBB (f ) = LB (f )L′B (f )PB (f )eλ(xBB ), (6)

PBD (f ) = LB (f )L′D (f )PB (f )eλ(xBD ), (7)

where PX is the transmission power at frequency f on device
X , andxXY denote the distance between the speaker of device
X and the microphone of device Y .

Each enrolled phone can be uniquely identified by a vector
of LD (f ) and L′D (f ) values for each frequency f in the flat
stimulation. Directly obtaining LD (f ) and L′D (f ) involves
estimating PD (f ), PB (f ), xDD , xDB , xBB , and xBD . We use a
special trick to avoid the error-prone parameter estimation.
Let the signal measurements at a reference frequency 18 kHz
be denoted by RDD , RDB , RBB , and RBD , respectively. We
further use lX and l ′X to denote the energy loss of the speaker
and microphone of device X at 18 kHz, respectively. Then
we have

RDD = lDl
′
DPDe

f (xDD ), (8)

RDB = lDl
′
BPDe

f (xDB ), (9)

RBB = lBl
′
BPBe

f (xBB ), (10)

RBD = lBL
′
lPBe

f (xBD ). (11)

By combining Equations (4) to (11), we have

PDD (f )/RDD = (LD (f )/lD )(L′D (f )/l ′D ), (12)

PDB (f )/RDB = (LD (f )/lD )(L′B (f )/l ′B ), (13)

PBB (f )/RBB = (LB (f )/lB )(L′B (f )/l ′B ), (14)

PBD (f )/RBD = (LB (f )/lB )(L′D (f )/l ′D ). (15)

The prover phone needs to report its signal measurements
PDD (f ), PBD (f ), RDD (f ), and RBD (f ) to the login browser.
By solving these equations, the login browser can get Si (f ) =
LD (f )/lD andMi (f ) = L′D (f )/l ′D , based on which to obtain
two 20-dimension vectors, denoted by S andM for the prover
phone’s speaker and microphone, respectively. Then we nor-
malize S andM as

Ŝ =
S√∑

f ∈{18.1,18.2, ...,20}kHz S2i (f )
, (16)

M̂ =
M√∑

f ∈{18.1,18.2, ...,20}kHzM2
i (f )
, . (17)
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Figure 5: F1 scores for different τ .

The above fingerprinting process can be executed multiple
times to improve estimate accuracy, in which case the login

browser uses the concatenation of average Ŝ and M̂ as the
acoustic fingerprint of the prover phone. If the Euclidean
distance between the collected and legitimate acoustic finger-
prints is above a threshold τ , the prover phone is considered
an imposter and rejected access.
We set the threshold τ = 0.4 in Proximity-Proof, which

was obtained through experiments. In particular, we used
one Samsung tablet as the login terminal, one Samsung S5
as the prover device, and five other devices as adversarial
devices, including one Samsung S5, one Samsung Note 5, one
Huawei Honor 8, and two Google Nexus 6. For each mobile
device, we extracted its speaker and microphone fingerprints
20 times. We chose 20 values, ranging from 0.1 to 2 with a
step of 0.1, as candidate threshold values. Then we used F-
measurement to evaluate each value, and the F1 scores were
calculated using the following equations.

F1 =
2

1

Recall
+

1

Precision

(18)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

where TP and TF are the numbers of correctly recognized
fingerprints of the prover device and malicious devices, re-
spectively; FN and FP are the numbers of incorrectly recog-
nized fingerprints of the prover device and malicious devices,
respectively.
The F1 score is an important metric to evaluate the ac-

curacy of the binary classification method. A high F1 score
ensures that both precision and recall are high. The result
demonstrated in Fig.5 shows that τ = 0.4 achieves the high-
est F1 score. Therefore, we adopt 0.4 as the threshold in our
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experiments. In practice, the parameter τ can be further re-
fined with more sophisticated machine learning algorithms
and much more mobile devices.

3.4 Cross-Device Ranging

Proximity-Proof estimates the distance between the prover
phone and the login device to withstand the co-located at-
tack. The key motivation is that a user normally puts his
phone closer to himself than anyone else in a crowded public
environment (e.g., a library or cafeteria) where the co-located
attack is more likely to occur. So the distance between the
enrolled phone and login device of the co-located attacker
should be sufficiently larger than that between the enrolled
phone and login device used by the legitimate user.

There are many cross-device ranging methods. For exam-
ple, Frequency Modulated Continuous Waveform (FMCW)
has been used to accurately measure the distance between
two synchronized devices [14, 19]. However, cross-device
synchronization is non-trivial [31, 32]. Even a small syn-
chronization deviation of 1ms will lead to a measurement
error of 30cm. A FMCW variant is presented in [22] and does
not require cross-device synchronization; but this method
is designed for devices equipped with at least two speakers,
which are not available on many COTS phones and tablets.

Proximity-Proof adopts the two-way sensing method in
[25] to measure the distance between two devices. With-
out the need for cross-device synchronization, this method
only requires that both devices have one speaker and one
microphone. Almost all COTS smartphones, tablets, laptops,
and all-in-one PCs fulfill this requirement. Fig. 6 shows the
process of the two-way ranging method for clarity. Here we
assume that device D is the prover phone with microphone
MD and speaker SD , and device B is the login device with
microphoneMB and speaker SB .

The ranging process involving B and D both transmitting
and recording audio signals. Specifically,B sends short audios
via SB at time TB , and so does the prover phone D via SD at
time TD . Meanwhile, bothMB andMD start audio recording.
Then B analyzes the recorded audio to derive the arrival
time of its own audio and D’s audio, denoted by tBB and tDB ,
respectively. Similarly, D derives tBD and tDD . We further
donate the speed of sound by c and the distance between
device X ’s speaker and device Y ’s microphone by dXY . The
following equations are straightforward to obtain,

dBB = c · (tBB −TB ), (21)

dBD = c · (tDB −TB ), (22)

dDB = c · (tBD −TD ), (23)

dDD = c · (tDD −TD ). (24)

The distance d̄BD between B and D is approximately equal
to the average of dBD and dDB .

D =
1

2
· (dBD + dDB )

=
c

2
· ((tDB −TB ) + (tBD −TD ))

=
c

2
· ((tDB − tDD − tBB + tBD )+

(tBB −TB ) + (tDD −TD ))
=

c

2
· ((tDB − tDD ) − (tBB − tBD ))+

1

2
· (dBB + dDD ),

where dBB is the distance between SB and MB , and dDD is
the distance between SD andMD . The speaker-microphone
distance is often fixed for a specific mobile device model and
can be known by checking the hardware specification. If
d̄BD is within a user-chosen safe threshold (say, 0.5m in our
evaluation), the login browser (device) can ascertain that no
co-located attack is present with overwhelming probability.
We use chirp audio signals to address interference and

overlap. In particular, B and D emit up-chirp and down-
chirp signals, respectively. The high auto-correlation and low
cross-correlation of down and up chirps allow both devices
to distinguish the audios from each other. To detect the audio
arrival time, each device calculates the correlation between
recorded audio and reference chirp signals. The “peak” point
indicates the accurate arrival time.
In Proximity-Proof, the ranging and fingerprint proce-

dures are conducted simultaneously. The frequency of the
chirp signals used for ranging is between 16.5 kHz and
17.5 kHz. The frequency of the fingerprinting audios is be-
tween 18 kHz and 20 kHz. We transmit the ranging and fin-
gerprinting audios at the same time. In doing so, Proximity-
Proof can verify whether the ranging audio is from the en-
rolled phone.

3.5 Self-Proof Case

In Proximity-Proof, the login device is assumed to be dif-
ferent from the enrolled phone. But it is also very common
that people use the browsers on their enrolled phones to
access online accounts. Proximity-Proof can be easily modi-
fied to become Self-Proof for accommodating this scenario.
Self-Proof uses the same processes in Proximity-Proof for au-
tomatic 2FA response transmission. However, with only one
speaker and one microphone available, we cannot extract
their individual fingerprints with the previous fingerprint-
ing method in Section 3.3. Instead, we resort to the existing
method in [10, 13, 34] to fingerprint the speaker-microphone
pair in each enrolled phone. More specifically, we can use
the flat stimulation as the input to the speaker and use the
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Figure 6: Illustration of two-way acoustic ranging.

microphone to record the audio. The login browser forwards
the frequency response extracted from the audio to the web
server for comparison with the stored copy associated with
the provided username and password. Any significant differ-
ence above a system threshold will deny the account access
and invoke the traditional mobile 2FA procedure. Since a
different fingerprinting process is used in Self-Proof, a co-
located attacker cannot overhear the fingerprint of the en-
rolled phone, thus eliminating the need for acoustic distance
ranging in this context.

4 SECURITY ANALYSIS

Now we empirically analyze the security of Proximity-Proof
and defer the experimental evaluation to Section 5.

4.1 Resilience to MiM Attacks

The MiM attack corresponds to the strongest version of the
replay attack. Proximity-Proof leverages speaker and micro-
phone fingerprints to defeat this powerful attack. Specifically,
since the adversary has to replay the tunneled audio signal
through his own device, the login browser would obtain
the speaker and microphone fingerprints of the adversary’s
replaying device instead of the legitimate enrolled phone.
Such illegitimate acoustic fingerprints cannot pass the ver-
ification at the web server. Therefore, the MiM attack can
be effectively thwarted. As a matter of fact, Proximity-Proof
effectively adds the acoustic fingerprint of an enrolled phone
as the third factor of authentication, which can enhance
the security of existing mobile 2FA solutions. For example,
an intercepted valid passcode is no longer sufficient for the
adversary to log in with Proximity-Proof in place.

4.2 Resilience to Co-Located Attacks

In a co-located attack, the adversary sits besides the victim
so that his login browser is near the victim’s enrolled phone
as well. Since the login browser can directly receive the
audios from the enrolled phone, speaker and microphone
fingerprinting can no longer reject fake login attempts.

Proximity-Proof defeats the co-located attack by measur-
ing the distance between the enrolled phone and the login
device (browser) in the same duration for speaker and mi-
crophone fingerprinting. Mobile users tend to keep their
phones very close, e.g., within hand reach, in crowded public
environments. So we can expect that the normal distance
between the enrolled phone and login device of a legitimate
user is upper-bounded by a small range (e.g., 0.5m). We can
even require each Proximity-Proof user to put his device
very close to the login browser when he tries to log in. This
little effort mimics NFC communications to some extent
and is still much more preferable than manually inputting a
long passcode. The browser rejects the login attempt if the
detected distance from the enrolled phone is above a safe
threshold. Our defense forces the adversary to get very close
to the victim and the enrolled phone for a successful illegal
login, which may expose the adversary much more easily.

5 EXPERIMENT RESULTS

In this section, we experimentally evaluate the effectiveness
and security of Proximity-Proof.

5.1 Implementation

We implemented a prototype of Proximity-Proof. Specifi-
cally, we used one Lenovo E420 laptop as the login device
and another Lenovo E420 laptop as the server. We chose

Session: Lock it Down! Security, Countermeasures, and Authentication MobiCom’18, October 29–November 2, 2018, New Delhi, India

409



Google Chrome (version 63.0.3239.132) as the browser and
wrote the browser-side implementation in HTML5. We used
the navigator.mediaDevices.getUserMedia API [6] to access
the microphone and record audios. We also used the HTML
<audio> element [2] to access the speaker and played a pre-
record chirp audio file in the WAV format. No plugin was
needed for the browser. In addition, we used the WebSocket
API to build a TCP connection between the browser and
the server for data transmissions. We tested our phone-side
implementation with Android. We used different Android
models (Samsung Galaxy S5, Google Nexus 6, Nexus 7 and
Huawei Honor 8). The phone-side implementation was de-
veloped with Android Studio; and we used the AudioTrack
and MediaRecorder APIs to play and record audios. The TCP
connection between the phone and server was established
with the Socket API.

5.2 Impact of MiM and Co-Located Attacks
on One-Time 2FA Passcodes Alone

We first evaluate the impact of MiM and co-located attacks
on acoustically transmitted one-time 2FA passcodes alone.
We used a Nexus 7 tablet as the login device and a Samsung
Galaxy S5 as the victim’s device.

For the MiM attack, we placed one monitoring phone near
the victim device. The monitoring phone was connected with
another phone far away from the victim device through Wi-
Fi. When the victim’s device transmitted a one-time passcode
via acoustic channels, the monitoring phone recorded the
audio and forwarded it to the remote phone, which then
plays the received audio using its speaker. The MiM attack
succeeds if the login device correctly extracts the one-time
passcode from the audio replayed by the remote phone. For
the co-located attack, we placed the login device close to the
victim device. The co-located attack succeeds if the login
device correctly extracts the one-time passcode from the
audio signal transmitted by the victim device.
We conducted the experiments in a noisy coffee house

where it is more difficult for the login device to get an ac-
curacy copy of the 2FA response than in quiet venues such
as the lab and library. We varied the distance between the
adversarial monitoring device and the victim device for the
MiM attack as well as the distance between the login de-
vice and the victim device for the co-located attack. Each
experiment was repeated 100 times.
Fig. 7 compares the success rates of the MiM and co-

located attacks when the victim-attacker distance changes.
As we can see, the success rates of both attacks both increases
with the decreasing victim-attacker distance, which is antici-
pated. In addition, the success rate of the co-located attack
is always higher than that of the MiM attack. The reason
is that under the MiM attack, the audio signals transmitted

0.5 1 1.5 2
distance (m)

0

0.5

1

su
cc

es
sf

ul
 r

at
e

 MiM attack
 co-located attack

Figure 7: Success rates of MIM and co-located attacks.
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by the victim device need to be recorded and then replayed,
which may increase audio transmission errors leading to
incorrectly received passcodes. Moreover, the success rates
of both MiM and co-located attacks are are higher than 80%
when the attacker is 1m away from the victim, indicating
that acoustically transmitted one-time passcodes alone are
vulnerable to both MiM and co-located attacks. These results
highlight the need for device fingerprinting and cross-device
ranging as critical components in Proximity-Proof.

5.3 Efficacy of Acoustic Fingerprinting

We used experiments to verify the uniqueness of acoustic
fingerprints (including both speaker and microphone finger-
prints as defined in Section 3.3.2). Nine mobile devices were
used, including two Samsung Galaxy S5, two Google Nexus
6, two Nexus 7 tablets, one Huawei Honor 8, one iPhone
SE, and one iPhone 5. We first chose a Samsung Galaxy 5
as the user’s device and extracted its fingerprint with every
other device. The extracted acoustic fingerprints are shown
in Fig. 8. As we can see, the fingerprints of the same device
extracted by different devices are very similar.
Next, we used a Nexus 7 tablet as the login device in the

enrollment phase and each of the other eight devices as a
testing device. With the Nexus 7, we extracted the acoustic
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Figure 9: Distance between one device’s acoustic fin-

gerprints extracted by different login devices.

fingerprint of each testing device, which emulates its finger-
print stored at the web server. Then for each testing device,
we used each other testing device as an ad-hoc login device
to extract its fingerprint 20 times in three months, resulting
in 140 runtime fingerprints for each testing device. In our
experiments, the distance between each testing device and
each login device was randomly chosen between 10cm to
50cm with arbitrary device orientation. The testing and login
devices were place on the same table without any obstacle
between them. Fig. 9 shows the Euclidean distance between
each runtime fingerprint and its corresponding copy stored
at the web server. In the box plot, the red bar inside each box
depicts the median, and the lower and upper edges of the
box are the first and third quartiles, respectively. The upper
and lower ends of the whisker indicate the corresponding
maximum and minimum values, respectively. Only three of
the 1,120 runtime fingerprints are more than τ = 0.4 away
from the corresponding stored copies. This result further
confirms that the web server can use any login device to
extract the acoustic fingerprint of an enrolled phone. Be-
sides, the fingerprint of each testing device does not change
significantly in the three-month test window.
Fig.10 shows the Euclidean distance between the finger-

prints of every two testing devices extracted by the initial
Nexus 7 tablet. Since the distance is always larger than 0.4,
acoustic fingerprints can effectively distinguish mobile de-
vices of different types and also of the same type.

5.4 Defeating MiM Attacks

Now we experimentally evaluate the resilience of Proximity-
Proof to the MiM attack.
We launched the MiM attack in the same way as in Sec-

tion 5.2. In particular, we used one Samsung Galaxy S5 as
the victim device and two Nexus 6 (one as the monitoring
device and the other as the replay device) to conduct the
MiM attack. The login device was a Nexus 7. However, apart
from checking the one-time passcode, the login device also
verified the fingerprint of the prover phone (i.e., the Nexus 7
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Figure 11: Resilience to MiM attacks.

acting as the replay device). Fig. 11 compares the real finger-
print of the victim device stored at the web server and the
fingerprint extracted by the login browser. Since the later
one is actually the fingerprint of the relaying Nexus 7, we
can see the significant difference in Fig. 11, based on which
the web server can easily deny the illegitimate login request.

We further carried out the following experiment. For each
pair of devices, say A and B, we used B to record the audio
generated byA and replayed the audio to the login device.We
then compared the fingerprint extracted from the replayed
audio with the original fingerprint of device A. Note that we
do not consider the fingerprint extracted from self-recorded
audios because the attacker has no access to the user’s device.
As we can see from Fig. 12, the Euclidean distance is always
larger than τ = 0.4 for each pair of fingerprints, which indi-
cate that Proximity-Proof can easily distinguish the original
audio from the one replayed by illegitimate devices with a
proper threshold τ . So Proximity-Proof can effectively defend
against the MiM attack.

5.5 Defeating Co-Located Attacks

Nowwe report the accuracy of cross-device ranging and also
the resilience of Proximity-Proof to co-located attacks.

Session: Lock it Down! Security, Countermeasures, and Authentication MobiCom’18, October 29–November 2, 2018, New Delhi, India

411



Gala
xy

 S
5 

A

Gala
xy

 S
5 

B

Hon
or

 8

Nex
us

 6
 A

Nex
us

 6
 B

Nex
us

 7
 A

Nex
us

 7
 B

iP
ho

ne
 se

iP
ho

ne
 5

iPhone 5
iPhone se
Nexus 7 B
Nexus 7 A
Nexus 6 B
Nexus 6 A

Huawei Honor 8
Galaxy S5 B
Galaxy S5 A

0

0.5

1

Figure 12: Distance between an original fingerprint

and the fingerprint extracted from a replayed audio.

Since Proximity-Proof is designed for different devices to
work under diverse environments, we evaluated the accu-
racy of cross-device ranging in a wide range of scenarios.
Specifically, we used the ranging method to measure the
distance between a laptop-phone pair (L&P), a tablet-phone
pair (T&P), and a phone-phone pair (P&P) in an office, a
bookstore, and a coffee house. We used a Lenovo Thinkpad
E420 as the laptop, a Nexus 7 as the tablet, and a Samsung
Galaxy S5 as the phone. For each device pair in each envi-
ronment, we set the ground-truth distance as 0.5m, which is
Proximity-Proof’s default maximum working distance. We
then run the ranging method to measure their distance and
calculate the distance errors for each case.

Fig. 13 shows the ranging errors in different environments,
where the red points depict the outliers which fall more than
1.5 times the interquartile range above the third quartile or
below the first quartile. We can see that the ranging accuracy
for T&P and P&P is quite high with the average error in both
cases below 5cm in all three environments. In contrast, the
ranging accuracy for L&P is slightly lower with the average
error around 4.2cm, 6.2cm, and 6.3cm in the office, bookstore,
and coffee house, respectively. The reason is that the laptop’s
microphone is at the top of the screen, while its speaker
is behind the keyboard. The distance between the laptop’s
speaker and microphone is affected by the screen-keyboard
angle, which introduced additional errors into the ranging
result in comparison with the other two cases.

We used a Lenovo E420 laptop as the login device and an
SamsungGalaxy S5 as the user’s device to evaluate Proximity-
Proof’s resilience to the co-located attack. The volume of the
Galaxy S5 was set to 30 percent of its maximum volume. We
varied the distance between the Galaxy S5 and the laptop
from 10cm to 1m with a step length of 10cm and run the
authentication procedure 50 times for each distance. As we
can see from Fig. 14, when the distance is less than 40cm,
the authentication attempt succeeds for at least 98% of the

cases. When the distance is 50cm, the successful authenti-
cation rate drops to around 80%, which is mainly caused
by the ranging error. Moreover, if an attacker launches the
co-located attack from a distance of 60cm or larger from the
login device, almost none of his authentication attempts can
succeed. These results show that Proximity-Proof is highly
secure against the co-located attack.

5.6 Authentication Latency

We evaluated the authentication latency of Proximity-Proof
and compared it with that of Duo Mobile. We asked 22 par-
ticipants (12 males and 10 females) to log into the online
account using each Duo authentication option 10 times and
then measured the average authentication latency. 11 partic-
ipants are familiar with Duo, and the rest have never used
it before. Not surprisingly, the phone-call option took the
longest time, 30 seconds on average. The reason is that the
user had to answer the phone and waited until the end of
voice instructions. The Duo push and SMS options took 7.4
and 10.6 seconds on average, respectively.

We thenmeasured the authentication latency of Proximity-
Proof in a noisy coffee. Fig. 15 shows the authentication
latency versus the length of the one-time passcode, where
the volume is scaled between 0 and 1 with 1 meaning the
maximum volume. As we can see, the higher the volume,
the smaller the authentication latency, and vice versa. This
is anticipated because a higher volume can decrease the
errors of fingerprint extraction. In addition, increasing the
passcode length does not noticeably increase the authentica-
tion latency. More importantly, Proximity-Proof incurs much
smaller authentication latency than all three Duo authenti-
cation options even in the worst case.

5.7 Usability Study

We also asked the same set of 22 volunteers to use both Duo
and Proximity-Proof and conducted a survey about their
experiences. Our experiments used the web system of our
university, which has a mandatory Duo module. A Lenovo
E420 laptop was the login device, and a Samsung Galaxy
S5 phone with Duo App and Proximity-Proof installed was
the user’s device. The phone volume was set to half of its
maximum volume. Each volunteer logged into his univer-
sity account using all three Duo authentication options and
also used Proximity-Proof to log into an emulated university
website on the login device where the browser-side function-
alities of Proximity-Proof were implemented. Afterwards,
we asked each volunteer (Q1) whether Proximity-Proof is
easy to use, (Q2) whether Proximity-proof is faster than Duo,
(Q3) whether the passcode and phone call options of Duo
are bothering, (Q4) whether they heard any obtrusive noise
during Proximity-Proof’s authentication procedure, and (Q5)
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their preference between Duo and Proximity-Proof. The av-
erage survey scores are listed in Table 1 and range from
one (lowest) to five (highest). The results clearly indicate
Proximity-Proof is very easy to use, unobtrusive, and more
preferable than Duo.

6 RELATEDWORK

In this section, we outline the prior work most germane to
Proximity-Proof.

Traditional 2FA mechanisms rely on hardware or software
tokens. RSA SecurID [8] and Yubico[9] are examples of 2FA
based on hardware tokens. With these solutions, the user

Table 1: Usability scores

Mean Standard Deviation Min Median Max

Q1 4.72 0.37 3 5 5

Q2 4.45 0.62 3 4 5

Q3 4.61 0.62 3 4 5

Q4 1.26 0.54 1 1 3

Q5 4.53 0.82 3 4 5

needs to carry and interact with a customized hardware for
authentication. These solutions are costly considering the
expense of the extra hardware. Google 2-step verification
[7], Duo Push [4], and Encap Security [5] are examples of
the solutions based on software tokens. These mechanisms
require the users to either copy a passcode retrieved from
an application on the phone or via SMS, or respond to a
challenge by pressing a button. Since they require the user
to interact with his phone, their usability is limited.
There have been recent efforts to enhance the usability

of 2FA mechanism by eliminating the need for user interac-
tion. PhoneAuth [12] explores a Bluetooth channel between
an enrolled phone and the login device to execute crypto-
graphic challenge-response protocols without user involve-
ment. Since most browsers today do not provide Bluetooth
API, its applicability is limited. Authy [3] addresses the limi-
tation of PhoneAuth by using the Bluetooth communication
between the computer and the user’s phone but still requires
an extra software be installed in the computer side. Shir-
vanian et al. [27] introduce a 2FA mechanism by exploring
the WiFi channel between the browser and the user’s phone.
But their method requires the browser and the phone be on
the same WiFi network. Schemes based on other alternative
communicating methods such as NFC [26] and camera and
barcode [24] have also been proposed. However, they either
require extra hardware or user involvement and thus have
limited applicability.
There are also some methods that leverage the acoustic

channel for 2FA as Proximity-Proof. SlickLogin [15] uses
inaudible sound to transmit verification code from user’s
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phone to the login terminal. Sound-Proof [18] explores am-
bient sounds to detect the proximity between the phone and
the browser. As discussed in Section 1, both methods are
vulnerable to the MiM attack and co-located attack.

Acoustic device fingerprinting has been explored as well.
Zhou et al. [34] proposed to fingerprint speaker using fre-
quency response characteristics, but their method requires
that the fingerprint be extracted by the same microphone.
Dsa et al. [13] developed a method to extract features from
audios played by a speaker or recorded by a microphone to
identify the corresponding acoustic component, and their
method has similar limitations as in [34]. Chen et al. [11] in-
troduced a method for fingerprinting a speaker-microphone
pair, which is unable to fingerprint the speaker or micro-
phone separately. In contrast, Proximity-Proof uses a novel
method that can fingerprint a speaker or microphone sepa-
rately regardless of the device used for fingerprint extraction.

7 DISCUSSION

In this paper, we presented the design and evaluation of
Proximity-Proof, a novel mobile 2FA scheme which uses the
proximity of a user’s enrolled mobile device to the login
device as his second authentication factor. Proximity-Proof
achieves zero-effort mobile 2FA by automatically transmit-
ting a user’s 2FA response via inaudible acoustic signals.
Proximity-Proof also explores a novel acoustic fingerprint-
ing technique to defeat the MiM attack and acoustic ranging
to thwart the co-located attack for the first time in literature.
We empirically and experimentally showed that Proximity-
Proof is more secure and usable, as well as incurring much
smaller authentication latency, than Duo, a widely used com-
mercial mobile 2FA solution.
The current Proximity-Proof design still has some limi-

tations. First, Proximity-Proof targets the attacks executed
with COTS mobile devices, and its resilience to more ad-
vanced attacks leveraging customized devices remains to be
explored. Second, Proximity-Proof is still subject to acous-
tic jamming attacks that aim to prevent legitimate login
attempts, in which case the traditional 2FA scheme has to be
invoked. How to incorporate sophisticated jamming defenses
such as spread-spectrum communications into Proximity-
Proof deserves further investigations. Third, Proximity-Proof
requires a line-of-sight channel between the prover phone
and the login device to ensure accurate acoustic ranging for
thwarting the co-located attack. How to eliminate this line-
of-sight requirement is an interesting issue to study. Last,
large-scale experiments involving more users and mobile
devices can further validate the efficacy of Proximity-Proof.

8 ACKNOWLEDGEMENT

We thank our shepherd and anonymous reviewers for their
comments and help in preparing the final version of the
paper. This work was supported in part by the US Army Re-
search Office (W911NF-15-1-0328) and US National Science
Foundation under grants CNS-1619251, CNS-1514381, CNS-
1421999, CNS-1320906, CNS-1700032, CNS-1700039, CNS-
1651954 (CAREER), and CNS-1718078.

REFERENCES
[1] https://goo.gl/PRkb95

[2] https://www.w3schools.com/html/html5_audio.asp

[3] https://www.authy.com.

[4] https://www.duosecurity.com/product/methods/duo-mobile

[5] https://www.encapsecurity.com/

[6] https://goo.gl/YfmhDF

[7] https://www.google.com/landing/2step/

[8] https://goo.gl/gXWqjp

[9] https://www.yubico.com/

[10] D. Chen, X. Mao, Z. Qin, W. Wang, X.-Y. Li, and Z. Qin. 2015. Wireless

Device Authentication Using Acoustic Hardware Fingerprints. BigCom.

Taiyuan, China. (August 2015).

[11] D. Chen, N. Zhang, Z. Qin, X. Mao, Z. Qin, X. Shen, and X. Li. 2017.

S2M: A Lightweight Acoustic Fingerprints-based Wireless Device Au-

thentication Protocol. IEEE Internet of Things Journal 4,1 (2017), 88-100.

[12] A. Czeski, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz. 2012.

Strengthening User Authentication through Opportunistic Crypto-

graphic Identity Assertions. ACM CCS. Raleigh, NC. (October 2012).

[13] A. Das, N. Borisov, andM. Caesar. 2014. Do You HearWhat I Hear?: Fin-

gerprinting Smart Devices Through Embedded Acoustic Components.

ACM CCS. Scottsdale, AZ. (November 2014).

[14] T. Derham, S. Doughty, K.Woodbridge, and C. Baker. 2007. Design and

Evaluation of a Low-Cost Multistatic Netted Radar System. IET Radar,

Sonar & Navigation 1,5 (October 2007), 362-368 .

[15] https://goo.gl/RBGkX3

[16] https://goo.gl/Vy32JP

[17] N. Gunson, D. Marshall, H. Morton, andM. Jack. 2011. User Perceptions

of Security and Usability of Single-Factor and Two-Factor Authenti-

cation in Automated Telephone Banking. Computers & Security 30, 4

(June 2011), 208-220.

[18] N. Karapanos, C. Marforio, C. Soriente, and S. Capkun. 2015. Sound-

Proof: Usable Two-Factor Authentication Based on Ambient Sound.

USENIX Security. Washington, DC. (November 2014).

[19] K. Kulpa. 2006. Continuous Wave Radars-Monostatic, Multistatic and

Network. Advances in Sensing with Security Applications (2006), 215-

242.

[20] T. Li, Y. Chen, J. Sun, X. Jin, and Y. Zhang. 2016. Ilock: Immediate and

Automatic Locking of Mobile Devices Against Data Theft. ACM CCS.

Vienna, Austria. (October 2016).

[21] D.Mackay. 2003. Information Theory, Inference and Learning Algorithms.

Cambridge university press.

[22] W. Mao, J. He, and L. Qiu. 2016. CAT: High-Precision Acoustic Motion

Tracking. ACM MobiCom. New York, NY, USA. (October 2016).

[23] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota. 2016. FingerIO: Using

Active Sonar for Fine-Grained Finger Tracking. ACM CHI. San Jose,

CA. (May 2016).

[24] R. Peeters, J. Hermans, P.Maene, K. Grenman, K. Halunen, and J. Haikio.

2017. n-Auth: Mobile Authentication Done Right. ACSAC. Orlando, FL.

(December 2017).

Session: Lock it Down! Security, Countermeasures, and Authentication MobiCom’18, October 29–November 2, 2018, New Delhi, India

414



[25] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan. 2007. BeepBeep: A High

Accuracy Acoustic Ranging System using COTS Mobile Devices. ACM

Sensys . Sydney, Australia. (November 2007).

[26] A. Rosati. 2017. Two Factor Authentication Using Near Field Commu-

nications. (March 2017). US Patent 9594896.

[27] M. Shirvanian, S. Jarecki, N. Saxena, and N. Nathan. 2014. Two-Factor

Authentication Resilient to Server Compromise Using Mix-Bandwidth

Devices. NDSS. San Diego, CA. (February 2014).

[28] B. Shrestha, M. Shirvanian, P. Shrestha, and N. Saxena. 2016. The

Sounds of the Phones: Dangers of Zero-Effort Second Factor Login

based on Ambient Audio. ACM CCS. Vienna, Austria. (October 2016).

[29] T. Szabo. 1994. Time DomainWave Equations for LossyMedia Obeying

a Frequency Power Law. The Journal of the Acoustical Society of America

96,1 (1994), 492-500.

[30] Q. Wang, K. Ren, M. Zhou, T. Lei, D. Koutsonikolas, and L. Su. 2016.

Messages Behind the Sound: Real-Time Hidden Acoustic Signal Cap-

ture with Smartphones. ACM MobiCom. New York City, NY. (October

2016).

[31] W. Wang and H. Shao. 2013. Performance Prediction of a Synchroniza-

tion Link for Distributed Aerospace Wireless Systems. The Scientific

World Journal (July 2013).

[32] T. Wei and X. Zhang. 2015. Mtrack: High-Precision Passive Tracking

Using Millimeter Wave Radios. ACM MobiCom. Paris, France. (Septem-

ber 2015).

[33] C. Weir, G. Douglas, T. Richardson, and M. Jack. 2009. Usable security:

User preferences for authentication methods in eBanking and the

effects of experience. Interacting with Computers 22,3 (October 2009),

153-164.

[34] Z. Zhou, W. Diao, X. Liu, and K. Zhang. 2014. Acoustic Fingerprinting

Revisited: Generate Stable Device ID Stealthy with Inaudible Sound.

ACM CCS. Scottsdale, AZ. (November 2014).

Session: Lock it Down! Security, Countermeasures, and Authentication MobiCom’18, October 29–November 2, 2018, New Delhi, India

415




