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Abstract—Database-driven Dynamic Spectrum Sharing (DSS)
is a promising technical paradigm for enhancing spectrum
efficiency by allowing secondary user to opportunistically access
licenced spectrum channels without interfering with primary
users’ transmissions. In database-driven DSS, a geo-location
database administrator (DBA) maintains the spectrum availabil-
ity in its service region in the form of a radio environment
map (REM) and grant or deny secondary users’ spectrum access
requests based on primary users’ activities. Crowdsourcing-based
spectrum sensing has great potential in improving the accuracy of
the REM at the DBA but requires strong incentives and privacy
protection to simulate mobile users’ participation. To tackle this
challenge, this paper introduces a novel differentially-private
reverse auction mechanism for crowdsourcing-based spectrum
sensing. The proposed mechanism allows the DBA to select
spectrum sensing participants under a budget constraint while
offering differential bid privacy, approximate truthfulness, and
approximate accuracy maximization. Extensive simulation studies
using a real spectrum measurement dataset confirm the efficacy
and efficiency of the proposed mechanism.

[. INTRODUCTION

Database-driven Dynamic Spectrum Sharing (DSS) [1],
[2] is a promising technical paradigm to meet the ever-
growing spectrum demand by allowing secondary user to
opportunistically access licensed channels without interfering
with primary users’ transmissions. In database-driven DSS,
a geo-location database administrator (DBA) maintains the
spectrum availability in its service region in the form of a radio
environment map (REM) [3], [4], where the primary user’s
received signal strength (RSS) at every location of interest is
either directly measured or estimated using proper statistical
spatial interpolation techniques. A secondary user can inquire
the DBA about a permission to access a licensed spectrum
band at the desired location if no primary user is using it.

Constructing and maintaining an accurate REM requires
periodically collecting a large number of spectrum measure-
ments over the DBA’s service region. A widely advocated
approach is for the DBA to deploy only a few dedicated
spectrum sensors at selected locations and outsource most
spectrum-sensing tasks to pervasive mobile users [5], [6]. The
feasibility of this approach is rooted in the deep penetration of
mobile devices into people’s everyday life. In addition, future
mobile devices are widely expected to be capable of spectrum
sensing via either internal spectrum sensors or external ones
acquired from the DBA [7], [8].
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Crowdsourcing-based REM construction requires sound
incentive mechanisms to stimulate crowdsourcing workers’
participation. In particular, performing spectrum sensing incurs
non-trivial effort to crowdsourcing workers, such as their
time and device battery. Without strong incentives, potential
workers may be reluctant to participate in crowdsourcing-
based spectrum sensing. A common approach for providing
incentives in mobile crowdsourcing systems is to use reverse
auction [9], where crowdsourcing workers sell their services
by submitting their bids to the DBA, which in turn selects a
subset of bidders as winners and offers payments based on their
bids. Reverse auction has been widely used in many mobile
crowdsourcing systems such as [10], [11].

A sound reverse auction mechanism for crowdsourcing-
based REM construction needs to satisfy three critical re-
quirements. First, crowdsourcing workers are selfish in reality
and may lie about their costs if doing so can increase their
utilities. This requires the reverse auction mechanism to be
truthfil, which means that bidding the true sensing cost is the
optimal strategy for mobile crowdsourcing workers. Second,
mobile crowdsourcing workers’ bids may reveal their personal
information, such as their locations [12], [13] and opportunity
costs. While the DBA is commonly assumed to be trusted, cu-
rious workers could infer other workers’ bids from the change
in the payment profiles by submitting different bids for the
same sensing task in different rounds [14]. It is thus necessary
to protect crowdsourcing workers® bid privacy against other
curious workers. Finally, reverse auction involves the selection
of a set of winners, which needs to ensure the accuracy of the
resulting REM. However, the optimal selection of winners to
maximize REM accuracy is an NP-hard problem even with-
out considering the first two requirements. Despite the large
body of work on privacy-preserving incentive mechanisms
for mobile crowdsourcing systems [15]-[19], none of them
satisfy the above three requirements. This situation calls for
sound privacy-preserving incentive mechanisms to stimulate
crowdsourcing workers’ participation while protecting their bid
privacy and ensuring high REM accuracy.

In this paper, we tackle this challenge by introducing DPS,
a novel differentially-private reverse auction mechanism which
can simultaneously ensure the bid privacy for crowdsourcing
workers and the accuracy of the constructed REM. In DPS,
every crowdsourcing worker submits a bid for performing
spectrum sensing at his current location. Serving as the
auctioneer, the DBA selects a subset of workers as winners



based on the received bids and determines the payment to the
winners. The key ingredient of DPS is a greedy algorithm
for selecting a candidate winner set with guaranteed REM
accuracy with respect to every possible payment price and
choosing the final winner set with corresponding payment price
using the exponential mechanism to ensure differential privacy
for individual workers. Our main contributions in this paper
can be summarized as follows.

e To the best of our knowledge, we are the first
to study differentially-private mechanism design for
crowdsourcing-based REM construction.

e We introduce a novel differentially-private reverse
auction mechanism that can simultaneously provide
differential privacy to crowdsourcing workers’ bids,
approximate truthfulness, and guaranteed REM accu-
racy at the DBA.

e  We thoroughly evaluate the proposed mechanism via
a combination of theoretical analysis and detailed
simulations studies using real spectrum measurement
data, which confirm the efficacy and efficiency of the
proposed mechanism.

II. PRELIMINARIES

In this section, we introduce the background on statistical
spatial interpolation and Ordinary Kriging [20], the system and
adversarial models, crowdsourcing-based REM construction,
the auction model, and our design objectives.

A. Background on Statistical Spatial Interpolation and Ordi-
nary Kriging

Kriging [20] refers to a class of geo-statistical spatial in-
terpolation techniques that are originally developed for mining
and have been explored for radio mapping in recent years.
Kriging models the received signal strength (RSS) at any
location x as a Gaussian random field

Z(x) = u(x) +5(x),

where £4(x) is the mean RSS at location x capturing path loss
and shadowing, and §(x) represents possible sampling error.

In Ordinary Kriging (OK) [20], a particular Kriging tech-
nique that has been overwhelmingly used for radio mapping
[21]-[25], Z(x) is further assumed to be intrinsic stationary
in the sense that

E[Z(x)] = p(x) = p

E[Z(x1)? = Z(x2)*] = 2y(h),
where p is an unknown constant, h = ||x; —xz|| is the distance
between the two locations, and ~(-) is the semivariogram

function that models the variance between two locations as
a function of their distance.

(D

Under OK, the RSS at an unmeasured location xq is
estimated from the RSSs at measured locations. Specifically,
given a set of spectrum measurements at locations X =

{x1,-++ ,Xn}, the RSS at location xq is estimated as
n
Z(x0) =Y wiZ(xs), )
i=1

where Z —1wi = 1 are normalized weights. It is easy to
see that Z(xo) is a linear unbiased estimator as E[Z(xo) —
Z(x0)] = B[} i, wiZ(xi) — Z(x0)] = 2oi_; wil[Z(xi)] —
E[Z(xo)] = i_ywi —p = 0.

By minimizing the Mean Squared Error (MSE) E[(Z(xo)—
Z(x0))?] with respect to {w;} under the normalization con-
straint Z;;l w; = 1, we can obtain a set of linear equations,
commonly referred to as Kriging system.

Solving the Kriging system leads to the optimal coefficients
given by
"= (Wh)iex = SxxSaxo, 3)

where Y3 is the covariance matrix, and Y xx, 18 the vector
of cross-covariances between every Z(x;)(: € [1,n]) and
Z(xp). Since the estimator is unbiased, the minimized MSE,
commonly referred to as Kriging variance (K-var), is given by

2

2 —
O%alx = . Xxo (Exx)zxxo )

where o is the unknown K-var when X = 0. K-var rep-

resents the prediction uncertainty at the unmeasured location
and is often used as the estimator design metric. The smaller
K-var, the higher accuracy of the estimation, and vice versa.

B. System Model

We consider a DBA which maintains an REM for the
spectrum availability in its service area D € R2. The area
D is divided into a number of cells of equal size.

The DBA relies on spectrum sensing to construct and
maintain the REM. Specifically, the DBA deploys a small
number of static spectrum sensors at strategic locations and
outsources the majority of spectrum sensing tasks to mobile
crowdsourcing workers. Deploying few static spectrum sensors
cannot only guarantee minimum level of service when there are
insufficient mobile crowdsourcing workers, e.g., during night-
time, but also facilitate detection of potential false spectrum
measurements [6]. Denote by S the set of dedicated spectrum
sensors and A" = {1, ..., n} the set of crowdsourcing workers.
We assume that the locations of dedicated spectrum sensors are
known to the DBA. We also assume that each crowdsourcing
worker owns a mobile device capable of spectrum sensing and
acquiring its current location.

The DBA periodically collects spectrum measurements
from static spectrum sensors and selected crowdsourcing work-
ers to update the REM. Assume that the time is divided into
epoches. At the beginning of each epoch, the DBA broadcasts
a spectrum sensing request to all the potential crowdsourcing
workers in D, which includes sensing frequency, sampling
rate, etc. On receiving the sensing request, each crowdsourcing
worker ¢ € A/ submits a bid b; along with his location x; to the
DBA, indicating that he is willing to perform spectrum sensing
at location x; for a minimal payment of b;. Once the DBA
receives a bid-location profile (b, X) where b = (by, -+ ,by)
and X = (xy,--+,Xyp), it selects a winner set W C A and
determines the payment p; for each winner : € W.

The DBA then informs the winners and collects spectrum
measurements from them as well as static spectrum sensors. In
particular, each static sensor or winning crowdsourcing worker
i € S|JW submits a spectrum measurement Z(x;) to the



DBA. On receiving all the measurements {Z(x;)|i € S|JW}.
the DBA estimates the RSS at the center of every cell using
Eq. (2) whereby to produce the updated REM.

C. The Objective Function at the DBA

The DBA’s primary objective is to choose the set of winners
W with total payment under the budget constraint while
minimizing the average K-var of the produced REM over its
service region.

We adopt a similar objective function from [24], where
the DBA chooses winners partially based on the predicted
contribution of additional measurements submitted at the win-
ners’ locations. Specifically, under the optimal weights given
in Eq.(3), the K-var at an unmeasured location x € D after
taking measurements from deployed dedicated sensors S at
locations Xs = {x;|: € S} is given by [24].

2 _ 2 T -1
Oxlxs = 9x — EXSXEXSXS YiXsxs 4)

where o2 is the unknown variance at location X, Yxsxs iS
the covariance matrix of all measurements from dedicated
sensors, and Xy is the vector of cross-covariances between
{Z(x;)|i € S} and Z(x).

Given a winner set W, the DBA will collect additional
spectrum measurements from locations Xy = {x;|i € W}.
Combining spectrum measurements from S and W, the Krig-
ing variance at an unmeasured location x € D is given by.

2 _ 2 T -1
UX|X3UW = 0x EXSwaEXSUwXSUWEXSUWX' (5)

Subtracting Eq. (5) from Eq. (4), we can obtain the
predicted Kriging variance reduction at location x caused by
additional measurements from W as

2 T -1
Doy (W) = EXSUWXEXSUWXSUWEXSUWX (6)
- E%sxziéx,szxsx .

Now consider the whole service region D. The average
reduction of Kriging variance caused by the measurements
submitted by winner set W is given by

FOW) = 7 3 AW, %)

xeD

Assume that the DBA has a budget B for payment to the
winners for each epoch. The DBA intends to find a set of
winners W along with payment profile {p;|i € W} under
the budget constraint that maximizes the average reduction
of Kriging variance in the service region D, which can be
formulated as the following optimization problem.

Maximize f(WV)

subject to Z p; < B, (8)
iEW
WCWN.

The above optimization problem is NP hard. In particular,
let us temporally ignore the payment profile and budget con-
straints and assume that the DBA can choose a fixed number
of winners. We can see that even this simplified version of

the problem is a special case of subset selection problem,
which is NP hard in general because of the non-linear nature
of objective function f(W).

D. Other Design Objectives

In addition to budget feasibility and maximizing the av-
erage K-var reduction in D, we also intend to design our
incentive mechanism to satisfy the following objectives.

Approximate Truthfulness. A selfish crowdsourcing
worker may submit bid different from his true valuations of
sensing cost if doing so could increase his utility. Assume that
each worker 7 has a true valuation v; for the cost of performing
spectrum sensing at location x;, which might be different from
his bid b;. The worker ¢’s utility is then given by

v — {pi —vy, ifieW, ©)

0, otherwise,

where p; is the payment worker i receives from the DBA if
he is selected as a winner.

As a result, we aim to ensure that every crowdsourcing
worker’s optimal strategy is to bid his cost truthfully. Exact
truthfulness, however, is usually difficult to achieve without
losing other desirable properties. Instead, we aim to achieve -
truthfillness such that no crowdsourcing worker can gain more
than ~ utility by bidding untruthfully.

Definition 1. (~-truthful). An auction mechanism is ~-truthful
in expectation if and only if for any bid b; # v; and any bid
profile of other workers b_;,

Ef[u(v;,b_;)] = Elu(b;, b_;)] — 7 . (10)

where ~y is a small positive constant.

Differential privacy. We also intend to protect crowd-
sourcing workers” biding privacy. While every worker’s bid
is known to the DBA and kept private from other workers,
a curious worker could still infer other workers’ bids by
submitting different bids in different rounds of auction. In
particular, since the change in a single bid may result in
significant change in the selected winner set and the payment
profile, a curious worker may infer other workers’ bids from
the change in the payment he receives from the different
payments she receives in different rounds. Differential privacy
[9], [26] is a powerful technique to protect bid privacy against
such differential attacks. The key idea is that given two
neighboring input datasets, a differentially-private mechanism
behaves approximately the same on both datasets, such that
the presence or absence of a single element would not cause
any major change in the output. The formal definition of
differential privacy is given as follows.

Definition 2. (Differential privacy [9], [26]). Let M (:) be a
function that maps an input bid profile b to a payment profile
p € P. Mechanism M (-) is e-differentially private if and only
if for any set of payment profiles R C P and any two bid
profiles b and V' that differ in only one bid, we have

Pr[M(b) € R] > exp(e)Pr[M (V) € R] . (11)

where € is a small positive constant commonly referred to as
privacy budget.



The exponential mechanism [9] is a classical tool to
facilitate mechanism design via differential privacy. The key
idea is to map a pair of input dataset A and candidate outcome
o to a real valued "quality score" g(A, o), where higher score
indicates better performance of the outcome. Given the output
space O, a score function ¢(), and the privacy budget e, the
exponential mechanism chooses the outcome o € O with
probability proportional to eg(A4, o).

Theorem 1. [9] The exponential mechanism gives 2e/\
differential privacy.

Here A is the global sensitivity of eq(A, o) that captures
the largest change in the quality score by a single change of
the input in A.

Computation Efficiency. The selection of winner set and
corresponding payment price should be computed in polyno-
mial time.

Individual rationality. Our last design objective is in-
dividual rationality, which ensures that every crowdsourcing
worker’s utility is non-negative, i.e., u; > 0 for all 7 € N, if
he bids truthfully. The property is desired to stimulate mobile
users’s participation in any mobile crowdsourcing systems.

III. THE DPS DESIGN

In this section, we first give an overview of DPS and then
detail its design.

A. Overview

DPS is designed by integrating a number of ideas. First,
inspired by [19], [27], we adopt the single-price mechanism
in which the DBA pays every winner the same amount of
payment. It has been proved in [28] that the optimal single-
price payment mechanism is within a constant factor of any
differentiated payment mechanism. Second, under the single-
price payment mechanism, we further design a greedy al-
gorithm for selecting winners with guaranteed approximation
ratio. Specifically, for any fixed payment price p, the maximum
number of workers that the DBA can select is |B/p|. Any
worker whose bid not higher than p can be chosen as a
winner without violating the individual rationality. The winner
selection problem under the single payment price p is then
converted into the special case of subset selection problem
which can be solved by greedy algorithm with guaranteed
approximation ratio. Third, we choose final winner set and
payment price using the exponential mechanism to ensure
differential privacy. In particular, for each possible payment
price, we can find a corresponding winner set and calculate
the predicted average Kriging variance reduction. Given a set
of possible payment prices, we then choose the final winner
set and payment price using the exponential mechanism.

B. Detailed Design

We now detail the process of winner selection and payment
price determination.

On receiving the bid-location profile (b, X'), the DBA
first finds a set of feasible payment prices. Without loss of
generality, we assume that the possible payment to individual
worker forms a finite set P = {pmin,---,Pmax}, Where

the lowest and highest payment prices are ppin and pmax.
respectively. Let byin and b,y be the lowest and highest bids
in b, respectively. We say a price pp € P is feasible if and
only if there is at least one crowdsourcing worker with biding
price no higher than pg. The maximum number of winners is
constrained by the budget B. In particular, given budget B and
payment price p, the number of winners is at most | B/pg]-

Second, for each feasible payment price pr € P, the DBA
finds a winner set Wy using a greedy algorithm. The greedy
algorithm explores the fact that the objective function f()
in Eq. (13) is submodular, non-negative, and monotone [24].
Specifically, it is easy to see that the f(-) is non-negative as the
K-var reduction is always positive for any non-empty winner
set. Moreover, a set function f : 2° — R is submodular if and
only if f(AU{}) = F(A) > f(BU{x})— f(B) for any A C
B C Cand z € C\ B. Submodularity captures the diminishing
returns behavior of f: adding a new element to the input set
always results in the increase in f, and the amount of increase
reduces as the number of existing elements increases. Finally,
f(+) is monotone if and only if f(.A) < f(B) for any A C
B C C. A widely known result [29] is that for any function that
is simultaneously submodular, monotone, and non-negative, a
greedy algorithm that chooses the local optimal element at
each step can find a solution with guaranteed approximation
ratio of 1—1/e, and no polynomial-time algorithm can achieve
a better guarantee unless P = NP.

We now detail the greedy algorithm for winner selection for
each payment price. Consider payment price py as an example,
let N = {i|b; < px} be the set of workers whose bids are not
higher than pg. The DBA maintains a winner set Wy, a set of
candidate workers Cg, where Wy = 0 and C;, = N, initially.
The winner set is selected in ng = | B/pg| iterations. In each
iteration, the DBA finds worker j from Cp with

j = argmax f(Wi UJGH - rom).

In other words, the measurement from winner j is expected
to give the maximum K-var reduction among all candidate
workers. The DBA then moves worker 5 from candidate set
to the winner set, i.e., Wi = Wi U{s} and C, = Cx \ {j}.
The algorithm terminates after n; iterations or Cj is empty,
whichever happens the first.

After computing all possible winner sets {Wk|pr € P}
using the greedy algorithm, the DBA chooses the final winner
set and corresponding payment price using the exponential
mechanism to guarantee differential privacy for workers’ bids.
As discussed in Section II-D, applying the exponential mecha-
nism requires a score function along with its global sensitivity.
Here we choose the objective function f(-) as the score
function, whose global sensitivity is the maximum change that
can be caused by the change in a single bid. In particular,
let us represent the greedy algorithm as a function g(-) that
takes a bid profile b, a budget B, and a possible payment
price px as input and outputs a winner set Wjy. The function
f o g, ie., the composition of functions f and g, then maps
a bid profile (along with a budget and a payment price)
into corresponding K-var reduction. Denote by A f the global
sensitivity of f o g, which we will derive in Section MI-C.
Given all winner sets {Wk|pr € P}, the DBA first calculates



the probability distribution

exp (ef(wn)

ef (W)
pkEpeXP( 2Afk )

for all pr, € P, where € is the privacy budget.

Prp = pi] =

The DBA finally chooses the final payment price pg
and corresponding winner set W, according the computed
probability distribution.

C. Global Sensitivity /A f

We now estimate Af, the global sensitivity of function
f o g. Directly estimating the global sensitivity of f(:) is
unfortunately difficult due to the unpredictable behavior of the
greedy algorithm. Instead, we seek to derive an upper bound
of Af that suffices to provide differential privacy guarantee.

Theorem 2. Let b and V' be any two bid profiles that differ in
a single bid. For any payment price py, € P, let Wy, and W,
be the winner sets chosen by the greedy algorithm based on b
and V', respectively. We have

|fWe) = fOVO)I < (IB/pmin]/e + )¢, (12)
where ¢ = max;cp f({i}).

Proof: Let C, and Cj be the candidate sets for any
payment price pp € P under bid profiles b and b’, respectively.
Since b and ' differ in a single bid, Cy and C}, differ in at
most one element. Without loss of generality, suppose that
Cr = CLU{j}, e.g., worker j is excluded from Cj, because
b; < pp < b’ Now consider the following subset selection
problem

Maximize f(W)

subject to W C Cy, [W| = ng, (13)

where ng = | B/px] is the number of winners chosen by the
greedy algorithm.

Let Wopt,e and W, ;. be the optimal winner sets chosen
from Cj and Cj, respectlvely Also let Wy and W, be the
winner sets chosen from Ci and Cj, by the greedy algorithm,
respectively. Since Cp D Ci, we have Wy, C Cx, and
therefore f(Wopt,k) = f(Wepero)-

Since function f(-) is non-negative, monotone, and sub-
modular, the greedy algorithm can produce a solution within
(1 — —) of the optimal solution. We therefore have (1 —

D f Woptt) < FWe) < F(Wopi) and (1 — I Weer) <
FOWVE) < F(Wopx)- Tt follows that

W) = SOV < mase{ W) = (1= ) W),
F Vi) = (1= 2) F OV}
= FWepis) = (1= 2) W),

o) < f(Wopt.k)-

Let ¢ = max;cp f({i}) be the maximal K-var reduction
caused by a single worker among all workers. Since f(:) is

where the last equation holds because f(W,

submodular, we have

FOWope) < FOWor | UG
< FWii) + FUIY) < FWipi) + -

Since f(Weptk) < nrp and ny < |B/pmin], it follows that
[FOM) = SOV < F W) + 0= (1= 2 ) F W)

= Ef(wépt,k) +e< (? + l)cp
< (|B/pminl/e+1)e.

IV. THEORETICAL ANALYSIS

We first have the following theorem regarding DPS’s
differential privacy guarantee.

Theorem 3.
private.

The DPS auction mechanism is e-differentially

Proof: Let b and ¥ be two bid profiles that differ in only
one worker’s bid. For any payment price py € P, let W and
Wj, be the winner sets chosen by the greedy algorithm based
on b and ', respectively. We have

F(Wy)
HP(Ez—M"—

PrIM(b) = pi] _ Spperexe(527)
PrIM () = px] e (228
EpkePﬂp(%ﬁ)
EIQ(KV;)) ‘ ZpkePeXp (EJ;(KFL))
T 5, epenn (422)

(
( |
(e(f(wk) - f(wg))) Tperew (G27)

We
2Af Zpkepe}cp (EJ;(AJFU)
(f(We)+Af)
< eAf 2 pep P (E 233* )
=P \2af

W
Z;p ep &XP (Efz(‘afk))
W
(e Xp (mf) > _prep €XP (Efz(‘afk))
=exp| - .
2) fF(Wk)
2 prep XP (E 2Afk )

i exp (%) . exp (%)

= exp(€)
(14)
|
Let Ap = pmax — Pmin- We have the following theorem

regarding the truthfulness of the auction mechanism.
Theorem 4. The DPS auction is eAp-truthfid.

Proof: Consider an arbitrary worker j € A” whose true
valuation of the sensing cost is u;. Let b and b be two bid
profiles that differ in only worker j’s bid, e.g., 7 bids u; and
bj # w; in b and b’. respectively. Similar to the proof of



Theorem 3, for any pr € P, we have Pr[M(b) = pi] >
e~€ - Pr[M(b') = py]. It follows that

Epr (b) [ui(Pk)] - Epr(bf) [ua (Pk)]
= > wi(pk)Pr[M(b) = pr] — Epwns(or) [wi(pr)]

pLEP
> 3 wipr)PAIM (V) = pi] = Epy s o) s (p)]
pPrEP

= e Eponr ) [1i(Pr)] — Eppnnror) [ (Pr)]

> (1 =€) - Eppons (o) [t (Pr)] — By (o) (1 (P)]

= —e-Eppmonr (o) [wi(pr)]

= _pr!

(15)

where the last inequality holds because wu;(pr) < Pmax —

Pmin = Ap. We therefore conclude that DPS is eAp-truthful.
|

Finally, we have the following theorem regarding the
quality of the REM produced by the auction mechanism.

Theorem 5. Let W,,, be the optimal winner set among all
possible winner sets {W,|p € P}. Assume that DPS selects a
winner set Wy, with payment price py. The expected average
K-var reduction given by W, and the maximum average K-var
reduction given by f(Wep) satisfies that

€

EpkEP[f(Wk)] = f(wopr)_]n (6 + 2Af

Proof: We start by defining the following four sets for
any constant ¢ > 0, including B; = {px|f(Wk) > f(Wept) —
thBe = {px|fWk) < f(Wop) — t},Bar = {pr|f(Wh) >
f(Wept) — 2t}, and Bae = {px|f(Wi) < f(Wopt) — 2t}

Since Pr[px € B;] < 1, we have
Pr[pk = BQ;]
Pr[pk 1S Bg]
s (429

ZPkEBZ: >, Epexp(eﬂw)

Pr[pk 1S Bzg] S

- exp(EfZ(XVL))
Pexp(e_ftw ))
_ ef (W)
ZPkEBz: eXP( 2Afk )
> preB, €XP (Eﬂwn)

oxp (L0%20)

“ Tveen,op (1)
k t

2AF
Wopt) —2
|B2e | exp (Em m} t))
|By| exp (E(J’(;\’ng)—t))

_ |1§2t| exp ( —et )
B 2Af )

Zpk cB,; E

pkEBZ:

PO, (SB1),

Since Pr[py € Bat] + Prlpr € Ba:] = 1, it follows that
Pr[pk = Bzg] =1- Pr[pk 1S Bzg]

|Bzg| ( —et )
>1— :
[B] P\ 247
We can estimate the E,, e p[f(Ws)] as

Epep[fWi)] = Z F(We)Prlp = py

PrEP

= Z fFOWr)Prip = py]
PLEB,,
> (f(Wopt) — 2t)Pr(py, € Ba] (16)

> (f(Wap) — 20) (1 B ||;§BT|| o (;A;))
> (f(Weap) — 20) ( 1Pl exp (%f ))

where the last inequality holds as |Bg;| < |P| and |B;| > 1.

For any t satisfying
o (S  (BBD)

we have

IAF

(_f (n (£2IPL) (H)))

exp (=) < exp
oAf
t

T W [P’
(18)

Plugging Inequality. (18) into Eq. (16), we get

Eperl V)] = (F0Wa) ~20) (1= |Plewp (55

> (f(Wep) = 20) (1 1Pl W)
2
= FWeg) =38+ 0
> f(Wopt) — 3t (19)

if Inequality (17) holds.

We now show that ¢t = In (e + %’Pﬁ) x (%ﬁ satis-
fies Inequality (17). In particular, since In Ee + 4P_E|P|f(w° ‘)g >

1, we have t > @. In addition, since In NG

>
In (Elpgff}% )), we have

) (2
(lPIf(Wo,,t) 2Af) « (Q?f)

- 1n(|P|f(two.,.)) § (Qﬁf) |




TABLE L DEFAULT SIMULATION SETTING

Para. | Val. | Description.
DPrmin 1 The lowest payment price
Pmax 2 | The highest payment price
brmin 2 The lowest bid price
bmax 2 The highest bid price
|P| | 101 | The number of possible payment prices
|S] 5 | The number of dedicated sensors
€ 0.1 | Privacy budget
IN| | 140 | The number of crowdsourcing workers
B 30 | Budget

Finally, substituting ¢ = In (e—|— %ﬁ) X (@) into
Eq. (19), we obtain

By cplf V)] > f(Wep)—In ( 4 SIPIS Wep) ) . (W ) |

oAf

The theorem is therefore proved. [ |

€

We finally have the following theorem with the proof
omitted due to space constraints.

Theorem 6. The DPS auction mechanism achieves budget
feasibility and individual rationality and can compute the
winner set and payment price in polynomial time.

V. SIMULATION RESULTS

In this section, we evaluate the performance of DPS via
simulation using a real spectrum measurement dataset.

A. Dataset

As in [6], [23], we use the CRAWDAD cu/wimax
dataset [30] for our simulation studies. The cu/wimax dataset
was collected at the University of Colorado Boulder (UC)
and contains the signal-to-interference-plus-noise ratio (CINR)
measurements of five WiMax base stations serving the Univer-
sity of Colorado campus taken on a 100m equilateral triangular
lattice. For our purpose, we chose the total 145 measurements
for channel 308 and BSID 3674210305.

B. Simulation Settings

We randomly divide the total 145 measurements into a
set of 5 measurements as the ones reported by dedicated
anchor sensors and a set of the remaining 140 as submitted
by mobile crowdsourcing workers. We fit the semivariogram
from the total 145 measurements along with their locations.
We also assume that the semivariogram of each location is
to the DBA. In addition, the bid price of each mobile user
is randomly picked among {1,1.01,...,2}. Every point in
the following figures is the average of 100 runs, each with
a distinct seed. Table I summarizes our default simulation
settings unless mentioned otherwise.

Since DPS is the first solution for crowdsourced REM
construction, we compare DPS with other two strategies.

e Baseline differentially private auction (BDPA): In
BDPA, for each possible price pi € P, the DBA first

computes predicted average K-var reduction f({i})
for each worker ¢ € A} and selects winner set W, as
the | B/px| workers with the highest average K-var
reductions. The final winner set and payment price
are chosen using the exponential mechanism as in
the DPS. It is easy to verify that BDPA achieves
approximate truthfulness and e differential privacy.

e Optimal single-price auction (OSPA): In OSPA,
for each possible price pr, € P, the DBA chooses
the corresponding winner set Wy using the greedy
algorithm as in DPS and then selects the final winner
set with corresponding payment price as the one that
gives the maximum average K-var reduction. The K-
var reduction achieved by OSPA can be viewed as the
upper bound of the DPS.

We use two metrics to evaluate the performance of DPS:
average K-var reduction and privacy leakage. Besides the
average K-var reduction defined in Section II, the privacy
leakage is defined as follows.

Privacy Leakage. We use the Kullback-Leibler divergence
[31] to evaluate the the privacy leakage of DPS. Let b and b’
be two bid profiles that differ in a single bid. Denote their
payment probability distributions under DPS as Pr[M (b)] and
Pr[M(b")], respectively. The privacy leakage in terms of the
Kullback-Leibler divergence is defined as

PL = KL(Pr[M(b)]|Pr[M (v')])

_ by — PriM (b) = ps]
= pkzejp Pr[M(b) = py]In (m) :

KL divergence indicates the statistical difference between two
probability distributions. Generally speaking, the smaller KL,
the harder to distinguish the two bid profiles and thus better
protection of workers” bid privacy.

C. Simulation Results

1) Impact of Budget B: Fig. 1 compares the K-var re-
ductions under BDPA, OSPA, and DPS with total budget B
varying from 10 to 80. As we can see, as the total budget
increases, the average K-var reductions of all three mechanisms
increase. This is anticipated, as the higher budget, the more
winners chosen by the DBA, the higher average K-var reduc-
tion, and vice versa. Moreover, the OSPA’s K-var reduction
is always the highest, which confirms that it is the upper
bound of the DPS mechanism. While DPS’s average K-var
reduction is slightly lower than that of OSPA, it outperforms
BDPA by a large margin. These results indicate that DPS can
achieve approximate maximal K-var reduction while providing
differential bid privacy to crowdsourcing workers.

2) Impact of Privacy Budget e: Fig. 2 compares the K-
var reductions of BDPA and DPS varying with privacy budget
e, where the K-var reduction of AMNDP is not affected by
the change in € and is plotted for reference only. As we can
see, the K-var reductions of DPS and BDPA both increase
as e increases. The reason is that the larger e, the higher
the probability of high-quality winner set and payment price
being selected by the exponential mechanism, the higher K-
var reduction, and vice versa. Moreover, the variance of K-var
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reductions of both BDPA and DPS decrease as e increases,
which is anticipated. In addition, the K-var of DPS is always
higher than that of BDPA by a large margin, which confirms
the effectiveness of the greedy algorithm in selecting high-
quality winner set.

3) Impact of the Number of Workers: Fig. 3 compares the
K-var reductions of BDPA, OSPA, and DPS as the number of
participating workers increases from 20 to 140. We can see
that the K-var reductions of all three mechanisms increase as
the number of participating workers increases, as the DBA
can select more winners. Similar to Fig. 1, the OSPA’s K-var
reduction is always the highest, followed by DPS, and that of
BDPA is the lowest. It is worth noting that when the number
of participating workers is small, the advantage of DPS over
OSPA is small. For example, when the number of participating
workers is 20, DPS and OSPA have the same K-var reduction.
This is because the DBA can afford to select all the workers
as winners in such cases. Finally, the difference between DPS
and AMNDP is caused by the exponential mechanism and can
be viewed as the cost of providing differential bid privacy.

4) Privacy Leakage: Fig. 4 shows the privacy leakage and
K-var reduction under DPS varying with privacy budget e.
As we can see, as e increases, the privacy leakage and K-var
reduction both increase. This is expected, as the larger e, the
higher the probability of high-quality winner set being selected
by the exponential mechanism, the higher K-var reduction, and
vice versa. At the same time, the higher e, the less privacy
protection, and the larger privacy leakage, and vice versa.
Generally speaking, the choice of e represents a trade-off
between the quality of winner set (i.e., REM’s accuracy) and
privacy leakage.

10 100 20 40 60 80 100 120 140
# of participated workers
K-var reduction vs. # of workers.

. privacy budget e. Fig. 3.

VI. RELATED WORK

Differentially-private mechanism design has attracted much
attention in recent years. The first differentially-private auction
mechanism was introduced in [9] by incorporating the expo-
nential mechanism. Several general differentially-private auc-
tion mechanisms with the goal of maximizing social welfare
were presented in [15], [16], [32], [33]. In [27], [34], Zhu et al.
studied differentially-private spectrum auction mechanism with
approximate truthfulness and approximate revenue maximiza-
tion. BidGuard [14] is a differentially private auction mecha-
nism aiming at minimizing social cost. Jin et al. [35] proposed
a differentially-private incentive mechanism for minimizing
total payment while ensuring approximate truthfulness and
individual rationality. More recently, Jin et al. [36] introduced
a differentially-private double auction mechanism for mobile
crowdsensing systems with platform revenue maximization.
None of these solutions can be applied to crowdsourced REM
construction because of their very different objectives.

Privacy-preserving auction mechanism has also been stud-
ied for spectrum allocation problem. THEMIS [37] incorpo-
rates cryptographic technique into spectrum auction to deal
with the seller-side fraudulent actions. Huang et al. [18]
introduced a truthful and privacy-preserving mechanism to
achieve k-anonymity in spectrum auctions. Subsequently, PPS
[17] applied homomorphic encryption for maximizing the
social efficiency and preserving bid privacy. These solutions
rely on expensive cryptographic techniques and do not offer
differential privacy guarantee for individual worker’s bid.

Truthful incentive mechanism for general mobile crowd-
sourcing systems has been an active research area. Yang et
al. [10] introduced truthful incentive mechanisms for mobile
crowdsensing systems with the goal of maximizing platform
utility. Zhao et al [11] studied an similar problem under
the online auction model. TRAC [38] is a truthful reverse
auction mechanism for location-aware crowdsensing systems.
Moreover, truthful double auction was studied in [39] in
the context of crowdsourcing systems involving multiple data
requesters. Our work is mostly related to [24], in which Ying
et al. introduced an incentive mechanism for crowdsourcing-
based REM construction with approximate maximization of
K-var reduction. However, none of these solutions consider
protecting worker’s bid privacy.

There are also some work loosely related to our work.
Yang et al. [40] introduced an truthful auction mechanism
to incentivize mobile users to participate in anonymity set



to achieve k-anonymity. A truthful spectrum double auctions
mechanism was introduced in [41] for maximizing platform
profit. INCEPTION [42] is a truthful reverse auction for
crowdsourcing-based data aggregation which incorporates data
perturbation mechanism to reduces workers privacy leakage.

VII. CONCLUSION

In this paper, we have introduced the design and evaluation

of DPS, a novel differentially-private reverse auction mecha-
nism for crowdsourced REM construction. We have proved
that the proposed auction mechanism achieves approximate
truthfulness, differential privacy, and near-optimal REM ac-
curacy. Extensive simulation studies using a real spectrum
measurement dataset confirm the efficacy and efficiency of the
proposed mechanism.
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