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ompressive sensing (CS) theory opens promising avenues

toward building rapid and energy-efficient sensing systems

in a wide range of applications that require inherently high

temporal and/or spatial resolution while exhibiting a sparse
signal structure [1]—[5]. The goal of this article is to review recent
efforts to realize the benefits of CS in custom sensing hardware
and the broad challenges that arise by investigating an example
application in radio-frequency (RF) communications. We discuss
in detail how using CS for the design of RF spectrum scanners
can break through the fixed tradeoffs among scan time, hardware
complexity, and energy consumption of traditional scanner archi-
tectures. Using the specific example of RF spectrum sensing [4],
[6]-[11] we demonstrate how close collaborations between hard-
ware and signal processing experts can yield new solutions that
advance the state of the art in an important application domain.
We stress the problems that arise when designing a custom hard-
ware for CS [12]-[15] and address questions that often go beyond
the currently available literature in CS, e.g., coping with the im-
pairments of real hardware and avoiding catastrophic breakdown
when the spectrum becomes nonsparse.
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CS facilitates a sampling theory that allows for signal
recovery using fewer measurements than required by the Shan-
non-Nyquist sampling theorem [16]—[21]. Previous hardware
solutions based on the Shannon-Nyquist sampling theorem suf-
fer from fixed tradeoffs between scan time and power consump-
tion. Moreover, trading power for reduced scan time, which can
significantly increase the complexity of the hardware, does not
improve its overall energy consumption. In contrast, CS lever-
ages the usage of signal structure, such as sparsity or compress-
ibility in an appropriately chosen transform basis, to enable
new tradeoffs with substantial improvements to both time and
energy per scan.

Applications requiring a high-resolution acquisition of struc-
tured sparse signals are ideal candidates for CS. Some obvious
application fields that could benefit from CS include medical
diagnostics [1], [22], weather forecasting [23], [24], wireless
communications [2]-[4], [6], [8], [10], [25], autonomous vehi-
cles [26]—[28], and video systems [5].

Identifying essential application
characteristics for €S vtilization
CS has been widely used for RF communications [2], [3], in-
cluding interferer detection [8], signal reception [4], [10], [25],
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FIGURE 1. An example of a sparse signal in the frequency domain consisting of multitone and multiband signal models [11], [21] for RF signal reception
and spectrum-sensing applications. Active tones and bands above the signal-level detection threshold are shown in green, while the inactive tones and

bands are shown in blue.

spectrum sensing [4], [6], [10], [11], direction estimation [29],
channel estimation, and symbol detection [2]. When compared
to traditional RF communications, applying CS to RF com-
munications can reduce the scan time for a desired resolution
or increase the resolution while maintaining the scan time.
Furthermore, CS introduces a compression in hardware via
signal sparsity in contrast to traditional RF architectures with
the same scan time, resulting in reduced hardware complexity.

For example, in RF spectrum sensing, CS-based approach-
es achieve scan times equivalent to multibranch architectures
with many more parallel branches, e.g., an order of magnitude
[4], [8]. The signal of interest is sparse in the frequency domain,
which can be modeled with a few nonzero bands or tones in a
wideband spectrum, as shown in Figure 1 [4], [8], [11], [25],
[30]. We assume that the spectrum has been composed of two
clusters, i.e., the lower and upper bands, with each divided into
No-frequency bins. The signal of interest X(f) is only sup-
ported on K = 2Ky bands or tones out of 2No bins, and X(f)
is sparse in the frequency domain because Ko < No. These K
bands or tones, illustrated in green, exceed a predefined thresh-
old level, while the inactive signals are illustrated in blue.

A second example of compression in hardware through CS
pertains to reducing the number of antennas in a direction-
of-arrival (DOA)-finding application. Current DoA-finding
approaches have a fixed tradeoff between scan time and reso-
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FIGURE 2. An example of a spatially sparse signal in a DoA-finding application.

lution with limited scaling in terms of the number of antennas
and energy consumption. For this particular application, the
signal of interest is sparse in the spatial domain across antenna
elements. The power-versus-angle plot shown in Figure 2 rep-
resents the angle spectrum that corresponds to incident signal
power at a particular angle 6. Applying CS to calculate the
DoA of a spatially sparse signal has been demonstrated in [29],
resulting in reduced energy consumption and scan time while
reducing the number of antenna elements required.

To glean the benefits of CS, identifying a proper entry point
in the application space is crucial. Consider two possible appli-
cations for using CS in the RF communications space: inter-
ferer detection, which only targets a few large signals that are
above a detection threshold, and signal reception, which targets
both weak and strong signals. Both applications typically have a
sparse signal structure in the frequency domain, which positions
them as potential candidates for CS. However, the limitations of
CS become more prominent for the signal-reception application
because, for example, noise folding [12], [13] limits the sensitiv-
ity of the system, thus resulting in signal-reception degradation.
In contrast, the interferer-detection application is not severely
impacted by noise folding because only strong signals are tar-
geted. Furthermore, CS approaches for signal reception require
obtaining the solution of very large optimization problems in
the digital signal processing (DSP) domain. On the other hand,
we will see that interferer detection leads to relatively small
problems that can be solved rapidly. Taking further advantage
of signal features specific to the use case, such as employing
a bandpass CS approach for RF signal detection proposed in
[8], can improve the sensitivity and greatly reduce the overall
energy consumption by reducing the front-end power and also
by compressing the system-matrix dimension for sparse recov-
ery in contrast to a low-pass CS approach [4]. To illustrate how
to exploit signal features specific to the interest scenario, we
now briefly discuss mapping CS theory to hardware systems in
general and highlight some of the common challenges associ-
ated with this process.

Bridging CS theory and practical

hardware implementation

The goal of CS is to uniquely determine the sparse signal of
interest, such as interferers or DoA from our examples, from an
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undetermined system of linear equations. CS theory [16]-[21]
solves a sensing problem in the form of y = [A]z = [¢][v]z,
where y:= y(m, 1) is the measurement vector, [¢]: = ¢ (m, No)
is the sensing basis, [w]:= w (No, No) is the dictionary basis,
z:= z(No, 1) is the unknown sparse coefficient vector with
dimension m being the number of measured samples, and
dimension No being the number of Nyquist-rate samples. The
matrix [y] is used to define an input signal x as a sparse vec-
tor such that x = [y]z contains only a few nonzero coefficients,
i.e., Ko. Because the number of measured samples m is smaller
than the number of unknowns Ny, there is an infinite number
of admissible solutions. Fortunately, CS theory shows that if 1)
the target solution z is sufficiently sparse and 2) the matrix [A]
is well-structured, then z (and hence, x) can be uniquely deter-
mined and efficiently recovered from the measurements, i.e., y.

The strongest available theoretical guarantees for CS pertain
to random sensing bases ¢ (or random matrices [A]). For exam-
ple, random matrices satisfy the restricted isometry property
(RIP) as soon as the number of measurements m is sufficiently
large. This implies that convex relaxations exactly recover z in
the absence of noise, and stably estimate z in the presence of
noise. Random matrices also provide guarantees for efficient
greedy methods such as orthogonal matching pursuit (OMP)
[31]. While many different matrix ensembles satisfy the RIP,
one which is especially amenable to hardware implementation
is the Rademacher ensemble, with independent +1 entries [32].

Figure 3 illustrates how a CS sensing problem maps to
a hardware system. A CS sensor is composed of an analog
acquisition block and a digital back end. The analog acquisi-
tion block takes the input x from real-world scenarios such
as RF signals and operates on x with [¢] by taking a linear
random projection to generate y digital samples. Then, y
samples are fed into the digital back end, which solves for z
such that x = [y]z by using an OMP [31], [33] or {; minimi-
zation [34], [35].

One common challenge in taking CS to the hardware
level is how to develop incoherent measurements that 1) are
compatible with physical hardware and 2) reflect the sparsity
structure encountered in signals of interest, i.e., the probable

locations of nonzero entries. For example, in [36], the pro-
posed signal-structure-aware CS-sampling scheme utilizes
the Hadamard transform of the input signal, and hence, this
scheme performs better in practice compared to the random
Gaussian and Bernoulli schemes with a small circuit area.
To discuss how to optimize the incoherent measurements in
a CS system given the application scenario and key system
performance metrics, we will use the specific example of RF
communications for the remainder of this article [4], [8], [11],
[13], [14], [25], [30]. Figure 4 shows an example of a CS RF
hardware used to acquire an incoherent measurement for suc-
cessfully detecting sparse signals in the frequency domain.
Figure 4 also highlights the construction of the incoherent
measurements through the dot product between the ith-row
of the sensing matrix [¢], which has a spectral representa-
tion P;(f) shown as the black sinc-shaped curve, and the input
vector x formed by the green and red multibands. For the
specific example scenario of RF communications, we sur-
vey various implementations of the CS analog acquisition
block known as the analog-to-information converter (AIC).
We also briefly discuss the key components and energy con-
sumption of the digital back end for those AIC implementa-
tions. Design considerations and challenges associated with
the CS hardware implementation for RF communications are
similar to the implementation challenges in a wide range of
other CS applications as well.

RF spectrum sensors: An ideal application for CS

When comparing traditional hardware implementations for
RF signal reception [10], [11], [25], [30], [37] and spectrum
sensing [4], [7], [8], [11], [14] to CS-based implementations,
we first introduce the signal model and spectrum scenario
followed by key performance metrics used to evaluate such
systems. Once established, we survey multiple traditional
and CS implementations to demonstrate the potential of CS
to fundamentally improve tradeoffs between key design
considerations, including scan time, energy consumption,
and hardware complexity [4], [8], [10], [25]. Finally, we
discuss some difficulties and challenges associated with
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FIGURE 3. A CS sensing system consists of an analog acquisition block and a digital back end. The analog acquisition block performs a linear random projec-
tion of the Ko-sparse input signal with noise on the ¢ basis and outputs y-digital samples where the number of measurements, m, is significantly smaller
than the number of unknowns M. The digital back end utilizes the random-sensing-basis ¢ and the dictionary-basis y to reconstruct the sparse signal.
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CS implementations and how to circumvent issues such
as implementing random (incoherent) measurements in
a hardware- and energy-efficient manner, coping with the
impairments of real hardware, and avoiding a catastrophic
breakdown when the spectrum is not sparse but becomes
densely occupied.

RF signal model and spectrum scenario

Signal sfructure and model
®m Sparsity: In many real-world applications, signals of inter-
est are sparse or can be defined as a sparse vector in a well-
chosen basis. A sparse vector with a dimension of No has
Ko nonzero coefficients where Ko < No. The sparsity
level is defined as S = Ko/No [14].
Sparsity is the prior information or assumption that can
be leveraged to simplify the acquisition process by uniquely
determining the original spectrum of a band-limited signal

The Building Blocks of a CS RF Hardware Branch
to Acquire an Incoherent CS Measurement:

e A Mixer With Its LO Port Driven
by a PRBS

without requiring Nyquist-rate sampling of the instantaneous

bandwidth (BW) [17].

B Multitone signal model: Considers the following mathe-
matical model for a class of discrete multitone signals
[21], [38]:

1) The Fourier transform X( f) of the continuous-time sig-
nal x(#) has the highest frequency component below
No, where Ny is a positive integer.

2) There are only K = 2K active tones, where K is sub-
stantially smaller than the instantaneous BW of
N =2No.

For each time interval normalized to a second, the signal

model in [21] is given by

.x(t) — Z awe_Zﬂiwt, (1)

weQ
for + €[0,1), where Q is a set of K-sparse integer-valued
frequencies that satisfies Q C {=No+1,...,— 1,0, 1,....,No},

A CS Sensing Problem lllustrated in a Matrix
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FIGURE 4. (a) The example hardware implementation of one branch of an RF analog-to-information converter providing one incoherent measurement
yi[n]. (b) An illustration using spectra shows how this incoherent measurement is obtained using a “well-conditioned” sensing matrix. LO: local oscilla-

tor; PRBS: pseudorandom binary sequence; RBW: resolution BW.
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and {aw:w € Q} is a set of complex-valued amplitudes, such

as the Fourier series coefficients of x(f). Figure 1 illustrates

these assumptions.

B Multiband signal model: Considers sparse multiband sig-
nals [13], [38], [39] that are real-valued, square-integrable
signals x(f) satisfying two properties.

1) The signal of interest has a valid Fourier transform
X(f) in the frequency range of JF = (—fumax, — /]
U [ fmiN, fmax) .

2) The signal of interest is sparse in the frequency domain,
meaning that the support of X(f) is a relatively small
subset of F.

As shown in Figure 1, for a real-valued signal x(¢), F has
been partitioned into N = 2Ny disjoint bands with a resolu-
tion BW (RBW) of B. The sparse Fourier transform X(f) is
supported on only K = 2Ko < N = 2Ny of these bands. These
2K, bands are referred to as active bands or supports when
their power level is above a predefined or adaptive signal-level
detection threshold.

If the spectral occupancy So = Ko/No is small, then the
support of X(f) has a Lebesgue measure [40] < KoB Hz,
which is much smaller than the Nyquist rate of the instanta-
neous BW fiy, = 2fmax Hz [13].

Spectrum scenario

For the remainder of this article, we consider a case study of
RF spectrum sensing or signal reception in a 1 GHz of inter-
est spectrum band, e.g., the President’s Council of Advisors on
Science and Technology (PCAST) band ranging from 2.7 to
3.7 GHz with a 20-MHz RBW resulting in 50 spectrum bins,
i.e., No = 50 [8], [14]. In this scenario, there are three large sig-
nals, i.e., interferers that are above the predefined or adaptive
signal-level detection threshold, i.e., Ko = 3. The sparsity level
for this scenario is S = 3/50, which indicates a spectrum occu-
pancy of 6%. The Ko = 3 large signals can be located in any of
the No = 50 spectrum bins. The goal is to efficiently acquire a
one-dimensional spectrum image to locate those Ko large sig-
nals, even if the spectral locations of the Ko supports are not
known in advance.

RF spectrum-sensing performance metrics
In this section, we provide an overview of key system per-
formance metrics of the RF spectrum scanners and sensors
that are designed to detect the Ko large signals located in
any of the No spectrum bins. The key system performance
metrics are the instantaneous BW, the scan time and energy
consumption required to capture the information in that
instantaneous BW, and the instantaneous dynamic range
(DR), while simultaneously satisfying target detection and
false alarm probabilities. An overview of the key system
performance metrics discussed in this section is summa-
rized in Table 1. These performance metrics also dictate the
natural fit between a point in the application space and the
choice of architecture.
m Energy consumption: Energy consumption for a scan is
defined as the power consumption, P, times the scan time,

Tscan. The scan time is composed of two parts: front-end
detector response time Tresp and DSP time Trec [8].

E= P'Tscan =P [Tresp + Trec] . (2)

m Scan time (Tsan): This is defined as the combination of
detector response time Tresp and DSP time Tiec. DSP time
is proportional to N/fs, where f; is the analog-to-digital
converter (ADC) sampling rate, and N is the number of
samples collected. Front-end detector response time is pro-
portional to the settling time of the low-pass antialiasing
filters [8].

m Detection and false alarm probabilities: Detection proba-
bility Pp is the probability that a CS AIC correctly reports
a signal in the RF spectrum as active. False alarm probabil-
ity Pra is the probability that a CS AIC reports a spectrum
bin as occupied when there is no signal present in the RF
spectrum [8].

m Instantaneous BW: The instantaneous BW of a spectrum
sensor is defined as its Span, over which few signals can be
successfully and rapidly detected, while meeting target
detection and false alarm probabilities.

® DR: The instantaneous DR of a spectrum sensor is defined
as its ability to successfully detect a weak signal in the
presence of a strong signal or signals over a wide instanta-
neous BW, i.e., its Span [8], [13]. We note that this definition
of DR is suitable for real-world applications when there are
strong and weak signals present at the same time over a wide
BW. One of the challenges of instantaneous DR is that the
weakest signals do not enjoy maximum gain for a given full
scale of the ADC. The reason for this challenge is the auto-
matic gain control block prior to the ADC is typically set for
the strongest signal that fits into the full scale of the ADC.

In addition to instantaneous DR, operational range is
used when there are equal-power strong or weak signals
present over a wide BW. Operational DR is the best-case DR
performance [25]. In this case, the automatic gain control
block maximizes the conversion gain to fit into the full scale
of the ADC for both strong and weak signal scenarios.

® Number of detectable signals: The number of detectable
signals is a valid performance metric for only CS spec-
trum sensors, and it depends heavily on the number of
incoherent measurements collected from a CS AIC. The
relation between the number of incoherent measurements,
m, and the number of detectable signals, Ko, in a CS AIC
is given by

m= [C~Ko~log<%)l, 3)
where Ko is the number of detectable signals, No is the num-

ber of spectrum bins in the range of interest, and C is a constant
in the range of two to four [8], [13].

RF spectrum sensors: Traditional architectures
In this section, we survey the traditional spectrum sensor
and scanner architectures [8]. Furthermore, we discuss their
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advantages and limitations in terms of the key system perfor- ®  Multibranch spectrum sensors: In a multibranch spectrum

mance metrics discussed in the “RF Spectrum-Sensing Perfor- sensor, the interest spectrum band is captured instanta-

mance Metrics” section. neously by deploying No branches, which are equal to the
number of spectrum bins to be observed.

Specfr um sensor and scanner architectures In the following, we discuss the key design considerations

The architectures can be organized into three main categories. and potential use cases of these three sensor/scanner types in

B Sweeping spectrum scanners: In a single-branch sweeping more detail.

spectrum scanner, each bin is scanned sequentially by
time-multiplexing the hardware; this is a slow approach, Sweeping spectrum scanners

especially for fine-frequency resolutions. This approach A traditional sweeping spectrum scanner can be used to se-
results in large energy consumption, and there is also a risk quentially examine all No = Span/RBW bins in a time-mul-

of missing the changes in spectrum dynamics. Sweeping tiplexed fashion to find the location of the Ko signals [8].
spectrum scanners offer a high DR for a small instanta- Sweeping spectrum scanners have a fixed tradeoff between
neous BW equal to their RBW. the resolution they offer and their scan-time performance.
® Nyquist-rate fast Fourier transform (FFT) spectrum Because there is a risk of missing the changes in dynamic
sensors: In a Nyquist-rate FFT spectrum sensor, the spectrum environments due to their long scan times, they are
interest spectrum band is captured instantaneously by mostly preferred for stationary spectrum environments. A
sampling at the Nyquist rate of the instantaneous BW sweeping spectrum scanner architecture is also ideally suited
equal to Span. The instantaneous BW, i.e., the Span, is to be used in high-quality measurement equipment since it
subdivided into the desired RBW through FFT in the offers a high dynamic range over a small instantaneous BW
digital back end. equal to its RBW. Cross-correlation spectrum analyzers [41]

Table 1. The best-known capabilities, limitations, and applications of traditional and CS RF spectrum scanners.

Traditional RF spec- ~ Sweeping spectrum  Spectrum analysis High DR Small instantaneous BW
trum scanners and scanner High sensitivity Slow scan
sensors Low power

Low hardware complexity
Suitable for nonsparse signals

Nyquistrate FFT Spectrum analysis Large instantaneous BW High power
spectrum sensor Fast scan High hardware complexity
Suitable for nonsparse signals
Multibranch spectrum  Spectrum analysis Large instantaneous BW High power
sensor Fast scan High hardware complexity
Suitable for nonsparse signals
CS spectrum sensors  RD [42], [43] Sub-Nyquist receiver Large instantaneous BW Suitable for only sparse signals
for a multitone signal Fast scan Moderate sensitivity
model Low power Moderate DR
Low hardware complexity
RMPI [25] Sub-Nyquist receiver Large insfantaneous BW Suitable for only sparse signals
Fast scan Moderate sensitivity
Moderate DR
High power
CS spectrum sensors ~ MWC [4], [10] Sub-Nyquist receiver Large instantaneous BW Suitable for only sparse signals
for a multiband and specfrum sensing Fast scan Moderate sensitivity
signal model Moderate DR
High power
QAIC [8] Sub-Nyquist interferer Large instantaneous BW Suitable for only sparse signals
detection Fast scan Moderate sensitivity
Moderate power Moderate DR
Residual bands from I/Q linear impairments
TS-QAIC [14] Sub-Nyquist interferer Large insfantaneous BW Moderate sensitivity
detection Fast scan Moderate DR
Moderate power Residual bands from I/Q linear impairments
Dynamic signal sparsity
DRF2IC [11] Sub-Nyquist interferer Large instantaneous BW Moderate DR
detection, narrowband  Fast scan High hardware complexity
sensing, and high- Moderate power
sensitivity receiver High sensitivity

RD: random demodulator; RMPI: random modulation pre-integrator; MWC: modulated wideband converter; DRF2IC: direct RF-fo-information converter; QAIC: quadrature ana-
log-o-information converter; 1/Q: in-phase/quadrature-phase; TS-QAIC: time-segmented QAIC.
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improve noise performance, hence DR, at the expense of in-
creased scan time.

The energy consumption for a sweeping spectrum scanner
is given by

Escanner = Pscanner' [N() . (Csenle/BWfilter) + N() . (Nx/fx)]
=P (NO‘Tscan), (4)

where the power consumption of a single branch is
Pscanner. Front-end response time Tresp,scanner 1S proportional
to the number of bins, No, and the antialiasing low-pass
filter settling time, which is inversely proportional to its
bandwidth BWiier. For the desired power-reading accu-
racy, Csewle represents the number of filter time constants
needed. For example, based on our experiments with the
Hewlett-Packard 3585A spectrum analyzer, the estimated
Csente value is 4. DSP time, Tiec,scamer 1S inversely propor-
tional to the sampling rate, f; and proportional to the
number of bins, No and the number of samples used for
DSP, i.e., Ny [8].

Nyquistrate FFT spectrum sensors

To sense signals over GHzs or wider instantaneous BWs, a
Nyquist-rate FFT spectrum sensor would require a pro-
hibitively high-aggregate-sampling rate, resulting in a
power-hungry sensing approach [8]. Scan time is reduced
at the expense of high power consumption, especially for
a wide instantaneous BW.

DR for a Nyquist-rate FFT spectrum sensor is defined as
capturing a weak signal successfully when there is at least
one large signal present over its Span. The DR of the ADC
is crucial for the DR of a Nyquist-rate FFT spectrum sensor
and it is defined as the range between the noise floor and
its specified maximum output level. As discussed in the “RF
Spectrum-Sensing Performance Metrics” section, the auto-
matic gain control block prior to the ADC is tuned to receive
the strongest signal that fits into the full scale of the ADC,
while there exists a weak signal over the Span. Quantization
noise of the ADC must be kept below the lowest signal level
that is desired for it to be detected. One way to design an
ADC with a high DR is to increase the number of bits; how-
ever, this solution comes at the expense of increased energy
consumption.

The energy consumption for a Nyquist-rate FFT spectrum
sensor is given by

ENyquist = PNyquisl' [(Csellle/BWfiller) + N() . (Nx/fx)]
= (NO'P)'Tscan~ (5)

The response time for a Nyquist-rate FFT spectrum sen-
sor Tresp.Nyquist 1S proportional to the antialiasing low-pass
filter settling time. This architecture subdivides the instanta-
neous BW into the desired RBW through the FFT. Therefore,
DSP time TrecNyquist 1S proportional to the FFT size No. In
addition to the FFT size, design considerations such as the
number of samples used for DSP, N;, and the ADC sampling
rate f, impact the scan time. The energy consumption for a

scan stays within a fixed first-order envelop even though a
Nyquist-rate FFT spectrum sensor offers a lower scan time
with a compression factor of No (due to an increase in sam-
pling rate, f;, by the same factor) in contrast to a sweeping
spectrum scanner [8].

Multibranch spectrum sensors
A multibranch architecture consists of multiple narrowband
scanners in parallel, equivalent to a single-branch scanner for
each spectrum bin spaced closely with an operating frequency
distance of RBW. As an alternative to a sweeping spectrum
scanner, and, although the scan time is reduced through the par-
allelized branches, a multibranch spectrum sensor consumes
higher power under a fixed first-order energy budget and has an
impractical hardware complexity when compared to a sweep-
ing spectrum scanner [8].

The energy consumption for a multibranch spectrum sensor
is given by

Emull = Pmult' [Tresp,mull + Trec,mult]
= Prule- [(Csenle/BWfi]ter) + (Nr/fr)]
= (No-P)-Tscan - 6)

RF spectrum sensors: Moving S to hardware

The use of CS [16], [18] in RF signal reception and spectrum
sensing has the potential to fundamentally improve the fixed
tradeoffs between key design considerations, including scan
time, energy consumption, and hardware complexity found
in traditional RF spectrum scanners and sensors [4], [8], [13].
We are interested in a use case where detecting a few active
signals above a certain signal-level threshold in a wideband
spectrum and the CS theory demonstrates the possibility of
recovering sparse multiband or multitone signals from only a
few linear measurements proportional to the number of active
bands or tones Ko, in the signal [16], [18], [34]. Because the
information BW is much smaller than the instantaneous signal
BW under the sparsity condition, CS as a blind sub-Nyquist
sampling approach allows for sampling at a rate defined by
this information BW rather than the instantaneous BW [6],
[16], [18], [21], [39].

In this section, we discuss the current CS architectures,
i.e., AICs, which have been proposed for RF signal recep-
tion [10], [25], [30], [37] and spectrum sensing [4], [7], [9],
[11], [14]. These CS architectures can be organized into
the following categories: random demodulator (RD) [21],
[42], [43]; random modulation preintegrator (RMPI) [17],
[25]; modulated wideband converter (MWC) [4], [10]; and
quadrature AIC (QAIC) [8]. We survey these architectures
with a focus on signal structure and models, integrated
hardware realizations, signal recovery, and reconstruction
algorithms. The main focus of this section is to show how a
combination of careful attention to the deployment scenario
and RF architecture innovations make it possible to convert
the abstract improvements promised by CS theory, such as
fewer measurements, to concrete improvements in time and
energy efficiency.
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Infegrated CS hardware realizations

CS spectrum sensors require a few incoherent measurements,

as discussed in the “Bridging CS Theory and Practical Hard-

ware Implementation” section. These incoherent measurements
are achieved by mixing the wideband RF sparse input signal
with independent unique pseudorandom binary sequences

(PRBSs). PRBS mixing spreads and smears the spectrum while

folding the wideband input signal onto narrowband baseband

sampling channels. CS DSP techniques disentangle this folding
mechanism to locate the few active signals, i.e., bands or tones,
above the signal-level detection threshold by using the incoher-

ent samples [8].

Some current CS architectures implement each of these few
incoherent measurements as a corresponding physical hard-
ware branch; however, once the number of hardware branches
is fixed, integrated CS hardware realizations can only success-
fully detect up to a specific maximum number of active signals
[14]. To understand how the number of hardware branches maps
to the number of detectable signals, we refer to the required
number of incoherent measurements given by (3), which show
the scaling of m with the number of nonzero signals, Ko that
need to be detected [8], [13]. As discussed in [4], the number
of branches m may be traded for the branch sampling rate by
a static reduction factor ¢, where ¢ = 1,3,5,.... Furthermore,
we discuss system-level techniques in the “Structured Sparsity
and Adaptive Methods for Dynamic CS” section, which com-
bine signal processing mainly sparsity estimation and adap-
tive thresholding with hardware adaptation to maintain reliable
performance across all sparsity levels [14].

m RD: The RD [21], [42], [43] shown in Figure 5 can be used
to acquire sparse band-limited multitone signals. This
single-branch architecture mixes the signal with a Nyquist-
rate pseudorandom sequence. The mixing operation with
the high-rate sequence smears the tones across the entire
spectrum [21]. The RD employs a low-pass antialiasing
filter to limit the BW of this smeared signal across the
entire spectrum. Thanks to CS, the RF front end avoids the
need for a high-rate ADC and samples the sparse multitone
signal with a sub-Nyquist rate ADC. As discussed in [21],
successful identification of these sparse tones relies on the
fact that the demodulation process with a pseudorandom

fpRBS 2 2fax
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pi(t) t=n/R
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FIGURE 3. A block diagram of the RD used for acquiring sparse band-
limited multitone signals [42], [43]. This single-branch architecture mixes
the multitone input signal with a Nyquist-rate pseudorandom sequence
and samples the signal at a sub-Nyquist rate after low-pass filtering. LNA:
low-noise amplifier.

sequence provides a distinct signature within the passband

of the low-pass filter for each tone.

This architecture is mostly suitable for signals with a finite
set of harmonics chosen from a fixed uniform grid; however,
real-world analog signals require a large number of harmonics
to approximate them well within the discrete model. Therefore,
the signal reconstruction becomes computationally intractable
and performance is degraded through the sensitivity to the grid
choice [4]. The analog acquisition hardware is simplified for
the RD architecture through additional digital back-end com-
plexity under the assumption of fast-paced advances in digital
computing [21], [42], [43].
® RMPI: The RMPI [17], [25] shown in Figure 6 is a wide-

band receiver that implements random sensing for sparse

multitone signals. The input signal x(¢) is mixed with a

periodic distinct PRBS pi(f) in each channel to create a

shifted copy of the entire spectrum by each harmonic of the

PRBS. The output of the mixer is then integrated over a

fixed-time interval T and digitized at a sub-Nyquist rate of

fs = UT << fxyg, Where fayq is the Nyquist rate of the
input signal. The acquired sub-Nyquist samples from each
channel represented as y;[n] = f ' x(®)pi(t)dt and t = nT
are used for CS support recovery 'and the spectrum of the
output signal y;[n] is shown in Figure 6. Successful CS
recovery relies upon knowing a basis or dictionary matrix

[w] to represent the signal, as discussed in the “Bridging

CS Theory and Practical Hardware Implementation” sec-

tion. In [25], the dictionary matrix is a multiscale Gabor

dictionary to reconstruct radar pulses, which are sparse in
the time—frequency plane.

Since the RMPI is a parallel-branch alternative of the RD
architecture, for the remainder of this discussion, we compare
the multiband architectures against the RMPI, which utiliz-
es a low-pass CS approach. For the low-pass CS approach,
the PRBSs have spectral content spanning from dc to fuax.
Given that the spectral information below some fwin is not
desired for RF applications such as in the example of PCAST
spectrum scenario (fum = 2.7 GHz), this only adds noise
and suffers from the undesired blocking effect in the RF hard-
ware when strong unwanted signals are present below fumin
, as indicated by the red tone in the input spectrum shown
in Figure 6(a). Furthermore, the frequency of the PRBS gen-
erator clock must be at least twice the maximum frequency
(ferBs = 2fmax) of the input signal, which makes the PRBS
generator the most power-hungry block of the RMPI architec-
ture [8], [25].

The prototype wideband receiver, RMPI, demonstrated in
the integrated performance table in Figure 6(c) [25], captures
an effective instantaneous BW from 100 MHz to 2 GHz by
eight parallel branches while digitizing samples at an aggre-
gate rate of 320 megasamples/s (MS/s), i.e., 12.5-times lower
than the Nyquist rate [25]. The RMPI prototype consumes
506.4 mW of power without including the power consumed by
the computational platform needed for signal recovery.

m MWC: The MWC [4], [44] shown in Figure 7 is a multibranch
sub-Nyquist sampling approach for sparse multiband signals.
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The input signal x(#) is mixed with periodic PRBSs at RF,

low-pass filtered, and sampled at a low rate of f; = RBW.

Multiplication by a PRBS aliases the signal spectrum and
spreads the information over the instantaneous BW as well by
creating copies of the aliased signal spectrum in each bin. After
low-pass filtering, only a single of copy of the folded signal
spectrum remains for sampling at the sub-Nyquist rate. A suf-

ficiently large number of incoherent measurements from each
parallel branch, represented by yi[n]...ym[n], allows for the
successful recovery of the signal x () if the m branches of the
MWC are driven by m-unique, low cross-correlated PRBSs
with a length of L = 2No (pi1(?),...,pi(0),....pm(2)) [11], [13].

Because the MWC also utilizes a low-pass CS approach as
the RMPIL, the frequency of the PRBS generator clock scales

RMPI Architecture and Frequency-Domain Operation
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FIGURE 6. (a) A block diagram of the RMPI, a parallel-branch alternative of the RD for sparse multitone signals, and spectra of various key signals including the
input signal, the pseudorandom binary sequence, and the output signal. (b) The RMPI system parameters and its performance scaled for the example application
of sensing 1 GHz in the 2.7-3.7-GHz range with a 20-MHz RBW (g = 1), and (c) the integrated RMPI [25] performance summary. LNA: low-noise amplifier; LO:

local oscillator; Gm: transconductance.
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up with the maximum frequency (fpres = 2fmax) of the input
signal. Note that the PRBSs will have frequency content
spanning down to dc and the spectral information from dc
to fmiN, as indicated by the red band in the input spectrum
shown in Figure 7(a) only adds noise and unwanted signals in
the output spectrum for the RF spectrum scenario of interest

(81, [11], [13].

The MWC prototype discussed in the integrated perfor-
mance table in Figure 7(c) [10] captures an effective instanta-
neous BW up to 900 MHz by five parallel branches, including
one branch for calibration. The prototype MWC consumes
880.5 mW of total power from five parallel branches.

m QAIC: The QAIC [8], [13] illustrated in Figure 8 consists

of an RF downconverter that limits the operation BW, m

MWC Architecture and Frequency-Domain Operation
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FIGURE 7. (a) A block diagram of the MWC, a multibranch architecture for sparse multiband signals and spectra of various key signals including the input
signal, the pseudorandom binary sequence, and the output signal. (b) The MWC system parameters [4] and its performance scaled for the example
spectrum scenario of sensing 1 GHz in the 2.7-3.7-GHz range with a 20-MHz RBW (g =1), and (c) the integrated MWC [10] performance summary.

LNA: low-noise amplifier; LO: local oscillator.
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thereby enabling the use of shorter-length L = No <N

and lower-frequency PRBSs fpres = fmax — fuin.

In each I and Q branch, the downconverter output is mul-
tiplied by m-unique PRBSs p;(#) with low cross-correlation

in-phase (I) and quadrature-phase (Q) branches including
PRBS mixers, antialiasing filters, and ADCs in each
branch as well as a pairwise complex combiner. The band-
pass filtered signal x(¢) is first downconverted to baseband,

QAIC Architecture and Frequency-Domain Operation
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FIGURE 8. (a) A block diagram of the QAIC consists of an RF downconverter that limits the operation BW prior to the multibranch PRBS mixing of sparse
multiband signals and spectra of various key signals including the input signal, the PRBS, and the output signal. By limiting the operation BW, the QAIC
lowers the required rate and length of the PRBSs compared to low-pass CS architectures. (b) The QAIC system parameters [13] and its performance
scaled for the example spectrum scenario of sensing 1 GHz in the 2.7-3.7-GHz range with a 20-MHz RBW (g =1), and (c) the integrated QAIC [8]
performance summary. LNA: low-noise amplifier; LO: local oscillator; IQ: in-phase/quadrature-phase.
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between them, low-pass filtered, and sampled at a sub-Nyquist
rate of the instantaneous BW. The output complex combiner
allows for the selection of either the upper [ fmm, fmax) or lower
(—fmax, — fvin] band cluster of the multiband input signal x(7),
as shown in Figure 1. The m-incoherent samples of the aliased
spectrum, yi[n]...ym[n], are then used to recover the sparse
multiband signal x(z) [13].

The energy efficiency and sensitivity performance of the
bandpass CS architectures are significantly improved when
compared to the low-pass CS architectures, e.g., MWC for RF
applications. Furthermore, the bandpass CS approach scales
well to higher frequencies for the same instantaneous BW
because it decouples the Nyquist-rate PRBS clock frequency
from the maximum frequency of interest. To compare with the
other CS AIC implementations, we use the performance num-
bers given in their corresponding system parameters tables in
Figures 6(b) and 7(b), which are scaled to sense a 1-GHz span
from 2.7 to 3.7-GHz with a 20-MHz RBW [8]. The number of
hardware branches is scaled for three active signals, i.e., 29 for
the low-pass CS architectures. Although the RMPI and MWC
prototypes use more power-hungry shift-register PRBS gener-
ators, the PRBS generator power has been scaled assuming a
linear feedback shift register (LFSR) with the required length
of 511 and clock frequency of 10.22 GHz for a 20-MHz RBW.
As reported in [8], the energy consumption per scan for the
QAIC is five- to 10-times lower than the energy consumption
of the low-pass CS implementations while maintaining a scan
time of 4.4 us when the performance numbers are normal-
ized for the example RF spectrum scenario. For the example
RF spectrum scenario, the QAIC requires a PRBS length of
63 and a PRBS generator clock frequency of 1.26 GHz for a
20-MHz RBW, as shown in the system parameters table in
Figure 8(b). The measured power consumption of the QAIC
implementation is 81 mW, as shown in the integrated per-
formance table in Figure 8(c), without including the on-chip
ADCs and phase-locked loops (PLLs) for the PRBS genera-
tor clock and quadrature downconverter fixed local oscillator
(LO). When the power estimations of PLLs and ADCs are
included for the QAIC, the total estimated power consump-
tion is 115 mW [8]. As reported in [8], the scan time is 4.4 us.
Therefore, the front-end energy consumption per scan is
0.5 uJ [8].

System attributes and implementation parameters

The RMPI [25], MWC [4], and QAIC [8], [13] system param-
eters are defined in their corresponding tables in Figures 6-8.
The RMPI and MWC sample a real signal x(#) at RF. Because
the RMPI and MWC utilize a low-pass CS approach, their
frequency components extend from dc to fuax. The MWC
input signal contains No = [ fmax/B]| bands. The modulator
bank employed by the MWC processes 2No total bands (i.e.,
No positive and No negative frequency bands) and 2K active
bands (supports) [4]. Similar to the MWC with the only differ-
ence being the multitone signal model rather than a multiband
signal model, the RMPI also processes 2Ny total tones and
2K active tones (see [21] and [25]). For the system attributes

and implementation parameters, we only compare within the
architectures that employ multiband signal model.

In contrast to low-pass CS architectures, the QAIC samples
a complex signal I(f) ¥ j-Q(#) at a baseband intermediate fre-
quency after quadrature downconversion. Its span extends from
SN to fuax and contains No = [(fuax — fiun)/B] total bands.
The I and Q branches of the QAIC process No total bands and
Ko active bands by selecting upper- or lower-band clusters.
The number of bands 2No processed by the MWC is typically
much larger than that which is processed by the QAIC when
Jyvin >> 0. The additional degree of freedom in adjusting the
lower and upper boundaries of the QAIC Span in contrast to
only adjusting the upper boundary of the MWC Span, provides
significant improvements in energy consumption and sensitiv-
ity. The LO frequency ( fLo) and quadrature low-pass filter BW
(f3aB.10) shown in Figure 8 are the system parameters for adjust-
ing the QAIC frequency span. However, this scalability comes at
the expense of unwanted residual bands due to quadrature linear
impairments, e.g., phase and gain imbalance. Depending on the
level of the impairment and compensation in the digital back
end, this can increase false alarm probability.

When comparing a low-pass CS approach with a bandpass
approach, it is assumed that both systems employ maximal
length PRBSs generated with LESR structures. The sequence
length Lis equal to 2" — 1, where r € Z" for a maximal length
LFSR-type PRBS. The clock frequency of the PRBS genera-
tors feres employed by the MWC must be greater than twice
the maximum frequency fuax of the input signal with a PRBS
length of L = 2Ny [4]. In contrast, fpras for the QAIC must be
greater than the Span = fuax—fmin  of the input signal with a
PRBS length of L = No.

The number of branches or incoherent measurements m
given in (3) required by the MWC and the QAIC for suc-
cessful signal recovery, is proportional to the number of
active bands multiplied by a logarithmic factor and con-
stants Cmwc = 1, Coarc = 1. The MWC requires m oc 2Ko
branches [4]. Because of its complex 1/Q structure, the QAIC
requires m oc Ko in-phase and quadrature-phase branches so
the total number of physical hardware branches for the QAIC
is 2m [13]. The sub-Nyquist sampling rate per branch for both
systems is fs = B Hz. The aggregate sampling rate of the
MWC is mf;, while the aggregate sampling rate of the QAIC
is 2mf;. To achieve a span of 1 GHz in the 2.7-3.7-GHz band
with an RBW of 20 MHz, the number of branches m for the
MWC is 29, and the number of I/Q branches m for the QAIC
is eight, i.e., equivalent to 16 physical hardware branches. For
the example RF spectrum scenario, the aggregate sampling
rate of the MWC is 580 MS/s, while the aggregate sampling
rate of the QAIC is 320 MS/s for a 20-MHz RBW [8].

Signal recovery and reconstruction algorithms

Support recovery and signal reconstruction are the main steps
in a CS DSP [4]. Ko supports (Ko signals) of No unknowns
(No spectrum bins) that are nonzero [4] are located using sup-
port recovery. Then, the time domain waveform of the input
signal is estimated using signal reconstruction [4].
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CS-based signal reconstruction is typically more com-
putationally intensive than Nyquist-rate reconstruction; e.g.,
a typical CS algorithm requires roughly 20-1,000 FFTs for
reconstruction due to its operation as a nonlinear function of
the acquired samples [25]. Hence, a real-time time-domain
signal reconstruction was not feasible for low-power mobile
applications [25] until recently. In [45], a learning-based
approach to subsampling by training signals and combinato-
rial optimization problems has been proposed as an opportu-
nity for real-time and low-power signal reconstruction. The
theory and recovery results for medical applications present-
ed in [45] are based on efficient and scalable linear encoder
and decoder pairs.

For applications concerned with only signal detection
not estimation, e.g., RF interferer detection, support recov-
ery is sufficient, and a complete time-domain reconstruction
is not required. Support recovery extracts information such
as carrier frequency, initial phase, and pulsewidth from the
acquired waveform without reconstructing the time-domain
signal. This is a less computationally expensive approach
and is potentially cost-comparable to traditional Nyquist-rate
approaches [25].

One simple greedy approach to sparse recovery is the
OMP [31], [33]. A wide range of alternatives exist, includ-
ing convex relaxations based on (; minimization, nonconvex
methods, more advanced greedy methods such as CoSamp,
sparse Bayesian learning, and so on. Here, we focus on OMP
because of its simplicity and tight connection to support recov-
ery. OMP iteratively identifies the active supports by choosing
elements that are maximally correlated with the measurement
residual. The residual drops linearly as each signal support is
recovered and removed from the measurements. Once all of
significant signal supports above the signal-detection thresh-
old are detected, there will be an abrupt change in the slope
of the residual curve [14]. The adaptive thresholding concept
discussed in the “Structured Sparsity and Adaptive Methods
for Dynamic CS” section takes advantage of this iterative
nature of the support-recovery algorithm by monitoring the
OMP residual [14].

The CS system-measurement-matrix row dimension
and the signal-level detection threshold are the two system
parameters that impact the number of OMP iterations. The
number of incoherent measurements sets the row dimen-
sion of the CS system measurement matrix. When the sig-
nal-level detection threshold is close to the system noise
floor, the maximum number of OMP iterations performed
in the digital back end is equal to the CS system-measure-
ment-matrix row dimension. The choice of a threshold
close to the noise floor might maximize the detection prob-
ability of a CS detector at the cost of an increased false
alarm probability. If the signal-level detection threshold is
reached before the maximum number of OMP iterations
are performed, the CS DSP completes the recovery without
further iterations [14]. We discuss the impact of the number
of OMP iterations on the DSP energy consumption in the
following section.

Evaluation of CS spectrum sensors:

Key performance metrics

In this section, we discuss how to evaluate CS spectrum sen-

sors and their key system performance metrics including

detection and false alarm probabilities, scan time, front-end

and DSP energy consumption, dynamic range, and scalability.

m Detection and false alarm probabilities: CS signal detec-
tion is a statistical process and its key metrics are the detec-
tion probability Pp and the false alarm probability Pra.

Pp is defined as Z CD / NEg-Ko, where CD is the correct

detections and Ng is the number of experiments. Pra is

defined as ZFA/NE-(L—KO), where FA is the false

alarms [8], [13], [14].

Pp and Pra performance is typically used to demon-
strate the sensitivity and DR of the CS signal detection. The
Pra depends on two key components: 1) the dimension of the
system measurement matrix and 2) the signal-level detection
threshold. The maximum Pra is proportional to the dimension
of the system measurement matrix when the threshold value
is set close to the noise floor. This results in maximized Pp.

For example, Figure 9 demonstrates the measured sensi-
tivity of a QAIC prototype through Pp and Pra curves as a
function of support power for a stationary sparse-spectrum
scenario. The cluster of curves on the top correspond to Pp,
and the cluster of curves on the bottom correspond to Pra, with
1, 2, and 3 equal power signals above the signal-level detection
threshold. The results are reported based on Ng = 125 experi-
ments by using Ny = 80 samples per experiment. The mea-
sured sensitivity of this bandpass CS prototype is illustrated
as the successful detection of three equal power signal bands
as small as a —68 dBm/10 MHz band, while satisfying a target
Pp =2 90%. For a single signal band, this sensitivity increases
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FIGURE 9. Characterization of the sensitivity of the CS AIC by measuring
the detection probability, Py, and the false alarm probability Pea curves
as a function of signal power for Kq (=1, 2, and 3) equal power signals in
a stationary spectrum scenario. The measured results from a QAIC pro-
totype are reported based on Ne = 125 experiments each using Ns = 80
samples. The weakest signal level that the QAIC prototype can detect is
-68 dBm/10 MHz band for the example spectrum scenario with Ko = 3
while satisfying a target detection probability > 90% and false alarm
probability <15% [8].
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to a =72 dBm/10 MHz band, while maintaining target-detec-

tion probability [8]. The measured Pra remains below 15% for

all of the experiments.

B Scan time: Scan time has two main contributors: the detec-
tor response time and CS DSP time, as discussed in the “RF
Spectrum-Sensing Performance Metrics” section. CS DSP
time is Ni/fs, where f; is the ADC sampling rate and Ny is
the number of samples collected. The front-end detector
response time is very fast as a result of the PRBS mixing
operation. Mixers driven by PRBSs spread the spectrum
and allow users to capture the entire wide spectrum BW of
interest instantaneously by creating folded copies of the
spectrum information in all of the bins. The AIC front-end
detector, therefore, is responsive to a change in the spec-
trum at the settling time of the low-pass filters [8].

m Front-end energy consumption: Front-end energy con-
sumption is defined as the power consumed by m physical
hardware branches times the CS scan time [8]. For a CS
spectrum sensor, front-end energy consumption is given by

Enic = Paic-Tsean

= Paic+[ Tresp.atc + Trec,arc]
— Csettle ) ( Ny >

= O] ———— + —

Parc [( BWriter fs
m CS DSP energy consumption: For m the number of branch-
es or incoherent measurements, L the length of the PRBSs
employed by the AIC (L = N = 2Ny for MWC and L = No
for QAIC) to a first order, m-L multiplications and additions
are needed to complete a single iteration of the OMP for
sparse support recovery. For a single set of measurements,

K iterations are required with an ADC sampling period of
Ts, the time required to complete a single iteration is

. )

Titeration = Ts/Ko. Therefore, the energy consumption of a
single iteration is given by (8), where Padder and Prure are the
power consumption of adders and multipliers, respectively.

Eiteration = m-L- (Padder + Pmull) - Titeration - (8)

If N, consecutive samples from the AIC are used for
sparse support recovery to detect Ko active signals, then the
total number of multiplications and additions needed by the
OMP is roughly N;-Ko-m-L. To a first order, the total CS

Table 2. The estimated DSP cost of various CS-signal-detector architectures.

DSP energy consumption for sparse support recovery through
OMP is given by (9).

Eomp = m-L- (Padder + Pmult) -Ts-Ns. (9)

Table 2 provides an estimation of DSP cost using the OMP
algorithm for various CS signal-detector architectures [4], [8],
[11]. It is assumed that the DSP power is dominated by the
power dissipated in multipliers ( Pmur).

Taking advantage of signal features, such as the bandpass
signal model for RF applications, reduces the CS system-
matrix dimension by reducing the length of the PRBSs L as
well as the number of incoherent measurements, m, drastically.
Since m and L play a significant role in DSP energy consump-
tion, a smaller matrix dimension results in a lower DSP cost by
performing the sparse recovery only for a desired signal band.
For example, for the QAIC system that utilizes a bandpass CS
approach, assuming Ny = 80, m =8, L = 63, and Ko = 3 for
real multiplications and additions, the computational load of
the OMP is estimated to be roughly 535nJ [46]. Here, the esti-
mated power consumption for a 16 x 16 multiplier and a 16-bit
adder with a settling time less than 17 ns is 60 uW and 5 uW,
respectively [47], [48].

B DR: The instantaneous DR of an AIC is defined as the maxi-
mum power difference between k < Ko weak signals and
(Ko — k) strong signals that the AIC can successfully detect
over GHz or wider instantaneous BW, while satisfying a
desired Pp and Pra given the linear and nonlinear impair-
ments and noise [8], [13]. The “Open Challenges and Future
Directions” section discusses how to model and compensate
for some of these impairments as one of the open challenges
in CS AICs design.

®m Adaptive configurability and scalability: Adaptive configu-
rability and scalability are essential in real-world applica-
tions. CS AICs demonstrate scalability in terms of the
number of hardware branches, samples per branch, and the
number of bits employed in their ADCs. An example of this
scalability is demonstrated in [8] and [14] through measured
Pp and Pra performance, respectively, in Figure 10.

The AICs can operate with varying ADC resolutions [49].
Reducing the number of bits will drastically consume less
energy in DSP compared to its high-resolution counterpart

Architecture DSP Algorithm Estimated DSP Power DSP Time
MWC [4] OMP 2 (N Ns
4NKO |Og2(TO)Pmuh qB
QAIC [8] OMP 2NoK?3 |092<%§>Pmu\? %
TS-QAIC [14] OMP ) No Nseg N
2No(niegKo)?loga e i o
DRF2IC [11] OMP 21 (No Ns
2NOK0 |092< KO )Pmuh qB

DRF2IC: direct RFto-information converter; MWC: modulated wideband converter; QAIC: quadrature analogo-information converter; TSQAIC: fimesegmented QAIC.
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at the expense of a lower DR; this tradeoff between energy
consumption and DR may be useful for many real-world
applications. An example of the AIC operation under vary-
ing ADC resolutions is illustrated through the measured
Pp and Pra curves in [8]. As demonstrated in Figure 10(a),
for Ko=2 active bands with a target Pp > 90% and
Pra < 15%, a QAIC prototype with 8-bit ADCs can detect
—72 dBm/10 MHz bands, while the same QAIC employing
1-bit ADCs can detect —68-dBm/10-MHz bands [8].

The AIC’s operation under signal overload is also illus-
trated through an example in Figure 10(b). In this example,
the CS system is designed to successfully detect Ko = 3 sig-
nals by using a sufficient number of hardware branches for the
required number of incoherent measurements; however, the
system is tested with Ko = 6 signals under the assumption of
dynamic signal conditions. The CS system provides unreliable
results with a maximum Pp of 50% since it commits to a fixed
number of hardware branches under the assumption of static
signal sparsity with a maximum bound of Ko = 3 signals for
this example [14]. A possible adaptive action in response to this
system overload that handles more signals than the expected
occupancy level is relaxing the threshold of recovery algo-
rithms. The AIC becomes blind to lower power signals and
effectively sparsifies the spectrum. Only signals above the new
threshold are detected with high confidence. Another possible
solution based on sparsity estimation and time segmentation
(TS) to avoid system failure under the support overload is dis-
cussed in the “Structured Sparsity and Adaptive Methods for
Dynamic CS” section [14]. As shown in Figure 10, the TS tech-
nique combined with adaptive thresholding improves the Pp
performance back to =90% for reliable operation under signal
overload at the expense of increased scan time [14].

RF spectrum sensors: Challenges

of implementing CS in hardware

Taking CS to the hardware level has been a growing research
interest both for RF communications and beyond with a spe-
cific focus on demonstrating how to overcome the traditional
tradeoffs between scan time and resolution through integrated
CS realizations for different signal structures. At the same
time, CS AICs can suffer from nonidealities such as jitter
noise, aperture [15], nonlinear and linear impairments [13],
and noise folding [12] in addition to other performance limit-
ing factors, e.g., static signal structure assumptions [14]. In this
section, we discuss three major challenges of implementing CS
in hardware for the RF spectrum-sensing example. However,
these challenges are applicable to CS hardware used in other
applications as well.

Jitter noise and aperture

Because the CS AICs sample the signal of interest with sub-
Nyquist rate ADCs, they do not suffer from the jitter noise and
aperture of the sampling stage. However, the improvement in
the ADC performance comes at the expense of jitter noise and
aperture of the PRBS mixing stage, which still operates at the
Nyquist rate of the instantaneous signal BW. Since both of
these nonidealities, i.e., jitter noise and aperture, depend on
frequency, the Nyquist-rate PBRS mixing stage degrades the
resolution and performance gain of CS AICs in high-BW ap-
plications [15]. Reducing the PRBS generator clock frequen-
cy by using a bandpass CS approach that limits the RF BW
through downconversion makes the AICs less susceptible to
jitter and aperture [13]. One interesting direction suggested in
[15] is to investigate the effect of sensing matrix sparsity on
the jitter noise and aperture in the PRBS mixing stage.

Scalability Parameters: Number of Bits in the ADC and Number of Branches
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FIGURE 10. The scalability of the CS AIC is demonstrated in terms of ADC resolution and number of branches through measured detection probability, P,
and false alarm probability Pra curves [8], [14]. (2) The CS AlCs operation under varying ADC resolutions is illustrated for an example stationary spec-
trum scenario of Ko = 2 signals [8]. (b) Their operation under signal overload is illustrated for Ko = 6 signals when the hardware uses m = 8-physical
branches (i.e., TS OFF) and also when the hardware uses m =16 (eight physical and eight virtual branches) (i.e., TS ON) [14].
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Intrinsic tradeoff: Instantaneous DR and instantaneous BW
CS AICs have an intrinsic tradeoff between instantaneous DR
and instantaneous BW. In the presence of a strong signal, the
weakest signal that can be detected over the same instanta-
neous BW is mainly limited by noise. The effective sensitivity
level is degraded in CS architectures due to the noise folding
[12] effect of the PRBS mixing to instantaneously capture a
wide instantaneous BW. Hence, the CS AICs offer a moderate
instantaneous DR over a very wide instantaneous BW.

The CS AIC effective noise bandwith (NBWcs) that
accounts for noise folding, tracks the instantaneous BW of the
AICs in contrast to traditional spectrum scanners, where NBW
is equal to the RBW. The effective noise bandwidth of CS AICs
is defined by L.RBW, and it scales with the Span. For a given
Span, if the RBW is halved, L needs to be doubled. Therefore,
the NBWcs remains the same. In essence, the impact of noise
folding is independent of RBW and is fixed for a given Span.

Given the intrinsic tradeoff between instantaneous DR and
instantaneous BW, CS AICs are more suitable for applications
that do not require a very large DR, e.g., detecting a few large
signals rapidly over a wide instantaneous BW rather than using
the CS AIC as a high-sensitivity receiver. In [11], high-sensitiv-
ity signal reception and CS signal detection over a wide instan-
taneous BW are combined into a scalable architecture called
direct RF-to-information converter (DRF2IC). This architec-
ture couples the best features of CS wideband detection and
traditional sweeping spectrum scanners for narrowband detec-
tion with high-sensitivity signal reception.

Structured sparsity and adaptive methods for dynamic CS

CS RF spectrum-sensing and signal-reception approaches as-
sume that sparsity is fixed or bounded and rapidly break down
when these bounds are violated. Fixed sparsity assumptions
limit the applicability of sparse signal processing techniques
in practical, dynamic wideband spectrum environments, in
which the spectrum may occasionally be densely occupied.

Using signal information extracted from the sparse recovery
algorithm, e.g., OMP, the CS detector system, e.g., TS-QAIC
[14], can trade off time resolution versus system failure under
dynamically varying signal conditions, as shown in Figure 11.
For a dense spectrum, the TS technique demonstrated in [14]
introduces a virtual extension of hardware to increase the sig-
nal-detection capability by creating unique measurements of the
spectrum from a single physical branch through time-segmented
independent-sensing waveforms. The virtualization technique
is only applicable under the prior assumption of the spectrum
being stationary across the time segments ns;. However, the
pseudostationary spectrum assumption is typically valid since
CS systems offer very short scan times [50].

Sparsity estimation can be achieved by monitoring a nor-
malized residual of the OMP in DSP. This residual informa-
tion can be used for setting the signal-detection threshold
adaptively. The OMP residual monitoring and adaptive
thresholding do not require any additional steps in the OMP
algorithm [14] even if it is implemented in real time. This
adaptive system scaling is an alternative to always designing

the CS hardware for the worst-case spectrum scenario. The
worst-case design can be wasteful in terms of scan time and
energy consumption [14]. An example system-operation pro-
tocol is shown in Figure 11 for K§ > Ko > Ko sparsity lev-
els to illustrate the decision mechanisms for TS and adaptive
thresholding in which the detection threshold values are set
by system hardware design specifications, such as the com-
pression point and the sensitivity for high- and low-threshold
settings, respectively [14].

Discussion
In this article, we discussed the ongoing research in demonstrat-
ing the abstract improvements of CS theory in practical sensing
system implementations by using an example application of RF
signal reception and spectrum sensing. To summarize, Figure 12
shows the system performance plane of these RF spectrum scan-
ners and sensors with their associated tradeoffs for the example
RF spectrum scenario of scanning a 1-GHz-wide spectrum in the
2.7-3.7-GHz range with an RBW of 20 MHz. The reported en-
ergy consumption per scan and scan time for each architecture
are normalized to the energy consumption and scan time of a CS
QAIC detector, where E and Tscan denote the energy consump-
tion and the scan time of a CS QAIC detector, respectively [8].
Traditional sweeping spectrum scanners and cross-corre-
lation spectrum analyzers are located at the corner where the
scan time is the longest and the energy consumption is the
highest. They offer a high DR but at the expense of long scan
time and small instantaneous BW equal to their RBW. For
this example spectrum scenario, sweeping spectrum scanners
require 507scan = 220 4s scan time with a 20-MHz instanta-
neous BW in a 1-GHz span that results in high energy con-
sumption and the risk of missing the changes in a dynamic
spectrum. The cross-correlation spectrum analyzers shown
in Figure 13 are the preferred method for increasing the DR
by improving sensitivity at the expense of increased scan time
[41]. It is demonstrated in [41] that reducing the NF by 1.5 dB
doubles the measurement time. Both of these architectures
are specialized for spectrum analyzers and instrumentation.
Nyquist-rate FFT sensors offer 50-times faster sensing com-
pared to that of sweeping spectrum scanners; however, the
energy consumption remains the same as the first order, i.e.,
a power-hungry approach due to the high Nyquist-rate ADCs
(e.g., 2 GS/s). We note that the CS architectures are suitable for
the rapid detection of signals, e.g., interferers, over a wide BW
with a moderate instantaneous DR, especially the bandpass CS
approaches, such as the QAIC [8] the TS-QAIC [14], which are
up to an-order-of-magnitude more energy efficient than low-
pass CS approaches. The TS-QAIC discussed in [14] extends
the signal-detection capabilities without any additional hard-
ware resources compared to the QAIC, as shown in Figure 12.

Open challenges and future directions

In this section, we discuss some open challenges and future di-
rections for CS in hardware. Specific open challenges include
making recovery algorithms robust to clock jitter and nonlineari-
ties in the signal path. Each of these nonidealities introduces
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power and performance tradeoffs between digital and analog
domains; more robust recovery algorithms enable better trad-
eoffs, and hence, more efficient sensors. Some of these future
directions include adapting sparse recovery algorithms to
hardware; and cooptimizing hardware, sensing waveforms,
and recovery algorithms; optimizing CS for fixed system sizes
and fixed computational budgets; and taking CS to the next
level, i.e., functionally flexible unified architectures.

One of the open challenges is the modeling of the nonideali-
ties limiting the instantaneous DR of AICs, such as noise folding,
linear impairments, and nonlinearities. These nonideality mod-
els can be used for compensation or to make the sparse recovery

performance robust against them. For example, the wideband
1/Q downconverter employed by bandpass CS architectures such
as QAIC, TS-QAIC comes at the expense of frequency-indepen-
dent and frequency-dependent IQ gain and phase imbalance [13].
Image components due to the linear impairments can degrade the
instantaneous DR. Digital-based calibration methods have been
demonstrated to compensate IQ imbalance; however, the accurate
calibration and modeling of these linear impairments are challeng-
ing for CS AICs since the PRBS mixing folds the wideband spec-
trum information onto a few narrow baseband sampling channels.
One promising avenue is to use machine-learning techniques to
compensate for nonidealities, e.g., by using neural network tools
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FIGURE 11. An example of an adaptive system scaling protocol for dynamic CS to perform reliably under changing signal conditions: the sparsity is esti-
mated by monitoring a normalized residual of the OMP algorithm in DSP, and the system adapts through TS and adaptive thresholding. For each opera-
tion in the example protocol for K§ > Ks > Ku sparsity levels, critical design decisions, such as how to set the detection threshold value, the maximum
number of OMP iterations, and the number of virtual branches, are in the dashed boxes [14].
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to directly learn sparse recovery procedures [51]. To cope with the
deteriorated signal-to-noise ratio due to noise folding, cyclostation-
ary detection has been recently proposed for spectrum sensing in
algorithm-based research discussed in [52] and cyclic spectrum
recovery from sub-Nyquist samples outperforms energy detection
under noisy conditions in their presented simulations. One forward
direction is to investigate architectural and circuit-level innovations
based on these novel signal processing concepts through collabora-
tions between hardware and signal processing experts.

Another interesting challenge is the effect of PRBS mixing
on the nonlinearities in the signal path, and we briefly discuss
two possible linearity scenarios while contrasting with tradition-
al receivers. The intrabin spectrum-linearity scenario demon-
strates the narrowband-input-to-narrowband output mapping of
the PRBS mixing. On the other hand, the interbin spectrum-lin-
earity scenario demonstrates PRBS mixing wideband-input-to-
narrowband output mapping resulting from multi-LO spectral
properties of PRBSs. This unique multi-LO feature of the PRBS
mixer enables AICs to rapidly capture a wide instantaneous BW,
while introducing a nonlinearity mechanism different from tra-
ditional receivers. A detailed analysis is needed for these non-
linearities in the signal path of CS AICs and making recovery
algorithms robust to the nonlinearities through hardware—soft-
ware codesign. To address this open challenge, iterative linear-
ization for smaller nonlinearities and lifting to a semidefinite
program for larger ones have been an ongoing interest to the sig-
nal processing research community [53].

In this article, we discuss taking CS to the hardware level
for stand-alone CS applications. In addition to the open chal-
lenge of understanding nonidealities of a CS hardware, another
important future need is unification through the combination
of functionally flexible and rapidly reconfigurable architec-
tures to achieve cost, size, functionality, and power targets
for the mass deployment of CS in practical systems. While
some recent work has started to address this issue by combin-
ing high-sensitivity signal reception, CS wideband detection,
and sweeping spectrum analyzers into a compact architecture
[11], this is just the beginning of a new generation of unified
architectures combining novel signal processing concepts into
a flexible hardware. Depending on the deployment scenario,
these multifunction architectures are envisioned to quickly
change between their different operation modes on the fly.
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