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C
ompressive sensing (CS) theory opens promising avenues 
toward building rapid and energy-efficient sensing systems 
in a wide range of applications that require inherently high 
temporal and/or spatial resolution while exhibiting a sparse 

signal structure [1]–[5]. The goal of this article is to review recent 
efforts to realize the benefits of CS in custom sensing hardware 
and the broad challenges that arise by investigating an example 
application in radio-frequency (RF) communications. We discuss 
in detail how using CS for the design of RF spectrum scanners 
can break through the fixed tradeoffs among scan time, hardware 
complexity, and energy consumption of traditional scanner archi-
tectures. Using the specific example of RF spectrum sensing [4], 
[6]–[11] we demonstrate how close collaborations between hard-
ware and signal processing experts can yield new solutions that 
advance the state of the art in an important application domain. 
We stress the problems that arise when designing a custom hard-
ware for CS [12]–[15] and address questions that often go beyond 
the currently available literature in CS, e.g., coping with the im-
pairments of real hardware and avoiding catastrophic breakdown 
when the spectrum becomes nonsparse.

CS facilitates a sampling theory that allows for signal 
recovery using fewer measurements than required by the Shan-
non-Nyquist sampling theorem [16]–[21]. Previous hardware 
solutions based on the Shannon-Nyquist sampling theorem suf-
fer from fixed tradeoffs between scan time and power consump-
tion. Moreover, trading power for reduced scan time, which can 
significantly increase the complexity of the hardware, does not 
improve its overall energy consumption. In contrast, CS lever-
ages the usage of signal structure, such as sparsity or compress-
ibility in an appropriately chosen transform basis, to enable 
new tradeoffs with substantial improvements to both time and 
energy per scan.

Applications requiring a high-resolution acquisition of struc-
tured sparse signals are ideal candidates for CS. Some obvious 
application fields that could benefit from CS include medical 
diagnostics [1], [22], weather forecasting [23], [24], wireless 
communications [2]–[4], [6], [8], [10], [25], autonomous vehi-
cles [26]–[28], and video systems [5].

Identifying essential application  
characteristics for CS utilization
CS has been widely used for RF communications [2], [3], in-
cluding interferer detection [8], signal reception [4], [10], [25], 
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spectrum sensing [4], [6], [10], [11], direction estimation [29], 
channel estimation, and symbol detection [2]. When compared 
to traditional RF communications, applying CS to RF com-
munications can reduce the scan time for a desired resolution 
or increase the resolution while maintaining the scan time. 
Furthermore, CS introduces a compression in hardware via 
signal sparsity in contrast to traditional RF architectures with 
the same scan time, resulting in reduced hardware complexity.

For example, in RF spectrum sensing, CS-based approach-
es achieve scan times equivalent to multibranch architectures 
with many more parallel branches, e.g., an order of magnitude 
[4], [8]. The signal of interest is sparse in the frequency domain, 
which can be modeled with a few nonzero bands or tones in a 
wideband spectrum, as shown in Figure 1 [4], [8], [11], [25], 
[30]. We assume that the spectrum has been composed of two 
clusters, i.e., the lower and upper bands, with each divided into 
N0 -frequency bins. The signal of interest X f^ h is only sup-
ported on K K2 0=  bands or tones out of N2 0  bins, and X f^ h 
is sparse in the frequency domain because .K N0 01  These K  
bands or tones, illustrated in green, exceed a predefined thresh-
old level, while the inactive signals are illustrated in blue.

A second example of compression in hardware through CS 
pertains to reducing the number of antennas in a direction-
of-arrival (DOA)-finding application. Current DoA-finding 
approaches have a fixed tradeoff between scan time and reso-

lution with limited scaling in terms of the number of antennas 
and energy consumption. For this particular application, the 
signal of interest is sparse in the spatial domain across antenna 
elements. The power-versus-angle plot shown in Figure 2 rep-
resents the angle spectrum that corresponds to incident signal 
power at a particular angle i . Applying CS to calculate the 
DoA of a spatially sparse signal has been demonstrated in [29], 
resulting in reduced energy consumption and scan time while 
reducing the number of antenna elements required.

To glean the benefits of CS, identifying a proper entry point 
in the application space is crucial. Consider two possible appli-
cations for using CS in the RF communications space: inter-
ferer detection, which only targets a few large signals that are 
above a detection threshold, and signal reception, which targets 
both weak and strong signals. Both applications typically have a 
sparse signal structure in the frequency domain, which positions 
them as potential candidates for CS. However, the limitations of 
CS become more prominent for the signal-reception application 
because, for example, noise folding [12], [13] limits the sensitiv-
ity of the system, thus resulting in signal-reception degradation. 
In contrast, the interferer-detection application is not severely 
impacted by noise folding because only strong signals are tar-
geted. Furthermore, CS approaches for signal reception require 
obtaining the solution of very large optimization problems in 
the digital signal processing (DSP) domain. On the other hand, 
we will see that interferer detection leads to relatively small 
problems that can be solved rapidly. Taking further advantage 
of signal features specific to the use case, such as employing 
a bandpass CS approach for RF signal detection proposed in 
[8], can improve the sensitivity and greatly reduce the overall 
energy consumption by reducing the front-end power and also 
by compressing the system-matrix dimension for sparse recov-
ery in contrast to a low-pass CS approach [4]. To illustrate how 
to exploit signal features specific to the interest scenario, we 
now briefly discuss mapping CS theory to hardware systems in 
general and highlight some of the common challenges associ-
ated with this process.

Bridging CS theory and practical  
hardware implementation
The goal of CS is to uniquely determine the sparse signal of 
interest, such as interferers or DoA from our examples, from an 
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FIGURE 2. An example of a spatially sparse signal in a DoA-finding application.
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undetermined system of linear equations. CS theory [16]–[21] 
solves a sensing problem in the form of [ ] [ ] [ ] ,y A z zz }= =  
where : ( , )y y m 1=  is the measurement vector, [ ]: ( , )m N0z z=  
is the sensing basis, [ ]: ( , )N N0 0} }=  is the dictionary basis, 

: ( , )z z N 10=  is the unknown sparse coefficient vector with 
dimension m  being the number of measured samples, and  
dimension N0  being the number of Nyquist-rate samples. The 
matrix [ ]}  is used to define an input signal x as a sparse vec-
tor such that [ ]x z}=  contains only a few nonzero coefficients, 
i.e., K0 . Because the number of measured samples m  is smaller 
than the number of unknowns N0 , there is an infinite number 
of admissible solutions. Fortunately, CS theory shows that if 1) 
the target solution z  is sufficiently sparse and 2) the matrix [ ]A  
is well-structured, then z  (and hence, x) can be uniquely deter-
mined and efficiently recovered from the measurements, i.e., y.

The strongest available theoretical guarantees for CS pertain 
to random sensing bases z (or random matrices [ ]A ). For exam-
ple, random matrices satisfy the restricted isometry property 
(RIP) as soon as the number of measurements m  is sufficiently 
large. This implies that convex relaxations exactly recover z  in 
the absence of noise, and stably estimate z  in the presence of 
noise. Random matrices also provide guarantees for efficient 
greedy methods such as orthogonal matching pursuit (OMP) 
[31]. While many different matrix ensembles satisfy the RIP, 
one which is especially amenable to hardware implementation 
is the Rademacher ensemble, with independent ±1 entries [32].

Figure 3 illustrates how a CS sensing problem maps to 
a hardware system. A CS sensor is composed of an analog 
acquisition block and a digital back end. The analog acquisi-
tion block takes the input x  from real-world scenarios such 
as RF signals and operates on x  with [ ]z  by taking a linear 
random projection to generate y  digital samples. Then, y  
samples are fed into the digital back end, which solves for z  
such that [ ]x z}=  by using an OMP [31], [33] or 1,  minimi-
zation [34], [35].

One common challenge in taking CS to the hardware 
level is how to develop incoherent measurements that 1) are 
compatible with physical hardware and 2) reflect the sparsity 
structure encountered in signals of interest, i.e., the probable 

locations of nonzero entries. For example, in [36], the pro-
posed signal-structure-aware CS-sampling scheme utilizes 
the Hadamard transform of the input signal, and hence, this 
scheme performs better in practice compared to the random 
Gaussian and Bernoulli schemes with a small circuit area. 
To discuss how to optimize the incoherent measurements in 
a CS system given the application scenario and key system 
performance metrics, we will use the specific example of RF 
communications for the remainder of this article [4], [8], [11], 
[13], [14], [25], [30]. Figure 4 shows an example of a CS RF 
hardware used to acquire an incoherent measurement for suc-
cessfully detecting sparse signals in the frequency domain. 
Figure 4 also highlights the construction of the incoherent 
measurements through the dot product between the ith-row 
of the sensing matrix [ ],z  which has a spectral representa-
tion ( )P fi  shown as the black sinc-shaped curve, and the input 
vector x  formed by the green and red multibands. For the 
specific example scenario of RF communications, we sur-
vey various implementations of the CS analog acquisition 
block known as the analog-to-information converter (AIC). 
We also briefly discuss the key components and energy con-
sumption of the digital back end for those AIC implementa-
tions. Design considerations and challenges associated with 
the CS hardware implementation for RF communications are 
similar to the implementation challenges in a wide range of 
other CS applications as well.

RF spectrum sensors: An ideal application for CS
When comparing traditional hardware implementations for 
RF signal reception [10], [11], [25], [30], [37] and spectrum 
sensing [4], [7], [8], [11], [14] to CS-based implementations, 
we first introduce the signal model and spectrum scenario 
followed by key performance metrics used to evaluate such 
systems. Once established, we survey multiple traditional 
and CS implementations to demonstrate the potential of CS 
to fundamentally improve tradeoffs between key design 
considerations, including scan time, energy consumption, 
and hardware complexity [4], [8], [10], [25]. Finally, we 
discuss some difficulties and challenges associated with 
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CS implementations and how to circumvent issues such 
as implementing random (incoherent) measurements in 
a hardware- and energy-efficient manner, coping with the 
impairments of real hardware, and avoiding a catastrophic 
breakdown when the spectrum is not sparse but becomes 
densely occupied.

RF signal model and spectrum scenario

Signal structure and model
■■ Sparsity: In many real-world applications, signals of inter-

est are sparse or can be defined as a sparse vector in a well-
chosen basis. A sparse vector with a dimension of N0  has 
K0  nonzero coefficients where K N0 01 . The sparsity 
level is defined as /S K N0 0=  [14].
Sparsity is the prior information or assumption that can 

be leveraged to simplify the acquisition process by uniquely 
determining the original spectrum of a band-limited signal 

without requiring Nyquist-rate sampling of the instantaneous 
bandwidth (BW) [17].

■■ Multitone signal model: Considers the following mathe-
matical model for a class of discrete multitone signals 
[21], [38]:
1)	The Fourier transform X f^ h of the continuous-time sig-

nal ( )tx  has the highest frequency component below 
N0 , where N0  is a positive integer.

2)	There are only K K2 0=  active tones, where K  is sub-
stantially smaller than the instantaneous BW of 

.N N2 0=

For each time interval normalized to a second, the signal 
model in [21] is given by

	 ( ) ,x t a e i t2=
!

~
r ~

~ X

-/ � (1)

for [ , ),t 0 1!  where Ω is a set of K -sparse integer-valued 
frequencies that satisfies { , ..., , , , ..., },N N1 1 0 10 01X - + -  
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and { : }a !~ X~  is a set of complex-valued amplitudes, such 
as the Fourier series coefficients of ( )tx . Figure 1 illustrates 
these assumptions.

■■ Multiband signal model: Considers sparse multiband sig-
nals [13], [38], [39] that are real-valued, square-integrable 
signals ( )tx  satisfying two properties.
1)	The signal of interest has a valid Fourier transform  

X f^ h in the frequency range of ( , ]  f fF MAX MIN= - -  
[ , ) .f f MIN MAX'

2)	The signal of interest is sparse in the frequency domain, 
meaning that the support of X f^ h is a relatively small 
subset of .F

As shown in Figure 1, for a real-valued signal ( )tx , F  has 
been partitioned into N N2 0=  disjoint bands with a resolu-
tion BW (RBW) of B . The sparse Fourier transform X f^ h is 
supported on only K K N N2 20 01= =  of these bands. These 

K2 0  bands are referred to as active bands or supports when 
their power level is above a predefined or adaptive signal-level 
detection threshold.

If the spectral occupancy /S K N0 0 0=  is small, then the 
support of X f^ h has a Lebesgue measure [40] K B0#  Hz, 
which is much smaller than the Nyquist rate of the instanta-
neous BW f f2Nyq MAX=  Hz [13].

Spectrum scenario
For the remainder of this article, we consider a case study of 
RF spectrum sensing or signal reception in a 1 GHz of inter-
est spectrum band, e.g., the President’s Council of Advisors on 
Science and Technology (PCAST) band ranging from 2.7 to  
3.7 GHz with a 20-MHz RBW resulting in 50 spectrum bins, 
i.e., N 500 =  [8], [14]. In this scenario, there are three large sig-
nals, i.e., interferers that are above the predefined or adaptive 
signal-level detection threshold, i.e., .K 30 =  The sparsity level 
for this scenario is /S 3 50= , which indicates a spectrum occu-
pancy of 6%. The K 30 =  large signals can be located in any of 
the N 500 =  spectrum bins. The goal is to efficiently acquire a 
one-dimensional spectrum image to locate those K0  large sig-
nals, even if the spectral locations of the K0  supports are not 
known in advance.

RF spectrum-sensing performance metrics
In this section, we provide an overview of key system per-
formance metrics of the RF spectrum scanners and sensors 
that are designed to detect the K0  large signals located in 
any of the N0  spectrum bins. The key system performance 
metrics are the instantaneous BW, the scan time and energy 
consumption required to capture the information in that 
instantaneous BW, and the instantaneous dynamic range 
(DR), while simultaneously satisfying target detection and 
false alarm probabilities. An overview of the key system 
performance metrics discussed in this section is summa-
rized in Table 1. These performance metrics also dictate the 
natural fit between a point in the application space and the 
choice of architecture.

■■ Energy consumption: Energy consumption for a scan is 
defined as the power consumption, ,P  times the scan time, 

.Tscan  The scan time is composed of two parts: front-end 
detector response time Tresp  and DSP time Trec  [8].

	 [ ] .E P T P T T· ·scan resp rec= = + � (2)

■■ Scan time (Tscan ): This is defined as the combination of 
detector response time Tresp  and DSP time .Trec  DSP time 
is proportional to / ,N fs s  where fs  is the analog-to-digital 
converter (ADC) sampling rate, and Ns  is the number of 
samples collected. Front-end detector response time is pro-
portional to the settling time of the low-pass antialiasing 
filters [8].

■■ Detection and false alarm probabilities: Detection proba-
bility PD  is the probability that a CS AIC correctly reports 
a signal in the RF spectrum as active. False alarm probabil-
ity PFA  is the probability that a CS AIC reports a spectrum 
bin as occupied when there is no signal present in the RF 
spectrum [8].

■■ Instantaneous BW: The instantaneous BW of a spectrum 
sensor is defined as its Span, over which few signals can be 
successfully and rapidly detected, while meeting target 
detection and false alarm probabilities.

■■ DR: The instantaneous DR of a spectrum sensor is defined 
as its ability to successfully detect a weak signal in the 
presence of a strong signal or signals over a wide instanta-
neous BW, i.e., its Span [8], [13]. We note that this definition 
of DR is suitable for real-world applications when there are 
strong and weak signals present at the same time over a wide 
BW. One of the challenges of instantaneous DR is that the 
weakest signals do not enjoy maximum gain for a given full 
scale of the ADC. The reason for this challenge is the auto-
matic gain control block prior to the ADC is typically set for 
the strongest signal that fits into the full scale of the ADC.

In addition to instantaneous DR, operational range is 
used when there are equal-power strong or weak signals 
present over a wide BW. Operational DR is the best-case DR 
performance [25]. In this case, the automatic gain control 
block maximizes the conversion gain to fit into the full scale 
of the ADC for both strong and weak signal scenarios.

■■ Number of detectable signals: The number of detectable 
signals is a valid performance metric for only CS spec-
trum sensors, and it depends heavily on the number of 
incoherent measurements collected from a CS AIC. The 
relation between the number of incoherent measurements, 
m, and the number of detectable signals, K0 , in a CS AIC 
is given by

	 · · ,logm C K
K
N

0
0

0. c mc m � (3)

where K0  is the number of detectable signals, N0  is the num-
ber of spectrum bins in the range of interest, and C is a constant 
in the range of two to four [8], [13].

RF spectrum sensors: Traditional architectures
In this section, we survey the traditional spectrum sensor 
and scanner architectures [8]. Furthermore, we discuss their 
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advantages and limitations in terms of the key system perfor-
mance metrics discussed in the “RF Spectrum-Sensing Perfor-
mance Metrics” section.

Spectrum sensor and scanner architectures
The architectures can be organized into three main categories.

■■ Sweeping spectrum scanners: In a single-branch sweeping 
spectrum scanner, each bin is scanned sequentially by 
time-multiplexing the hardware; this is a slow approach, 
especially for fine-frequency resolutions. This approach 
results in large energy consumption, and there is also a risk 
of missing the changes in spectrum dynamics. Sweeping 
spectrum scanners offer a high DR for a small instanta-
neous BW equal to their RBW.

■■ Nyquist-rate fast Fourier transform (FFT) spectrum 
sensors: In a Nyquist-rate FFT spectrum sensor, the 
interest spectrum band is captured instantaneously by 
sampling at the Nyquist rate of the instantaneous BW 
equal to Span. The instantaneous BW, i.e., the Span, is 
subdivided into the desired RBW through FFT in the 
digital back end.

■■ Multibranch spectrum sensors: In a multibranch spectrum 
sensor, the interest spectrum band is captured instanta-
neously by deploying N0  branches, which are equal to the 
number of spectrum bins to be observed.
In the following, we discuss the key design considerations 

and potential use cases of these three sensor/scanner types in 
more detail.

Sweeping spectrum scanners
A traditional sweeping spectrum scanner can be used to se-
quentially examine all N /RBWSpan0 =  bins in a time-mul-
tiplexed fashion to find the location of the K0  signals [8]. 
Sweeping spectrum scanners have a fixed tradeoff between 
the resolution they offer and their scan-time performance. 
Because there is a risk of missing the changes in dynamic 
spectrum environments due to their long scan times, they are 
mostly preferred for stationary spectrum environments. A 
sweeping spectrum scanner architecture is also ideally suited 
to be used in high-quality measurement equipment since it 
offers a high dynamic range over a small instantaneous BW 
equal to its RBW. Cross-correlation spectrum analyzers [41] 

Table 1. The best-known capabilities, limitations, and applications of traditional and CS RF spectrum scanners. 

Type Architecture Application Advantages Limitations
Traditional RF spec-
trum scanners and 
sensors

Sweeping spectrum 
scanner

Spectrum analysis High DR
High sensitivity
Low power
Low hardware complexity
Suitable for nonsparse signals

Small instantaneous BW
Slow scan

Nyquist-rate FFT  
spectrum sensor

Spectrum analysis Large instantaneous BW
Fast scan
Suitable for nonsparse signals

High power
High hardware complexity

Multibranch spectrum 
sensor

Spectrum analysis Large instantaneous BW
Fast scan
Suitable for nonsparse signals

High power
High hardware complexity

CS spectrum sensors 
for a multitone signal 
model

RD [42], [43] Sub-Nyquist receiver Large instantaneous BW
Fast scan
Low power
Low hardware complexity

Suitable for only sparse signals
Moderate sensitivity
Moderate DR

RMPI [25] Sub-Nyquist receiver Large instantaneous BW
Fast scan

Suitable for only sparse signals
Moderate sensitivity
Moderate DR
High power

CS spectrum sensors 
for a multiband  
signal model

MWC [4], [10] Sub-Nyquist receiver 
and spectrum sensing

Large instantaneous BW
Fast scan

Suitable for only sparse signals
Moderate sensitivity
Moderate DR
High power

QAIC [8] Sub-Nyquist interferer 
detection

Large instantaneous BW
Fast scan
Moderate power

Suitable for only sparse signals
Moderate sensitivity
Moderate DR
Residual bands from I/Q linear impairments

TS-QAIC [14] Sub-Nyquist interferer 
detection

Large instantaneous BW
Fast scan
Moderate power
Dynamic signal sparsity

Moderate sensitivity
Moderate DR
Residual bands from I/Q linear impairments

DRF2IC [11] Sub-Nyquist interferer 
detection, narrowband 
sensing, and high- 
sensitivity receiver

Large instantaneous BW
Fast scan
Moderate power
High sensitivity

Moderate DR
High hardware complexity

RD: random demodulator; RMPI: random modulation pre-integrator; MWC: modulated wideband converter; DRF2IC: direct RF-to-information converter; QAIC: quadrature ana-
log-to-information converter; I/Q: in-phase/quadrature-phase; TS-QAIC: time-segmented QAIC.
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improve noise performance, hence DR, at the expense of in-
creased scan time.

The energy consumption for a sweeping spectrum scanner 
is given by

	
· [ · ( / ) · ( / )]

( ),

E P N C N N f

P N T· ·

BW s s0 0

0

scanner scanner settle filter

scan

= +

= � (4)

where the power consumption of a single branch is 
.Pscanner  Front-end response time T ,resp scanner  is proportional 

to the number of bins, N0 , and the antialiasing low-pass 
filter settling time, which is inversely proportional to its 
bandwidth .BWfilter  For the desired power-reading accu-
racy, Csettle  represents the number of filter time constants 
needed. For example, based on our experiments with the 
Hewlett-Packard 3585A spectrum analyzer, the estimated 
Csettle  value is 4. DSP time, T ,rec scanner  is inversely propor-
tional to the sampling rate, fs  and proportional to the 
number of bins, N0  and the number of samples used for 
DSP, i.e., Ns  [8].

Nyquist-rate FFT spectrum sensors
To sense signals over GHzs or wider instantaneous BWs, a  
Nyquist-rate FFT spectrum sensor would require a pro-
hibitively high-aggregate-sampling rate, resulting in a 
power-hungry sensing approach [8]. Scan time is reduced 
at the expense of high power consumption, especially for 
a wide instantaneous BW.

DR for a Nyquist-rate FFT spectrum sensor is defined as 
capturing a weak signal successfully when there is at least 
one large signal present over its Span. The DR of the ADC 
is crucial for the DR of a Nyquist-rate FFT spectrum sensor 
and it is defined as the range between the noise floor and 
its specified maximum output level. As discussed in the “RF 
Spectrum-Sensing Performance Metrics” section, the auto-
matic gain control block prior to the ADC is tuned to receive 
the strongest signal that fits into the full scale of the ADC, 
while there exists a weak signal over the Span. Quantization 
noise of the ADC must be kept below the lowest signal level 
that is desired for it to be detected. One way to design an 
ADC with a high DR is to increase the number of bits; how-
ever, this solution comes at the expense of increased energy 
consumption.

The energy consumption for a Nyquist-rate FFT spectrum 
sensor is given by

	
[( / ) ( / )]

( ) · .

E P C N N f

N P T

· ·

·

BW s s0

0

yquist yquist settle filter

scan

N N

.

= +

� (5)

The response time for a Nyquist-rate FFT spectrum sen-
sor T ,resp yquistN  is proportional to the antialiasing low-pass 
filter settling time. This architecture subdivides the instanta-
neous BW into the desired RBW through the FFT. Therefore, 
DSP time T ,rec yquistN  is proportional to the FFT size .N0  In 
addition to the FFT size, design considerations such as the 
number of samples used for DSP, ,Ns  and the ADC sampling 
rate ,fs  impact the scan time. The energy consumption for a 

scan stays within a fixed first-order envelop even though a 
Nyquist-rate FFT spectrum sensor offers a lower scan time 
with a compression factor of N0  (due to an increase in sam-
pling rate, ,fs  by the same factor) in contrast to a sweeping 
spectrum scanner [8].

Multibranch spectrum sensors
A multibranch architecture consists of multiple narrowband 
scanners in parallel, equivalent to a single-branch scanner for 
each spectrum bin spaced closely with an operating frequency 
distance of RBW. As an alternative to a sweeping spectrum 
scanner, and, although the scan time is reduced through the par-
allelized branches, a multibranch spectrum sensor consumes 
higher power under a fixed first-order energy budget and has an 
impractical hardware complexity when compared to a sweep-
ing spectrum scanner [8]. 

The energy consumption for a multibranch spectrum sensor 
is given by
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RF spectrum sensors: Moving CS to hardware
The use of CS [16], [18] in RF signal reception and spectrum 
sensing has the potential to fundamentally improve the fixed 
tradeoffs between key design considerations, including scan 
time, energy consumption, and hardware complexity found 
in traditional RF spectrum scanners and sensors [4], [8], [13]. 
We are interested in a use case where detecting a few active 
signals above a certain signal-level threshold in a wideband 
spectrum and the CS theory demonstrates the possibility of 
recovering sparse multiband or multitone signals from only a 
few linear measurements proportional to the number of active 
bands or tones K0 , in the signal [16], [18], [34]. Because the 
information BW is much smaller than the instantaneous signal 
BW under the sparsity condition, CS as a blind sub-Nyquist 
sampling approach allows for sampling at a rate defined by 
this information BW rather than the instantaneous BW [6], 
[16], [18], [21], [39].

In this section, we discuss the current CS architectures, 
i.e., AICs, which have been proposed for RF signal recep-
tion [10], [25], [30], [37] and spectrum sensing [4], [7], [9], 
[11], [14]. These CS architectures can be organized into 
the following categories: random demodulator (RD) [21], 
[42], [43]; random modulation preintegrator (RMPI) [17], 
[25]; modulated wideband converter (MWC) [4], [10]; and 
quadrature AIC (QAIC) [8]. We survey these architectures 
with a focus on signal structure and models, integrated 
hardware realizations, signal recovery, and reconstruction 
algorithms. The main focus of this section is to show how a 
combination of careful attention to the deployment scenario 
and RF architecture innovations make it possible to convert 
the abstract improvements promised by CS theory, such as 
fewer measurements, to concrete improvements in time and 
energy efficiency.



88 IEEE Signal Processing Magazine   |   March 2019   |

Integrated CS hardware realizations
CS spectrum sensors require a few incoherent measurements, 
as discussed in the “Bridging CS Theory and Practical Hard-
ware Implementation” section. These incoherent measurements 
are achieved by mixing the wideband RF sparse input signal 
with independent unique pseudorandom binary sequences 
(PRBSs). PRBS mixing spreads and smears the spectrum while 
folding the wideband input signal onto narrowband baseband 
sampling channels. CS DSP techniques disentangle this folding 
mechanism to locate the few active signals, i.e., bands or tones, 
above the signal-level detection threshold by using the incoher-
ent samples [8].

Some current CS architectures implement each of these few 
incoherent measurements as a corresponding physical hard-
ware branch; however, once the number of hardware branches 
is fixed, integrated CS hardware realizations can only success-
fully detect up to a specific maximum number of active signals 
[14]. To understand how the number of hardware branches maps 
to the number of detectable signals, we refer to the required 
number of incoherent measurements given by (3), which show 
the scaling of m  with the number of nonzero signals, K0  that 
need to be detected [8], [13]. As discussed in [4], the number 
of branches m  may be traded for the branch sampling rate by 
a static reduction factor q , where , , , ...q 1 3 5= . Furthermore, 
we discuss system-level techniques in the “Structured Sparsity 
and Adaptive Methods for Dynamic CS” section, which com-
bine signal processing mainly sparsity estimation and adap-
tive thresholding with hardware adaptation to maintain reliable 
performance across all sparsity levels [14].

■■ RD: The RD [21], [42], [43] shown in Figure 5 can be used 
to acquire sparse band-limited multitone signals. This  
single-branch architecture mixes the signal with a Nyquist-
rate pseudorandom sequence. The mixing operation with 
the high-rate sequence smears the tones across the entire 
spectrum [21]. The RD employs a low-pass antialiasing 
filter to limit the BW of this smeared signal across the 
entire spectrum. Thanks to CS, the RF front end avoids the 
need for a high-rate ADC and samples the sparse multitone 
signal with a sub-Nyquist rate ADC. As discussed in [21], 
successful identification of these sparse tones relies on the 
fact that the demodulation process with a pseudorandom 

sequence provides a distinct signature within the passband 
of the low-pass filter for each tone.
This architecture is mostly suitable for signals with a finite 

set of harmonics chosen from a fixed uniform grid; however, 
real-world analog signals require a large number of harmonics 
to approximate them well within the discrete model. Therefore, 
the signal reconstruction becomes computationally intractable 
and performance is degraded through the sensitivity to the grid 
choice [4]. The analog acquisition hardware is simplified for 
the RD architecture through additional digital back-end com-
plexity under the assumption of fast-paced advances in digital 
computing [21], [42], [43].

■■ RMPI: The RMPI [17], [25] shown in Figure 6 is a wide-
band receiver that implements random sensing for sparse 
multitone signals. The input signal ( )tx  is mixed with a 
periodic distinct PRBS ( )p ti  in each channel to create a 
shifted copy of the entire spectrum by each harmonic of the 
PRBS. The output of the mixer is then integrated over a 
fixed-time interval T and digitized at a sub-Nyquist rate of 

/ ,f T f1s Nyq11=  where fNyq  is the Nyquist rate of the 
input signal. The acquired sub-Nyquist samples from each 
channel represented as [ ] ( ) ( )  y n x t p t dti

t T

t
i=

-
#  and t nT=  

are used for CS support recovery and the spectrum of the 
output signal [ ]y ni  is shown in Figure 6. Successful CS 
recovery relies upon knowing a basis or dictionary matrix 
[ ]}  to represent the signal, as discussed in the “Bridging 
CS Theory and Practical Hardware Implementation” sec-
tion. In [25], the dictionary matrix is a multiscale Gabor 
dictionary to reconstruct radar pulses, which are sparse in 
the time–frequency plane.
Since the RMPI is a parallel-branch alternative of the RD 

architecture, for the remainder of this discussion, we compare 
the multiband architectures against the RMPI, which utiliz-
es a low-pass CS approach. For the low-pass CS approach, 
the PRBSs have spectral content spanning from dc to fMAX . 
Given that the spectral information below some fMIN  is not 
desired for RF applications such as in the example of PCAST 
spectrum scenario . ,f 2 7 GHzMIN =^ h  this only adds noise 
and suffers from the undesired blocking effect in the RF hard-
ware when strong unwanted signals are present below fMIN

, as indicated by the red tone in the input spectrum shown 
in Figure 6(a). Furthermore, the frequency of the PRBS gen-
erator clock must be at least twice the maximum frequency 

f f2PRBS MAX$^ h of the input signal, which makes the PRBS 
generator the most power-hungry block of the RMPI architec-
ture [8], [25].

The prototype wideband receiver, RMPI, demonstrated in 
the integrated performance table in Figure 6(c) [25], captures 
an effective instantaneous BW from 100 MHz to 2 GHz by 
eight parallel branches while digitizing samples at an aggre-
gate rate of 320 megasamples/s (MS/s), i.e., 12.5-times lower 
than the Nyquist rate [25]. The RMPI prototype consumes 
506.4 mW of power without including the power consumed by 
the computational platform needed for signal recovery.

■■ MWC: The MWC [4], [44] shown in Figure 7 is a multibranch 
sub-Nyquist sampling approach for sparse multiband signals. 

FIGURE 5. A block diagram of the RD used for acquiring sparse band-
limited multitone signals [42], [43]. This single-branch architecture mixes 
the multitone input signal with a Nyquist-rate pseudorandom sequence 
and samples the signal at a sub-Nyquist rate after low-pass filtering. LNA: 
low-noise amplifier. 

x (t )

pi (t )

y [n ]

fPRBS ≥ 2fMAX
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t
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t = n /R



89IEEE Signal Processing Magazine   |   March 2019   |

The input signal ( )tx  is mixed with periodic PRBSs at RF, 
low-pass filtered, and sampled at a low rate of .f RBWs $

Multiplication by a PRBS aliases the signal spectrum and 
spreads the information over the instantaneous BW as well by 
creating copies of the aliased signal spectrum in each bin. After 
low-pass filtering, only a single of copy of the folded signal 
spectrum remains for sampling at the sub-Nyquist rate. A suf-

ficiently large number of incoherent measurements from each 
parallel branch, represented by [ ] [ ],y n y nm1 f  allows for the 
successful recovery of the signal ( )tx  if the m  branches of the 
MWC are driven by m-unique, low cross-correlated PRBSs 
with a length of L N2 0=  ( ), , ( ), , ( )p t p t p ti M1 f f^ h [11], [13].

Because the MWC also utilizes a low-pass CS approach as 
the RMPI, the frequency of the PRBS generator clock scales 

FIGURE 6. (a) A block diagram of the RMPI, a parallel-branch alternative of the RD for sparse multitone signals, and spectra of various key signals including the 
input signal, the pseudorandom binary sequence, and the output signal. (b) The RMPI system parameters and its performance scaled for the example application 
of sensing 1 GHz in the 2.7–3.7-GHz range with a 20-MHz RBW ,q 1=^ h  and (c) the integrated RMPI [25] performance summary. LNA: low-noise amplifier; LO: 
local oscillator; Gm: transconductance.
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up with the maximum frequency f f2PRBS MAX$^ h of the input 
signal. Note that the PRBSs will have frequency content 
spanning down to dc and the spectral information from dc 
to fMIN , as indicated by the red band in the input spectrum 
shown in Figure 7(a) only adds noise and unwanted signals in 
the output spectrum for the RF spectrum scenario of interest 
[8], [11], [13].

The MWC prototype discussed in the integrated perfor-
mance table in Figure 7(c) [10] captures an effective instanta-
neous BW up to 900 MHz by five parallel branches, including 
one branch for calibration. The prototype MWC consumes 
880.5 mW of total power from five parallel branches.

■■ QAIC: The QAIC [8], [13] illustrated in Figure 8 consists 
of an RF downconverter that limits the operation BW, m  
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FIGURE 7. (a) A block diagram of the MWC, a multibranch architecture for sparse multiband signals and spectra of various key signals including the input 
signal, the pseudorandom binary sequence, and the output signal. (b) The MWC system parameters [4] and its performance scaled for the example 
spectrum scenario of sensing 1 GHz in the 2.7–3.7-GHz range with a 20-MHz RBW ,q 1=^ h  and (c) the integrated MWC [10] performance summary. 
LNA: low-noise amplifier; LO: local oscillator. 
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in-phase (I) and quadrature-phase (Q) branches including 
PRBS mixers, antialiasing filters, and ADCs in each 
branch as well as a pairwise complex combiner. The band-
pass filtered signal ( )tx  is first downconverted to baseband, 

thereby enabling the use of shorter-length L N N0 1=  
and lower-frequency PRBSs .f f fPRBS MAX MIN$ -

In each I and Q branch, the downconverter output is mul-
tiplied by m-unique PRBSs ( )p ti  with low cross-correlation 
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FIGURE 8. (a) A block diagram of the QAIC consists of  an RF downconverter that limits the operation BW prior to the multibranch PRBS mixing of sparse 
multiband signals and spectra of various key signals including the input signal, the PRBS, and the output signal. By limiting the operation BW, the QAIC 
lowers the required rate and length of the PRBSs compared to low-pass CS architectures. (b) The QAIC system parameters [13] and its performance 
scaled for the example spectrum scenario of sensing 1 GHz in the 2.7–3.7-GHz range with a 20-MHz RBW ,q 1=^ h  and (c) the integrated QAIC [8] 
performance summary. LNA: low-noise amplifier; LO: local oscillator; IQ: in-phase/quadrature-phase. 
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between them, low-pass filtered, and sampled at a sub-Nyquist 
rate of the instantaneous BW. The output complex combiner 
allows for the selection of either the upper [ , )f fMIN MAX  or lower 
( , ]f fMAX MIN- -  band cluster of the multiband input signal ( ),x t  
as shown in Figure 1. The m-incoherent samples of the aliased 
spectrum, [ ] [ ],y n y nm1 f  are then used to recover the sparse 
multiband signal ( )tx  [13].

The energy efficiency and sensitivity performance of the 
bandpass CS architectures are significantly improved when 
compared to the low-pass CS architectures, e.g., MWC for RF 
applications. Furthermore, the bandpass CS approach scales 
well to higher frequencies for the same instantaneous BW 
because it decouples the Nyquist-rate PRBS clock frequency 
from the maximum frequency of interest. To compare with the 
other CS AIC implementations, we use the performance num-
bers given in their corresponding system parameters tables in 
Figures 6(b) and 7(b), which are scaled to sense a 1-GHz span 
from 2.7 to 3.7-GHz with a 20-MHz RBW [8]. The number of 
hardware branches is scaled for three active signals, i.e., 29 for 
the low-pass CS architectures. Although the RMPI and MWC 
prototypes use more power-hungry shift-register PRBS gener-
ators, the PRBS generator power has been scaled assuming a 
linear feedback shift register (LFSR) with the required length 
of 511 and clock frequency of 10.22 GHz for a 20-MHz RBW. 
As reported in [8], the energy consumption per scan for the 
QAIC is five- to 10-times lower than the energy consumption 
of the low-pass CS implementations while maintaining a scan 
time of .   4 4 sn  when the performance numbers are normal-
ized for the example RF spectrum scenario. For the example 
RF spectrum scenario, the QAIC requires a PRBS length of 
63 and a PRBS generator clock frequency of 1.26 GHz for a 
20-MHz RBW, as shown in the system parameters table in 
Figure 8(b). The measured power consumption of the QAIC 
implementation is 81 mW, as shown in the integrated per-
formance table in Figure 8(c), without including the on-chip 
ADCs and phase-locked loops (PLLs) for the PRBS genera-
tor clock and quadrature downconverter fixed local oscillator 
(LO). When the power estimations of PLLs and ADCs are 
included for the QAIC, the total estimated power consump-
tion is 115 mW [8]. As reported in [8], the scan time is .  .4 4 sn  
Therefore, the front-end energy consumption per scan is 

.   0 5 Jn  [8]. 

System attributes and implementation parameters
The RMPI [25], MWC [4], and QAIC [8], [13] system param-
eters are defined in their corresponding tables in Figures 6–8. 
The RMPI and MWC sample a real signal ( )tx  at RF. Because 
the RMPI and MWC utilize a low-pass CS approach, their 
frequency components extend from dc to fMAX . The MWC 
input signal contains N0  = /f BMAX^ h bands. The modulator 
bank employed by the MWC processes N2 0  total bands (i.e., 
N0  positive and N0  negative frequency bands) and K2 0  active 
bands (supports) [4]. Similar to the MWC with the only differ-
ence being the multitone signal model rather than a multiband 
signal model, the RMPI also processes N2 0  total tones and 

K2 0  active tones (see [21] and [25]). For the system attributes 

and implementation parameters, we only compare within the 
architectures that employ multiband signal model.

In contrast to low-pass CS architectures, the QAIC samples 
a complex signal ( ) · ( )I t j Q t"  at a baseband intermediate fre-
quency after quadrature downconversion. Its span extends from 
fMIN  to fMAX  and contains ( ) /N f f B0 MAX MIN= -^ h total bands. 

The I and Q branches of the QAIC process N0  total bands and 
K0  active bands by selecting upper- or lower-band clusters. 
The number of bands N2 0  processed by the MWC is typically 
much larger than that which is processed by the QAIC when 

.f 0MIN 22  The additional degree of freedom in adjusting the 
lower and upper boundaries of the QAIC Span in contrast to 
only adjusting the upper boundary of the MWC Span, provides 
significant improvements in energy consumption and sensitiv-
ity. The LO frequency fLO^ h and quadrature low-pass filter BW 

f3 ,dB IQ^ h shown in Figure 8 are the system parameters for adjust-
ing the QAIC frequency span. However, this scalability comes at 
the expense of unwanted residual bands due to quadrature linear 
impairments, e.g., phase and gain imbalance. Depending on the 
level of the impairment and compensation in the digital back 
end, this can increase false alarm probability.

When comparing a low-pass CS approach with a bandpass 
approach, it is assumed that both systems employ maximal 
length PRBSs generated with LFSR structures. The sequence 
length L is equal to ,2 1r -  where r Z! +  for a maximal length 
LFSR-type PRBS. The clock frequency of the PRBS genera-
tors fPRBS  employed by the MWC must be greater than twice 
the maximum frequency fMAX  of the input signal with a PRBS 
length of L N2 0$  [4]. In contrast, fPRBS  for the QAIC must be 
greater than the f-Span f  MAX MIN=  of the input signal with a 
PRBS length of .L N0$

The number of branches or incoherent measurements m  
given in (3) required by the MWC and the QAIC for suc-
cessful signal recovery, is proportional to the number of 
active bands multiplied by a logarithmic factor and con-
stants , .C C1 1MWC QAIC$ $  The MWC requires m K2 0?  
branches [4]. Because of its complex I/Q structure, the QAIC 
requires m K0?  in-phase and quadrature-phase branches so 
the total number of physical hardware branches for the QAIC 
is 2m  [13]. The sub-Nyquist sampling rate per branch for both 
systems is f Bs $  Hz. The aggregate sampling rate of the 
MWC is ,mfs  while the aggregate sampling rate of the QAIC 
is .mf2 s  To achieve a span of 1 GHz in the 2.7–3.7-GHz band 
with an RBW of 20 MHz, the number of branches m  for the 
MWC is 29, and the number of I/Q branches m  for the QAIC 
is eight, i.e., equivalent to 16 physical hardware branches. For 
the example RF spectrum scenario, the aggregate sampling 
rate of the MWC is 580 MS/s, while the aggregate sampling 
rate of the QAIC is 320 MS/s for a 20-MHz RBW [8].

Signal recovery and reconstruction algorithms
Support recovery and signal reconstruction are the main steps 
in a CS DSP [4]. K0  supports (K0  signals) of N0  unknowns  
( N0  spectrum bins) that are nonzero [4] are located using sup-
port recovery. Then, the time domain waveform of the input 
signal is estimated using signal reconstruction [4].
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CS-based signal reconstruction is typically more com-
putationally intensive than Nyquist-rate reconstruction; e.g., 
a typical CS algorithm requires roughly 20–1,000 FFTs for 
reconstruction due to its operation as a nonlinear function of 
the acquired samples [25]. Hence, a real-time time-domain 
signal reconstruction was not feasible for low-power mobile 
applications [25] until recently. In [45], a learning-based 
approach to subsampling by training signals and combinato-
rial optimization problems has been proposed as an opportu-
nity for real-time and low-power signal reconstruction. The 
theory and recovery results for medical applications present-
ed in [45] are based on efficient and scalable linear encoder 
and decoder pairs.

For applications concerned with only signal detection 
not estimation, e.g., RF interferer detection, support recov-
ery is sufficient, and a complete time-domain reconstruction 
is not required. Support recovery extracts information such 
as carrier frequency, initial phase, and pulsewidth from the 
acquired waveform without reconstructing the time-domain 
signal. This is a less computationally expensive approach 
and is potentially cost-comparable to traditional Nyquist-rate 
approaches [25].

One simple greedy approach to sparse recovery is the 
OMP [31], [33]. A wide range of alternatives exist, includ-
ing convex relaxations based on 1,  minimization, nonconvex 
methods, more advanced greedy methods such as CoSamp, 
sparse Bayesian learning, and so on. Here, we focus on OMP 
because of its simplicity and tight connection to support recov-
ery. OMP iteratively identifies the active supports by choosing 
elements that are maximally correlated with the measurement 
residual. The residual drops linearly as each signal support is 
recovered and removed from the measurements. Once all of 
significant signal supports above the signal-detection thresh-
old are detected, there will be an abrupt change in the slope 
of the residual curve [14]. The adaptive thresholding concept 
discussed in the “Structured Sparsity and Adaptive Methods 
for Dynamic CS” section takes advantage of this iterative 
nature of the support-recovery algorithm by monitoring the 
OMP residual [14].

The CS system-measurement-matrix row dimension 
and the signal-level detection threshold are the two system 
parameters that impact the number of OMP iterations. The 
number of incoherent measurements sets the row dimen-
sion of the CS system measurement matrix. When the sig-
nal-level detection threshold is close to the system noise 
floor, the maximum number of OMP iterations performed 
in the digital back end is equal to the CS system-measure-
ment-matrix row dimension. The choice of a threshold 
close to the noise floor might maximize the detection prob-
ability of a CS detector at the cost of an increased false 
alarm probability. If the signal-level detection threshold is 
reached before the maximum number of OMP iterations 
are performed, the CS DSP completes the recovery without 
further iterations [14]. We discuss the impact of the number 
of OMP iterations on the DSP energy consumption in the 
following section.

Evaluation of CS spectrum sensors:  
Key performance metrics
In this section, we discuss how to evaluate CS spectrum sen-
sors and their key system performance metrics including 
detection and false alarm probabilities, scan time, front-end 
and DSP energy consumption, dynamic range,  and scalability.

■■ Detection and false alarm probabilities: CS signal detec-
tion is a statistical process and its key metrics are the detec-
tion probability  PD  and the false alarm probability .PFA  
PD  is defined as · ,CD N KE 0/  where CD is the correct 
detections and NE  is the number of experiments. PFA  is 
defined as ( ),N L K·FA E 0-/  where FA is the false 
alarms [8], [13], [14].
PD  and PFA  performance is typically used to demon-

strate the sensitivity and DR of the CS signal detection. The 
PFA  depends on two key components: 1) the dimension of the 
system measurement matrix and 2) the signal-level detection 
threshold. The maximum PFA  is proportional to the dimension 
of the system measurement matrix when the threshold value 
is set close to the noise floor. This results in maximized .PD

For example, Figure 9 demonstrates the measured sensi-
tivity of a QAIC prototype through PD  and PFA  curves as a 
function of support power for a stationary sparse-spectrum 
scenario. The cluster of curves on the top correspond to ,PD  
and the cluster of curves on the bottom correspond to ,PFA  with 
1, 2, and 3 equal power signals above the signal-level detection 
threshold. The results are reported based on N 125E =  experi-
ments by using N 80s =  samples per experiment. The mea-
sured sensitivity of this bandpass CS prototype is illustrated 
as the successful detection of three equal power signal bands 
as small as a −68 dBm/10 MHz band, while satisfying a target 
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FIGURE 9. Characterization of the sensitivity of the CS AIC by measuring 
the detection probability, PD , and the false alarm probability P FA  curves 
as a function of signal power for K0 (=1, 2, and 3) equal power signals in 
a stationary spectrum scenario. The measured results from a QAIC pro-
totype are reported based on N 125E =  experiments each using N 80s =  
samples. The weakest signal level that the QAIC prototype can detect is 
–68 dBm/10 MHz band for the example spectrum scenario with K 30 =  
while satisfying a target detection probability %90$  and false alarm 
probability %15#  [8].
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to a −72 dBm/10 MHz band, while maintaining target-detec-
tion probability [8]. The measured PFA  remains below 15% for 
all of the experiments.

■■ Scan time: Scan time has two main contributors: the detec-
tor response time and CS DSP time, as discussed in the “RF 
Spectrum-Sensing Performance Metrics” section. CS DSP 
time is / ,N fs s  where fs  is the ADC sampling rate and Ns  is 
the number of samples collected. The front-end detector 
response time is very fast as a result of the PRBS mixing 
operation. Mixers driven by PRBSs spread the spectrum 
and allow users to capture the entire wide spectrum BW of 
interest instantaneously by creating folded copies of the 
spectrum information in all of the bins. The AIC front-end 
detector, therefore, is responsive to a change in the spec-
trum at the settling time of the low-pass filters [8].

■■ Front-end energy consumption: Front-end energy con-
sumption is defined as the power consumed by m  physical 
hardware branches times the CS scan time [8]. For a CS 
spectrum sensor, front-end energy consumption is given by
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■■ CS DSP energy consumption: For m  the number of branch-
es or incoherent measurements, L  the length of the PRBSs 
employed by the AIC (L N N2 0= =  for MWC and L N0=  
for QAIC) to a first order, ·m L  multiplications and additions 
are needed to complete a single iteration of the OMP for 
sparse support recovery. For a single set of measurements, 
K0  iterations are required with an ADC sampling period of 
Ts , the time required to complete a single iteration is 

/ .T T Ks 0iteration =  Therefore, the energy consumption of a 
single iteration is given by (8), where Padder  and Pmult  are the 
power consumption of adders and multipliers, respectively.

	 ( ) · .E m L P P T· ·iteration adder mult iteration= + � (8)

If Ns  consecutive samples from the AIC are used for 
sparse support recovery to detect K0  active signals, then the 
total number of multiplications and additions needed by the 
OMP is roughly · · · .N K m Ls 0  To a first order, the total CS 

DSP energy consumption for sparse support recovery through 
OMP is given by (9).

	 ( ) · .E m L P P T N· · ·s sOMP adder mult= + � (9)

Table 2 provides an estimation of DSP cost using the OMP 
algorithm for various CS signal-detector architectures [4], [8], 
[11]. It is assumed that the DSP power is dominated by the 
power dissipated in multipliers .Pmult^ h

Taking advantage of signal features, such as the bandpass 
signal model for RF applications, reduces the CS system-
matrix dimension by reducing the length of the PRBSs L  as 
well as the number of incoherent measurements, ,m  drastically. 
Since m  and L  play a significant role in DSP energy consump-
tion, a smaller matrix dimension results in a lower DSP cost by 
performing the sparse recovery only for a desired signal band. 
For example, for the QAIC system that utilizes a bandpass CS 
approach, assuming ,N 80s =  ,m 8=  ,L 63=  and K 30 =  for 
real multiplications and additions, the computational load of 
the OMP is estimated to be roughly 535nJ [46]. Here, the esti-
mated power consumption for a 16 × 16 multiplier and a 16-bit 
adder with a settling time less than 17 ns is 60 μW and 5 μW, 
respectively [47], [48].

■■ DR: The instantaneous DR of an AIC is defined as the maxi-
mum power difference between k K01  weak signals and 
K k0 -^ h strong signals that the AIC can successfully detect 

over GHz or wider instantaneous BW, while satisfying a 
desired PD  and PFA  given the linear and nonlinear impair-
ments and noise [8], [13]. The “Open Challenges and Future 
Directions” section discusses how to model and compensate 
for some of these impairments as one of the open challenges 
in CS AICs design.

■■ Adaptive configurability and scalability: Adaptive configu-
rability and scalability are essential in real-world applica-
tions. CS AICs demonstrate scalability in terms of the 
number of hardware branches, samples per branch, and the 
number of bits employed in their ADCs. An example of this 
scalability is demonstrated in [8] and [14] through measured 
PD  and PFA  performance, respectively, in Figure 10.
The AICs can operate with varying ADC resolutions [49]. 

Reducing the number of bits will drastically consume less 
energy in DSP compared to its high-resolution counterpart 

Table 2. The estimated DSP cost of various CS-signal-detector architectures. 

Architecture DSP Algorithm Estimated DSP Power DSP Time
MWC [4] OMP logNK K

N P4 0
2

2
0

multc m qB
Ns

QAIC [8] OMP logN K K
N P2 0 0

2
2

0

0
multc m B

Ns

TS-QAIC [14] OMP ( ) logN n K n K
N P2 0 0

2
2

0

0
seg

seg
multc m

B
n Nsseg

DRF2IC [11] OMP logN K K
N P2 0 0

2
2

0

0
multc m qB

Ns

DRF2IC: direct RF-to-information converter; MWC: modulated wideband converter; QAIC: quadrature analog-to-information converter; TS-QAIC: time-segmented QAIC.
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at the expense of a lower DR; this tradeoff between energy 
consumption and DR may be useful for many real-world 
applications. An example of the AIC operation under vary-
ing ADC resolutions is illustrated through the measured 
PD  and PFA  curves in [8]. As demonstrated in Figure 10(a), 
for K 20 =  active bands with a target %P 90D 2  and 

%,P 15FA 1  a QAIC prototype with 8-bit ADCs can detect 
−72 dBm/10 MHz bands, while the same QAIC employing 
1-bit ADCs can detect −68-dBm/10-MHz bands [8].

The AIC’s operation under signal overload is also illus-
trated through an example in Figure 10(b). In this example, 
the CS system is designed to successfully detect K 30 =  sig-
nals by using a sufficient number of hardware branches for the 
required number of incoherent measurements; however, the 
system is tested with K 60 =  signals under the assumption of 
dynamic signal conditions. The CS system provides unreliable 
results with a maximum PD  of 50% since it commits to a fixed 
number of hardware branches under the assumption of static 
signal sparsity with a maximum bound of K 30 =  signals for 
this example [14]. A possible adaptive action in response to this 
system overload that handles more signals than the expected 
occupancy level is relaxing the threshold of recovery algo-
rithms. The AIC becomes blind to lower power signals and 
effectively sparsifies the spectrum. Only signals above the new 
threshold are detected with high confidence. Another possible 
solution based on sparsity estimation and time segmentation 
(TS) to avoid system failure under the support overload is dis-
cussed in the “Structured Sparsity and Adaptive Methods for 
Dynamic CS” section [14]. As shown in Figure 10, the TS tech-
nique combined with adaptive thresholding improves the PD  
performance back to %90$  for reliable operation under signal 
overload at the expense of increased scan time [14].

RF spectrum sensors: Challenges  
of implementing CS in hardware
Taking CS to the hardware level has been a growing research 
interest both for RF communications and beyond with a spe-
cific focus on demonstrating how to overcome the traditional 
tradeoffs between scan time and resolution through integrated 
CS realizations for different signal structures. At the same 
time, CS AICs can suffer from nonidealities such as jitter 
noise, aperture [15], nonlinear and linear impairments [13], 
and noise folding [12] in addition to other performance limit-
ing factors, e.g., static signal structure assumptions [14]. In this 
section, we discuss three major challenges of implementing CS 
in hardware for the RF spectrum-sensing example. However, 
these challenges are applicable to CS hardware used in other 
applications as well.

Jitter noise and aperture
Because the CS AICs sample the signal of interest with sub-
Nyquist rate ADCs, they do not suffer from the jitter noise and 
aperture of the sampling stage. However, the improvement in 
the ADC performance comes at the expense of jitter noise and 
aperture of the PRBS mixing stage, which still operates at the 
Nyquist rate of the instantaneous signal BW. Since both of 
these nonidealities, i.e., jitter noise and aperture, depend on 
frequency, the Nyquist-rate PBRS mixing stage degrades the 
resolution and performance gain of CS AICs in high-BW ap-
plications [15]. Reducing the PRBS generator clock frequen-
cy by using a bandpass CS approach that limits the RF BW 
through downconversion makes the AICs less susceptible to 
jitter and aperture [13]. One interesting direction suggested in 
[15] is to investigate the effect of sensing matrix sparsity on 
the jitter noise and aperture in the PRBS mixing stage.

FIGURE 10. The scalability of the CS AIC is demonstrated in terms of ADC resolution and number of branches through measured detection probability, PD,  
and false alarm probability PFA  curves [8], [14]. (a) The CS AICs operation under varying ADC resolutions is illustrated for an example stationary spec-
trum scenario of K 20 =  signals [8]. (b) Their operation under signal overload is illustrated for K 60 =  signals when the hardware uses m = 8-physical 
branches (i.e., TS OFF) and also when the hardware uses m 16=  (eight physical and eight virtual branches) (i.e., TS ON) [14]. 
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Intrinsic tradeoff: Instantaneous DR and instantaneous BW
CS AICs have an intrinsic tradeoff between instantaneous DR 
and instantaneous BW. In the presence of a strong signal, the 
weakest signal that can be detected over the same instanta-
neous BW is mainly limited by noise. The effective sensitivity 
level is degraded in CS architectures due to the noise folding 
[12] effect of the PRBS mixing to instantaneously capture a 
wide instantaneous BW. Hence, the CS AICs offer a moderate 
instantaneous DR over a very wide instantaneous BW.

The CS AIC effective noise bandwith ( )NBWcs  that 
accounts for noise folding, tracks the instantaneous BW of the 
AICs in contrast to traditional spectrum scanners, where NBW 
is equal to the RBW. The effective noise bandwidth of CS AICs 
is defined by ,.L RBW  and it scales with the Span. For a given 
Span, if the RBW is halved, L  needs to be doubled. Therefore, 
the NBWCS  remains the same. In essence, the impact of noise 
folding is independent of RBW and is fixed for a given Span.

Given the intrinsic tradeoff between instantaneous DR and 
instantaneous BW, CS AICs are more suitable for applications 
that do not require a very large DR, e.g., detecting a few large 
signals rapidly over a wide instantaneous BW rather than using 
the CS AIC as a high-sensitivity receiver. In [11], high-sensitiv-
ity signal reception and CS signal detection over a wide instan-
taneous BW are combined into a scalable architecture called 
direct RF-to-information converter (DRF2IC ). This architec-
ture couples the best features of CS wideband detection and 
traditional sweeping spectrum scanners for narrowband detec-
tion with high-sensitivity signal reception.

Structured sparsity and adaptive methods for dynamic CS
CS RF spectrum-sensing and signal-reception approaches as-
sume that sparsity is fixed or bounded and rapidly break down 
when these bounds are violated. Fixed sparsity assumptions 
limit the applicability of sparse signal processing techniques 
in practical, dynamic wideband spectrum environments, in 
which the spectrum may occasionally be densely occupied.

Using signal information extracted from the sparse recovery 
algorithm, e.g., OMP, the CS detector system, e.g., TS-QAIC 
[14], can trade off time resolution versus system failure under 
dynamically varying signal conditions, as shown in Figure 11. 
For a dense spectrum, the TS technique demonstrated in [14] 
introduces a virtual extension of hardware to increase the sig-
nal-detection capability by creating unique measurements of the 
spectrum from a single physical branch through time-segmented 
independent-sensing waveforms. The virtualization technique 
is only applicable under the prior assumption of the spectrum 
being stationary across the time segments .nseg  However, the 
pseudostationary spectrum assumption is typically valid since 
CS systems offer very short scan times [50].

Sparsity estimation can be achieved by monitoring a nor-
malized residual of the OMP in DSP. This residual informa-
tion can be used for setting the signal-detection threshold 
adaptively. The OMP residual monitoring and adaptive 
thresholding do not require any additional steps in the OMP 
algorithm [14] even if it is implemented in real time. This 
adaptive system scaling is an alternative to always designing 

the CS hardware for the worst-case spectrum scenario. The 
worst-case design can be wasteful in terms of scan time and 
energy consumption [14]. An example system-operation pro-
tocol is shown in Figure 11 for K K K0 002 2m l  sparsity lev-
els to illustrate the decision mechanisms for TS and adaptive 
thresholding in which the detection threshold values are set 
by system hardware design specifications, such as the com-
pression point and the sensitivity for high- and low-threshold 
settings, respectively [14].

Discussion
In this article, we discussed the ongoing research in demonstrat-
ing the abstract improvements of CS theory in practical sensing 
system implementations by using an example application of RF 
signal reception and spectrum sensing. To summarize, Figure 12 
shows the system performance plane of these RF spectrum scan-
ners and sensors with their associated tradeoffs for the example 
RF spectrum scenario of scanning a 1-GHz-wide spectrum in the 
2.7–3.7-GHz range with an RBW of 20 MHz. The reported en-
ergy consumption per scan and scan time for each architecture 
are normalized to the energy consumption and scan time of a CS 
QAIC detector, where E  and Tscan  denote the energy consump-
tion and the scan time of a CS QAIC detector, respectively [8].

Traditional sweeping spectrum scanners and cross-corre-
lation spectrum analyzers are located at the corner where the 
scan time is the longest and the energy consumption is the 
highest. They offer a high DR but at the expense of long scan 
time and small instantaneous BW equal to their RBW. For 
this example spectrum scenario, sweeping spectrum scanners 
require T50 220 sscan n=  scan time with a 20-MHz instanta-
neous BW in a 1-GHz span that results in high energy con-
sumption and the risk of missing the changes in a dynamic 
spectrum. The cross-correlation spectrum analyzers shown 
in Figure 13 are the preferred method for increasing the DR 
by improving sensitivity at the expense of increased scan time 
[41]. It is demonstrated in [41] that reducing the NF by 1.5 dB 
doubles the measurement time. Both of these architectures 
are specialized for spectrum analyzers and instrumentation. 
Nyquist-rate FFT sensors offer 50-times faster sensing com-
pared to that of sweeping spectrum scanners; however, the 
energy consumption remains the same as the first order, i.e., 
a power-hungry approach due to the high Nyquist-rate ADCs 
(e.g., 2 GS/s). We note that the CS architectures are suitable for 
the rapid detection of signals, e.g., interferers, over a wide BW 
with a moderate instantaneous DR, especially the bandpass CS 
approaches, such as the QAIC [8] the TS-QAIC [14], which are 
up to an-order-of-magnitude more energy efficient than low-
pass CS approaches. The TS-QAIC discussed in [14] extends 
the signal-detection capabilities without any additional hard-
ware resources compared to the QAIC, as shown in Figure 12.

Open challenges and future directions
In this section, we discuss some open challenges and future di-
rections for CS in hardware. Specific open challenges include 
making recovery algorithms robust to clock jitter and nonlineari-
ties in the signal path. Each of these nonidealities introduces 
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power and performance tradeoffs between digital and analog 
domains; more robust recovery algorithms enable better trad-
eoffs, and hence, more efficient sensors. Some of these future 
directions include adapting sparse recovery algorithms to 
hardware; and cooptimizing hardware, sensing waveforms, 
and recovery algorithms; optimizing CS for fixed system sizes 
and fixed computational budgets; and taking CS to the next 
level, i.e., functionally flexible unified architectures.

One of the open challenges is the modeling of the nonideali-
ties limiting the instantaneous DR of AICs, such as noise folding, 
linear impairments, and nonlinearities. These nonideality mod-
els can be used for compensation or to make the sparse recovery 

performance robust against them. For example, the wideband 
I/Q downconverter employed by bandpass CS architectures such 
as QAIC, TS-QAIC comes at the expense of frequency-indepen-
dent and frequency-dependent IQ gain and phase imbalance [13]. 
Image components due to the linear impairments can degrade the 
instantaneous DR. Digital-based calibration methods have been 
demonstrated to compensate IQ imbalance; however, the accurate 
calibration and modeling of these linear impairments are challeng-
ing for CS AICs since the PRBS mixing folds the wideband spec-
trum information onto a few narrow baseband sampling channels. 
One promising avenue is to use machine-learning techniques to 
compensate for nonidealities, e.g., by using neural network tools 
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to directly learn sparse recovery procedures [51]. To cope with the 
deteriorated signal-to-noise ratio due to noise folding, cyclostation-
ary detection has been recently proposed for spectrum sensing in 
algorithm-based research discussed in [52] and cyclic spectrum 
recovery from sub-Nyquist samples outperforms energy detection 
under noisy conditions in their presented simulations. One forward 
direction is to investigate architectural and circuit-level innovations 
based on these novel signal processing concepts through collabora-
tions between hardware and signal processing experts.

Another interesting challenge is the effect of PRBS mixing 
on the nonlinearities in the signal path, and we briefly discuss 
two possible linearity scenarios while contrasting with tradition-
al receivers. The intrabin spectrum-linearity scenario demon-
strates the narrowband-input-to-narrowband output mapping of 
the PRBS mixing. On the other hand, the interbin spectrum-lin-
earity scenario demonstrates PRBS mixing wideband-input-to-
narrowband output mapping resulting from multi-LO spectral 
properties of PRBSs. This unique multi-LO feature of the PRBS 
mixer enables AICs to rapidly capture a wide instantaneous BW, 
while introducing a nonlinearity mechanism different from tra-
ditional receivers. A detailed analysis is needed for these non-
linearities in the signal path of CS AICs and making recovery 
algorithms robust to the nonlinearities through hardware–soft-
ware codesign. To address this open challenge, iterative linear-
ization for smaller nonlinearities and lifting to a semidefinite 
program for larger ones have been an ongoing interest to the sig-
nal processing research community [53].

In this article, we discuss taking CS to the hardware level 
for stand-alone CS applications. In addition to the open chal-
lenge of understanding nonidealities of a CS hardware, another 
important future need is unification through the combination 
of functionally flexible and rapidly reconfigurable architec-
tures to achieve cost, size, functionality, and power targets 
for the mass deployment of CS in practical systems. While 
some recent work has started to address this issue by combin-
ing high-sensitivity signal reception, CS wideband detection, 
and sweeping spectrum analyzers into a compact architecture 
[11], this is just the beginning of a new generation of unified 
architectures combining novel signal processing concepts into 
a flexible hardware. Depending on the deployment scenario, 
these multifunction architectures are envisioned to quickly 
change between their different operation modes on the fly.

Acknowledgments
We thank John Kazana and the Columbia Electrical Engineer-
ing Department for lending test equipment. This work was 
supported by the National Science Foundation under grants 
ECCS-1343282 and CCF-1733857.

Authors
Rabia Tugce Yazicigil (rty@bu.edu) received her B.S. degree 
from Sabanci University, Istanbul, Turkey, her M.S. degree from 
École Polytechnique Fédérale de Lausanne, Switzerland, and her 
Ph.D. degree from Columbia University, New York, all in electri-
cal engineering, in 2009, 2011, and 2016, respectively. She was 
a postdoctoral associate at the Massachusetts Institute of 

Technology, Cambridge, from 2016 to 2018. Currently she is an 
assistant professor in the Electrical and Computer Engineering 
Department at Boston University, Massachusetts. She was a 
recipient of the Columbia University EE Collaborative Research 
Award in 2016 and placed second at the Bell Labs Future X 
Days Student Research Competition in 2015. She is a Member 
of the IEEE.

Tanbir Haque (th424@columbia.edu) received his B.S. 
and M.S. degrees in electrical engineering from the State 
University of New York at Stony Brook and the New York 
University Tandon School of Engineering in 1994 and 1997, 
respectively. He received his M.S. degree in applied mathemat-
ics in 2010 from Columbia University, New York, where he is 
currently pursuing his Ph.D. degree in electrical engineering. 
He is a principal engineer with the Incubation and Strategy 
Group at InterDigital Communications, Melville, New York. 
His responsibilities include technology road map development, 
incubation, prototyping, and technology standardization. He 
has coauthored one book and holds 14 U.S. patents, with sever-
al applications under review. He is a Member of the IEEE.

Peter R. Kinget (peter.kinget@columbia.edu) received his 
B.S. degree in electrical and mechanical engineering in 1990 
and his Ph.D. degree in electrical engineering in 1996, both 
from the Katholieke Universiteit Leuven, Belgium. From 
1996 to 1999, he was a member of the technical staff in the 
Design Principles Department at Bell Laboratories, Lucent 
Technologies, New Jersey. From 1999 to 2002, he held techni-
cal and management positions in the field of integrated circuit 
design at Broadcom, Irving, California, CeLight, Iselin, New 
Jersey, and MultiLink, Somerset, New Jersey. In 2002, he 
joined the faculty of the Department of Electrical Engineering, 
Columbia University, New York, where he is now the Bernard 
J. Lechner Professor and the chair of the electrical engineering 
department. He is a Fellow of the IEEE. 

John Wright (jw2966@columbia.edu) received his B.S. 
degree in computer engineering, his M.S. degree in electrical 
engineering, and his Ph.D. degree in electrical engineering from 
the University of Illinois at Urbana–Champaign (UIUC) in 
2004, 2007, and 2009, respectively. From 2009 to 2011, he was 
with Microsoft Research Asia. He is currently an associate pro-
fessor in the Electrical Engineering Department at Columbia 
University, New York. His has received a number of awards, 
including the 2012 Conference on Learning Theory Best Paper 
Award (with Dan Spielman and Huan Wang), the 2009 
Lemelson-Illinois Prize for Innovation for his work on face rec-
ognition, and the 2009 UIUC Martin Award for Excellence in 
Graduate Research. His research interests include high-dimen-
sional data analysis. He is a Member of the IEEE. 

References
[1] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing 
MRI,” IEEE Signal Process. Mag., vol. 25, pp. 72–82, Mar. 2008. 

[2] J. W. Choi, B. Shim, Y. Ding, B. Rao, and D. I. Kim, “Compressed sensing for 
wireless communications: Useful tips and tricks,” IEEE Commun. Surveys Tut., vol. 
19, no. 3, pp. 1527–1550, Feb. 2017.

[3] Z. Qin, J. Fan, Y. Liu, Y. Gao, and G. Y. Li, “Sparse representation for wireless 
communications: A compressive sensing approach,” IEEE Signal Process. Mag., 
vol. 35, no. 3, pp. 40–58, 2018.



100 IEEE Signal Processing Magazine   |   March 2019   |

[4] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist sampling of 
sparse wideband analog signals,” IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, 
pp. 375–391, 2010. 

[5] R. G. Baraniuk, T. Goldstein, A. C. Sankaranarayanan, C. Studer, A. 
Veeraraghavan, and M. B. Wakin, “Compressive video sensing: Algorithms, architec-
tures, and applications,” IEEE Signal Process. Mag., vol. 34, no. 1, pp. 52–66, 2017. 

[6] Z. Tian and G. B. Giannakis, “Compressed sensing for wideband cognitive radi-
os,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), 
2007, pp. IV-1357–IV-1360. 

[7] D. E. Bellasi, L. Bettini, C. Benkeser, T. Burger, Q. Huang, and C. Studer, “VLSI 
design of a monolithic compressive-sensing wideband analog-to-information convert-
er,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 3, no. 4, pp. 552–565, 2013. 

[8] R. T. Yazicigil, T. Haque, M. R. Whalen, J. Yuan, J. Wright, and P. R. Kinget, 
“Wideband rapid interferer detector exploiting compressed sampling with a quadra-
ture analog-to-information converter,” IEEE J. Solid-State Circuits, vol. 50, no. 12, 
pp. 3047–3064, 2015. 

[9] R. T. Yazicigil, T. Haque, J. Wright, and P. R. Kinget, “Band-pass compressive 
sampling as an enabling technology for rapid wideband RF spectrum sensing,” in 
Proc. 50th Asilomar Conf. Signals, Systems and Computers (ACSSC), 2016, pp. 
1032–1036. 

[10] D. Adams, Y. Eldar, and B. Murmann, “A mixer frontend for a four-channel 
modulated wideband converter with 62 dB blocker rejection,” in Proc. IEEE Radio 
Frequency Integrated Circuits Symp. (RFIC), 2016, pp. 286–289. 

[11] T. Haque, M. Bajor, Y. Zhang, J. Zhu, Z. A. Jacobs, R. B. Kettlewell, J. 
Wright, and P. R. Kinget, “A reconfigurable architecture using a flexible LO modu-
lator to unify high-sensitivity signal reception and compressed-sampling wideband 
signal detection,” IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1577–1591, 2018. 

[12] E. Arias-Castro and Y. C. Eldar, “Noise folding in compressed sensing,” IEEE 
Signal Process. Lett., vol. 18, no. 8, pp. 478–481, 2011. 

[13] T. Haque, R. T. Yazicigil, K. J.-L. Pan, J. Wright, and P. R. Kinget, “Theory 
and design of a quadrature analog-to-information converter for energy-efficient 
wideband spectrum sensing,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 
2, pp. 527–535, 2015. 

[14] R. T. Yazicigil, T. Haque, M. Kumar, J. Yuan, J. Wright, and P. R. Kinget, 
“How to make analog-to-information converters work in dynamic spectrum environ-
ments with changing sparsity conditions,” IEEE Trans. Circuits Syst. I, Reg. 
Papers, vol. 65, no. 6, pp. 1775–1784, 2018.

[15] O. Abari, F. Lim, F. Chen, and V. Stojanovic, “Why analog-to-information con-
verters suffer in high-bandwidth sparse signal applications,” IEEE Trans. Circuits 
Syst. I, Reg. Papers, vol. 60, no. 9, pp. 2273–2284, 2013.

[16] D. Donoho, “Compressive sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, 
pp. 1289–1306, 2006.

[17] E. J. Candés and M. B. Wakin, “An introduction to compressive sampling,” 
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, 2008.

[18] E. Candés and T. Tao, “Robust uncertainty principles: Signal reconstruction 
from highly incomplete frequency information,” IEEE Trans. Inf. Theory, vol. 52, 
no. 2, pp. 489–509, 2006. 

[19] R. G. Baraniuk, “Compressive sensing [Lecture Notes],” IEEE Signal Process. 
Mag., vol. 24, no. 4, pp. 118–121, 2007.

[20] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications. 
Cambridge, U.K.: Cambridge Univ. Press, 2012.

[21] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, 
“Beyond Nyquist: Efficient sampling of sparse bandlimited signals,” IEEE Trans. 
Inf. Theory, vol. 56, no. 1, pp. 520–544, 2010.

[22] B. Gozcu, R. K. Mahabadi, Y. H. Li, E. Ilicak, T. Cukur, J. Scarlett, and V. 
Cevher, “Learning-based compressive MRI,” IEEE Trans. Med. Imag., vol. 37, no. 
6, pp. 1394–1406, 2018.

[23] K. V. Mishra, A. Kruger, and W. F. Krajewski, “Compressed sensing applied 
to weather radar,” in Proc. IEEE Geoscience and Remote Sensing Symp., 2014, pp. 
1832–1835. 

[24] B. M. Sanandaji, A. Tascikaraoglu, K. Poolla, and P. Varaiya, “Low-
dimensional models in spatio-temporal wind speed forecasting,” in Proc. American 
Control Conf. (ACC), 2015, pp. 4485–4490. 

[25] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candes, and A. Emami-Neyestanak, 
“A 100-MHz–2GHz 12.5x sub-Nyquist rate receiver in 90-nm CMOS,” in Proc. 
IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2012, pp. 31–34. 

[26] A. Kadambi and P. T. Boufounos, “Coded aperture compressive 3-D LIDAR,” 
in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2015, 
pp. 1166–1170. 

[27] G. A. Howland, P. Zerom, R. W. Boyd, and J. C. Howell, “Compressive sens-
ing LIDAR for 3D imaging,” in Proc. Conf. Lasers and Electro-Optics (CLEO), 
2011, pp. 1–2. 

[28] R. Hummel, S. Poduri, F. Hover, U. Mitra, and G. Sukhatme, “Mission design 
for compressive sensing with mobile robots,” in Proc. IEEE Int. Conf. Robotics and 
Automation, 2011, pp. 2362–2367. 

[29] M. Bajor, T. Haque, J. Wright, and P. R. Kinget, “Theory and design of a direct 
space-to-information converter for rapid detection of interferer DoA,” in Proc. 86th 
IEEE Vehicular Technology Conf. (VTC-Fall), 2017, pp. 1–5. 

[30] X. Chen, E. A. Sobhy, Z. Yu, S. Hoyos, J. Silva-Martinez, S. Palermo, and B. 
M. Sadler, “A sub-Nyquist rate compressive sensing data acquisition front-end,” 
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 2, no. 3, pp. 542–571, 2012. 

[31] T. Zhang, “Sparse recovery with orthogonal matching pursuit under RIP,” IEEE 
Trans. Inf. Theory, vol. 57, no. 9, pp. 6215–6221, 2011. 

[32] Y. D. C. S. Dallaporta, “Sparse recovery guarantees from extreme eigenvalues 
small deviations,” Statist. Theory, arXiv, 2017. [Online]. Available: https://arxiv 
.org/abs/1604.01171v4

[33] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via 
orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–
4666, 2007. 

[34] D. L. Donoho, “For most large underdetermined systems of equations, the mini-
mal 1, -norm near-solution approximates the sparsest solution,” Commun. Pure 
Appl. Math., vol. 59, no. 7, pp. 907–934, 2006.

[35] E. J. Candés and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. 
Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[36] C. Aprile, L. Baldassarre, V. Gupta, J. Yoo, M. Shoaran, Y. Leblebici, and V. 
Cevher, “Learning-based near-optimal area-power trade-offs in hardware design for 
neural signal acquisition,” in Proc. Int. Great Lakes Symp. VLSI (GLSVLSI), 2016, 
pp. 433–438.

[37] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Analog to 
digital at sub-Nyquist rates,” IET Circuits, Devices Syst., vol. 5, no. 1, pp. 8–20, 2011. 

[38] M. A. Lexa, M. E. Davies, and J. S. Thompson, “Reconciling compressive 
sampling systems for spectrally sparse continuous-time signals,” IEEE Trans. Signal 
Process., vol. 60, no. 1, pp. 155–171, 2012. 

[39] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: 
Compressed sensing for analog signals,” IEEE Trans. Signal Process., vol. 57, no. 
3, pp. 993–1009, 2009.

[40] H. Lebesgue, Intégrale, Longueur, Aire. Milan, Italy: Bernandon de C. 
Rebeschini, 1902.

[41] M. S. O. Alink, E. A. M. Klumperink, M. C. M. Soer, A. B. J. Kokkeler, and 
B. Nauta, “A 50MHz-to-1.5GHz cross-correlation CMOS spectrum analyzer for 
cognitive radio with 89dB SFDR in 1MHz RBW,” in Proc. IEEE Symp. New 
Frontiers in Dynamic Spectrum, 2010, pp. 1–6.

[42] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, 
and R. Baraniuk, “Analog-to-information conversion via random demodulation,” in 
Proc. IEEE Dallas/CAS Workshop Design, Applications, Integration and 
Software, 2006, pp. 71–74. 

[43] J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk, and Y. 
Massoud, “Theory and implementation of an analog-to-information converter using 
random demodulation,” in Proc. IEEE Int. Symp. Circuits and Systems, 2007, pp. 
1959–1962. 

[44] M. Mishali and Y. C. Eldar, “Wideband spectrum sensing at sub-Nyquist rates 
[Applications Corner],” IEEE Signal Process. Mag., vol. 28, no. 4, pp. 102–135, 2011. 

[45] L. Baldassarre, Y. H. Li, J. Scarlett, B. Gozcu, I. Bogunovic, and V. Cevher, 
“Learning-based compressive subsampling,” IEEE J. Sel. Topics Signal Process., 
vol. 10, no. 4, pp. 809–822, 2016.

[46] R. T. Yazicigil, Compressive Sampling as an Enabling Solution for Energy-
Efficient and Rapid Wideband RF Spectrum Sensing in Emerging Cognitive 
Radio Systems. Columbia University Academic Commons, 2016. [Online]. 
Available: https://doi.org/10.7916/D8571BXM

[47] N. Rajput, M. Sethi, P. Dobriyal, K. Sharma, and G. Sharma, “A novel, high per-
formance and power efficient implementation of 8 × 8 multiplier unit using MT-CMOS 
technique,” in Proc. 6th Int. Conf. Contemporary Computing (IC3), 2013, pp. 186–191. 

[48] S. Goel, A. Kumar, and M. A. Bayoumi, “Design of robust, energy-efficient 
full adders for deep-submicrometer design using hybrid-CMOS logic style,” IEEE 
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 12, pp. 1309–1321, 2006. 

[49] L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Robust 1-bit 
compressive sensing via binary stable embeddings of sparse vectors,” IEEE Trans. 
Inf. Theory, vol. 59, no. 4, pp. 2082–2102, 2013.

[50] J. Ziniel and P. Schniter, “Dynamic compressive sensing of time-varying sig-
nals via approximate message passing,” IEEE Trans. Signal Process., vol. 61, no. 
21, pp. 5270–5284, 2013.

[51] S. Buchanan, T. Haque, P. Kinget, and J. Wright, “Efficient model-free learning 
to overcome hardware nonidealities in analog-to-information converters,” in Proc. 
Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 3574–3578.

[52] D. Cohen and Y. C. Eldar, “Sub-Nyquist cyclostationary detection for cognitive 
radio,” IEEE Trans. Signal Process., vol. 65, no. 11, pp. 3004–3019, 2017.

[53] S. Ling and T. Strohmer, “Self-calibration and biconvex compressive sensing,” 
Inverse Problems, vol. 31, no. 11, 2015. doi: 10.1088/0266-5611/31/11/115002.

� SP


