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Abstract—Passive Radio Frequency Identification (RFID) tags have been widely applied in many applications, such as logistics,
retailing, and warehousing. In many situations, the order of objects is more important than their absolute locations. However,
state-of-art ordering methods need a continuing movement of tags and readers, which limit the application domain and scalability. In
this paper, we propose a 2-dimension ordering approach for passive tags that requires no device movement. Instead, our method
utilizes signal changes caused by arbitrary movement of human beings around tags, who carry no device for horizontal dimension
ordering. Hence our method is called Human Movement based Ordering (HMO). The basic idea of HMO is that when people pass
between reader antenna and tags, the received signal strength will change. By observing the time-series RSS changes of tags, HMO
can obtain the order of tags along with a specific horizontal direction. For vertical dimension, we employ a linear programming method
that is tolerant of tiny errors in practice. We implement HMO with commodity off-the-shelf RFID devices. The experimental results show
that HMO can achieve up to 88.71% and 90.86% average accuracies in the signal- and multi-person cases, respectively.

Index Terms—RFID, relative localization
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1 INTRODUCTION

PASSIVE Radio Frequency Identification (RFID) tags have
been widely applied in many applications [1][2], such

as logistics, retailing, and warehousing. Besides identifica-
tion, object locations have become increasingly important in
those applications. Hence a number of solutions have been
proposed to localize passive tags [3][4][5][6]. However, most
of them require expensive devices and infrastructure (i.e.,
multiple antennas [6] or synthetic aperture radar(SAR) [5]),
or continuous tag movement [3]. These constraints limit the
applications of tag localization.

Very recently, researchers have identified the importance
of tag ordering or relative localization of RFID tags [7][8][9]
1. Instead of reporting the physical locations of each tag
(called absolute localization), tag ordering or relative local-
ization tells the relative locations of all tags. For example, in
a one-dimensional space such as a moving conveyor belt, for
any two tags a and b, relative localization must tell whether
a is ahead of b or in reverse. In a two-dimensional space such
as a shelf, relative localization must tell the relative location
of an arbitrary pair of tags a and b, such as “a is below
b vertically and to the left of b horizontally”. Compared
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1. In previous work [7][8][9], researchers define relative localization
as tag ordering in a direction. Hence we follow this definition and use
tag ordering and relative localization interchangeably in the paper.

to absolute localization, relative localization is simple and
significantly saves the infrastructure cost, when absolute
locations are not necessary in the application. We identify
the following user cases for relative localization.
• In a library, correct orders of the books or archival

brochures are essential for readers to find their tar-
gets using the library call numbers. Managers can
use relative localization to ensure that the books are
placed in the right order.

• A large number of boxes (or baggages) are placed in
an order to be loaded to a truck (or cargo aircraft).
The truck will unload the boxes to multiple destina-
tions hence we need ensure that the boxes that are
unloaded earlier should be placed closer to the gate.
In this application the absolute locations of the boxes
are not important but the orders should be identified
and checked.

• In a retail store, the manager needs to ensure that
items in a shelf is correctly placed and consistent to
the labels. As long as the manager knows the rela-
tive locations of the items are correct and items are
tightly placed, s/he can conclude that the placement
is good. It is because the shelf and items all have
fixed size. If the orders are correct, miss-placement
can hardly happen.

However, prior relative localization approaches still have
two rigid requirements (or limitations) similar to absolute
localization solutions: 1) the continuous movement of the
reader or tags, and 2) avoiding the impact of environment
noises (e.g., human movements). For example, OTrack [7] is
designed only for tracking the order of objects on a moving
conveyor belt. STPP [9] recognizes the relative positions
of tags by observing the sudden changes of phase values
from different tags when the reader antenna moves along
a known direction. These methods require a continuous
relative movement of the reader or tags, which may be very
time-consuming and labor-intensive. In addition, if there are
people moving nearby or between the reader and tags, these
movements can also incur sharp changes on the received
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Fig. 1. Overview of HMO

data. As a result, the recognized relative locations are error-
prone and environment-dependent.

Unfortunately, these two requirements are hardly to
satisfy in practice. Except for some specific cargo systems
that are with moving conveyor belts, objects as well as their
tags always keep static in most time, such as the books
or other items tightly placed in the shelves. Under these
circumstances, moving either the reader or tags is imprac-
tical, considering the dedicated space for accommodating
the moving devices or infrastructures. Holding portal RFID
readers to scan all tags may avoid the interference caused
by moving objects. But this solution should be manually
performed and hence increases the infrastructure and labor
cost. In addition, it cannot provide real-time localization.

In this paper, we propose a Human Movement based
Relative Localization system, namely HMO, using passive
RFID to achieve accurate relative localization. HMO lever-
ages the arbitrary movement of human beings in the region,
rather than devices, to explore the spatial information about
the tags. With the help of human movement, HMO can
acquire two-dimensional relative locations of passive tags
on a shelf or rack as shown in Fig. 1. Nevertheless, we
should address the following challenges in the design and
implementation of a practical HMO system.

• Arbitrary human movement. Human movement in
the region is uncontrollable. It introduces non-trivial
uncertainty and increases the difficulty in analyzing
signal changes of tags.

• Multiple-person impact. In real-world applications,
it is quite common that multiple persons walk within
the area of interests. When they move simultane-
ously, the line-of-sight propagation paths from the
reader to several tags may be blocked, causing dis-
turbance to the received signal. This disturbance
might incur errors when using the signals for rela-
tive localization. Mitigating this impact, however, is
challenging in existing RFID technology.

• Untidy object position. In practice, some objects are
roughly vertical, but not aligned strictly on shelves,
like the example shown in the black rectangle in Fig.
1. Our relative localization system should be resilient
to such misalignments.

• Multipath effects. In indoor environments, multi-
path effects always play a considerable role in the
wireless communication. It may change the profile
of received signals, which introduce unpredictable
errors in signal processing.

• Irregularity of moving objects. As aforementioned,
HMO utilizes the mobility of arbitrary objects. How-
ever, those objects may not be regular in shape. For

example, the obstacle ability of person’s body and
separate legs may not be the same.

The contribution of HMO is summarized as follows.

• We design HMO, a light-weight relative localization
system to extract the two-dimensional sequences of
a tag array based on the RSS values and phases
of backscatter signals. Different from prior work,
HMO utilizes human movements, instead of any de-
vice movement, to retrieve the horizontal-dimension
ordering of tags. In addition, we propose a linear
programming method, which is tolerant to practical
noises, to find out the vertical-dimension order. The
experiments show that our system provides more
flexibility and scalability to modern inventory and
logistics applications.

• HMO is resilient to the multiple-person movements.
This merit enables HMO to operate and scale well in
real deployments.

• HMO is also resilient to multipath effects and irreg-
ularity of moving objects, which makes HMO more
practical in indoor environments.

• We implement a prototype of HMO using commod-
ity off-the-shelf (COTS) devices and conduct exten-
sive experiments to evaluate its performance. The
results demonstrate that HMO is an efficient and
accurate system for tag relative localization with
static devices.

The rest of paper is organized as follows. We review
related work in Section 2. The problem specification of this
paper is presented in Section 3. In Section 4 and Section 6,
we introduce our system design and analysis. The experi-
ments and evaluation is illustrated in Section 7. Finally, we
conclude this paper in Section 9.

2 RELATED WORK

Using RFID for Localization is an attractive research direc-
tion. Prior work falls into two categories: absolute localiza-
tion and relative localization. We list and compare some of
related work in Tab. 1.

Absolute localization: Researchers found that the in-
formation contained in the RF signal can be leveraged to
infer the locations of RFID tags. According to the signal
information the authors used, we divide absolute localiza-
tion methods into three classes, namely fingerprint-based,
phase-based and signal-strength-based. Among fingerprint-
based localization methods, LANDMARC [4] is one of the
pioneering work for RFID tags. It utilizes the RSSI similarity
between the target tag and reference tags for localization.
However, fingerprint based method have its drawbacks.
To setup the fingerprints for all possible locations, finger-
print based approaches [15][16]usually rely on densely pre-
deploying tags in the area of interests and pre-collecting
their RF signals. Meanwhile, there is a growing interest in
using phase differences [10][17][18][19] [20][6][3] or Angel of
Arrival (AOA) [21][22] [20][23][21] to estimate the absolute
locations of tags. Liu et al. [6] utilize the phase differences
received at different antennas to localize tags which are on
the same horizontal level with those antennas. Their method
has been widely adopted by many following solutions.
Among these work, RF-IDraw can extract the trajectory
of the target tag bonded on a finger [10]. Yang and et al.



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2890520, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , DECEMBER 2017 3

TABLE 1
Some recent RFID localization methods (Some methods may include trajectory tracking)

Localization
category Method Hardware requirements Restrictions Combat

multipath
PinIt [5] SIGCOMM’13 SDR mobile antenna, anchor tags X

RF-IDraw [10] SIGCOMM’14 2 readers, 8 antennas limited space 7
Absolute Tagoram [3] MobiCom’14 2 antennas N/A 7

BackPos [6] Infocom’14 4 antennas 2D 7
RFly [11] SIGCOMM’17 Drones N/A X
RFind [12] MobiCom’17 Newly-built and expensive reader N/A X
BNB [13] MobiCom’16 Entirely newly-built devices N/A X

OTrack [7] INFOCOM’13 Conveyor Moving objects/antenna, 1D 7
Relative STPP [9] NSDI’15 1 antenna Moving objects/antenna 7

MobiTagbot [14] MobiSys’16 Robot Mobile antennas, robot, training X
HMO (Our work) 2 antennas few reference tags X

propose a real-time tag tracking system called Tagoram [3],
which implements hologram-based method on tag tracking
and localization. Tagoram has very high precision (cm- and
mm- level). Recently, Ma and et al. propose a new localiza-
tion system called RFly [11], which can scan the tags in a
larger range with a drone. It is also common to utilize AoA
information for localization [24][25][26][20][21][22]. Besides
aforementioned works, there is also some work rely on
the received signal [27][28][29]. For example, Wang et al.
propose a method to find out the position of the target tag
by comparing the received signal profile with adjacent ref-
erence tags [5]. This method can cope with both line-of-sight
and none-line-of-sight cases. In addition, RFind [12] utilizes
ultra-wideband RF signals to quary the tag and measure its
flight time. It achieves centimeter-scale localization without
reference tags. In particular, some researchers employ ad-
vanced electromagnetism and communication techniques,
such as the synthetic aperture radar [30] [5] and multiple
antennas [3][23], to achieve accurate localization. The basic
idea of HMO to find out the inner relationship among the
measurement of physical information from multiple chan-
nels of the reader and then infer the actual value of the clean
phase/RSS. Recent year, multi-channel based signal mea-
surement has been widely applied in RFID applications[14].
This method can estimate the dynamic vectors introduced
by the movement of hands.

Relative localization: Relative localization is increas-
ingly important for emerging applications of RFID systems.
The methods proposed in [7] and [9] are two prominent
ones. OTrack [7] leverages a phenomenon that when a tag
is close to the reader, the reader can experience higher
response reception ratio from the tag. The work proposed
in [9] utilizes the spatial-temporal phase profiling to localize
objects in two-dimensional space with a moving reader. By
analyzing the phase profiles of tags, the system can obtain
the spatial order of tags. The major limit of existing RFID
based relative localization is the requirement of continuing
movement of readers or tags to get necessary signal changes.
MobiTagbot [14] is a recent method that can determine the
order of a set of tags. The authors propose a hologram-
based method and compare the phase profiles between the
tranining and testing data. However, MobiTagbot needs
extra hardware, i.e., a moving robot, as well as a good deal
of training data.

Different from previous work, our approach (HMO)
makes use of signal changes caused by the movement of
human beings who carry no device, which significantly en-

larges the application domain and cost-efficiency of relative
localization.

Beside localization, RFID system can also be employed
in human-computer interaction and security scenarios. Most
human-computer interaction work rely on detecting the sig-
nal changes that interferenced by the movement of people
or a part of their body. Researchers have studied the rela-
tionship between the received phase or signal strength pro-
file and the human activity [31][32][33][34][35][36][37][34].
Among them, Tadar [31] introduces a device-free method for
tracking moving objects through a wall. Shopminer [34] and
CBID [35] monitors the movement of tagged commodities
and infer the customer behavior. RFIPad [38] is a human
hand gesture detection system to recognize basic touch-
screen operations and English letters. Beside RFID, many
wireless techniques are used to improve the user experience
[39][40][41], such as Wi-Fi [42], Bluetooth, LoRa etc..

3 PROBLEM SPECIFICATION

In this section, we specify the problem the paper focuses on.
We assume our system is aiming to determine the rela-

tive locations of tags that are deployed in a library, ware-
house, or supermarket. Each object is pasted by a passive
RFID tag. These tags have different IDs (denoted as EPCs
according to the EPC C1G2 Global Protocol [43]). All objects
of interests are placed in sequence on layered shelves. The
tags in a shelf roughly form a grid. In each row of this grid,
i.e., each layer of the shelf, the tags are horizontal. But in
each column of the grid, the tags are roughly vertical to
each other, but not strictly aligned. An RFID reader is used
for interrogating the tags. Our goal is to identify the vertical
and horizontal orders of these tags in the two-dimensional
plane on the shelf.

To achieve this goal, we model the tag group as a two-
dimensional array. For simplicity, we only focus on the
foremost tags in the shelf, as shown in Fig. 1. We setup
a three-dimensional coordinate system, with its origin at
the center of two reader antennas. We focus on the two-
dimensional plane that contains the tag array. In this plane,
the tags with a same y coordinate or z coordinate are in
a column or row, respectively. We assume there is one or
more persons walking in front of the shelf arbitrary, like
customers in a shopping mall or employees. By scanning
the tags attached to the objects, we can obtain their IDs
and signal information, including the Doppler shift, phase,
Received Signal Strength (RSS), etc. To obtain the order that
the tags are along the Y dimension, we try to investigate
the relationship between human movement and the RF
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changes of tags. We utilize the hyperbolic positioning to sort
tags along Z dimension. We will show above techniques in
Section. 4. Note that this model is no simpler than existing
relative localization methods [7][9].

4 SYSTEM DESIGN

In this section, we elaborate the design of HMO in details.
As aforementioned in Section 3, the tags attached to the
objects on the shelf actually form a matrix. The matrix is
on a two-dimensional space, as illustrated in Fig.1. Relative
localization of the tags in this two-dimensional space can be
addressed by identifying their order along the Y dimension
and Z dimension, respectively.

4.1 System overview
Fig. 2 outlines the work flow of HMO. First, we determine
whether there is one or more person moving inside the
area of interests. If YES, we detect the tags’ order along
the Y dimension by analyzing the RSS changes caused by
the moving person on these tags. In particular, we propose
a new metric, namely ‘influenced region’, to describe such
changes. Utilizing this metric, we can cluster the tags with
a roughly similar z coordinate, i.e., the tags are placed in a
same column in the matrix. Note that if there is no person
moving in the area, we can collect the phase information
for localization at a later time. Second, we determine the
vertical order of tags in the clustered columns. For each
column, we detect the order of tags along the Z dimension.
With some essential information (e.g., the vertical distance
between two adjacent layers), we can identify the relative
locations among the tags in a same column. To do so,
we utilize a hyperbolic method by measuring unperturbed
phase differences received at two antennas. This step uses
two kinds of information, the signal phase information of
tags when there is no moving person and the clustering
results along the Y dimension. For every time that a person
moves in front of the shelf, HMO will report the tag’s two-
dimensional orders.

4.2 Human movement detection
Before tag ordering, we first determine whether the appli-
cation area is static. We define the ‘static’ environment as
there are no objects existing between the reader and tags.
Our basic idea is to measure the extent of data variability
of the tags in an application area. It is obvious that the
tags’ data collected in static environments is more stable
than that collected from dynamic environments. However,
it is not an easy task to decide whether the environment is
static. The first challenge is the tag diversity. Due to the
manufacture imperfection, different tags may have some
tiny differences in the initial phases and signal strength,
even if they are in a static environment. As a result, it is
hard to propose a universal and ubiquitous standard to
evaluate all the tags. Another challenge is that the position
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Fig. 3. The CV results in four cases.

of a tag may also change due to human interferences. For
example, a customer misplaces a good on the wrong shelf.
In this case, the data of the misplaced tag will not identical
to prior ones. To deal with the aforementioned challenges,
we employ a metric called coefficient of variation (CV), which
can be expressed as follows:

CV = σ/µ (1)

where σ is the standard deviation and µ is the mean. CV
is good for measure the extent of variability in relation to
the mean of the population. To exhibit the effectiveness
of CV, we conduct an experiment with a 3 × 6 tag array.
Our experiment includes four different cases, namely static,
misplacement, people stand-still and people movement. The
first two cases are conducted when there is no people
stay inside the application area. The only difference is we
relocate one tag to another position in the ‘misplacement’
case. And the last two cases simulate the different activities
of a human being in practice. The results of the four cases
can be found in Fig. 3. In Fig. 3, each cell represents the CV
value of the tag at according position. We find that in static
and misplacement cases, the mean CV values are less than
0.0037, while for people stand-still and movement cases, the
mean CV value (0.0317 and 0.1077) is about 10 times to
30 times larger than that in static environments. So CV is
appropriate for determining whether the application envi-
ronment is static or not. We use an experimental threshold
which equals to 0.01. The environment that the mean CV is
less than the threshold will be considered as ‘static’.

4.3 Order detection along the Y dimension
We try to first determine the order of tags along the Y
dimension. We resolve the problem of detecting the order
along the Y dimension into two problems, namely ‘which
tags are in a same column’ and ‘which column these tags belong
to’. The solution for the former one will classify all tags into
several groups. Solving the latter problem then determin-
istically maps each of these groups to a column in the tag
array.

1) Which tags are (roughly) in a same column: We aim to
leverage the RSS changes influenced by human movement
in this problem. We define the signal segment under this
influence as an influenced region. In order to thoroughly
understand the influenced RSS, we conduct experiments to
investigate the appearance of influenced regions in the RSS
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curve. We ask a volunteer to walk from one side to the other
side of the shelf. The layout of the tag array on this shelf
is a 5 × 5 tag grid. Each cell in the grid is 10 cm × 20 cm
(L × H). We depict the results of 5 tags in Fig. 4. We find
that such a region is like a bathtub. At the start point of
this region, there is a sudden decrease in RSS. The influence
may take its effect for a short time period, and then end up
with a sudden increase in the RSS curve. Intuitively, we have
several parameters about the influenced region potentially
used for the clustering, including the start/end time point,
the lowest RSS point and the duration of the influenced
region. Fig. 4(a) shows the RSSes of those tags when they
are in a same column and Fig. 4(b) shows their RSSes when
they are placed in different columns. From the result, we
find that all the parameters mentioned above are distributed
arbitrarily no matter what disposition of these tags is. So it
is infeasible to utilize these aforementioned parameters for
clustering the tags. Therefore, we have to pursue another
methodology.

We propose a new metric, called Overlapped Area of
Influenced Region (OAIR). It is also derived from our ob-
servation on a comprehensible phenomenon. We find that if
a group of tags are roughly in a same column, they almost
experience the influence from the moving person at the same
time, considering the person’s moving direction is along the
Y dimension. On the contrary, if the tags are in different
columns, their influenced regions start at different time
points and experience different time durations. Meanwhile,
the influenced regions are very likely overlapped for the
tags with close distances. In particular, the tags in different
columns, though their start (or end) time points may be
very close to each other, their overlapped regions will be
shrunken if increasing the interval distance between their
columns. This observation inspires us to use the Overlapped
Area of Influenced Region (OAIR) to represent the similarity
between two tags’ influenced regions, and hence to judge
whether they are in a same column. For a fair comparison,
we use the absolute values of signals and normalize them
to [0, 1]. Specifically, we calculate the proportion of the
overlapped area to the union of the two tags’ influenced
regions as the similarity, i.e.,

similarity =
Overlapped areas

Union of influenced regions
(2)

Clearly, this similarity is suitable for comparing the over-
lapped influenced regions between two tags. We thereby
define the OAIR of a pair of tags as their similarity.

To demonstrate the feasibility of OAIR, we select two
tags from the array and observe their influenced regions. As
shown in Fig. 5, f1 (the black dash line) is the boundary
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Fig. 5. Similarity of a pair of tags in a same and different columns

of union influenced regions of tag 1 and 2, while f2 (the
gray dotted line) is the boundary of overlapped areas. The
start and end points of the influenced region are determined
by a simple but effective method. We utilize a moving
time window and calculate the signal’s variance inside it.
Intuitively, the signals inside the influenced region have
a much larger variance. The start and end points can be
chosen as the time points at which the signal’s variance
has a sudden increase or decrease. Fig. 5(a) and 5(b) show
the RSS overlapped region of tag pair in the same and
different columns, respectivley. The OAIR of tags in the
same column is much higher than the value of tags in the
different columns. It is worth to note that though the start
and end time points of the two tags are very close to each
other, OAIR can still distinguish them in the latter case. In
addition, OAIR utilizes the similarity between influenced
regions, which is resilient to the vertical misalignments of
the objects in different layers on the shelf. In the following,
we define the tolerant distance, denoted as dt, to quantify the
distance between misaligned tags in different layers.

To cluster all tags in the array, we calculate the OAIR of
each pair of tags and put the result in a matrix An×n, where
n equals to the total number of tags in the array. We still
use the 5 × 5 tag array for illustration. For simplicity, we
only choose 6 tags, whose layout is actually a sub-matrix
with 3 rows and 2 columns. Specifically, tag 1, 3, 5 are in
the first column and tag 2, 4, 6 are in the second column.
The volunteer walks through the first column and second
column sequentially. Tab. 2 demonstrates the OAIR results
of the six selected tags in their A6×6 array. For each tag in the
matrix, our goal is to determine the top M tags that have the
highest OAIR, which are most likely in a same column with
this tag. In practice, the number of objects in one column
can be known in advance. For instance, it is very common
that this number is usually equal to the number of layers in
the shelf. So we can set M as the number of layers in the
shelf.

After choosing the top M tags, we obtain a new n × M
table Tn×M for all n tags. Each element (i, t) in the table
Tn×M represents the t-th tag in the tag i’s top M list. For
example, the element (4, 2) in Fig. 6 is 6, which indicates
that tag 6 has the second highest similarity with tag 4 in its
top M list. Then we transfer table T into a digraph, in which
each edge is correlated an element in T . For example, Fig. 6
can be mapped to a digraph, as plotted in Fig. 7.

From this digraph, we have two observations: 1) any
pair of tags in a same column have a pair of edges with
each other; 2) two tags in different columns only have a
single edge or no edge at all. From the digraph Fig. 7, if
we remove all single edges among the vertices, we can get
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TABLE 2
OAIR results between all tag pairs

No.
No. 1 2 3 4 5 6

1 1 0.9706 0.9888 0.8759 0.9951 0.9380
2 0.9706 1 0.9079 0.9553 0.9684 0.9918
3 0.9888 0.9079 1 0.7972 0.9875 0.9041
4 0.8759 0.9553 0.7972 1 0.8667 0.9909
5 0.9951 0.9684 0.9875 0.8667 1 0.9506
6 0.9380 0.9918 0.9041 0.9909 0.9506 1

index
top 1 2 3

1 1 5 3
2 2 6 1
3 3 1 5
4 4 6 2
5 5 1 3
6 6 2 4

Fig. 6. Table T

5 1

3

6

2
4

Fig. 7. Digraph for reflecting the
tag’s top M list

several independent subgraphs. One is formed by tag 1, 3,
and 5, while another contains tag 2, 4, and 6.

To use the above idea, we first transform table T into an
adjacent matrix B. The value of component bij in matrix B
is defined as follows:

bij =

{
1 j ∈ Φi

0 j /∈ Φi
Φi = {∀j|∃ < i, j >}, (3)

where Φi is the set of all vertices in the digraph that have
an direct edge < i, j > between the pair of vertices, i and
j. In other words, set Φi contains the top M candidate tags
that are in a same column with i. For example, the adjacent
matrix B generated from the digraph in Fig. 7 is shown in
Eq.4.

B =


1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1

R =


3 1 3 0 3 0
1 3 1 2 1 2
3 1 3 0 3 0
0 2 0 3 0 3
3 1 3 0 3 0
0 2 0 3 0 3


(4)

Based on matrix B, we remove the single edges and
identify the column for each tag. We calculate R = B ×BT .
Here BT is the transpose of B. Obviously, only when the
arrows < i, j > and < j, i > both exist in the digraph, i.e.,
the bij in matrix B and b′ij in matrix BT are all equal to 1,
the product will be equal to 1. Otherwise, the product will
be 0. In this way, we remove the single edge in the digraph.
The matrix R corresponding to the graph in Fig. 7 is shown
in Eq. 4.

Each component rpq in matrix R reflects the number of
common members in the Φp and Φq , i.e., the number of
common candidate tags in both the top M lists of tags p
and q. That is:

rpq = |Φp

⋂
Φq| (5)

Here we use the value of rpq as a weight for determining
whether tags p and q are in a same column. Specifically,
the larger the weight is, the higher probability that the tags
p and q are in a same column. In practice, for any pair of
tags p and q, the maximum number of their rpq is limited to
M . Therefore, we multiple matrix R by 1/M and compare

Algorithm 1 Determining the order of columns
Initialization:

The influenced column sequence set S = S1 → S2... →
St... → ST , (T ≥ N) (T is the number of influenced
columns, N is the number of columns);
The leftmost and rightmost reference tags refl and refr .

Output:
The columns’ order set from left to right is O =
O1, O2, ...ON ;

1: p = 1, q = 2;
2: while q ≤ T do
3: weight(Sp, Sq) + +, weight(Sq, Sp) + +;
4: p+ +, q + +;
5: end while
6: for each t ≤ T do
7: F1(St) = {S1

t |weight(St, S
1
t ) ≥ weight(St, S)};

8: F2(St) = {S2
t |weight(St, S

2
t ) ≥ weight(St, (S−S1

t ))};
9: end for

10: for each n ≤ N do
11: if n=1 then
12: O1 = {St|St 3 refl}
13: O2=F1(O1).
14: end if
15: if n=N then
16: ON = {St|St 3 refr}
17: ON−1=F1(ON ).
18: end if
19: if 3 ≤ n < N − 2 then
20: if F1(On−1) = On−2 then
21: On = F2(On−1)
22: else
23: On = F1(On−1)
24: end if
25: end if
26: end for
27: return O;

the results with a threshold thre. This threshold can be
empirically determined, as described in Section 7. In this
way, we cluster the tags into different groups, and in each
group the tags are in a same column.

2) To which column these tags belong: After clustering
the tags, we need to determine the relative order of these
clusters, i.e., to which column these clusters belong. A
straightforward way is to place a number of reference tags
in a row on the shelves. The position of each reference
tag is known in advance for localizing any tags nearby.
However, such a scheme is impractical, since for any tag
in a given cluster the system has to search all reference tags
to determine which one is nearest the tag.

Instead of using this treatment, we paste two reference
tags aligned to the rightmost and leftmost columns of a
shelve. It is obvious that in the shelf each column is adjacent
to no more than two columns. Note that the rightmost and
leftmost columns are only adjacent to one column. Accord-
ing to this observation, we propose Algorithm 1. In this
algorithm, we first assign a serial number St to each column
according to the time sequence that it is influenced. For each
column St, we find out two columns S1

t and S2
t , which are

with the top two weights in weight function weight(St, S).
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Obviously, S1
t and S2

t are the two adjacent columns of St.
After identifying these two columns, the next task is to
determine their positions relative to St, i.e., on the left-
hand or right-hand side of column St. We first find out the
rightmost and leftmost columns O1 and ON by comparing
the influenced area of all columns with reference tags refl
and refr . Intuitively, O1 and ON are only adjacent to one
column i.e., O2 = F1(O1) and ON−1 = F1(ON ). Combining
the relative positions between each column and its adjacent
columns, we can determine the relative sequence one by one
either from left to right or vice versa. For example, since we
have known the index of O1, we can determine O2. Except
O1, O3 has the maximum weight in weight(O2, S) among
all other columns, i.e., O3=F1(O2) or F1(O2). In this way,
we can determine the relative position of all the columns
and obtain. the columns’ order O. Note that the human
movement direction does not impact this algorithm. No
matter which trajectory the person chooses, we can extract
the ordering from the received signals as well.

4.4 Detect tags order along Z dimension
Compare the Y dimension’s ordering, vertically determin-
ing the relative locations for tags in a same column is even
more difficult.

Due to the multi-path effect, tags with different heights
might not show distinct differences on their received signal
strength(RSS). In addition, the hardware diversity among
tags is non-trivial. As a result, the RSSes of a given tag
cannot be deterministically mapped to the distance from the
tag to the reader.

We also try some prior solutions, namely Phase Change
Rate (PCR) and Received Response Rate (RRR), which have
been employed by existing tag ordering work [9] and [7].
However, neither of the method can accurately extract the
tags’ order along vertical dimension. Therefore, we have
to pursue a method that does not rely on aforementioned
characteristics for relative localization. Our basic idea is
constructing a number of spatial hyperbolas by measuring
the phase differences received at two near antennas. There
should be some intersections of those hyperbolas and the
two-dimensional plane that contains the tag array. These
interactions are potential locations of the tags. In this way,
we are able to determine the tags’ order by identifying the
most possible intersections.

We illustrate the above idea in Fig. 8. We employ two
reader antennas. One is on the ground. Another is deployed
vertically above it. Both of them face towards the tag array.
We establish a 3D coordinate system, in which the origin is
at the center of demarcation line of two antennas. The x-axis
is perpendicular to the shelves and z-axis is vertical to the
ground, as shown in Fig. 8. Note that the y-axis is paralleled
to the shelf, which is not shown in Fig. 8. We useA1,A2, and
T to denote the centers of antenna 1, 2 and tag, respectively.
The distance between A1 and A2 is denoted as d. We adopt
two mainstream directive antennas whose size is 25 cm× 25
cm. So d = 25 cm. The distance between A1 (or A2) and T
is shown in Eq. 6.

d(A1, T ) =
1
2 · (2k1π + θ1 + θti)

2π
· λ

d(A2, T ) =
1
2 · (2k2π + θ2 + θti)

2π
· λ,

(6)

A1

A2

T

x

z

D

h

d

Fig. 8. System deployment
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Fig. 9. d(A1, T )− d(A2, T )

where θ1 and θ2 are the received phase values of Tagi at an-
tenna 1 and 2, respectively. θti is the initial rotation of Tagi.
Note that there is a “round-trip” for the RF signals received
at the antenna. Hence we multiply the length path by 1

2 in
Eq. 6. Since the phase is periodic, k1 and k2 are two nonneg-
ative integers whose values can be 0, 1, 2, ...,K, (K →∞).

Locating a given tag requires to determine the value
of k1 and k2, which implies that we should alleviate the
influence of individual differences of tags. We then subtract
d(A2, T ) from d(A1, T ) in Eq.6 and find that the initial phase
θti can be eliminated. According to the triangle inequality,
i.e., the difference (absolute value) between any two sides of
a triangle should be less than the length of the third edge.
Thus, the absolute value of the difference between d(A1, T )
and d(A2, T ) should be less than the distance between A1

and A2. Hence we have:

| d(A1, T )− d(A2, T ) | < d(A1, A2)

λ

4π
| 2kπ +4θ | < d(A1, A2),

(7)

where k = k1−k2 and4θ = θ1−θ2. Note that each possible
k corresponds to a hyperbola, i.e., a possible solution of
tag’s position T . In practice, there should be only one k
corresponding to the real location of tag T . However, k
has 5 possible candidates according to Eq. 7, including
k = 0,±1,±2 (here the detail is omitted because of the space
limit). We need to identify this feasible k.

Fortunately, in practice the size of shelves facilitates
identifying this k. We assume that the distance between
the antennas and shelf is D and the height of shelf is
h. These two parameters are usually constrained in real
implementations. For example, the shelf used in shopping
malls or libraries are usually designed for people to take
items conveniently. Thus, the shelf height would not exceed
the average human height too much. Similarly, the interval
distance between two adjacent shelves should be sufficiently
long for enabling multiple costumers’ passing. Under this
circumstance, the value ranges of D and h can be deter-
mined via such prior-knowledge, which shrinks the value
range of k.

To illustrate how HMO discards the infeasible ks, we
take an example of D = 1.8m and h = 2m, which are two
general settings in real-world. For simplicity, we assume tag
T ’s y = 0. For the tags in the column, their coordinates range
from (1.8,0,-0.25) to (1.8,0,1.75). Therefore, we are aiming to
determine the z coordinate of tag T within this range. We
can obtain the value of d(A1, T ) − d(A2, T ) according to
the Pythagorean theorem. Fig. 9 exhibits the value range of
d(A1, T ) − d(A2, T ) for D = 1.2m ∼ 2.4m. We find that
the value of d(A1, T ) − d(A2, T ) is inversely proportion to
the height of tag T , i.e., the vertical distance of the tag. In
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Fig. 10. Possible solutions of k

addition, the larger the D is, the smaller the possible range
of d(A1, T ) − d(A2, T ) is. When the tag is at the center of
the two antenna (i.e., z = 0.25m), the difference is 0. We
represent the minimum and maximum values of d(A1, T )−
d(A2, T ) as min and max, respectively. Hence we have:

4π

λ
·min ≤ (2kπ +
θ) ≤ 4π

λ
·max, (8)

In above example, the range of d(A1, T ) − d(A2, T ) is
[−0.1742, 0.0343]. To obtain the possible value of k, we ex-
hibit the possible range of 
θ and its corresponding values
of k in Fig. 10. Because both θ1 and θ2 are received phases
of tag T , their difference 
θ is in the range of (−2π, 2π). We
find that for some observations of 
θ, only one k conforms
all the conditions above. We mark it with a circle 1 in Fig. 10.
And we mark the phase difference range that holds two
possible values of k with circle 2. As shown in Fig. 10, when
the value of Δθ is within (−1.57π,−0.17π)

⋃
(0.43π, 1.83π),

the number of k is only 1. On the other hand, when the
value of Δθ is out of this range, the number of possible k
increases to 2. In this way, we can shrink the number of k to
2. Given each k, we have a corresponding height of tag T .

Since there may be two possible intersections, it is still
unclear what order the tags are in a same column, because
each possible k may introduce a solution of the order. Next,
we apply Linear Programming to ultimately find out the
unique solution fork. Adopting LP in HMO is based on two
constrains: a) some tags have only one possible solution. We
named these tags as anchor tags. Other tags that are more
than one possible solutions are defined as undetermined tags.
Obviously, each anchor tag has a deterministic z coordinate;
b) The vertical distance between two adjacent layers in the
shelf is known in advance. Suppose this distance is �. In
this example, we assume that � is identical in the shelf,
i.e., zupper − zlower = l (where zupper and zlower are the
z ordinates of two adjacent layers). Note that in practice
l is adjustable. Combined with these two constrains, we
can determine the relative order for tags by minimizing the
residual errors as follows:

min ˆh(i)
{
∑

‖ ˆh(i)−mi · � ‖
2
+

∑
‖ h(j)−mj · � ‖2}

(9)
where h(j) represents the z ordinate of anchor tag j and
h(i) represents the z ordinate of undetermined tag i. Here
mi and mj are the relative order of i and j, respectively.
For each undetermined tag i, there is an intersection of
hyperbola and shelves given a possible value of k. However,
the height of this intersection ˆh(i) may yield different tags’
order mi. The intuition behind Eq. 9 is that we pursue all

0.4 0.2 0 0.20

0.5

1

1.5

2

y(m)

(m)

Fig. 11. 2D relative localization for the tag array

possible ks for all undetermined tags and find out the one
with the minimum residual error, which is correlated to the
correct order.

For example, if an undetermined tag has two possible
intersections, i.e., ˆh(i) = 0.1 and ˆh(i) = 1.1. Given that the
heights of the anchor tags are h(j1) = 0.6 and h(j2) = 0.3,
there are two estimated results for the order mi of the
undetermined tag. Since the ˆh(i) = 0.1, mi = 1, indicating
that the tag is on the lowest layer. While for ˆh(i) = 1.1,
mi = 3, suggesting that the tag is on the highest layer.
Accordingly, the optional orders of the anchor tags mj1 and
mj2 are 2, 3 and 1, 2. If � = 0.3m, the residual errors are
[(0.1 − 0.3)2] + [(0.3 − 0.6)2 + (0.6 − 0.9)2] = 0.22 when
ˆh(i) = 0.1 and [(1.1− 0.9)2] + [(0.3− 0.3)2 + (0.6− 0.6)2] =

0.04 when ˆh(i) = 1.1. Obviously, the latter is the correct
order.

The Linear Programming method can tolerant some
errors in practice. For example, the tags in two adjacent
layers are not aligned, or their distance is not equal to the
layer height l, etc.. That is because the errors introduced by
the estimation of l (maybe several centimeters) are much
less than the distance between two tags in adjacent layers
(maybe several decimeters). In other words, the tags of right
order still have the minimum residual error in Eq. 9. So
Linear Programming is robust in practice.

The effectiveness of above solution for the vertical rela-
tive localization is demonstrated in Fig. 11. In this figure, the
black squares are the actual positions of tags and the blue
circles are the estimated results using our hyperbola based
method. We can see that our method is reliable in retrieving
the tags’ order along the Z dimension.

4.5 Put all together
In this section, we briefly summarize our solution when
it comes to 1D and 2D, respectively. For 1D ordering, we
can either employ Y-dimension ordering or Z-dimension
ordering according to the application cases. While for 2-
dimensional ordering, we first detect whether the environ-
ment is static or not. If there is somebody moving inside
the area, we analyze the horizontal ordering of tags by
exploring the RSS variations. If the environment is static,
we will update the phase information. However, tags are
in a 3D space in the real world. Due to the non-isotropic
emission characteristic [44] of RFID tags, we also consider
the tags’ orientations in practice. To guarantee that the
reader can obtain the item’s information accurately, we can
paste multiple tags on different sides of the same item. In
this way, no matter which side of item faces to the antenna,
we can successfully order the items.
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Fig. 12. The impacts on received signals introduced by practical factors

5 COPE WITH PRACTICAL INFLUENCE FACTORS

In Section. 4, we specify HMO’s design. However, in
practice, many factors may introduce unpredictable errors.
Among these factors, multipath and human body’s irreg-
ularity may be two crucial ones. In this section, we try to
propose a method to reduce or even eliminate the influence
introduced by these two factors.

In practice, the impact of multipath effect on the re-
ceived signal is not ignorable, and it will induce errors in
OAIR calculation. As shown in Fig. 13(a), with the continu-
ously moving of a person, the received signal exhibits an
amplitude-increasing(or decreasing) fluctuation. To verify
that, we ask a volunteer to walk through a tag and illustrates
the received signal in Fig. 12. Obviously, the signal fluctuates
when the person goes approach and departs the tag. The
fluctuations, which may increase the overlapped area with
adjacent tags’ signals, may eventually increase the false
possibility. Our basic idea to cope with this problem is
simple but effective, i.e., the blockage of any objects on a tag
is always the same for the two antennas. On the contrary, the
multipath effects are not. As shown in Fig. 13(a), as a person
walks approach tag T1 and tag T2, the multipath effects of
T1 and T2 are not consistent for the two antennas A1 and
A2.

Besides multipath effects, the irregular contour of human
body may also affect the signals’ profile, and introduce er-
rors in overlapped area calculation. For example, as shown
in Fig. 13(b), a man blocks tags that on tag T3’s column.
However, due to the walking posture, tag T3 may have a
line-of-sight propagation path between person’s two legs,
which induce a considerable rise inside the influenced area
(marked in blue circle). Fortunately, the swing of two legs
do not affect the propagation path between T3 and antenna
1.

However, we do not know when will these aforemen-
tioned factors happen. And we also have no priori knowl-
edge about which antenna would be a better signal collector
at each time point. We have to find out a general signal
processing method to solve both of these two problems. So
we propose a Weighted-based Signal Combination (WSC)
method and specify it as follows.

In our system design, we has two antennas, namely A1

and A2. That means for each tag in the matrix, we have two
observations. One is collected by antenna 1 and another is
observed by antenna 2. Due to the differences between the
two antennas, such as location, working time, etc., the two
observations would be much the same but not identical.
Our basic idea is that an obstacle is always making a fall
in the received signal strength, while other factors, such as
mutipath effects and irregularity of human body, can hardly
introduce a similar change for both the two antennas. So

A2

A1

T1

T2

(a) Multipath effects are not identi-
cal for the two antennas

A2

A1

T3

(b) The human body irregular-
ity may introduce a considerable
rise on the received signal

Fig. 13. The impacts of practical factors

(a) cope with multipath effects (b) cope with body irregularity

Fig. 14. The performance of WSC

we consider both the two observations and combining them
together to get rid of some undesired data. We first enrich
the two observations by interpolation and make them have
a same length. Then we try to assess the accuracy of the
two observations for each time point. To evaluate the data
quality at time point p, we employ a weight function ρ,
which is determined by the data variance inside a time
window δ, i.e.:

ρpn = 1/var(Sn(p− δ

2
+ 1 : p+

δ

2
)), (10)

where ρpn is the weight for the p-th sample of antenna n.
And Sn is the observation for antenna n. Intuitively, if a
person block a tag, the two weights, namely ρp1 and ρp2, are
both increase obviously. However, if an antenna observes
abnormal signals, its variation is much larger than another
one. Keep this in mind, we combine the two observations
by the following formula:

Sp
c =

Sp
1 · ρp1 + Sp

2 · ρp2
ρp1 + ρp2

, (11)

With aforementioned equation, only if a common changes
for these two observations will be considered in the com-
bined observation Sc. We exhibit the performance of WSC
algorithm in Fig. 14. In Fig. 14(a), the data received at
antenna 2 (drawn by black dashed line) is seriously polluted
by multipath effects and induce many small waves in the
signal. And in Fig. 14(b), the data collected by antenna
1 (marked in blue dotted line) appears an abnormal fall
inside the influenced area. We find that WSC can effectively
cope with the abnormal changes. The combined observation
(plotted in red full line) gets rid of these error-prone sam-
ples and gives a more accurate input for OAIR algorithm.
We will evaluate the performance of WSC algorithm with
experiments in Sec. 7.
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Fig. 15. Signals in the multi-person case

6 SCENARIO OF MULTIPLE MOVING PERSONS

It is very common that multiple persons are moving in
the deployment area of HMO at a same time. Since HMO
does not rely on the human movement to determine the Z
dimension order, we only need to detect the Y dimension
order under the scenario of multi-persons.

Different from the case of single-person, multiple mov-
ing persons may influence multiple columns of tags simul-
taneously, raising the difficulty of relative localization along
the Y dimension. Under this circumstance, the influence
from multiple moving persons is much more arbitrary in
both the spatial and temporal dimensions. In addition, we
have no idea about the real positions of those moving
persons, not to mention their influences to the tags.

Fortunately, our OAIR method can still function well in
the multi-person case. The basic idea of OAIR is that the
tags in a same column will always be influenced at the
same time, no matter how many persons move horizontally.
While the tags in different columns do not follow this prin-
ciple. So we can just compare the signals between each pair
of tags within a same time duration w, which denotes the
length of a time window c (1 ≤ c ≤ C). n other words, the
variable w is the length of window c, i.e., w = ce− cs, where
ce and cs are the end time point and start time point of the
c-th window. If the two tags are in a same column, their
OAIR will always be much higher than those pairs of tags
that are in two different columns. To exam the effectiveness
of OAIR, we observe the RSSes of 3 tags in our tag array
when 2 volunteers walk simultaneously. Tags 1 and 2 are
in a same column while tags 1 and 3 are in two adjacent
columns. The horizontal distance between tags 1 and 3 are
10 cm. We present the variation tendency in Fig. 15. In the
first time window c = 1, the RSS changes of tags 1, 2, 3 are
indistinguishable. However, in the time window c = 2, tag
1 and 3 show significant difference in their RSSes.

To realize above comparison, we try to combine estima-
tion results in several time windows. In each window c, we
redefine the OAIR similarity as follows:

similarity =

∫ ce
cs

f2dx∫ ce
cs

f1dx
, (12)

where f1 and f2 are the union and overlapped area of
the influenced regions of tag pairs, respectively, and both
functions of time. We record the weight matrix Rc with
newly generated OAIRs. At the end of this time period, we
multiply these Rcs successively as following.

R′ =
∏C

c=1 Rc

MC
, (13)

where R′ is a weight matrix by accumulatively combining
multiple estimation results. After such multiplication, the
correct result in Rcs will be amplified and strengthened,
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while the incorrect ones may be suppressed. Note that we
can also utilize Algorithm 1 to infer the order of columns
under the multi-person situation.

We are further motivated to combine multiple estimation
results in the single person case for improving the accuracy.
As aforementioned, every time a person passing the shelves
offers an opportunity for a relative location estimation. To
obtain a more accurate classification result, we try to com-
bine multiple estimations derived from multiple passings of
single-person. We screen out the signal segments that influ-
enced by multiple single-person-passings, and divide these
signal segments into several time windows. The estimated
matrix of the cth time window is denoted as R′

c. Similar to
the multi-person case, we multiply these R′

cs like Eq. 13. We
evaluate the effectiveness of this combination in Section 7.

7 EXPERIMENT AND EVALUATION

7.1 Implementation

Hardware: We implement an HMO prototype, which con-
sists of a COTS UHF RFID reader model Impinj R420,
two directional antennas in model IPJ-A0311, and a set of
passive tags. The tags include five different types: Alien-
964X, Impinj E41B, E41C, H47, and AZ-E53. Note those 5
types of tags are in different sizes and shapes.

System setup: To be consistent with the real implemen-
tation, the horizontal distance between the reader antennas
and the shelves is 1.2 m ∼ 2.4 m. We utilize a tag array that
is with 7 rows and 6 columns, as well as 2 reference tags.
In our experiments, we invite 5 volunteers, varying from 1.6
m to 1.8 m in their height and from 46 kg to 77 kg in their
weight. The average walking speed of these volunteers is
about 1.5 m/s . To account for the hardware diversity, we
mix all types of passive tags together in the tag array. The
height of each layer ranges from 20 cm to 40 cm. While the
distance between two adjacent tags in a same row varies
from 5 cm to 40 cm.

Metrics: We mainly use the accuracy to quantify the
HMO’s performance. The metric Accuracy Ratio is defined
as follows:

Accuracy =
# of tags ordered correctly

# of tags in total
. (14)

We define that a tag is ordered incorrectly in a sequence of
tags if its detected order is not equal to its actual location.
For example, if a tag sequence ’ABCDE’ is wrongly recog-
nized as ’ABCED’, the accuracy will be 60%. We also utilize
False Reject Rate (FRR) and False Accept Rate (FAR) to
further evaluate the accuracy. Note we measure the accuracy
based on only one report. In actual applications, the system
can output the locations for every person walking through
and the accuracy can be improved by considering multiple
times of localization.
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Fig. 18. Window size δ selection

7.2 Parameter Selection

We try to determine two important parameters for HMO
in real-world applications, i.e., the threshold thre of weight
matrix R and time window’s size w.

Threshold thre: As aforementioned in Section. 4, the
threshold thre plays an important role in judging whether
two tags p and q are in a same column. In general, the
lower the threshold thre is, the more efficient the top M
tags will be identified. However, on the other hand, the
lower the thre is, the more inaccurate the system will be.
It is necessary to balance two factors while determining
a proper thre. We utilize FAR and FRR to represent the
performance of these two factors. In Fig. 16, we depict the
Equal Error Rate (EER) of HMO. EER is a common metric to
evaluate the accuracy performance for recognition systems.
If we choose the threshold at the EER point, the sum of FAR
and FRR reaches its minimum, and these two metrics are
optimally balanced. With this EER point, we can properly
determine the threshold. The default thre is set as 0.86 in
our prototype HMO. In practice, thre can be experimentally
adjusted according to users’ demands.

Window size δ in WSC algorithm: As described in Sec.
5, we define a weight function ρ, which is determined by
the signal variance inside a time window δ. To achieve a
good performance, we experimentally choose the value of
δ. Intuitively, the signals’ variance are highly related to the
moving speed of objects. As shwon in Fig. 18, we exhibit
both the false Accept Rate (FAR) and False Reject Rate (FRR)
of y-axis ordering when varying the sample number of δ
from 2 to 60. The results show that when the window is of a
size of about 10 to 20, both the FAR and FRR are extremely
low, namely 3% ∼ 5% and 2.7% ∼ 3.2%, respectively. In our
experiments, we set the window size as 10.

Window size w in multi-person case: As aforemen-
tioned in Section. 6, we perform a matrix multiplication on
the Rcs at the time window c successively. In general, a
proper window size w results in high accuracy. As shown in
Fig. 17, we exhibit the accuracy of HMO with 1 ∼ 3 persons
moving inside the area, respectively. The x axis represents
the window sizew, which varies from 0.5s to 4s. We find that
when w = 2s, The accuracy of HMO is high, i.e., about 90%,
for all these three cases. With this window size, HMO is also
accurate in the single-person case. So we employ w = 2s as
the setting of time window size.

7.3 Evaluation

After determining critical system parameters, we evaluate
the performance of HMO in both the single-person and
multi-persons cases. In addition, we discuss the effect of
combining multiple estimation results.

Our experiment scene is like Fig. 19. We depict the
HMO’s accuracy when performing relative localization
along the Y dimension in Fig. 20. The x axis is the window
index. For the single-person case, we exhibit the accuracy
before and after combining multiple estimation results. And
for the multi-person case, we only focus on the result after
the multiple measurement. We combine the measurement
results in five time windows, and each time window lasts
for 2 seconds, i.e., w=2s. The result shows that combining
multiple measurement results helps HMO to maintain a
high accuracy (about 90.24% ∼ 93.11%). In addition, in the
multi-person case HMO shows a slightly higher accuracy
(about 90.48% ∼ 95.24%) than in the single-person case.

We also show the results that perform relative local-
izations along the Y dimension, Z dimension, and in the
entire two-dimension space in Fig. 21. We find that the
relative localization accuracy along the Y and Z dimen-
sion is 91.24% and 90.48%, respectively. These results are
higher than that (90%) in single-person case. And for the
relative localization in the entire 2D space, the accuracy
is 88.71%, 90.48%, 91.24% when there is/are 1, 2, and 3
persons, respectively. The performance in multi-person case
is a little better than that of single-person case. That is
because multiple person may provide more information in
the received signals, which is helpful for HMO to correct
miscalculations.

We also evaluate the performance of the WSC algorithm.
We ask 3 volunteers to walk through the tag array (7 rows ×
6 columns) and exhibit the matrix R after OAIR algorithm.
The larger the value of cell < i, j > in matrix R, the larger
probability that tag i is in the same column with tag j. As
shown in Fig. 23(a), we find that without performing WSC,
most tags may have a high probability with tags in adjacent
columns. However, after performing WSC, most tags can be
accurately classified (exhibit in Fig .23(b)). After extending
the experiment time duration from 30 seconds to 2 minutes,
we find that the classification accuracy increase obviously
(as shown in Fig. 23(c)). We also discuss the improvement
of WSC algorithm on original OAIR. As shown in Fig. 22,
we compare the accuracy of employing OAIR only with
both OAIR and WSC. By varying the experiment time,
the accuracy of them are roughly increasing. In addition,
applying WSC on the original OAIR can significant improve
the accuracy. So WSC is helpful to improve the accuracy
of y-axis ordering and reduce the impact introduced by
multipath and human body’s irregularity.

In a short summary, HMO can achieve accurate two-
dimensional relative localization in practice. Besides, com-
bining multiple estimation results indeed improves the ac-
curacy of HMO.

7.4 The performance of HMO under different settings

We then investigate the performance of HMO by tuning
the prototype system’s settings, including the layer height,
interval distance between adjacent tags, distance between
the shelf and reader, and the human moving speed. We
show the result of using HMO under these tunings along
the Y dimension, along the Z dimension, and in the entire
2D plane. We also compare HMO with the approach utiliz-
ing RSS directly and a state-of-the-art relative localization
approach, STPP [9].
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Fig. 23. The performance after operating WSC alogorithm
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racy of ordering if somebody
blocks tags for a whileTABLE 3

Accuracy along the Y dimension when varying dt

dt(cm) 0.5 1 2 3 4 5
Accuracy 0.881 0.881 0.857 0.809 0.762 0.524

Tolerant distance dt vs. Accuracy: To detect the tolerant
distance dt, we also conduct an experiment in which we
vary the average misaligned distance between the tags in a
same column from 0.5 cm∼ 5 cm. The distance between two
adjacent columns is 10 cm. The results are listed in Tab. 3.
We find that the accuracy is higher than 0.809 even if dt ≤ 3
cm, demonstrating that HMO is resilient to misalignments.

Layer height vs. Accuracy: We vary the layer height from
20 cm to 40 cm. The accuracy is shown in Fig. 24. Different
layer heights may result in different shelves’ heights (the
larger the layer height, the higher the shelves), which may
influence the performance of HMO. That is because, on one
hand, if the shelves are very high, the tags on the top layer
may not be blocked at the same time with that on the lower
layers. On the other hand, the lower the layer height, the
denser the tags in different columns. According to Fig. 24,
we find that except ` = 20 cm, HMO outperforms both STPP
and RSS in terms of the accuracy of 2D relative localization.

Tag separation distance vs. Accuracy: To simulate the
real-world layout of objects, we tune the interval distance
between two tags in each layer within the range of [5 cm, 40
cm]. The localization results are shown in Fig. 25. We find
that the larger the distance is between tags, the higher the
accuracy HMO can achieve along the Y dimension. The 2D
relative localization accuracy of HMO is always higher than

TABLE 4
Accuracy vs. Human moving speed

Human speed (m/s) 1 1.5 2
Accuracy 0.905 0.833 0.810

88.10%.
Reader distance to shelves vs. Accuracy: We then adjust

the distance between the shelf and the reader antennas from
1.2m to 2.4m. The results are plotted in Fig. 26. We find
that with the increase of above distance, HMO presents a
decrease in its localization accuracy along the Y dimension,
but an increase in the one along the Z dimension. Under
most situations, HMO performs better than STPP and RSS.

Human moving speed vs. Accuracy: We also evaluate
the influence of human moving speed on the system accu-
racy. We invite one volunteer to walk through the inventory
space randomly with a speed of 1m/s and 1.5m/s, 2m/s,
respectively. As shown in Tab. 4, the average accuracy is
always higher than 80%.

Blocked tags: In our system, we assume that we can
always receive all the tags’ data. However, in practice, the
tags may be blocked by the customer and can not be read
for a little while. HMO addresses this issue by periodically
collecting data within each time window and leverage mul-
tiple ordering results to reach a final result. We conduct
experiments where a stop-and-go customer moves in the
region. He first moves inside and block the first column of
tags for 2s, 4s and 6s, respectively. Then he passes through
the inventory area. As shown in Fig. 27, the x-axis is the
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TABLE 5
The process time of HMO

Tags’ number 1 9 36 42 56 63
Time(s) 0.13 0.28 0.39 0.42 0.56 0.76

running time of our system. At start, due to the blockage of
human being, we can not obtain all the tags’ data. However,
when the person moves and pass through the shelf, HMO
can successfully obtain the tags’ right order after several
seconds.

Time cost: We also evaluate the processing time of HMO.
As shown in Tab. 5, we vary the number of tags and observe
the process time of HMO. The results show that even if the
population of tags is up to 63, the processing time is still
very short (less than 0.8s). HMO is very efficient.

8 DISCUSSION

Different placement of tags: In our system, we assume the
tags are placed in a grid so that they can be partitioned into
rows and columns. However, in practice, some grids may
have more than one tags and some grids may have no tag.
If the placement of tags in known as the input of HMO
in advance, our algorithm is also effective. Fortunately,
the tag placement is mostly stable in most applications.
For example, one kind of items in the supermarket may
be always placed at the same position, and the books or
documents in a library or a chancery should be put at the
certain places. With necessary inputs, HMO may cope with
the problems introduced by different placement types. We
will leave this study to future work.

Tag’s orientation: The tags’ on the items may face to
different directions. So in our system, we employ circular
polarization antennas, which can read the tags in different
orientations.

The choice of ordering method: Intuitively, the phase-
based approach is sufficient for extracting the location of
each tag. However, in our work, we only employ the phase-
based method along the Z dimension, while choosing an
RSS-based method to order the tags in the Y dimension. In
fact, either of the RSS-based and phase-based methods has
its own advantages. For the RSS-based method, it requires
fewer antennas (at least 3 antennas are needed with the
phase-based method for 2-dimension ordering). However,
it relies on the movement of human beings. On the other
hand, the phase-based method does not rely on walking-
by persons. However, it only works in static environments.
In addition, due to the uncertainty of the phase data, the
number of antennas will increase accordingly with the
enlargement of the application area. In other words, the
larger the application environments are, the more antennas
we need in the phase-based algorithm. After comparing
their advantages and drawbacks, we employ an RSS-based
method along Y-dimension and the experiments show that
it works well for horizontal ordering.

9 CONCLUSION

In this paper, we propose HMO, a relative localization
system for passive tags by utilizing human movement.
Compared to prior solutions, HMO is more efficient and
convenient to deploy, thus it enables more applications.
HMO can also cope with many practical factors in real de-
ployments, such as multipath effects, untidy object position,

irregularity of moving objects, etc.. The experimental results
show that HMO is accurate and practical in the relative
localization for real-world applications.
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