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RFID tag authentication is challenging because most commodity tags cannot run cryptographic algorithms. Prior research

demonstrates that physical layer information based authentication is a promising solution, which uses special features from

the physical backscatter signals from tags as their fingerprints. However, our recent studies show that existing physical-layer

authentication may fail if feature collection and authentication are conducted in different locations, due to location-dependent

noises, environmental factors, or reader hardware differences.

This paper presents a new physical layer authentication scheme, called Butterfly, which is resilient to environment and

location changes. Butterfly utilizes a pair of adjacent tags as an identifier of each object. By using the difference between

the RF signals of the two tags as their fingerprint, the environmental factors can be effectively canceled. Butterfly is fully

compatible with commodity RFID systems and standards. We set up a prototype Butterfly using commodity readers, tags,

and RF devices. Extensive experiments show that Butterfly achieves high authentication accuracy for substantially different

environments and device changes.
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Fig. 1. Some typical use cases of tag authentication
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1 INTRODUCTION

Radio Frequency IDentification (RFID) is a vital technology of Internet of Things (IoT) that has been widely used in
crucial applications, such as identification, access control, E-payment, and object-tracking [8][28][27][22][23][17].
Passive RFID tags rely on backscatter for communication and exhibit several advantages, including low cost, small
size, and battery-free design, in autonomous identification. In many applications such as entering fairs, museums,
or theatres, passive RFID tags are used as passing tokens. In addition, logistic systems may use tag-labeled
packages [11] for check-in and delivery tracking. However, RFID authentication in current applications only
checks the ID numbers stored in tags, which leaves a fatal security flaw. Adversaries using standard readers can
retrieve the ID and other legitimate information from a legitimate tag and forge another tag carrying the same
ID. The forged tag can be used for counterfeiting attacks, such as being used as the token to enter an event.
Unfortunately, the limited computing capability of passive UHF RFID tags restricts the execution of cryp-

tographic algorithms such as cryptographic hashing and encryption. In fact, most commodity off-the-shelf
(COTS) passive tags do not support any cryptographic operation.1 Hence existing network security solutions are
impossible to apply on commodity passive tags. Even if cryptographic operations are available on tags, an attacker
can still replicate one authorized tag to multiple ones, by stealing the keys or simply owning an authorized tag.
On the other hand, physical-layer tag authentication has been studied, which utilizes unique physical layer

features from the backscatter signals of tags as their fingerprints [9][24][25]. The insight behind those solutions is
that different tags show distinguishable features in their physical signals, called “fingerprints”, due to manufacture
imperfection. The unique advantage of physical-layer authentication is that it verifies the physical

existence of a device, rather than just checking a shared digital key like the cryptographic methods. Physical-
layer tag authentication does not need to modify existing RFID standards or replacing existing tags, hence
are extremely attractive to existing RFID applications. It may also be combined with cryptographic based
authentication to prevent the attackers from stealing the secret keys and reproducing tags using the keys.
However, existing physical-layer authentication approaches are environment-sensitive. That is, the generated
fingerprint is unstable under environment changes, resulting in more failures including both false positives and
false negatives.

1To our knowledge, the only UHF passive tag that supports cryptographic functions is a recently announced NXP UCODE DNA RFID [1].

However, all related documents are for commercial purposes. There is no technical report or price. Hence we are unclear about its strengths,

weaknesses, and trade-offs.
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In fact, environment and device changes are very common in real scenarios. As shown in Fig. 1, considering
three typical scenarios in practice:
1. Entrance check: An event or building may have different entrances, the manager should authenticate the

pass of each passenger. In this case, different entrances may have different environments. Environmental factors
such as walls, objects, and moving people as signal reflectors introduce unpredictable errors into physical-layer
signal collections and hence lead to authentication failures.
2. Inventory management: The warehouse administrator should authenticate and check the identity of goods

periodically. In this case, the goods are registered and authenticated using the same devices, while may be at
different positions.
3. Package authentication: In logistic, the users always need to verify that the package is indeed the one

registered at the place of departure. In this case, both the places and devices used for fingerprint-registration and
authentication are different.
Therefore, generating fingerprints resilient to the environment and device changes is an essential requirement

for physical-layer RFID authentication. Nevertheless, achieving this goal is challenging because environmental
changes are unpredictable and ubiquitous in physical signals. Under such circumstance, RFID authentication
may fail because of two reasons. a) The features extracted from a tag’s physical signals in different environments
yield inconsistent fingerprints, raising the false rejection rate (FRR) in authentication. b) The features are
indistinguishable among different tags, or easy to be depressed by the incurred noisy signals, increasing the false
acceptance rate (FAR) such that illegal tags might be accepted as valid ones.
To address the above issues, we design an environment-independent physical-layer RFID authentication

scheme, called Butterfly. Instead of using a single tag, we propose to use a pair of adjacent tags for authentication.
In particular, we calculate the difference between the two tags’ physical layer signals as the fingerprint of this
pair of tags. By utilizing the physical proximity of them, Butterfly effectively mitigates the noise caused by
environment and device changes. In addition, Butterfly also extensively expands the feature space. As a result,
the issues of being environment/device-sensitive and feature-indistinguishable are well addressed. Butterfly is
fully compatible with commodity RFID systems, without any modification on the RFID hardware or standards.
We implement a prototype of Butterfly using COTS RFID readers Impinj R420, an RF device USRP N210, and
mainstream passive tags in the market, e.g., Impinj E41-B, E41-C, and Alien 9640.
In this work, we do not consider signal-replay attacks, in which an attacker uses a high-end signal recorder and

replayer to eavesdrop on valid tags and replay the exactly identical signal to the reader. Our solution is mainly
used for applications where the profit from this attack is much less than the cost of signal replaying, such as
event tickets. Current solutions to defend against signal replaying are also limited to special environments [19].
Our contributions are summarized as follows.
1. We propose a new physical layer fingerprint based RFID authentication scheme, called Butterfly, which

employs a pair of tags for RFID authentication. Butterfly effectively mitigates the impact of environment and
device changes on the fingerprint generation.
2. Butterfly is scalable by sufficiently expanding the feature space for generating distinguishable fingerprints.

This is extremely important for large-scale RFID applications, where the legitimate tag pairs can be distinguished
in terms of their fingerprints, while those invalid pairs can also be differentiated from the legitimate ones. We
analyze the potential feature space for fingerprint generation and find that the number of pairs supported in one
Butterfly system is quadratic larger than the state-of-art solutions. It infers that an attacker is more difficult to
use a forged tag to pass the authentication.
3. Butterfly is completely compatible with existing RFID systems. It has no needs on modifying either the

hardware or standards.
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4. We implement a prototype Butterfly using commodity RFID devices and off-the-shelf USRP N210. The
extensive experimental results show that Butterfly achieves high authentication accuracy, i.e.>95%, even if
varying the environment or device.
In the rest of this paper, we first introduce some related works of Butterfly in Section 2. We then elaborate on

the background and our observation in Section 3. We present our model and system design in Section 4 and 5.
Finally, we evaluate Butterfly in Section 6 and 7. The security analysis of our system is discussed in Section 8. We
conclude this work in Section 9.

2 RELATED WORKS

Prior works in RFID authentication fall into two categories: crypto-based and physical-layer approaches.
Crypto based approaches aim to utilize conventional cryptographic algorithms to perform the authentication.

The basic idea is to allow each tag to share a secret key with the reader. The authentication is then a challenge-
response interaction between the reader and tag. The reader will accept a tag as a valid one only if the tag can reply
a cipher encrypted by a valid key. Song et al. [18] propose a symmetric key based key search scheme. Feldhofer
et al. analyze the standardized cryptographic algorithms in RFID system [7]. Bruns et al. propose a method for
cryptographically combining HF and UHF RFID Tag in [3]. And Poschmann et al. design a light-weight crypto
algorithms for RFID system in [16]. Currently most encrypted tags work at the Low-Frequency (LF) spectrum
in industry, such as Philips megamos RFID tag, NXP Hitag, and Hitag2 tags. However, due to the different
communication mechanisms, the LF tags, which exchange data with the reader via circuits inductive coupling,
usually support a read-range less than about 10 centimeters. Such short the range severely limited the application
scope of those encrypted tags. Besides, crypto-based methods have several drawbacks. First, these methods
cannot be implemented on main-stream COTS tags. Second, it cannot be adopted by COTS passive tags directly,
due to the required modification on either the protocol or hardware. Third, if the secret keys are stolen, it is
easy for adversaries to produce unlimited counterfeit tags. In contrast, counterfeiting physical-layer features of
valid tags in Butterfly is extremely difficult, even if the features are known to the attacker. In addition, Butterfly
can authenticate tags in a longer distance (1.5 meters in our experiments, but it can be extended by using more
powerful reading and receiving devices, which is easy to operate in practice). Therefore, Butterfly would be an
important alternative or supplementary for encrypted RFID communication.
Physical-layer authentication approaches are based on the hardware diversity of tags [4][10][19]. The imperfect

manufacture procedure is the main reason to cause such diversity. The diversity of tags is usually presented by the
difference in their physical layer signals. Periaswamy et al. [15] use the Minimum Power Response of RF signals
as the fingerprint. However, extracting such a feature requires a specific device, i.e., Voyantic Tag-formance Lite
System. Zanetti et al. [25] extract the time interval error, average baseband power, and spectral feature as the
fingerprint of tags. Although this work [25] achieves high authentication accuracy (99.6%), it still needs a costly
and powerful spectrum analyzer for feature extraction. Geneprint [9] attempts to reduce the overhead in feature
extraction. It calculates covariance (Cov) among two tags’ square waves and Power Spectrum Density (PSD) of
their signals as the fingerprint. As aforementioned, those fingerprint-based solutions suffer from environment
changes. Even the change of tags’ position, orientation, or transmission power will incur a non-trivial impact
on their fingerprint generation and testing. On the contrary, Butterfly is resilient to environment changes yet
guarantee high authentication accuracy.

3 BACKGROUND AND OBSERVATION

3.1 Background

A passive RFID system is usually composed of a reader with its antennas, a number of passive tags, and a back-end
server. Figure 2 illustrates the communication procedure between the reader and a tag, which is specified by
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Fig. 2. EPC C1G2 protocal

Table 1. Accuracy under environment changes

Mehtod (Cov,PSD) ABP TIE+ABP SP

Accuracy 77.8% 15.92% 36.24% 37.6%

standard protocols, e.g. EPC Class 1 Generation 2 protocol [6]. Following this protocol, the reader sends a Query
command to trigger an inventory round. Each tag under the reader’s interrogation will select a time slot to reply
with a random number RN16. The reader acknowledges the tag with the identical RN16. Once receiving this
ACK, the tag will report its EPC code (ID) to the reader. The reader will check the validity of the received EPC
code. If it is valid, the reader may send other commends for further interrogation, such as QueryRep. Otherwise,
the reader terminates the interrogation by sending a NAK command.

3.2 Our Observation

In practice, the RF signal received by the reader’s antenna is actually a hybrid one mixed by multiple signals.
The backscattered signals travel along various paths, along which a certain number of reflections happen. When
the environment changes, some reflections vary accordingly, affecting the essential parameters of signals, such
as amplitude and phase. For instance, the work by Zanetti et al. [25] employs the average baseband power and
spectral feature to generate fingerprints. However, these two features vary with the change of location and
orientation of tags, and the transmission power of the reader. On the other hand, GenePrint [9] utilizes the
power spectrum density (PSD) and covariance (Cov) as the tag’s fingerprint. Similarly, these two features are
also unstable upon the environment and device changes. As a result, certain errors are introduced to the signals
received at the reader’s antenna, yielding inconsistency to the fingerprints of tags. That is why the environment
change severely influences the physical signal based fingerprint in prior works.
In order to demonstrate the impact of environment changes, we place a tag in two completely different rooms

(Room1 and Room2) and collect the backscattered signals using a USRP based monitor. We keep the relative
positions between the reader and monitor unchanged, while placing the tags at three randomly selected positions
in the shared reading area of the reader and monitor. Fig. 3 plots the received signal by the monitor. We find that
the environment has a strong impact on the signal strength of baseline and amplitude.
With such impact, prior works may not work well. We investigate the authentication accuracy of state-of-art

works under environment changes in Table 1. In this table, the features include (Cov, PSD) used in GenePrint[9]
as well as the time interval error (TIE), average baseband power (ABP), and spectral feature (SP) proposed by
Zanetti et al. [25][26]. We find that, after changing the environment, the accuracy of all these features are less
than 80%. Some of them are even lower than 40%. The results indicate that the features used as fingerprints by
existing physical-layer RFID authentications are not resilient to environment changes.

4 MODEL AND MAIN IDEA OF BUTTERFLY

In this section, we analyze the received signal at the monitor and model the propagation process of RF waves.
Figure 4 shows the system deployment of Butterfly. Instead of using a single tag, we utilize a pair of tags as a
unity for authentication. Besides commercial RFID readers and tags, we utilize a USRP-based monitor to collect
and record the RF signals transmitted between the reader and tags. In fact, the monitor plays a role like a listener,
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Fig. 3. Feature clusters of a tag at different locations

which does not disturb or interrupt the whole communication between the reader and tags. Note that the

monitor is not necessary in practice: a COTS reader also obtains the same data of signals, which is

available if the manufactures provide APIs.We then extract environment-independent features of tags from
the signals received at the monitor.
The propagation process from the reader to the monitor can be divided into two phases. As shown in Fig. 5, one

is from the RFID reader to the tag pair, and another is from the tag pair to the monitor. Both the two phases are
vulnerable to the environment changes. We take the first phase as an example. The signals transmitted from the
reader may bounce at static objects, such as walls, furniture, etc.. In addition, the moving objects, such as human
beings and robots, will also introduce varying reflections to the tag pair. The line-of-sight signal superposes
with those multipath signals. Therefore, the induced current (energy) among the tag pair varies in different
environments. The situation is similar to the second phase. As a result, the received physical-layer signals are not
consistent in variant environments. That is why existing authentication method cannot be perfectly adopted
upon unstable environments.
To tackle the challenges raised by the environment or device changes, we propose a new physical layer

authentication method to achieve trustworthy authentication for RFID tags. Our main idea is that if two adjacent
tags are with a close in-between distance, they experience nearly the same impact from both the perspectives of
environment changes and hardware (the reader and monitor). Based on this insight, we design our cancellation
method to combat the changes of environments and devices. Suppose that these two tags are T1 and T2. In the
monitored signals, their received signals are Pt = [pt (1),pt (2),pt (3)...,pt (N )], where t =T1 or T2, and N is the
number of samples. In theory, P t is comprised of five components, i.e., P t = {Ct , F t ,N t

G
,N t

E
,N t

D
}, where Ct is a

constant vector of the standard square wave pulse, F t is a value representing the tag’s inherent hardware feature,
N t
G
is the White Gaussian Noise (WGN), N t

E
is the environmental noise, and N t

D
is the total noise introduced by

all associated devices, including the reader and monitor, respectively.

PT1 = CT1 + FT1 + NT1
G
+ NT1

E
+ NT1

D

PT2 = CT2 + FT2 + NT2
G
+ NT2

E
+ NT2

D
,

(1)

The key idea to cope with the changing environment is computing the difference between PT1 and PT2 and
thus canceling out common environmental factors in Eq. 1. Particularly, the difference is represented by all the
differences between all pairs of corresponding elements in PT1 and PT2 . That is

PT2 (n) − PT1 (n) =

(CT2 (n) −CT1 (n)) + (FT2 (n) − FT1 (n)) + (NT2
G
(n) − NT1

G
(n)) + (NT2

E
(n) − NT1

E
(n)) + (NT2

D
(n) − NT1

D
(n))

(2)

where n ∈ [1,N ] is the index of the sample. From the two tags’ perspective, at any given time, the devices for

collecting their signals are identical. That is, NT2
D
(n) − NT1

D
(n) � 0. Furthermore, we can safely conjecture that

the environment noise NT2
E
(n) − NT1

E
(n) � 0 when the two tags are sufficiently close to each other. This means

they experience identical environment changes [20][21][14]. Meanwhile, NT1
G
and NT2

G
are the White Gaussian
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Fig. 4. System Deployment Fig. 5. The model of Butterfly

Noise (WGN). For these two components, we only know that their distributions follow the Gaussian distribution.

However, we have no idea about the exact value of each sample point. So directly subtracting NT1
G
from NT2

G
(or

vice versa) cannot effectively cancel the influence of WGN.
To deal with this problem, we adopt the wavelet analysis method to remove the interference of WGN on the

signals. As we know, wavelet analysis can extract specific properties from the signals [2]. To our knowledge,
WGN appears as random and high-frequency fluctuations on the received signals. On the contrary, the hardware
features of each tag, i.e., the square wave pulses and the tag inherent hardware features, are highly possible at
low frequencies. So we decompose the signals into two parts, namely the high-frequency part and low-frequency
part, by performing wavelet analysis and discarding the high-frequency portion, yet retaining the low-frequency
part. Note that low-pass filter can also remove the high-frequency part. In our experiments, we find that both
low-pass filter and WGN are effective in extracting features from the raw signals. The results do not show distinct
differences. Hence we can also choose the appropriate low-pass filter here.
Combining all the analysis above, we have

s = di f f (PT2 − PT1 ) ≈ (CT2 −CT1 ) + (FT2 − FT1 ), (3)

where s denotes the signal segment after cancellation. To verify the effectiveness of the aforementioned noise
cancellation method, we conduct two sets of experiments. One is to evaluate the performance of Butterfly in
dealing with environment noises, while another focuses on checking the performance of device noise elimination.
For the first experiment, we compare the tag signals collected in three cases: 1) Placing the tag pair in room 1
and collecting their signals. 2) Moving the entire systems into another room (room 2) and keeping the same
deployment as case 1. 3) Keeping the deployment of the reader and monitor unchanged in room 2, but moving the
tag pair to another position. Comparing the three cases, case 1 and 2 have different surrounding environments.
While the tag pair has totally different line-of-sight propagation paths in case 2 and 3. We exhibit the raw data of
one tag in case 1, 2 and 3 in Fig. 6(a). The results after performing our cancellation method are shown in Fig. 6(b).
We find that though the raw data in the three cases are totally different, the results after the cancellation process
are highly consistent, only with a slight difference.
We also evaluate the performance of Butterfly in coping with device diversity. We utilize 2 readers (Impinj

reader R220, Impinj reader R420) and 2 USRP N210 to simulate the scenario of device changes. Consequently, we
have 4 combinations of readers and monitors. We collect the raw signals of a tag-pair using the devices of the
four combinations and show the results in Fig. 7(a). We can observe that the signal varies significantly among the
four combinations. On the other hand, we perform our difference based noise cancellation and plot the result in
Fig. 7(b). The high coincidence among four curves exhibits excellent ability of our method in canceling the device
noise.
The results demonstrate that our method is effective to eliminate the impact of environment changes and

device diversity, enabling the environment-independent fingerprints for RFID tags.
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(a) Before (b) After

Fig. 6. Environment change cancellation. a) The raw signals at different cases. b) The signals after environment changes

cancellation.

(a) Before (b) After

Fig. 7. Device noise cancellation.a) The received signals by utilizing different devices. b) The signal after device noise

cancellation

5 SYSTEM DESIGN

5.1 System Overview

As aforementioned in Section 4, Butterfly uses a pair of tags as an identifier. We define such a pair of tags as
a tag-pair. A complete Butterfly system contains a commodity passive RFID reader, a monitor, and a group of
tag-pairs.
Butterfly is comprised of threemodules: signal collection, signal pre-processing, feature extraction andmatching,

as illustrated in Fig. 8. In the signal collection module, Butterfly utilizes a USRP-based monitor to record the whole
communication process between the commercial reader and a tag-pair. The signal pre-processing module is
designed for removing environment and device noises by selecting and subtracting appropriate signals. We further
extract and store distinguishable features for each tag-pair in the signal extraction module. In the feature matching
phase, Butterfly utilizes overlapped rates of processed signals to match this pair of tags against legitimate ones in
the database for authentication.

5.2 Signal Collection

As illustrated in Fig. 4, the antennas of the monitor and the reader are placed in opposition to each other, with
a distance D in-between. A tag-pair under authentication is placed between the two antennas to ensure that
its two tags can communicate with the reader, and their backscattered signals can be received by the monitor.
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Fig. 8. Butterfly system design.

Fig. 9. The received signal at Monitor.

Meanwhile, we denote the distance between two tags in a tag-pair as d . In the following modules, we use the
signal received at the monitor as the data source for signal processing and feature extraction.

5.3 Signal Pre-processing

This module contains three processes, signal selection and segmentation, categorizing, and environmental noise
cancellation.

5.3.1 Signal Selection and Segmentation. In this section, we aim to filter out the tags’ backscattered signals from
all the received signals. As aforementioned, the monitor records the whole communication process between the
reader and a tag-pair. Among the recorded signals, we only need the backscattered signals from the tag-pair. As
aforementioned in Sec. 3, a tag will response its RN16 and EPC during the inventory. As the random number
RN16 will change every time the tag response its signals, we only select the tags’ EPC segments as the signal
source. Compared with RN16, tag’s EPC is unique and identical, which is a good choice for authentication.
To obtain the pure EPC segments from the received signals, we should first filter out the reader’s commands

and other unnecessary segments, and cut out EPC segments. A straightforward method is to locate each EPC
segment and decode it. However, doing so is time-consuming and error-prone. As shown in Fig. 9, compared
with the reader’s signals, the tag’s signal is much weaker in terms of signal strength. As a result, localizing and
decoding the EPC segments would be very inefficient. To tackle this problem, we transfer the task of finding
tags’ EPC segments to localizing specific reader’s commands. Considering that the segments corresponding to
the reader’s commands are much powerful than those of tags, we can use such distinguishable segments to
indirectly locate EPC segments. Following the specification in EPC C1G2 [6], an EPC segment appears between
two sets of reader’s commands, namely ACK and QUERY/ QREP /QADJ. As shown in Fig. 9, we locate these
reader commands by recognizing their preambles, and cut out the signal segment in-between. We denote each
segmented EPC signal part as p.
With the aforementioned process, we are able to filter the EPC segments of the tags from massive raw signals.

However, the EPC signal intercepted via this indirect way includes not only the tag’s EPC segment, but also the
carrier wave (CW) transmitted by the reader. Hence we employ a mechanism called Determine Sample Point
(DSP) to find out the real start point of tag’s backscattered signals. DSP is based on the observation that the
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(a) Raw signal (b) Locating the start point

Fig. 10. Effectiveness of DSP. a) The raw received signal of a tag. b) Locating the start point by calculating the difference

between two adjacent samples.

amplitude of CW signal parts is relatively small and stable, while at the start (or end) point of EPC segments,
the signal varies dramatically. We first select a small segment from the collected signal. Then we compute the
difference between the adjacent sampling points, as formulated in Eq. 4. In this equation, we assume that the
amplitude at the n-th sampling point is p(n), and define a difference function δ .

δ (n) = |p(n + 1) − p(n)| (4)

We locate the start point of EPC segment by setting a threshold σ , which is ρ times larger than the average value
of the latter part of δ , i.e.,

σ = ρ ·

∑N
n= �N /2�δ (n)

N − �N /2�
(5)

where ρ is a coefficient which can be empirically determined. It can be chosen on each receiver. We exhibit the
performance of DSP in Fig. 10. We find that at the start point of an EPC segment (marked in green in Fig. 10(b))
can be accurately and clearly localized.

5.3.2 Categorizing. To obtain the differences between tag 1 and 2, we should categorize each EPC segment
and decide which tag it belongs. Intuitively, we can identify the segment by decoding it, like the process in
commodity RFID readers. However, the USRP-based monitor does not provide this API. In addition, per-bit
decoding in the signal is very complex and time-consuming. Therefore, we employ a hardware-characteristic-
based tag categorization method. We exploit the difference in the backscatter link frequency (BLF) brought by the
hardware diversity of the tags [20][9]. BLF is an inherent physical-layer signal characteristic of RFID tags, which
is introduced by imperfection during manufacturing. It varies among different tags and relatively stable for one
tag. BLF determines the response data rate of a tag, which can be extracted by frequency-related methods. So
we perform Fast Fourier Transform (FFT) on each EPC segment. Then we employ a clustering method, namely
K-Medoids, to classify two tags’ EPC segments by analyzing their FFT results. In our prototype, we adopt two
common statistical magnitudes, the variance (Var) and covariance (Cov) of the FFTed segments as the input of
K-Medoids. The results are shown in Fig. 11. The x-axis and y-axis are the Var and Cov results of the processed
signals of the two tags, respectively. We observe that the BLF-based characteristics can distinctly distinguish two
tags’ EPC segments. Note that though BLF-based method is good at telling two tags apart, it is not appropriate
for authenticating large scale of tag population. That is because the BLF varying range for COTS passive tags
is limited. For a large number of tags, there must be a lot of tags that own very similar BLF parameter. So we
use EPC decoding in the multi-tag scenario. The decoding method has been introduced in the prior work [5].
After this step, we classify all the EPC segments into two categories, PT1 and PT2 , corresponding to tag 1 and 2,
respectively.
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Fig. 11. Example of K-Medoids
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Fig. 12. Inconsistent signal caused by hardware.
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Fig. 13. Effectiveness of ASP.

5.3.3 Environmental Noise Cancellation. As aforementioned in Section. 4, we make a subtraction among the
signals backscattered from the tag-pair. When performing the subtraction, an implicit assumption is that the
involved signals should be collected in a transient period. In this way, the change of environments is negligible
and hence the environment can be considered as stable. In Butterfly, we choose every two signals that are
transmitted at adjacent time points. Since the communication between the RFID reader and tags is extremely fast
(i.e., a reader can read about 100∼120 times per second), the time duration between the two points is sufficiently
short. We define the set of the final signal difference as S .
Our analysis in Section 4 implies that the difference between tags in one pair is able to cancel the environmental

noise. However, in practice, we find that though the hardware characteristic is mostly stable, there are still some
exceptions. As shown in Fig. 12, the number of sampling points in a waveform G may vary lightly when a tag
transmits EPC segments. Butterfly will inevitably suffer from the gradually accumulated errors in the collected
samples. We call such waveforms as abnormal ones. As a consequence, the feature extracted for fingerprint
generation may not be identical, which introduces unpredictable errors.
To solve this problem, we propose an Align Sample Point (ASP) algorithm. According to our observation, the

ratio of abnormal waveforms is very small, and such a waveform is shorter/longer than the normal ones. Here
the normal waveform denotes the majority signal waveforms among all the received ones, which are supposed to
be length-identical. We detail ASP in Algorithm 1. The basic idea of ASP is to extend/truncate a shorter/longer
waveform such that its length is equal to that of normal ones.
The performance of ASP is shown in Fig. 13. We choose two signals, namely s1 and s2, in a set S . Note S

contains all the results of subtractions (calculated using Eq. 3) of a tag-pair. We find that after performing the
ASP algorithm, the two different curves perfectly matches, indicating the error caused by the instability of tags’
hardware has been effectively amended.
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ALGORITHM 1: Sample point selection.

Input: To be calibrated square wave, G;

The sampling point number of G, u;
The sampling point number of normal wave, v ;
Output: Calibrated square wave, C .
ϵ = u −v ;

if ϵ = 0 then
return G;

end

k = 0, i = 1;

repeat

j = �k ∗ u/|ϵ | + u/(2 · |ϵ |)�;

if ϵ > 0 then
C(i + k : 1 : j + k) = G(i : 1 : j);

p(j) = (G(j) +G(j + 1))/2;

C(j + 1) = p(j);

else

C(i − k : 1 : j − k − 1) = G(i : 1 : j − 1);

end

until k < |ϵ |;

i = j + 1,k = k + 1;
return C;

5.4 Feature Extraction and Matching

After the signal pre-processing, we obtain a set S containing the environment-noise-canceled EPC segments of a
tag-pair. In this subsection, we aim to design efficient feature extraction and matching methods for Butterfly.

5.4.1 Feature Extraction. After the subtraction based noise elimination, we find that the signals are highly
consistent on frequency, but not on amplitude. So we extract the features of the frequency domain by processing
FFT on the subtracted results S . In Fig. 14, we show the FFTed segments of a tag-pair in three different cases
mentioned in Sec. 4. It is obvious that although the entire trends of those segments are similar, there are still
numerous tiny differences among them. To improve the authentication accuracy, we use a low pass filter to
filter out the messy noises and figure out the trends. The low pass filter is selected experimentally and can be
set per-device. Fig. 15 shows the result after performing the low pass filter. We can find that the segment in
the three environments coincides much better. However, there is still some improvement space (marked in red
square). We further normalize the segments to tackle such amplitude difference and achieve satisfied coincidence.
Fig. 16 shows the normalized segments, which achieve excellent alignment among three cases. Thus, the above
treatment allows the features of a tag-pair to be consistent in different environments. We also exhibit the FFTed
results for different tag-pairs in Fig. 17. We can easily find significant differences between these three segments,
indicating that our treatment provides Butterfly with efficient distinguishability among tag-pairs.

5.4.2 Matching. Matching is performed to compare a feature set under testing, denoted as Ft , to the feature set
recorded in the check-in phase, denoted as Fc . We employ a simple but effective matching method. The idea
behind our matching method is to check the overlapped rate between two tag-pairs’ features. We define the rate
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Fig. 14. After FFT Fig. 15. After lowPass filter

Fig. 16. After normalization Fig. 17. Distinguishablity among tag-pair

as follows:

R =
φ(Fc )

⋂
φ(Ft )

φ(Fc )
⋃
φ(Ft )

(6)

where R is the overlapped rate of Fc and Ft , and φ(F (·)) represents the integral of signal F (·) along the frequency
domain (x-axis). Obviously, if Ft matches Fc well, the overlapped rate R will approach 1. Otherwise, a low R
indicates that there are greater differences between the two tag-pairs. We set a threshold Q for making a decision
whether Ft matches Fc . We will specify how to select a proper Q in the next section.

6 IMPLEMENTATION

We implement a prototype of Butterfly using COTS RFID devices and monitor. Using this platform, we perform
extensive experiments for evaluating the performance of Butterfly.

6.1 Experiment Setup

Hardware and software: As shown in Fig. 18 and 19, the prototype Butterfly contains commodity RFID devices,
including one passive reader Impinj R220 and three groups of mainstream passive tags in the market (Impinj
E41-B, Impinj E41-C, and Alien-9640). We use a USRP N210 plus an SBX daughterboard as the monitor. Both the
reader and monitor are mounted with a Laird S9028PCL directional antenna with 8dBi.
We set the center frequency of both the reader and monitor as 924.38MHz. Note that Butterfly is applicable if

the frequency is set to other frequencies within the RF spectrum specified in RFID standards.
Deployment: The deployment of Butterfly is shown in Fig. 4. The distance between the reader antenna and

the monitor antenna is denoted as D. Note that D is adjustable based on the requirement of real applications. In
our experiments, D ranges from 0.5m to 1.5m, which is suitable for most applications. We denote the distance
between two tags in a tag-pair as d . We analyze the appropriate value of d with experiments and finally set it as
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Fig. 18. Device in Butterfly
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Fig. 21. Effective area

4cm. Both the monitor and reader have certain covering regions, in which these devices can effectively operate.
We name the overlapped ones as effective area. We will specify how to determine it in the following sections.

6.2 Metrics and Methodology
Butterfly has the registration phase and authentication phase. At the registration phase, Butterfly extracts the
features introduced and stores them in a database. At the authentication phase, Butterfly repeats the feature
extraction procedure and compares them to the stored ones. Butterfly returns either ‘Accept’ or ‘Reject’.
We evaluate both FRR and FAR of Butterfly. FRR is defined as the rate that a legitimate tag is rejected by

the authentication system and FAR is the rate that a counterfeited tag is accepted. In particular, since
the purpose of this work is to enhance the robustness of physical-layer authentication, we evaluate another
metric Accuracy, defined as the rate that a tag is correctly matched to its fingerprint in the database.

7 EVALUATIONS
We evaluate the performance of Butterfly against four varying dimensions: the resilience to the environment
change, device noise, tag diversity and tag’s orientation. Before our evaluation, it is necessary to determine the
core parameters of Butterfly.
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Room 1

Room 2

Room 3

Room 4

Building 1 Building 2

Fig. 22. Experiment environments

7.1 System Parameter Determination

7.1.1 Threshold Q. Feature matching in common applications relies on a threshold to accept or reject the testing
sample. In our system, Butterfly utilizes a threshold, denoted as Q , for judging whether a testing fingerprint is
valid or not. A good choice of Q requires balance: a stringent Q may reject valid tag-pairs due to the fingerprint
mismatch, leading to high FRR for the authentication; for a low Q , on the other hand, different tag-pairs may be
classified as the same one, raising FAR in the authentication. To minimize both FRR and FAR, we determine Q by
observing the curves of FRR and FAR when shifting the value of Q , as shown in Fig. 20.
We notice that when Q=0.7, the false rates reach the Equal Error Rate (EER), where the FAR and FRR are

equal with each other. At this point, FAR and FRR reach a balance. Therefore, we set Q = 0.7 in the following
experiments. Note that in practice the administrator can select an appropriate Q based on real applications. For
example, if security is more important, we may prefer lower FAR.

7.1.2 Outlining Effective Area. In subsection 6.1, we introduce the concept of effective area, within which the
tags in a tag-pair can not only empowered by the reader, but also allow the monitor to record their signals. We
aim to outline such an area for performing Butterfly. We take D = 0.5 m, 0.7 m, 1 m, and 1.5 m as examples, and
divide the region between the reader and the monitor’s antennas into small cells (l ×w = 10cm × 10cm). We
mark a cell with green if a tag-pair at that position meets the above two conditions. As shown in Fig. 21, between
the Monitor Antenna (MA) and Reader Antenna (RA), we find that most cells are within the effective area. In
addition, the effective area is mostly covered by the overlapping regions of two antennas’ lobes. With this finding,
we can easily determine the effective area in an unfamiliar environment by observing the position and direction
of monitor and reader antennas. For simplicity, we conduct the following experiments in the area marked with
the red square in Fig. 21(b).
We evaluate the performance of Butterfly in combating with environment changes. According to the application

requirements in practice, we evaluate Butterfly in three cases: 1) Case 1: the tag-pair is authenticated at the
same position with registration. A typical example is the entrance admission system. 2) Case 2: the tag-pair
is authenticated at different positions in the same room. A typical example is the inventory management. 3)
Case 3: The tag-pair is authenticated at different positions in a different room. A typical example is the package
authentication in logistics.
We perform our experiments in four different rooms as shown in Fig. 22. Among them, room 1 is nearly empty,

while other rooms are crowded with shelves, tables or furniture. Room 2 is in the same building as Room 1,
while Room 3 and 4 are not. As shown in Fig. 21(b), we conduct our experiment in the 5 × 7 10cm × 10cm cells,
which are marked in a red rectangle. The coordinate of each cell is expressed as [x ,y]. We use 50 tag-pairs in our
experiments and first register their features at the center of the effective area in room 1, i.e.,[x ,y]=[1, 0]. Then we
validate them at the center of each cell in Room 1∼4.
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Fig. 23. The accuracy of case 1 and 2 Fig. 24. The accuracy of case 3

Fig. 25. The accuracy of case 3
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Fig. 26. Comparison between Butterfly and prior solutions in two cases

Fig. 23 exhibits the authentication accuracy in Case 1 and 2, and Fig. 24 shows the accuracy of Case 3. The
results show that Butterfly can achieve high authentication accuracy, i.e., >90%, even in Case 3 where both the
rooms and positions are different between the check-in and testing phases. In some positions, the rate even
approaches 100%. However, at a few positions, the accuracy is relatively low. Our observation is that the received
signals at those positions are not quite clear due to the noise. Thus, the signal distortion introduced by the noise
seems the dominant reason for the low authentication accuracy. We also exhibit the ROC curve of Butterfly in
case 2 and 3 (as shown in Fig. 25). We find that Butterfly has a good performance in finding out illegitimate tag
pair even with environment changes. This result indicates that Butterfly can effectively cope with the external
environment changes to the tags’ physical-layer signal, enabling highly-accurate authentication.
We also compare Butterfly with 5 feature extraction methods used by the state-of-the-art approaches, including

the (Cov, PSD) feature used in GenePrint [9], time interval error, average baseband power, and spectral feature
proposed by Zanetti et al. [25][26]. We check the authentication accuracy of the aforementioned 5 methods in
case 1 and 2. In Fig. 26, we show the overall authentication accuracy of those 5 methods and Butterfly. The
results reveal that environment changes impose the great impact on the authentication accuracy of the 5 existing
methods. For example, using (Cov, PSD), GenePrint [9] achieves a very high accuracy (99.68%) if keeping the
environment unchanged. However, once the environment around the tag changes, the accuracy drops sharply to
77.88%. Similarly, the other 4 methods present a low accuracy after changing the environment (< 70%). On the
other hand, Butterfly demonstrates 100% authentication accuracy in unchanged environments. More importantly,
Butterfly still retains high accuracy (96.7%) even if the environment changes. Therefore, Butterfly not only
provides high accuracy for tag authentication, but also effectively eliminates the influence of the environment
change.
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Fig. 27. The accuracy for different

types of tags

Fig. 28. The accuracy of multiple

pairs

Fig. 29. The ROC curve of multiple

pairs

Table 2. Accuracy after changing devices

Room 2 Room 3 Room 4

Accuracy 98.5% 93.3% 91.5%

7.2 Device Diversity

In real applications, it is common that Butterfly uses one set of devices for fingerprints generation in the
registration site, while using other sets of devices in different testing sites. To check the impact of device diversity,
we use two sets of RFID devices, including the reader, monitor, and their antennas, to repeat the experiments
with 40 tag-pairs. We first extract and record the fingerprints of tag-pairs in Room 1 at position [x ,y] = [1, 0] via
one set of devices, and then conduct the authentication in Room 2/3/4 using a different set of devices. Hence both
the environments and devices are changed. We report the overall authentication accuracy as well as FRR/FAR in
Table 2. The high accuracy implies that the impact of the device diversity on Butterfly is trivial.

7.3 Tag Diversity

We further examine the influence of different tag types on Butterfly. We perform the experiment using three
types of tags, respectively. For a tag-pair, we use two tags with the same type. For each type, we randomly form
10 tag-pairs. In each experiment trial, we place each tag-pair at [x ,y]=[1,0] for registration. Then we move the
tag-pair to three randomly selected positions, i.e., [x ,y]=[1,1], [-2,2], and [2,-1] for authentication. We plot the
accuracy at the three positions in Fig. 27. The results show that all the three types of tags can achieve very high
accuracy, which means Butterfly is a universal solution to mainstream passive RFID tags.

7.4 Authenticate Multiple Tags

As the application environments of passive RFID is mainly in retail, warehouse or places where a large amount
of tags coexist, we conduct an experiment to evaluate the performance of Butterfly in the multiple-pairs scenario.
We place 3, 5 and 8 pairs of tags inside the effective area, respectively. The authentication results in case 1 and 2
are shown in Fig. 28. We find that the accuracy decreases as the tag volume increases. In both case 1 and case 2,
in the worst case the accuracy is still larger than 85%. We also exploit the ROC curve in multiple-pairs cases in
Fig. 29. The results show that Butterfly has an acceptable performance in multiple-pairs cases. We further discuss
the influence of tag volume in Section 9.

7.5 Impact of Angle Changes

Sometimes the orientation of tag-pairs varies in real applications. For example, when a staff member holds a
tag-pair with different postures, the tag-pair changes its angle to the antenna of reader/monitor accordingly.
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Fig. 30. Rotation of tag-pair

Table 3. The accuracy when tag pairs rotate

Angle(◦) 30 60 90 120 150

Accuracy(%) 91.7 96.7 100 95 93.3

To investigate the impact of such angle changes on Butterfly, we register 30 tag-pair when the two tags are
perpendicular to the plane of the horizon and authenticate them after shifting the angle between each of tag-pair
and the plane of the horizon to ±30◦ and ±60◦, as shown in Fig. 30.
The average authentication accuracies are exhibited in Table 3. We find that when a clockwise or counter-

clockwise rotation happens on a tag-pair, the authentication accuracy will slightly decline. But the overall
accuracy still maintains at a high level. In the five angle settings, the average accuracy is 95.34%. Therefore, the
orientation of tag pairs has little impact on Butterfly.

8 SECURITY ANALYSIS

We discuss the capability of Butterfly in defending against existing attacks as follows.
a) Tag-counterfeiting. Since the ID (EPC code) stored in a tag can be easily read by any standard readers,

adversaries may simply write an overheard ID into a forged tag. More sophisticatedly, compromising attacker can
fully retrieve the sensitive data, including the password or keys, stored in a legitimate tag and then duplicate the
data to the forge tag. In this way, prior works based on crypto mechanisms could not distinguish the forged tag.
Butterfly identifies tag-pairs based on the physical-layer characteristics of tags, which is extremely hard

to tamper. The physical-layer characteristic of each tag is determined in the manufacturing procedure, and
varies among tags. Tags that are even produced by the same manufacturer will have distinguishable differences.
Many existing physical-layer authentication methods successfully defend against counterfeiting attacks by using
the physical-layer information based fingerprints. Compared with existing works that employ a single tag for
authentication, Butterfly utilizes a pair of tags, which can extend the feature space and obviously increase the
attack difficulty. If the feature space of single-tag authentication system is f , the feature space of Butterfly will be
C1
f
·C1

f
= f 2. We take Geneprint[9] as an example. Geneprint is a typical system for identifying the single tag.

And it can achieve up to 99.68% identification accuracy for 150 RFID tags. In other words, the feature space of
Geneprint is at least 150. While for Butterfly, the feature space will be 1502 = 22500, which is extremely larger
than prior works.
b) Eavesdropping and replay attacks. Passive attackers usually eavesdrop on the communication channel

between the reader and tags to retrieve sensitive information. Moreover, the attacker can record the signal and
replay it later for deceiving the reader. Butterfly, together with most other physical-layer RFID authentication
approaches, cannot thoroughly defend against such attacks. However, Butterfly can mitigate the impact of
eavesdropping attacks by monitoring and limit the effective region. As aforementioned, signals backscattered
from a tag-pair become unstable and the signal quality drastically decreases out of the effective area. Note
performing replay attacks is much harder and more expensive than tag-counterfeiting.
c) Feature reconstruction attack. The principle of this attack is to forge or reconstruct the features of

tag-pairs. If the attacker knows which parameters of the tag are involved in Butterfly, they may reconstruct
and replicate the signals with emulators. However, it is not an easy task for attackers to obtain this information,
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and both the device and emulations are very costly. The tag examiner may easily observe the existence of the
emulators. An attacker may attempt to gain from each false positive or true negative result of Butterfly. In practice,
the attacker will iteratively use counterfeited tags to try and expect that one of them can pass the authentication.
In this way, the attacker may learn that some parameters can help to yield the false positive cases. However,
infinite attempts will be prohibited if using Butterfly. When a negative result is obtained, the presenter of the
tag pair will be further interrogated and verified using higher-level authentication method, such as being asked
to report his/her personal ID, receipts, etc. The attacker will be penalized and pay a non-trivial cost for every
true negative result. Thus, it is very costly and time-consuming to obtain and replicate the features of the tags
in practice. In addition, Butterfly uses two tags instead of one tag to generate the fingerprint. Considering that
reconstructing the feature of physical-layer signals is extremely difficult, such a tag-pair enhances the system
security by increasing the attacking overhead, i.e., reconstructing the features for two tags instead of merely one
tag.
In a short summary, Butterfly is effective in preventing legitimate pairs from existing attacks.

9 DISCUSSION

The scalability of Butterfly. Butterfly can be extended to support multiple-pairs authentication. The only
difference is that instead of utilizing physical-layer information to differentiate the two tags in a pair, we should
decode each tag in those multiple pairs. The other signal processing modules of Butterfly can be reused without
any modification. However, in the multiple-pairs scenario, every tag in the group should have a line-of-sight
(LoS) propagation path to both the monitor and the reader, which slightly limits the application cases of Butterfly.
Though there is such a limitation, we believe Butterfly can be easily applied in multiple-pairs scenarios for most
testing sites where there is enough space for arranging tags such that they can meet the LoS requirement.
Different device choices of Butterfly. In fact, Butterfly can reduce the cost by utilizing only one transceiver

device. There are two possible approaches: First, Butterfly can utilize an SDR-based reader to query the tags
and collect the signals. In this implementation, the SDR device, e.g., USRP, works as a legitimate reader. Besides
sending normal reader commands to tags, the SDR-based reader can also collect and record the responses from
tags. In this way, only one transceiver device is sufficient for raw signal collection. Now this implementation
has been applied in many existing researches. Note that the signal processing procedure of Butterfly is fully
compatible with this implementation. Second, we can use the COTS reader as both the transmitter and receiver,
if the manufacturer can release their APIs for retrieving raw signal data. That is because the source data we used
as the input in our system is the raw received signals collected by the USRP at the receiver. For both the COTS
reader and software-defined radio devices, their functions are actually similar in the components of Butterfly for
signal acquiring. However, this implementation needs the supports from manufactures.
The cost of Butterfly. Instead of using one tag, Butterfly employs two tags as a unit for authentication, which

will increase the cost. However, compared with one tag, the two-tag solution will make the authentication more
practical and robust. Since the passive RFID tag is extremely cheap (several cents), the cost for adding another
tag seems rewarding. Note Butterfly does not need to be deployed for every tag, but the tags that need special
security concern, which may be a small population.
Environmental factors in practice. Our experiments are conducted in practical environments, where

wireless signals like Wi-Fi[13][12], Bluetooth and FM radio co-exist. Therefore, Butterfly is robust and can
be deployed in diverse environments. Besides interference, we also consider the cases that the tag-pair pasted on
a metal surface or non-conductive material. We conduct experiments by placing the tag-pair on the metal surface.
The authentication results are not good (< 20%) and the receiver may even not receive the responses from these
tags. That is because the distance between the transmit-receiver devices and the tag-pair is extremely long for
battery-free IoT devices. And the metal surface absorbs most RF energy and make the tag mute. To cope with this
problem, we can adopt anti-metal tags, or increasing the transmission power of the reader.
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10 CONCLUSION

In this paper, we present an environment-independent physical layer authentication scheme for passive RFID
tags, called Butterfly. The main advantage of Butterfly is the resilience to environments, locations, and device
changes, which are major problems in prior solutions. We implement a prototype Butterfly and conduct extensive
experiments for evaluation. The results show that Butterfly is very effective and accurate in authentication (up to
96.7%). We also analyze the security of Butterfly from the perspectives of defending against existing attacks. From
the analysis, we find that Butterfly outperforms prior solutions using physical-layer fingerprints. In particular,
Butterfly is resilient to environment and device changes, while providing high authentication accuracy and much
larger fingerprint space.
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