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Abstract—With the recent developments in Mobile CrowdSens-
ing, an interesting model of temporal graphs has emerged, in
which node weights evolve over time, according to the availability
of spatio-temporal tasks on the mobility field. The analysis and
understanding of these types of graphs, namely Weight Evolving
Temporal (WET) graphs, is critical for optimizing task allocation
in such crowdsensing platforms. In this paper, we formally define
WET graphs and their corresponding routing problem, in which
the objective of the routing is to maximize the reward collected
from vertices visited amid the graph traversal. By modeling
a WET graph as a time-ordered graph, we define efficient
and optimal routing algorithms, and theoretically analyze them.
Moreover, we present a novel node centrality measure, namely
Coverage Centrality, that captures the popularity of various
nodes of the WET graph, and which we incorporate in an
online crowdsensing task allocation mechanism to increase task
coverage. Finally, we evaluate the efficacy of this novel centrality
measure on different types of graphs, when compared to other
centrality measures, and evaluate its effect on task coverage in
online mobile crowdsensing platforms.

Index Terms—routing, centrality, temporal graphs, mobile
crowdsensing, task allocation

I. INTRODUCTION

With the recent advances in Mobile CrowdSensing (MCS),
participating self-motivated crowds already roaming in a mo-
bility field can be used to assist in completing spatio-temporal
sensing tasks, such as taking images with the camera or
measuring acoustics with the microphone [8]. The advantages
of such a model is that by employing the help of the crowd,
massive sensory information can be collected without the cost
of setting up a physical infrastructure [4, 11, 9]. Moreover,
it allows for the development of new smart services and
applications that involve the humans in the loop of the sensing
process, which would have otherwise been impossible, such
as environmental applications [14] and health-care applications
[18].

In a typical Mobile CrowdSensing (MCS) platform, a ser-
vice provider acts as an intermediary between the tasks that
need to be completed and the mobile participants that can
complete them, as shown in Fig. 1. The main challenges in
such platforms are the spatio-temporal constraints of the tasks
and the unpredictable participant participation and human
mobility patterns, which affect the efficiency of task allocation;
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Fig. 1. An example of a typical MCS platform, as depicted in [16]

in terms of rate of task completion, the coverage of the field,
and the quality of service guarantees of the tasks [1, 15, 22].

In our work, we consider MCS platforms with spatio-
temporal tasks that need to be completed at a their specified
location and time. These types of tasks exist in various medical
and environmental applications, as well as smart-city services,
and they add to the complexity of task allocation in MCS
platforms. The constraints of these spatio-temporal tasks create
a novel temporal graph model, in which vertex weights evolve
over time. In this paper, we formalize this definition of Weight
Evolving Temporal (WET) graphs that allow for an accurate
representation of the mobility field in MCS platforms.

This novel definition of WET graphs allows for the defini-
tion of efficient task allocation mechanisms within MCS plat-
forms in two ways; by developing optimal routing algorithms
to be used by participants in the platform, and by defining
a novel centrality measure that represents the popularity of
the graph nodes, i.e., locations in the platform. In this paper,
we define optimal spatio-temporal routing algorithms on WET
graphs, and expand on them to define the Coverage Centrality
measure that takes into account the effect of both the set of
spatio-temporal tasks as well as the graph structure on the
centrality of nodes in a WET graph.

Paper Contribution.

This paper focuses on defining new graph and algorithmic
measures that address the problem of task allocation in Mobile
CrowdSensing platforms with spatio-temporal tasks. This is
achieved through;

1) Identifying a novel type of temporal graphs, namely Weight
Evolving Temporal graphs.



2) Defining optimal routing algorithms on such WET graphs,
for various reward models.
3) Defining a novel centrality measure on WET graphs.
4) Developing efficient online task allocation mechanisms.
Paper Outline.
In Section 2, we define the structure of Weight Evolving
Temporal graphs. In Section 3, we define the spatio-temporal
routing problem on WET graphs, with optimal algorithms
to solve it, as well as the novel coverage centrality mea-
sure. In Section 4, we present efficient online task allocation
mechanisms based on the definition of WET graphs, which
we evaluate together with the proposed centrality measure in
Section 5. Finally, we present a quick overview of related work
in centrality measures and task allocation in MCS platforms in
Section 6, and conclude the paper with a summary of results
and our plans for future work.

II. WEIGHT EVOLVING TEMPORAL GRAPHS

With the evolving nature of spatio-temporal tasks in a
mobile crowdsensing setting, a novel temporal graph model
arises, one which effectively represents the mobility field and
the constantly evolving task rewards, in both space and time.
In this section, a novel temporal graph model, namely the
Weight Evolving Temporal (WET) graph, is defined.

A. WET Graph Model

We define a Weight Evolving Temporal (WET) graph as
G = (V,E,w), in which the set of temporal vertices V'
represents the various landmarks in the mobility field, the set
of edges E represents the links, i.e., streets, between these
landmarks, and the temporal weight function, w, represents
the reward associated with completing tasks on the mobility
graph. The weight function associates a location, v € V,
and time, t > 0, tuple with a reward, which represents the
reward collected by completing a task with the defined spatio-
temporal constraints, (v,t). We note that each vertex may
have varying weights though time, depending on the available
spatio-temporal tasks.

The definition of WET graphs can be expanded to encom-
pass various realistic settings, in which locations and/or roads
can become evolve and become inaccessible over various peri-
ods of time, by the use of time-ordered graphs[13]. However,
for the purposes of this paper, since shorter windows of time
are usually considered in the process of task allocation in MCS
platforms, we focus on graphs with static sets of vertices and
edges. Moreover, we assume that time is discrete and finite
and that movement between landmarks, i.e. along an edge, is
completed in a single discrete time step '.

The novelty of the WET graph model lies in the temporal
weight function, which links the weight of a vertex to the
reward of a specific task at some point in time. This allows for
various scoring models that are typically encountered in MCS
platforms, such as instantaneous, steady, and time-window
scoring. In the instantaneous model the reward is valid at a

'We expand on that last assumption in the discussion next section.

single time step, in the steady model the reward is valid for the
entire time horizon, and in the time-window model the reward
is valid during a specific time window.

To better explain these scoring models, we present the
illustrative examples below, in which we follow a typical
characterization of a temporal graph by splitting it into a
sequence of static snapshots as in [1].
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Fig. 2. A time series representation of a WET graph with steady tasks.

In Fig. 2, we present an example of the steady model, in
which the reward of visiting a vertex is valid for the entire
time horizon of the graph. An aggregated view of the graph
would provide a correct representation of the state of the MCS
platform.
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Fig. 3. A time series representation of a WET graph with instantaneous tasks.

In Fig. 3, we present an example of the instantaneous model,
in which the reward of visiting a vertex is only valid for
a single unit of time, depending on the constraints of the
tasks. As opposed to the steady model, an aggregated view
of the graph would not provide a correct representation of
the available sensory tasks, but a detailed definition of the
weight function is necessary. For the purposes of this paper, the
weight function is stored in a dictionary-based data-structure,
and optimizing this storage model is part of our future work.

Finally, for the time-window-reward model, the temporal
weight function would need to include the task identifier, to
allow for the differentiation between multiple tasks on the
same location. The study of this graph variant is part of
ongoing work, which is out of the scope of this paper.



III. ROUTING AND CENTRALITY ON WEIGHT EVOLVING
TEMPORAL GRAPHS

Since Weight Evolving Temporal (WET) graphs present an
efficient method to model mobility fields in a mobile crowd-
sensing setting, appropriate routing and centrality models need
to be defined for such graphs.

A. Spatio-Temporal Routing on WET Graphs

Consider an MCS platform participant, who has a prede-
termined itinerary, i.e., start and end points, and who is
willing to complete a few spatio-temporal tasks on the way.
For such a participant, existing routing algorithms would not
be suitable, since they would prefer a route that maximizes
the reward collected from completing tasks, while remaining
in the confines of their itinerary constraints.

1) Problem Definition: Given a WET graph, G, repre-
senting the mobility field as well as the rewards of tasks
on that field, and a participant’s spatio-temporal endpoints,
(Vstarts tstart) and (Vend, tend), the objective of routing is to
find the optimal route between these endpoints that maximizes
the reward collected from tasks completed on the way. A
spatio-temporal task can be completed only if its location is
traversed within its specified time. In other words, and without
loss of generality, the objective is to maximize the total reward
collected from visiting various WET graph vertices.

Unlike the Orienteering problem [7], the optimal route in
this model allows for cycles and staying at nodes, as long as
the spatio-temporal constraints of the journey are not violated.
In other words, the participant must leave from vgsq,+ nOt
before ti4rt, and reach their destination, v.,q, at a time no
later than t.,4. Thus, preventing endless cycles and starvation
of nodes.

2) Routing Algorithms on WET Graphs: In this section,
we define optimal routing algorithms for WET graphs with
instantaneous-reward tasks and steady-reward tasks. The rout-
ing algorithm for WET graphs with time-window-reward tasks
is part of previous work in [1].

1) Instantaneous-Reward Tasks.

For a WET graph with instantaneous tasks, a dynamic program
can be defined to optimally solve the routing problem, with a
recurrence as shown in (1).

OPT(v,t) = Z w(r,v,t)+
1<r<R

max{OPT(v, t—1),

maquNeighbor(v){OPT(u7t - 1)}} (D

where the optimal reward can be computed by evaluating
OPT (vena, Tmax).

We define the bottom-up Algorithm 1 to solve the recurrence
in (1), in which a 2-dimensional array can be used to keep
track of the optimal reward collected with every time step
on the route, requiring a space complexity of O(T},42|V]).

The time complexity of the algorithm can be improved from
O(Trmaz|V|?) to O(Tynaz|E]) by adopting constrained time-
ordered graphs, which are used to effectively represent tem-
poral graphs as directed graphs.

In a time-ordered graph [13], GT = (VT, ET—1), vertices
are tagged with the time step, and edges represent single time
step traversals between adjacent vertices on the original graph.
We slightly modify this definition to create a constrained time-
ordered graph based on the spatio-temporal constraints of
the route. For the spatio-temporal endpoints, (vsqrt, 1) and
(Vend, Trmaz ), @ graph with Ty, time slices is generated. For
t = 1, only vstqr¢ 1S included, and for each t € 2.. 7,44, @
vertex v! is included iff it has edges from some node ut~L, or
it’s the same vertex, and the distance from that vertex v to vepqg
is at most T;,4, — t. If the pair-wise distances is known, the
complexity of constructing a constrained time-ordered graph
is O(Thaz|E))-

Algorithm 1 Optimal reward-maximizing routing on WET
graphs with instantaneous tasks.
Input: G = (V, E,w), (Ustart, Vend) in
Output: Optimal routes from v4,, to all destinations out
1: Create the time-ordered graph G7mas from G
2: Create array M of size (|V| X Tpnaz)
3: for t =2 to T}, do

4. for each vertex v € V! do

5 for each vertex u € V=1 st (u,v) € B~ do
6: Choose u with maximum M [u,t — 1]

7 end for

8 Mlv,t] = Mu,t — 1]+ >, w(r,v,t)

9: end for

10: end for

11: return M

As mentioned above, using constrained time-ordered graphs
reduces the complexity of the Algorithm 1 to O(T}a4|E|).

2) Steady-Reward Tasks.

With steady tasks, a value is associated with a vertex in the
graph for the duration of the entire time horizon. However,
since the weight of a vertex should only be counted once on
the journey, no matter how many times it has been visited, we
need to incorporate an extra data structure to keep track of all
vertices visited, i.e. tasks completed, throughout the journey.
A modified version of the proposed algorithm is presented in
Algorithm 2. The optimality of this algorithm can be proven
similarly as above.

3) Discussion.
More Types of Graphs: For graphs with variable edge costs,
i.e., not of the same length, the recurrence defined above can
be modified to,



Algorithm 2 Optimal reward-maximizing routing on WET
graphs with steady tasks.
Imput: G = (V, E,w), (Ustart, Vend) in
QOutput: Optimal routes from vy, to all destinations out
1: Create the time-ordered graph G7mas from G
2: Create array M of size (|V| X Trnax)
3: Create array N of size (V| X Thnaq)
4: Set N[v,t] = v for all v and ¢
5: for t =2 to T},,4, do
6: for each vertex v € V' do
7: for each vertex u € V=1 s.t. (u,v) € B~ do
8
9

Only consider u s.t. v ¢ Nu,t — 1]
Choose v with maximum M [u,t — 1]

10: end for

11: Mlv,t] = Mu,t = 1]+ >, w(r,v,t)
12: Nv,t] = Nu,t — 1] + NJv, ]

13:  end for

14: end for

15: return M

OPT(v,t) = Z w(r, v, t)+

1<r<R

max{OPT(v, t—1),

maquNeighbor(v){OPT(uvt - C(’LL7 ’U)}} (2

In which ¢(u, v) represents the cost, in time steps, to traverse
the edge between adjacent nodes u and v.

Optimality: All algorithms presented above always produce
the optimal route, due to the nature of the dynamic program
defined by the recurrences in Equations 1 and 2.

B. Centrality on WET Graphs

Since WET graphs are defined to capture the evolving nature
of task rewards in an MCS platform, node / vertex centrality
needs to be redefined to reflect its degree of popularity. In
other words, given a WET graph representing available tasks
with their associated rewards in an MCS platform with a set
of roaming participants, more central nodes are those which
have a higher chance of being traversed by these participants.

1) Coverage Centrality: An efficient centrality measure for
WET graphs should compute centrality in terms of both the
graph structure and the spatio-temporal tasks on that graph.
Accordingly, we define the Coverage Centrality measure,
which captures the frequency of traversing a node given a
set of spatio-temporal tasks on a WET graph.

The definition of Coverage Centrality, as shown in (3), is
adopted from the classic definition of Betweenness Centrality
[6], which is defined as the ratio between the number of
optimal routes that pass through the node, and the total number
of optimal routes between all pairs of endpoints on the graph.
However, Coverage Centrality differs from Betweenness Cen-
trality in two main aspects due to the nature of WET graphs.
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Fig. 4. An example with a 2D grid graph and 3 tasks placed on vertices with
equal closeness and betweenness centrality measures. The advantage of the
coverage centrality measure is that not only does it consider the graph structure
when measuring centrality, but also the distribution of spatio-temporal tasks
on the graph.

First, WET graphs are temporal in nature and the routes needs
to be spatio-temporal, not just spatial. Second, optimal routes
on WET graphs are not simple shortest path routes, but reward-
maximizing routes, since the main goal of an participant
traversing the graph would be to complete tasks collecting
the maximum possible reward.

3)

coverage(v) = 2 9(i,git Tonaz) ™0 (8 5, Timaa)
Zv(i7j7t7Tm,a,m) ﬂ-(i’ j? tv Tma:n)

In which (¢,j,t,T)ne.) represents a tuple of spatio-
temporal endpoints and can be further expanded
0 Dliev 2 jev 2a<i<T 2A<T,,,<r-  1he  function
(i, j,t, Tmar) Tepresents the number of optimal routes
between the spatio-temporal endpoints, (i,t) and (j, t+Trmaz ).
and 7, (¢, J,t, Tinae) represents the number of optimal routes
between the spatio-temporal endpoints, (4,¢) and (j, t+Tnaq),
which includes the vertex v.

We illustrate the significance of this measure in the example
in Fig. 4. In this small example, we present a 4 x 4 2D
grid graph, with 3 tasks placed at three different locations
that typically have equal values of betweenness and closeness
centrality. However, the existence of these tasks leads to
variable coverage centrality as shown.

IV. ONLINE TASK ALLOCATION IN PREDICTABLE MOBILE
CROWDSENSING PLATFORMS

In a predictable mobile crowdsensing setting, participating
agents are assumed to have well-defined itineraries, in the form
of spatio-temporal end-points. In such a setting, participants
are constrained by their itineraries, and prefer to maximize the
reward collected from completing tasks. To achieve maximum
task coverage, i.e., completion of tasks, MCS platforms allo-
cate the spatio-temporal tasks to participants based on their
itineraries[23, 1]. In this section, we propose two online task
allocation mechanisms based on the WET graph model defined
above, with an objective of maximizing task completion in
predicatable MCS platforms.



A. Individual Task Allocation

In this task allocation mechanism, the platform assigns tasks
to a participant as they would have picked them selfishly. In
other words, when a participant is ready to start their journey,
the mechanism computes the optimal spatio-temporal route,
as presented in Algorithms 1 and 2 above, for the participant
based on their itinerary.

The advantage of this mechanism is that it provides the
participants with routes that they would have selfishly chosen
themselves. However, it lacks in participant coordination,
which might lead to less than desirable coverage of tasks.

B. Centrality-Based Task Allocation

An alternative mechanism is to consider the popularity of
task locations before allocating them to nearby agents, which
can be achieved by using the defined coverage centrality
measure during the allocation process. In this task allocation
mechanism, tasks are sorted, in increasing order, based on
the coverage centrality measure of their location node. Then,
each agent is assigned tasks, in order, if they are feasible, i.e.,
the tasks can be completed within the participant’s itinerary
constraints.

By sorting the tasks in an increasing order according
the centrality coverage of their corresponding locations, the
platform can assure the allocation of tasks in unpopular loca-
tions/times, which are less likely to be picked by participants
willingly, thus leading to higher task coverage.

V. EVALUATION RESULTS

In this section, we evaluate the proposed centrality measure,
and its effectiveness on online task allocation in mobile crowd
sensing systems.

A. Simulation Setting

Due to the lack of crowdsensing datasets, with recorded sets
of spatio-temporal tasks, we generate random sets of spatio-
temporal tasks on various graph structures. Thus, creating a
diverse set of WET graph instances, on which we measure the
coverage centrality of all nodes of the graph. Then, to evaluate
the effectiveness of these metrics on optimizing task allocation,
we generate a set of spatio-temporal end-points, representing
roaming participants. All simulations were performed on a
Windows 10 computer, with Intel Core i5 and 8GB of RAM.

Task Model. Tasks are created with randomly chosen lo-
cations, spatially distributed randomly over the mobility field,
and with temporal demand that is generated according to an
exponential distribution with a mean that is a parameter of the
simulation. For the experiments in this paper, the mean used
is 0.5.

Agent Model. For the purposes of this paper, we generate
participants with randomly chosen locations, distributed over
the mobility field, and with temporal demand that is generated
according to an exponential distribution with a mean that is a
parameter of the simulation.

Evaluation Metrics. For the first set of experiments, we
measure the betweenness centrality and closeness centrality,

as defined in [6]. We also measure the coverage centrality,
as defined above, and task centrality, which we define as the
ratio between the tasks incident on the node and all the tasks
available. For the second set of experiments, we measure the
system’s participation rate, and task coverage. The system’s
participation rate is the ratio between participants generating
revenue and the total number of participants, and its task
coverage is the ratio between completed tasks and all available
tasks.

B. Statistics of Coverage Centrality

In this set of experiments, we work with four different
types of graphs, with properties presented in Table I. For each
graph, we generate a set of tasks with varying spatio-temporal
constraints. Then, we compute various centrality measures
over those graphs and compare them against each other.

TABLE I
GRAPHS USED IN THE FIRST SET OF EXPERIMENTS.
Graph | Type V] [E]
A Grid graph 16 to 36 | 24 to 60
B Krackhardt Kite Social Network 10 18
C Chvatal graph 12 24
D Tutte graph 46 69

We start our experiments with finding the correlation be-
tween all centrality measures over all these graphs. For each
graph, we generate a set of 50 tasks uniformly distributed
over space and time, except for the Tutte graph for which we
generate 100 tasks due to its size. We compute the correlation
between the various centrality measures, and present the
results in Tables II - V. We note that the purpose of these
experiments is to emphasize the effect of even the smallest
set of tasks on node centrality, as well as its dependency on
the graph structure.

TABLE II
COMPARISON BETWEEN CENTRALITY MEASURES FOR GRID GRAPH WITH
16 NODES.
Closeness | Betweenness | Coverage | Task
Closeness C. 0.997 -0.02 0.486
Betweenness C. -0.03 0.485
Coverage C. 0.335
TABLE I
COMPARISON BETWEEN CENTRALITY MEASURES FOR GRID GRAPH WITH
36 NODES.
Closeness | Betweenness | Coverage | Task
Closeness C. 0.991 0.087 0.074
Betweenness C. 0.093 0.076
Coverage C. 0.42

According to the definition of the coverage centrality mea-
sure, it is expected not to correlate with other measures on
structured graphs such as 2D grid graphs, as shown in Tables
IT and III. This is due to the fact that it doesn’t only depend
on the graph structure, but also the spatio-temporal properties
of the tasks on the graph. However, the correlation increases



TABLE IV
COMPARISON BETWEEN CENTRALITY MEASURES FOR THE KRACKHARDT
KITE SOCIAL NETWORK.

Closeness | Betweenness | Coverage | Task
Closeness C. 0.519 0.772 0.422
Betweenness C. 0.502 -0.01
Coverage C. 0.239

TABLE V
COMPARISON BETWEEN CENTRALITY MEASURES FOR THE TUTTE GRAPH.

Closeness | Betweenness | Coverage | Task
Closeness C. 0.956 0.7 0.2
Betweenness C. 0.7 0.184
Coverage C. 0.284

slightly for small non-structured graphs, as shown in Table IV,
and then increases with larger less dense graphs, as shown for
the Tutte graph in Table V. The increased correlation is due
to the limited number of routes between pairs of nodes on
the graph, leading to a higher similarity between the shortest
paths and the reward-maximizing paths on the graph.

To better understand our proposed centrality measure, we
vary the number of tasks on the graph from 5 tasks to 65 tasks.
Then, we further compare the centrality measures against each
other, on both a 2D grid graph of 16 nodes and the Kite graph.
For all the results below, we show the measurements collected
from single instances, since similar patterns of correlations
have been observed in other instances of similar settings.
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Fig. 5. In a 2D grid graph, the closeness and betweenness centrality measures
fail to compare to the coverage centrality measure, since they ignore the
evolving node weights on the graph.

In Fig. 5, we present the correlation between the closeness
and betweenness centrality measures and the coverage cen-
trality measure on a 2D grid graph with 16 nodes. Due to the
patterned structure of grid graphs, the closeness and between-
ness measures correlate highly with each other. However, they
both do not correlate with the coverage centrality measure,
which indicates the inadequacy of these measures in highly
structured graphs, and the need for a centrality measure that
also considers the spatio-temporal properties of tasks on these
graphs.

To further evaluate these results we compare all three cen-
trality measures to the task centrality on the graph, and present
the results in Fig. 6. Although the coverage centrality measure
doesn’t capture the task centrality adequately for a very small
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Fig. 6. The coverage centrality measure correlates the best with the task
centrality on the graph, while keeping into consideration the structure of the
graph itself.

number of tasks, its correlation improves dramatically with
an increase in the number of tasks, while the other measures
degrade in correlation. We note that the coverage centrality
measure is not expected to correlate perfectly with the task
centrality, since it also considers the graph structure in its
computation.
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Fig. 7. In graphs with a less patterned structure, the correlation between the
centrality measures is higher.

We repeat the experiment on the Krackhardt Kite Social
Network graph, with results shown in Fig. 7 and Fig. 8. Due
to the less structured nature of the kite graph, the correlation
between the closeness and betweenness measure and the
coverage measure is high. However, these classical centrality
measures still do not correlate highly with the task centrality
on the graph.
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Fig. 8. However, the coverage centrality measure still has the highest
correlation with the task centrality on the graph.



C. Effectiveness of Coverage Centrality on Task Allocation in
MCS

According to the definition of coverage centrality, it should
improve the task allocation process in an online MCS plat-
form; specifically increasing the task coverage. To evaluate the
effectiveness of the task allocation mechanisms defined above,
we generate a small set of experiments to evaluate whether the
proposed measure has any effect on task allocation.

In these experiments, we generate a set of 100 spatio-
temporal tasks on an 8 x 5 2D grid graph. Then, we generate
a set of spatio-temporal endpoints to simulate the mobile
participants available to complete the tasks in the platform.
Each participant is defined by its endpoints, as well as its
arrival time, to create an online dynamic system, with par-
ticipants arriving to the system at different times. The arrival
times of participants are randomized following an exponential
distribution with a mean of 10. We use the flexibility factor
as a method of relaxing the temporal constraints of an par-
ticipant, i.e., an participant with a flexibility factor of x has
xxdistance(Vstart, Vend) time steps to reach their destination.

We compare the performance of the proposed mechanisms,
Individual Task Allocation (online-optimal) and Centrality-
Based Task Allocation (online-greedy) against each other.
Moreover, we compare them against an offline algorithm
(max-detour)?, in which all the information of participants and
tasks are known a priori. In this mechanism, a participant
is assigned tasks that allows them to stretch the length of
their journey as much as possible. The intuition behind this
approach is to maximize the length of participants’ routes as
much as possible, thus increasing task coverage.

The results in Fig. 9 represent the participation rate and
task coverage of the three mechanisms for a scenario with
only 10 roaming participants. We vary the flexibility factor of
the participant from 1 to 7. We chose such a small scenario
to eliminate the effect of participant density on task coverage.
Results show that the individual task allocation mechanism
(online-optimal) behaves similar to the offline mechanism,
which is expected since the optimal route for each individual
participant is the longer route consisting of the maximum
number of tasks. Moreover, the effectiveness of the centrality-
based task allocation is evident in the increased task coverage
ratio, even for such a small set of participants traversing the
graph.

The results in Fig. 10 represent the participation rate and
task coverage of the three mechanisms for a scenario with
30 roaming participants. Due to the number of participants
available on the mobility field, all mechanisms achieve almost
perfect task coverage. However, the centrality-based allocation
mechanism still proves superior, as it involves a smaller
number of participants for almost the same task coverage. This
could benefit MCS platforms with small budgets. Moreover,
the number of participants decreases as the participant flexibil-

2This offline mechanism is a slight variation for the one proposed in [1] to
accommodate tasks with equal rewards.
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Fig. 9. Through the application of a simple greedy mechanism based on
the proposed coverage centrality measure, the task coverage is improved
significantly with a reduced number of participants involved.

ity increases, which is a further indication of the effectiveness
of the proposed centrality measure.

VI. RELATED WORK

1) Graph Centrality: Traditional centrality measures are
defined for static graphs[6], or graph models that aggregate the
graph properties of temporal graphs into static models [10].

As for temporal graphs/networks, the centrality of a node
was measured based on number of shortest paths that pass
through that node in [20]. In [12], temporal graphs are modeled
as a sequence of static graphs, labeled with the time the edge
existed. In [13], the authors presented time-ordered graphs,
which is a powerful model for characterizing a temporal graph,
and redefined basic temporal centrality measures accordingly.
In [19], the notion of temporal vertices is defined, which are
robust against time scale changes, and efficiently compute
various centrality values.

More centrality measures have been proposed for temporal
graphs, as in [21, 17]. However, all of these measures are
not suitable for identifying central nodes in a temporal graph
model such as WET graphs, since their main focus is on the
evolution of graph edges and the graph’s connectivity over
time.

2) Task Allocation in MCS: In existing MCS platforms
systems, as in [18, 3], the task allocation decision is performed
solely by the participants, and the system cannot dictate
and/or predict their behavior. Our work differs in that we
aim to coordinate the mobility of participating agents with an
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Fig. 10. Similarly , for a set of 30 participants, the task coverage is as high as
other mechanisms, with a significantly less number of participants involved.

objective to maximize the total system performance. Recently,
there has been a focus on improving agent participation in
MCS platforms [22, 2]. This has been done through offer-
ing incentive-compatible payments for participating agents
through game-theoretic approaches [24], and auction-based
allocation of tasks [5]. These approaches do not consider
spatio-temporal tasks, nor do they optimize for a general
system objective. Other approaches, such as in [15], focus
on optimizing task allocation, but neglect to consider agent
incentives to participate in the system, while in [11], the
focus is on adjusting task pricing to attract more participants.
In this work, we focus on optimizing task coverage through
formalizing optimal routing algorithms for efficient spatio-
temporal task allocation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we defined Weight Evolving Temporal (WET)
graphs that model the distribution of spatio-temporal tasks
on the mobility field within MCS platforms. The novelty
of this graph model lies in the definition of the temporal
weight function, which represents the evolution of node labels
over time. Moreover, we presented spatio-temporal routing
algorithms on WET graphs, and redefined the definition of
node centrality accordingly, which can be used in online task
allocation to improve task coverage.

The future direction of this work is two-fold; theoretical and
practical. On the theoretical end, we plan to further analyze
the properties and algorithms on WET graphs, with a focus on
WET graphs with evolving structures. On the practical side,

we plan to further study the effect of the proposed routing
algorithms and centrality measures on task allocation within
MCS platforms, and to further investigate the applicability
of WET graphs in other domains such as traffic and GIS
networks.
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