

Polypentenamer Renaissance: Challenges and Opportunities

William J. Neary and Justin G. Kennemur*

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States

ABSTRACT: This Viewpoint highlights the viability and increasing variety of functionalized polypentenamers as unique and valuable materials created through enthalpy-driven ring-opening metathesis polymerization (ROMP) of low ring strain cyclopentene monomers. The terms “low ring strain” and “enthalpy-driven” are typically conflicting ideologies for successful ROMP; however, these monomers possess a heightened sensitivity to reaction conditions, which may be leveraged in a number of ways to provide performance elastomers with good yield and precise functional topologies. Over the last several years, a rekindled interest in these systems has led to a renaissance of research aimed at improving their synthesis and exploring their potential. Their chemistry, applications, and future outlook are discussed.

The field of polyolefins is seeded in even-integer branch topologies where vinyl, diene, and α -olefin monomers propagate exactly 2 or 4 additional carbons with each repeating unit. Copolymerization with ethylene to increase branch distances only continues to proliferate an even-numbered spacing while lacking sequence precision. When thinking about our current understanding of the structure–property relationships for polymeric systems, the odd-numbered branch topology is significantly less explored. The interest in such materials may be rationalized by the influences of the odd–even effect in a multitude of phenomenologies throughout chemistry.¹ A great example of odd–even effects in polymer science can be found from polycondensation polymers featuring varying lengths of aliphatic segments within the comonomers used.² Their semicrystalline melting temperatures can vary considerably if these segments contain an odd or even number of carbons.² Similarly, the 2-carbon branch topology of isotactic and syndiotactic polyolefins is known to provide a rich variety of semicrystalline polymers;^{3,4} it begs the question of how crystalline properties would change if an isotactic branch was spaced every three carbons? Every five? The influence of odd–even effects on polymers may stretch even further than systematic crystalline packing. For example, *n*-alkanes, the most fundamental platform for studying odd–even effects, have been recently found to undergo dynamic changes in their translational diffusion just above the melting point.⁵ These changes depended on even- or odd-numbered carbons within a homologous series.⁵ Would amorphous polymer melts also be susceptible to differences in thermal and dynamic quantities resulting from odd or even branch spacing? To answer these questions, in addition to exploration of completely new materials, access to precise microstructures that feature the odd-branch spacing is needed.

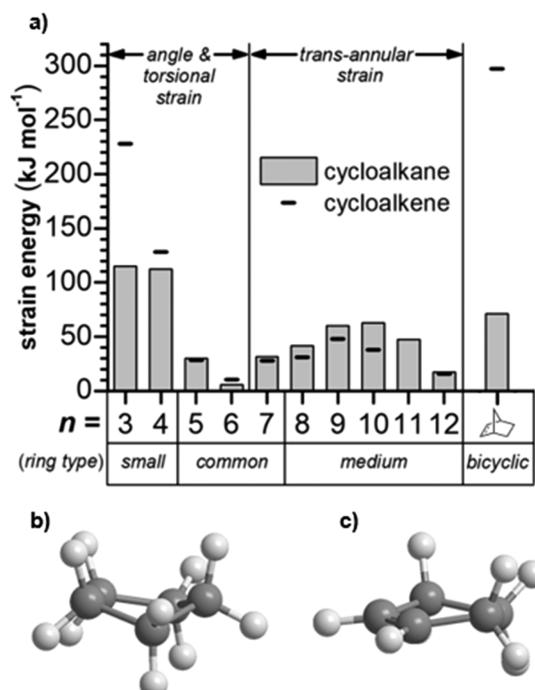
Ring-opening metathesis polymerization (ROMP) and acyclic diene metathesis (ADMET) polymerization are power-

ful methods for producing polyalkenamers with a variety of chemistries, branch periodicities, and architectures.^{6–9} Substituents on odd-numbered cycloolefin rings or α,ω -dienes can produce odd-numbered, and potentially precise, branch topologies, while subsequent hydrogenation of the backbone olefins produces linear polyethylene analogues. This Viewpoint will focus on the five-carbon topology (polypentenamers) which has historically presented synthetic challenges for both ADMET and ROMP. Recent progress in the field of polypentenamers reveals promise to overcome many of these hurdles and introduces an almost unexplored variety of precision materials. A scope of the frontlines and a viewpoint of future needs are discussed.

Challenges with ADMET. A large variety of precision polyolefins with odd-branch spacing have been successfully reported from ADMET polymerization of large linear α,ω -dienes.^{8,10,11} After hydrogenation, many of these materials feature large “runs” of polyethylene with precise (or purposefully imprecise) branches, making ADMET an ideal tool for exploring crystallization behavior from varying distances along the chain.^{8,11–13} However, polypentenamers from ADMET of 1,6-heptadienes present significant challenges over the much larger α,ω -diene monomers typically used.⁸ The first stems from the Carothers equation for step-growth polymerizations where smaller monomers will require a more stringent extent of reaction to obtain higher molar mass.¹⁴ To target a polypentenamer with a number-average molar mass (M_n) of ~ 52 kg mol^{−1}, approximately 9,987 out of every 10,000 monomer olefins on 1,6-heptadiene (accounting for the loss of ethylene) would need to be successfully polymerized. This assumes that no cyclization products are occurring and

Received: November 15, 2018

Accepted: December 12, 2018


Published: December 20, 2018

segues into the biggest challenge with ADMET: cyclization of 1,6-heptadienes into cyclopentene is a highly competitive side reaction.⁸ For example, Li et al. recently reported that ADMET of 4-acetoxy-1,6-heptadiene at 60 °C produced 4-acetoxycyclopentene as the only product.¹⁵ Ring-closing metathesis (RCM) over ADMET is favorable due to the low ring strain of cyclopentene and is also bolstered by Thorpe–Ingold effects.¹⁶ As will be discussed, this attribute is also a key challenge in the efficacy of ROMP. An alternative strategy was reported by Baughman et al. where 4,9-dimethyldodeca-1,11-diene polymerizes into a 10-carbon repeating unit with atactic methyl branches judiciously placed at every fifth carbon following hydrogenation.¹⁷ One of the defining features of this polymer was that it was amorphous, unlike when an atactic methyl branch is placed at every 7 carbons.¹⁷ Therefore, the five-carbon periodicity is positioned to produce amorphous precision polyolefins, which are far less researched. A substantial limitation of this approach was the laborious multistep and low-yielding synthesis of 4,9-disubstituted α,ω -dodecadienes. No other materials featuring a five-carbon branch periodicity from ADMET have followed.

ROMP and Ring Strain. ROMP has gained considerably more interest as a means to access polypentenamers. The equilibrium chain-growth mechanism of ROMP also presents the opportunity for living-like character (targeted molar mass and narrow dispersity (D)), which has been realized over the last several decades through continuous catalyst development and optimization of reaction conditions.^{6,18–21} During this maturation, the use of high-strain bicyclic or cyclic monomers (e.g., norbornenes (NB)s, oxanorbornenes (ONB)s, cyclobutenes (CB)s, etc.) has yielded high conversions at common temperatures (20–80 °C).⁶ These monomers circumvent challenges associated with the equilibrium mechanism which is driven by the release of their high ring strain. Earlier work by the Schrock group,^{22,23} and more recently by the Xia group,²⁴ has shown success in producing a three-carbon repeating unit from substituted and highly strained cyclopropenes, which is ushering in new opportunities to explore the 3-carbon topology. Our group, and others discussed herein, has been focusing on the 5-carbon topology. Before discussing polypentenamers, it is necessary to first consider why cyclopentenes have been historically challenging. Figure 1a displays ring strain values of cycloalkanes (bars) and cycloalkenes (lines) when traversing the number of carbons in the ring (n). A reduction in ring strain directly correlates to a reduction in the absolute value of the enthalpy of polymerization (ΔH_p) and therefore challenges the exergonic character of ROMP in accordance to the Gibbs free energy equation of equilibrium polymerization (eq 1).

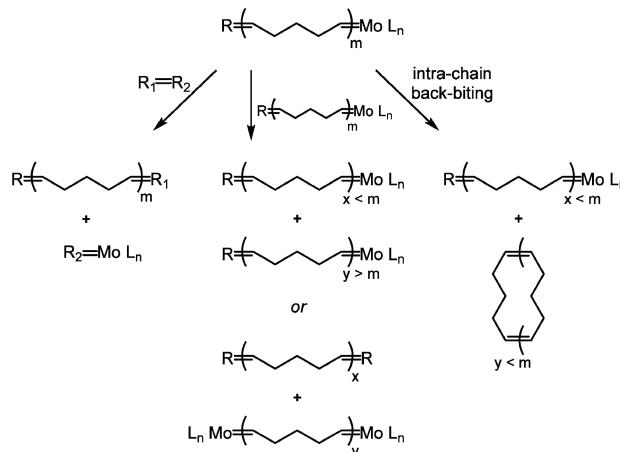
$$\Delta G_p = \Delta H_p - T\Delta S_p \quad (1)$$

Increasing n from 3 to 12 results in significant changes in the overall ring strain. The source of strain traverses bond angle (Baeyer) strain ($n = 3, 4$), torsional (Pitzer) strain ($n = 5, 6$), and *trans*-annular (Prelog) strain ($n > 6$).²⁵ Cyclohexene has a negligible ring strain (<10.5 kJ mol⁻¹)²⁶ and, coupled with the entropic penalty associated with polymerization, has a very low ceiling temperature ($T_c < -116$ °C at 7.5 M).²⁷ The entropy of polymerization (ΔS_p) also plays an important role with increasing n . The general trend is that the entropic penalty associated with ROMP decreases as rings become larger and benefit more from gaining conformational entropy in the ring-opened state. At very large and unstrained ring sizes ($n \geq 12$),

Figure 1. (a) Ring strain energy values for cyclic alkanes (bars) and alkenes (dashes) with varying number of ring carbons (n) from 3 to 12. Ball–stick 3D renderings of cyclopentane (b) and cyclopentene (c) illustrate the sources of torsional (eclipsed) strain and hyperstability of the alkene. Strain values were gathered from refs 25 and 26.

14), ROMP can be entirely driven by entropy.^{28–30} Furthermore, the *trans*-annular strain of *cis*-cyclooctene is quite low ($-\Delta H_p \approx 31.0$ kJ mol⁻¹),³¹ yet these monomers polymerize readily due to a favorable entropic penalty ($-\Delta S_p \approx 9$ J K⁻¹ mol⁻¹).³² Cyclopentene (CP) benefits from neither a high strain nor a favorable entropy ($-\Delta S_p \approx 70 \pm 6$ J K⁻¹ mol⁻¹)^{33–35} which underpins the challenge to produce polypentenamers to appreciable conversions.³⁶ As seen in Figure 1b, the strain of cyclopentane is mostly torsional due to the unfavorable eclipsed conformation of substituents from neighboring ring carbons. For CP (Figure 1c), the planarity of the olefin reduces the total quantity of eclipsed hydrogens and helps explain why CP is a hyperstable olefin (i.e., CP is *less* strained than cyclopentane) even though the sp^2 -hybridized carbons are experiencing higher angular strain.²⁵ Building on this, one can hypothesize an improvement of CP torsional strain through the use of bulkier substituents on the 3, 4, or 5 position of the ring; however, this idea works in opposition to Thorpe–Ingold or *gem*-dimethyl effects upon ring opening, making definitive predictions on the efficacy of ROMP on substituted CP derivatives an ongoing challenge.^{37–39} As seen in eq 1, a reduction in the absolute value of ΔH_p results in a heightened importance and sensitivity that reaction temperature (T) has on ΔG_p . Therefore, reduced T coupled with other important dynamic equilibrium parameters (monomer concentration or pressure) all stand to play a vital role in the efficacy of successful ROMP for low strain species. This is an important concept suggesting high conversions are possible through the modification of reaction conditions outside those typically used for ROMP of higher strain monomers.

Early Discoveries of PCP. The sentiment of “polypentenamer renaissance” stems from the fact that ring-opening


polymerization on CP dates back to the discoveries of Herbert Eleuterio (DuPont) in 1957.⁴⁰ Over the next decade, this field was heavily researched by Dall'Asta (Montedison), Natta (Montedison), Ofstead (Goodyear), Calderon (Goodyear), and Uraneck (Phillips), to name a few.⁴ Specific interest in this polypentenamer (PCP), also described as poly(1-pentene), was a result of the natural rubber shortages during WWII. Many early patents and papers were focused on the physical and mechanical properties of PCP with varying *cis*/*trans* content and its inherent similarities to natural rubber. Of particular note are its self-reinforcing properties (crystallization upon strain), low crystalline melting point ($T_m = 23^\circ\text{C}$) of the *trans*-polypentenamer, and robust cold-temperature performance.⁴ While this early work helped shape the utility of ROMP on CP, industrial scaling of these polymers was never brought to fruition (although pilot plants were in place) due to steep economic costs of obtaining cyclopentene from cyclopentadiene at the time.⁴

Research on PCP largely subsided until the late 1980s when well-defined metal carbenes (i.e., "Schrock-type" Mo and W or "Grubbs-type" Ru) led to the mechanistic understanding of the metathesis reaction proposed by Chauvin⁴¹ and the eventual maturation of ADMET and ROMP. During this time, CP and functional derivatives took a backseat to higher ring-strain alternatives, but nevertheless, piecemeal reports began to elucidate their efficacy and potential. Schrock et al. reported ROMP of CP from $\text{W}(\text{CH}-t\text{-Bu})(\text{N-Ar})(\text{O}-t\text{-Bu})_2$ catalyst and achieved high monomer conversion (95%) at -40°C at an initial monomer concentration (M_0) of 3.4 M in toluene.³⁵ Dispersities (D) of PCP were notably less at -40°C (<1.23) than at 25°C (>1.5), suggesting better control at lower temperatures. Similar results were reported by Dounis et al. using the same catalyst.⁴² Register and co-workers reported a series of PCP and PCP-containing block copolymer (BCP) investigations using $\text{Mo}(\text{CH-Me}_2\text{Ph})(\text{N-Ar})(\text{O}-t\text{-Bu})_2$ catalyst. Trzaska et al.⁴³ first showed this catalyst is capable of producing narrow D of PCP through the use of an auxiliary ligand, trimethylphosphine (PMe_3), earlier used by Wu et al.,⁴⁴ that effectively reduces propagation rate with respect to initiation rate at room temperature. Hydrogenation of this PCP produced narrow D and perfectly linear polyethylene. This was further explored by Myers et al. as a segment in BCPs with polystyrene (PS)⁴⁵ or hydrogenated PNB.⁴⁶ Although PMe_3 helps moderate initiation over propagation, the chain-transfer reactions with internal olefins are still prominent and required termination at low conversions ($\leq \sim 30\%$)^{42,43} where the concentration of internal olefins remains low. Lee et al.⁴⁷ determined the rate of propagation to be 1600-fold faster than chain transfer, suggesting that manipulation of experimental conditions may reduce unwanted side reactions. This has recently been revisited and is discussed in the next section.

Exploration on PCP using Ru-based catalysts was scarce during the maturation of ROMP, and typically CP was explored as one of several monomers when determining the performance of new Grubbs catalysts.⁴⁸ Hejl et al. were the first to devote an experimental study to Ru-ROMP of low strain monomer species, which included CP and cycloheptene (CHp) derivatives using Grubbs first (G1), second (G2), and third (G3) generation catalysts.⁴⁹ Specifically for CP, the outcomes were consistent with equilibrium thermodynamics; bulk polymerizations (11.3 M) at 25°C produced the highest conversion ($\sim 85\%$), while dilution with CH_2Cl_2 resulted in less yield at the same temperature. It was also noted that G3

catalyst is sparingly soluble in neat CP, resulting in reduced performance. Nearly all of the polymerizations produced $D \geq 1.5$ regardless of dilution or catalyst choice. More recently, Tuba and Grubbs revisited ROMP of CP and explored lower temperatures for the first time while using Hoveyda–Grubbs second-generation catalyst (HG2).³⁴ Lower temperatures (0°C) resulted in high conversion (82%) even when moderately diluted (2.17 M) in toluene. However, resulting molar masses were much higher than theoretical, and high D (>1.7) was consistently produced. Here we note that, although the choice of catalyst will affect the initiation and propagation kinetics, monomer conversions should, in theory, be independent of catalyst and largely dependent on M_0 and temperature.³⁶

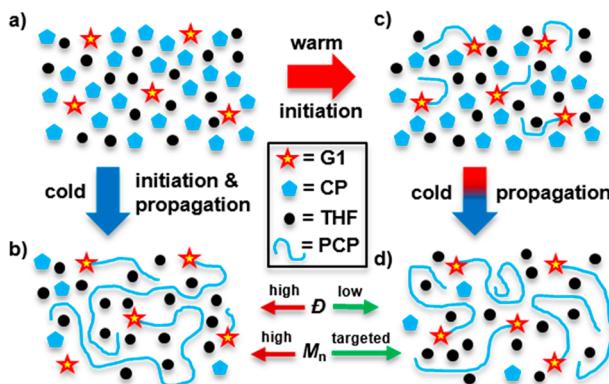

Synthetic Advancements for PCP. Aside from typical conditions required for living-like control over polymerization (e.g., rate of initiation \gg rate of propagation, absence of termination events), three modes of chain transfer are also prominent for ROMP of CP due to the low strain, decreased reactivity, and relative accessibility of the backbone olefins (Figure 2). Recently, large strides have been taken with regards

Figure 2. Deleterious acyclic metathesis reactions that lead to loss of living-like control. Left: chain transfer to olefin-containing small molecule (contaminant). Middle: Interchain cross metathesis. Right: Intrachain cross metathesis. Reprinted with permission from ref 50. Copyright 2017 American Chemical Society.

to mitigating these acyclic metathesis events. Mulhearn et al., using the Mo:PMMe_3 catalyst system described earlier, determined a kinetic model for controlling the rate of propagations versus inter- and intrachain cross metathesis (Figure 2).⁵⁰ This model accounted for the reversible binding rate of PMMe_3 to the active chain ends and, under optimized synthetic procedures, produced PCP at very high molar mass ($M_n > 150 \text{ kg mol}^{-1}$) while maintaining low D (≈ 1.15). Also reported is a very scrupulous method of CP purification to remove acyclic olefin impurities; their ability to undergo chain transfer (Figure 2, left) is a highly competitive side reaction, and their removal is critical for obtaining high M_n .⁵⁰ Although successful intra- and interchain metathesis (Figure 2, middle, right) is still a viable reaction for the highly active Mo catalysts, especially at ambient temperature. Their synthetic procedures required high dilution of the growing chain ends (i.e., high monomer to catalyst ratios) and termination at low conversions ($\sim 25\%$) where the concentration of PCP olefins remains low.⁵⁰

Ru-based catalysts are well-known to be less active, allowing for more functional group tolerance but seemingly at the expense of reduced performance on low-strain monomers and at colder temperatures. Due to the fact that high-strain monomers have been most actively used in Ru-ROMP, many studies involving kinetics and initiation of these catalysts have been performed at $\geq 25\text{ }^{\circ}\text{C}$ where high conversions are easily obtained. To further understand the behavior of Ru-based catalysts at lower temperatures, we investigated the progression of CP ROMP over time under a variety of conditions. It was discovered that a majority of the polymerizations, when initiated and propagated at $-15\text{ }^{\circ}\text{C} \leq T \leq 0\text{ }^{\circ}\text{C}$, exhibited a very high initial D which decreased over time.⁵¹ This suggests that initiation rate is slow compared to propagation rate, and this was further suggested by the final M_n being much higher than theoretical based on conversion (Figure 3a, to 3b).⁵¹

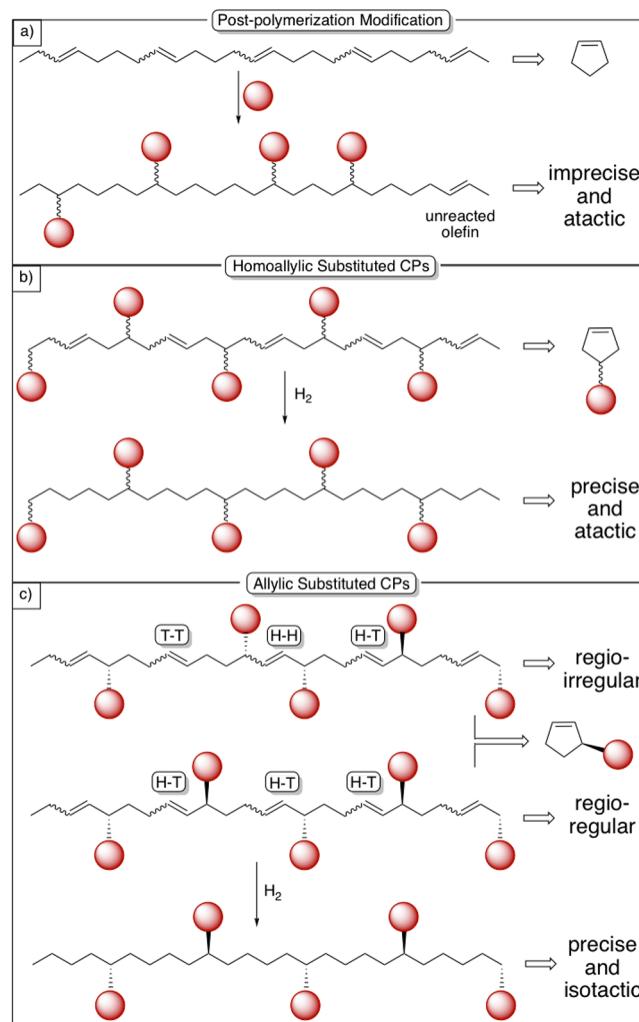


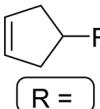
Figure 3. Cartoon concept of variable-temperature (VT) ROMP of CP using G1 in THF. Cold initiation and propagation (a to b) results in poor initiation, higher than theoretical M_n , and high D . Warm initiation (a to c) results in favorable initiation rate but low conversion. However, subsequent cooling of the reaction after warm equilibrium (c to d) continues propagation to high conversion. Since chain transfer is discovered to be sequestered at $0\text{ }^{\circ}\text{C}$, the result of VT-ROMP is targeted M_n , narrow D , and high conversions.

Based on these observations, we hypothesized that a higher starting temperature would suffice to initiate CP effectively, albeit to low conversion (Figure 3a to 3c), and then a subsequent cooling of the reaction would drive thermodynamics to higher conversions (Figure 3c to 3d). This technique, which we termed variable-temperature (VT) ROMP, was optimized through a design of experiments with varying catalysts and solvent used.⁵² Narrow D (~ 1.15) and targeted M_n ($< 5\%$ from theo.) were obtained when using G1 catalyst in THF solvent.⁵² Precedence in the literature suggests that THF can weakly coordinate to the G1 catalyst and slow propagation rates.^{53–56} This allows lower D during the warm initiation and also moderates the rate of propagation during cooling. An unexpected yet exciting outcome of this study was that narrow D is maintained for at least 5 h at $0\text{ }^{\circ}\text{C}$ using G1 and THF; it indicates that intra- and interchain transfer (Figure 2) is largely eliminated under these conditions.⁵² Due to its universality, the VT-ROMP method was also shown to be successful for other low-strain cycloalkane species with suitable ΔH_p for ROMP and presents a method for superior control while also obtaining high conversions.^{52,57} Other methodologies may also be successful in ROMP of CP. For example, Mugemana et al. showed that confinement of the Ru

catalyst on multiarmed polystyrene cores had a dramatic effect on improving G2 tolerance in air and providing a potential route to PCP under facile conditions.⁵⁸

Functionalizing the Five-Carbon Topology. Substituents on the CP ring result in varying possibilities for introducing functionality onto the polymer microstructure. Each presents challenges and opportunities depending on monomer design. The most straightforward method to functionalize PCP is to perform postpolymerization modification to the backbone olefins (Figure 4a). This strategy was

Figure 4. Microstructural outcomes of functionalized polypentenamers from (a) postpolymerization modification of PCP, (b) homoallylic-substituted CP monomer, and (c) enantiopure and allylic-substituted CP monomer.


the subject of extensive reports (hydrogenation, ionization, hydroformylation, etc.) through the 1970s.^{59–62} Recently, Buchmeiser and co-workers performed hydrobromination and hydroboration chemistry on PCP along with further modifications (hydroxylation, amination, and grafting) to access functional polar olefins with a large range of glass transition temperature, T_g values (-45 to $50\text{ }^{\circ}\text{C}$) depending on the type and extent of functionality.⁶³ Although an elegant and facile method for producing a variety of properties, precision topologies are lost due to the propensity for incomplete functionalization and nonregioselective alkene

addition (Figure 4a). Nevertheless, any olefin modification or cross-linking chemistries amenable to 1,4-polybutadiene rubbers should be equally facile for PCP.

Homoallylic Substituents. For precise five-carbon functional spacing, homoallylic-substituted CP monomers are the logical choice. The symmetry of the monomer guarantees precision regardless of the direction of monomer insertion on the metal–alkylidene (Figure 4b). The resulting polypentenamers contain *both* functionality and olefin chemistries. The latter will impart different properties depending on the *cis*/*trans* ratio and can be further cross-linked or chemically modified as discussed earlier. Mild hydrogenation produces polyethylene with exact five-carbon branching, making such materials model compounds for structure–property relationships of precision polyolefins bearing the odd-branch spacing. One limitation of the homoallylic substituent is that the achiral monomer is predicted to yield atactic polymers. The ability to produce a preferred tacticity would require governance on the direction of monomer insertion and may be possible from judiciously designed ROMP catalysts that are chiral or sterically hindered given that CP is prochiral and one face of the ring bears the substituent. However, such a strategy has yet to be reported.

A large majority of experimentally investigated CP monomers have featured the homoallylic substituent (Table 1). As discussed earlier, substitutions on the ring are likely to

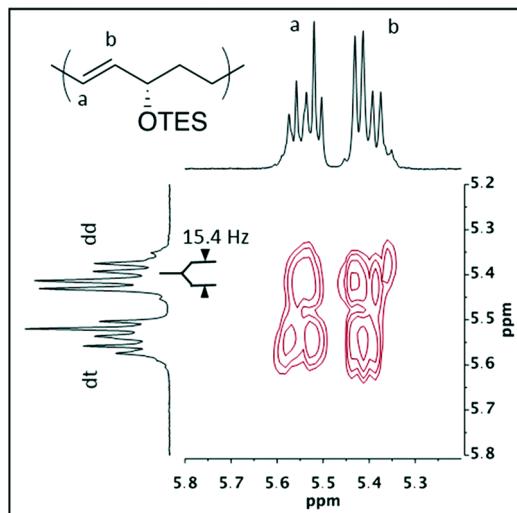
Table 1. Thermodynamic Results for Select Homoallylic-Substituted CP Monomers

ID	 R =	T_c (1 M)	% conv (2.25 M)			Ref.
			40 °C	0 °C	-20 °C	
1a	-OH	54	71	93	97	67
1b	-OH	49	61	81	88	68
2a	-H	29	38	83	93	34
2b	-H	35	50	83	91	68
3	$-\text{CO}_2\text{C}(\text{Me})_2\text{Br}$	30	41	84	93	57
4	$-\text{OSi}(\text{Me})_2(t\text{-Bu})$	30	42	83	92	68
5	-Ph	-5	0	47	75	51
6	$-\text{CO}_2\text{Bn}$	-14	0	27	64	68
7	-OBn	-14	0	35	63	68
8	$-\text{CH}_2\text{OBn}$	-16	0	30	60	68
9	$-\text{CH}_2\text{OH}$	-25	0	0	46	68
10	$-\text{CO}_2\text{Me}$	-26	0	4	46	68
11	-COOH	-35	0	0	29	68

complicate accurate predictions on ROMP thermodynamics. Al-Hashimi and Bazzi, in collaboration with Tuba and Grubbs, have been taking recent strides toward better prediction on ring strain values of substituted CP monomers using density function theory (DFT) calculations (B3LYP/6-31G).^{64–67} Their results predicted 3-cyclopenten-1-ol (1) to have a

higher ring strain ($\Delta H_{\text{calc}} = 28.33 \text{ kJ mol}^{-1}$) than unsubstituted CP ($\Delta H_{\text{calc}} = 23.76 \text{ kJ mol}^{-1}$). Experimental results confirmed 1 to have a higher ΔH_p (25.94 kJ mol^{-1}) versus CP ($\Delta H_p = 22.59 \text{ kJ mol}^{-1}$).⁶⁷ While these isodesmic equations provide relative strain comparisons between various substituted CP monomers, they may not fully encapsulate all of the thermodynamics associated with ROMP. Experimental determination of thermodynamic values simultaneously provides both ΔH_p and ΔS_p and has also provided additional insight into the sensitivity of these reactions to T .

Table 1 displays ceiling temperature, T_c , values ($M_0 = 1 \text{ M}$) for a variety of homoallylic CP monomers that have been investigated experimentally. The ΔH_p and ΔS_p values were determined by monitoring equilibrium monomer concentration, $[M]_e$, as a function of inverse T by VT-NMR using the linear expression shown in eq 2.^{34,51,57,67,68}


$$\ln[M]_e = \frac{\Delta H_p}{RT} - \frac{\Delta S_p}{R} \quad (2)$$

These thermodynamic parameters allow further calculation of the anticipated % conversion at varying T and M_0 , which is beneficial for rational design strategies. Exemplified in Table 1, the substituents on CP have a dramatic effect on their ROMP thermodynamics, and the size of the substituent alone does not appear to have a direct correlation on their polymerizability. For example, when comparing the bulky bromoisobutryl (BIB) substituent (3) with the significantly less bulky hydroxymethyl (9),⁶⁹ the latter has a T_c that is 55 °C lower! Table 1 also shows the pronounced sensitivity of CP ROMP to both concentration and temperature. The benzyloxymethyl substituent (8), while having a T_c of -16 °C at 1 M, is predicted to increase from 0 to 60% conversion between 40 and -20 °C, respectively, at 2.25 M. Here we note that 2.25 M was chosen for these comparisons as this was the concentration most often used during our VT-ROMP studies.⁵² Even higher conversions can be expected when increasing monomer concentrations closer to bulk. Finally, a comparison of the thermodynamic parameters determined from two different studies on (1) and (2) is shown. These comparisons show the sensitivity of these polymerizations to different thermodynamic outcomes, especially for 2a and 2b which were performed in the same solvent (THF) and with the same catalyst (G2).^{67,68}

Allylic Substituents. CP monomers with allylic substituents are significantly less explored and present unique opportunities for highly precise and isotactic polymers. An overarching challenge lies with the deleterious effects that the substituents can have on the polymerizability of the monomer. Certain groups, such as acetoxy, render the monomer incapable of ROMP even at colder temperatures and higher concentrations.^{49,70} On the other hand, methyl,⁷¹ hydroxyl,⁷⁰ and trialkylsiloxy⁷⁰ substituents have been shown to be viable for ROMP to moderate conversions. Since allylic-substituted monomers are chiral, this presents the opportunity to polymerize enantiopure monomers into isotactic polypentenamers when coupled with regioselective (e.g., head-to-tail) monomer insertion (Figure 4c). An early communication by Sita bolstered this concept through successful ROMP of (R)-3-methylcyclopentene using a Schrock Mo-type catalyst yielding ~60% conversion at -30 °C.⁷¹ The resulting polypentenamers contained ~70% *trans* olefins and propagated exclusively through a head-to-tail mechanism as determined by NMR.⁷¹ No thermal properties, such as semicrystallinity, were investigated, and no reports followed. The ability for allylic-

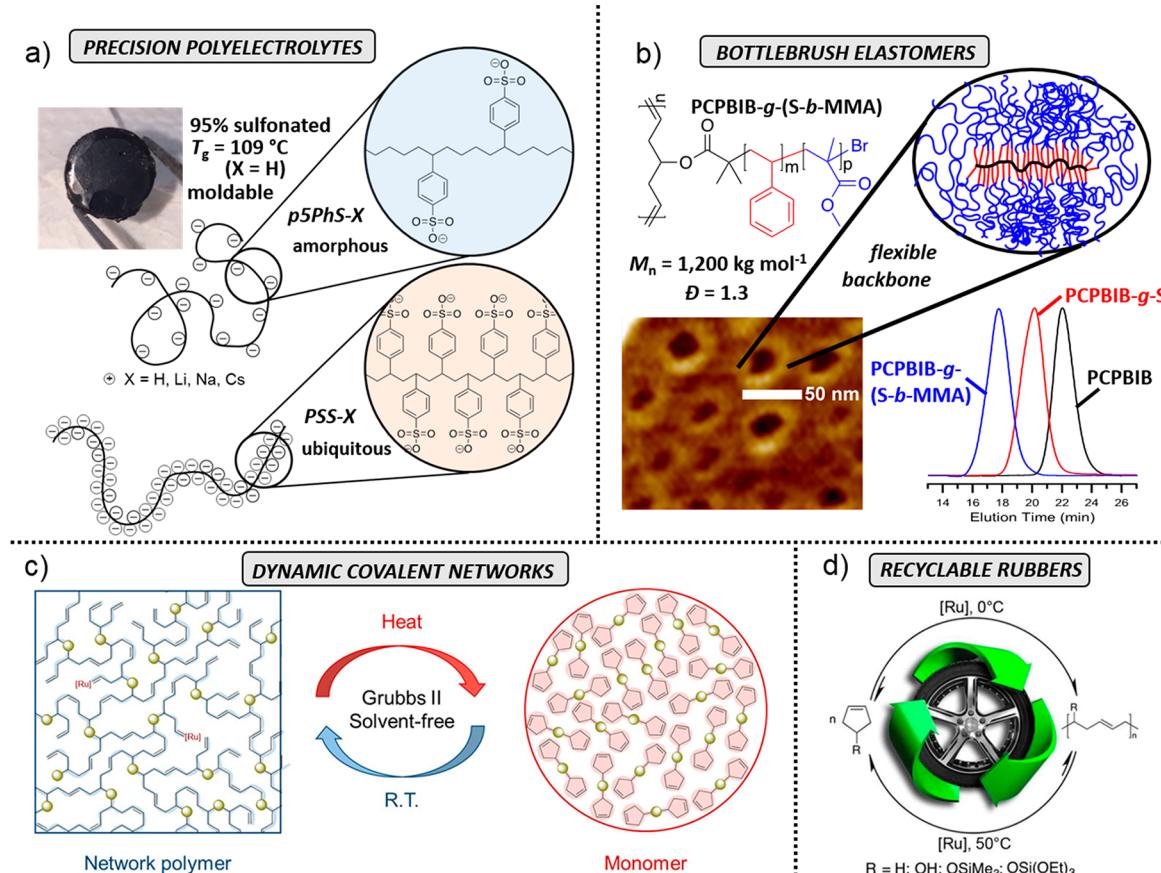
substituted *cis*-cyclooctenes to influence both the direction of monomer insertion and the resulting *cis/trans* ratio of polyoctenamers from Ru catalysts was described by Kobayashi et al.^{72–74}

Building on these discoveries, our group recently synthesized cyclopent-2-ene-1-ol and subsequently protected the alcohol with trimethylsilyl (TMS) or triethylsilyl (TES) groups to systematically increase the steric bulk of the substituent.⁷⁰ It was discovered that bulky 3-triethylsiloxyxycyclopentene undergoes ROMP up to 60% conversion at -10°C in the presence of HG2 in toluene and produces a material that is 92% regioregular (head-to-tail) with 96% *trans* olefins.⁷⁰ By synthesizing an enantiomerically enriched monomer ($\sim 92\%$ ee), highly isotactic, *trans*, and regioregular polypentenamers were produced, as confirmed by NMR (Figure 5).⁷⁰ Although

Figure 5. $^1\text{H}-^1\text{H}$ correlated spectrum of olefin proton signals from a 92% isotactic, 92% regioregular, and 96% *trans* polypentenamer ($M_n = 30 \text{ kg mol}^{-1}$) produced from (S)-3-triethylsiloxyxycyclopentene. The signals show clear doublet-of-doublets (dd) and doublet-of-triplets (dt) splitting due to the highly precise microstructure. The coupling constant of 15.4 Hz is consistent with the *trans* structure. Reproduced from ref 70 with permission of the Royal Society of Chemistry.

the material was amorphous ($T_g < 70^{\circ}\text{C}$), presumably due to the large size of the TES group, deprotection and mild hydrogenation stand to produce a precision, isotactic, ethylene-vinyl alcohol (EVOH) copolymer derivative. Current synthetic and analytical efforts are underway in our lab to explore this and more isotactic microstructures with a 5-carbon branch spacing.

Beyond Just Synthesis. With synthetic progress taking large strides, exploration of thermal and physical properties toward potential applications for functionalized polypentenamers is highly needed. Fan and co-workers recently reported a series of homoallylic ester or thioester-substituted CPs where they systematically increased the size of the ester pendant alkyl group.^{75–77} The T_g of the resulting polymers was shown to decrease from -26°C to -65°C as the ester pendant was increased from methyl to *n*-octyl.⁷⁶ With *n*-dodecyl pendants and higher, semicrystalline properties arose from the long alkyl chains.⁷⁶ Thioester-containing polypentenamers with similar pendant alkyl groups showed higher T_g and T_m but reduced thermal stability.⁷⁷


Our group's entry point to polypentenamers research came from the ROMP of 4-phenylcyclopentene (**5**) to produce a precision styrenic rubber (P4PCP) or ethylene-styrene (ES) "like" copolymer ($\text{H}_2\text{-P4PCP}$) following hydrogenation (Figure 6).⁵¹ Here we reemphasize that, due to the 5-carbon

	$\text{H}_2\text{-P4PCP}$	ES copolymer
%S (w/w)	exactly 71.4	68 - 72
T_g ($^{\circ}\text{C}$)	17 ± 2	22 - 33
ϵ (%)	2497 ± 76	292 - 412
E (MPa)	0.85 ± 0.06	10.6 - 741
M_e (kg mol $^{-1}$)	3.62	1.76 - 2.04

Figure 6. Comparison between precise and imprecise phenyl branch spacing on glass transition temperature (T_g) entanglement molar mass (M_e), strain at break (ϵ), and Young's modulus (E). Mechanical testing was performed on multiple bars at $23 \pm 2^{\circ}\text{C}$. Statistical ES copolymers previously reported display higher values, which vary greatly with only a 4% difference in composition. Values are from ref 79.

phenyl branch spacing, accessing this microstructure through ES copolymerization is not possible. P4PCP and $\text{H}_2\text{-P4PCP}$ are rubbery amorphous materials with a nearly identical T_g ($17 \pm 2^{\circ}\text{C}$) just below ambient temperature which is a key attribute for sound and vibration dampening materials.⁷⁸ Further exploration of the viscoelastic and mechanical properties revealed that both share similar density ($\rho_{24^{\circ}\text{C}} = 1.03 \pm 0.01 \text{ g cm}^{-3}$), but P4PCP has a much higher entanglement molar mass ($M_e = 10.0 \text{ kg mol}^{-1}$) versus $\text{H}_2\text{-P4PCP}$ (3.6 kg mol^{-1}) leading to differing mechanical properties at similar M_n .⁷⁹ $\text{H}_2\text{-P4PCP}$, which can be likened to an ethylene-styrene (ES) copolymer with exactly 71.4% w/w styrene, is a model material for studying property differences between precise and imprecise microstructure. ES copolymers with similar S content (68–72% w/w) have a higher T_g and lower M_e which subsequently has a large effect on mechanical properties compared to $\text{H}_2\text{-P4PCP}$ (Figure 6).^{80–83} Furthermore, these values vary considerably with only a 4% difference in S content, and mechanical properties vary greatly given the proximity of T_g to ambient. $\text{H}_2\text{-P4PCP}$ is predicted to have consistent properties from batch to batch due to its high microstructural precision, which is a notable advantage.

Toward Advanced Architectures and Materials. Very recent polypentenamer research has been aimed toward more advanced architectures and function. Poly(styrenesulfonate), PSS (Figure 7a), is a commonly used and ubiquitous polyelectrolyte for applications ranging from ion exchange resins⁸⁴ to conducting polymers.⁸⁵ When PSS is quantitatively sulfonated, it may be considered a precision polyelectrolyte with an ionic charge placed at every 2 carbons along the chain. Reducing the charge density by reducing the degree of sulfonation would be expected to occur in a random fashion. $\text{H}_2\text{-P4PCP}$ (Figure 6), when quantitatively sulfonated, would produce a PSS derivative (p5PhS-H, Figure 7a) with reduced charge density at a precise topology. Nearly complete sulfonation (95%) of $\text{H}_2\text{-P4PCP}$ raises the T_g from 17 to 109°C , which remains well below the thermal decomposition temperature, T_d (215°C), where 5% mass loss occurs under

Figure 7. (a) Sulfonation of $\text{H}_2\text{-P4PCP}$ produces a precision polyelectrolyte similar to polystyrenesulfonate (PSS) but with precise 5-carbon distances along the chain. This material has an accessible T_g (109°C) allowing it to be thermally molded (inset). Adapted with permission from ref 86. Copyright 2018 John Wiley and Sons. (b) Design of a polypentenamer bottlebrush polymer from ROMP of BIB-functionalized CP followed by ATRP. Block polymer grafts of PS and PMMA, monitored by SEC traces, produce a core–shell polymer visualized by AFM (inset). Adapted with permission from ref 57. Copyright 2018 American Chemical Society. (c) Difunctional CP monomers in the bulk can form dynamic covalent networks that reversibly polymerize and depolymerize upon cooling and heating, respectively. Adapted with permission from ref 68. Copyright 2018 American Chemical Society. (d) Siloxy-functionalized CP monomers produce synthetic rubbers after ROMP which have potential applications in tire technology. These materials recycle back into their original monomer upon heating. Adapted with permission from ref 65. Copyright 2016 American Chemical Society.

nitrogen.⁸⁶ By comparison, fully sulfonating polystyrene raises the T_g from 100°C to a temperature well above T_d .⁸⁷ Therefore, $p5\text{PhS-H}$ can be thermally molded in the dry state into films or pellets (Figure 7a, inset),⁸⁶ while PSS-H requires solvent casting. Aside from melt processing, this material invokes curiosity on how an increased, yet precise, ion spacing will affect many of the applications that PSS is used for; what happens to ion transport, conduction, or transference? How do these precisely spaced ions aggregate in the amorphous state? Such materials open the door to answer these questions.

Bottlebrush polymers (BB) are a rapidly developing area of polymer science.^{88–92} To date, there has been severe limitation on the number of backbone options capable of producing densely grafted systems. Mainly, BB systems are produced through polymerizing vinyl-terminated or NB-terminated macromonomers.^{88,89} These produce BBs where the number of backbone atoms between each graft (n_g) is 1 or 4, respectively. A CP-terminated macromonomer would also produce $n_g = 4$; however, the polypentenamer BB backbone is much more flexible than the polynorbornene backbone. This is exemplified by the disparity in their T_g values ($\text{PCP} \approx -44^\circ\text{C}$ vs $\text{PNB} \approx 45^\circ\text{C}$).^{63,93} Many theoretical and experimental treatments are focused on how the BB backbone extends to

accommodate the increased occupation of pervaded volume by the grafts as they become larger.^{94–96} Therefore, the polypentenamer BB backbone, with its high flexibility, is predicted to have a more sensitized response to this phenomenon and may unlock new regimes of material properties for densely grafted systems.⁹⁶ Using the VT-ROMP method, our group reported near living-like control over the polymerization of 3-cyclopentenyl α -bromoisobutyrate (3) using THF and G1.⁵⁷ Subsequent use of the bromoisobutyryl pendants as initiation sites for atom transfer radical polymerization (ATRP) produced the polypentenamer BBs with homopolymer and BCP grafts for the first time (Figure 7b).⁵⁷ We confirmed that the backbone polypentenamer macroinitiator (PCPBIB) could be synthesized to targeted molar mass and low D with the VT-ROMP method, while ATRP resulted in quantitative “grafting-from” of polystyrene (PCPBIB-*g*-S). It was discovered that the T_g of this material is highly sensitive to graft length, increasing from 4 to 92°C when traversing side chain degree of polymerization (N_{sc}) from 0 to 18. Subsequent block polymerization of methyl methacrylate (MMA) produced PCPBIB-*g*-(S-*b*-MMA), with high molar mass ($M_n = 1200 \text{ kg mol}^{-1}$) and relatively low D (~ 1.3). These core–shell structures ($\sim 40 \text{ nm}$ in diameter)

were visualized by atomic force microscopy (Figure 7b). Current aims are to explore the properties of this new BB in comparison to well-established systems.

The same thermodynamic principles that make CP a challenge for ROMP can also be leveraged advantageously to depolymerize PCP systems at higher temperature in the presence of metathesis catalysts. The reversible nature of polypentenamers was first discovered in 1972.³³ Later, Schrock et al. applied high vacuum to a CP polymerization in progress to remove CP monomer and drive equilibrium toward depolymerization.³⁵ It was discovered that 82–86% of the W catalyst, with its original initiating alkylidene, was recovered.³⁵ More recently, Tuba et al. designed siloxy-functionalized polypentenamers and explored their potential use as recyclable tire materials.⁶⁵ These materials are proposed to increase the polymers' affinity to silica filler (22% makeup of tires with carbon black) and can be fully depolymerized at moderate temperatures (40 °C) in the presence of Ru catalysts (Figure 7d).⁶⁵ The reversible nature of polypentenamers has also been used advantageously in reversible bulk networks. Liu et al. investigated a series of CP monomers (Table 1) to determine which low ring strain CP monomers would be optimal for polymerization–depolymerization in the bulk state.⁶⁸ By then synthesizing di- and trifunctional CP derivatives, a network polypentenamer could be produced at room temperature that reversibly depolymerizes upon heating (Figure 7c).⁶⁸ These covalently adaptable networks (CANs) were shown to reversibly increase in storage modulus from $>10^5$ to <10 Pa between 25 and 55 °C, respectively.⁶⁸

Future Outlook. As we quickly approach the 100 year anniversary of Staudinger's macromolecular theory,⁹⁷ there still is much to learn about structure–property relationships. Research on polypentenamers bearing a variety of precise functionalities has matured to a crossroads where more work is warranted to elucidate the value of these materials. Nevertheless there are still experimental designs that are unexplored, like high-pressure CP ROMP and CP ROMP within flow. For the latter, one can imagine that varying the temperature along regions of flow could be quite useful. Explorations of new monomers will surely expand the potential for these systems. For example, recent progress has been made in ring-opening polymerization (ROP) of low-strain 5-membered lactones.⁹⁸ Can CP monomers containing heteroatoms in the ring be polymerized? More is being learned about the behavior of common ROMP catalysts at cold temperatures now that cooling these reactions is necessary for high conversions. However, continued catalyst development is also warranted to improve initiation kinetics versus propagation and reduce chain transfer events. Recently, Vanadium catalysts have shown viability for ROMP of CP.⁹⁹ Aside from homopolymerization, CP has utility as a comonomer for advanced ROMP strategies such as alternating ring-opening metathesis polymerization (AROMP)^{100–102} and cascade or multiple olefin metathesis polymerization (MOMP).¹⁰³ Continuing to explore the phenomenologies of CP ROMP may advance these strategies and potentially unlock others.

We now have methodologies to make a variety of polypentenamers with good control, high yield, and readily available catalyst systems. Insight on the physical and material properties is highly needed. What happens to the properties of a vinyl polymer when its functional branches are spaced out to every five carbons? At this point we can rationally hypothesize that these materials will retain the branch functionality, have a

lower T_g , remain amorphous (when atactic), have a higher hydrophobicity, and have a reduced M_e . It is our opinion that such materials could serve as improved if not transformative replacements for many plastics that require plasticization.

In addition to their stand-alone material properties, the rich thermodynamics of polypentenamers is presenting opportunities to leverage their low T_c for recyclable materials, self-immolative systems, and thermally reversible networks. Near living-like polymerizations have ushered in advanced architectures from CP systems, such as BB and BBCP, and more hierarchical structures are certainly warranted to increase the diversity of polypentenamers within frontier materials.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: kennemur@chem.fsu.edu.

ORCID

Justin G. Kennemur: 0000-0002-2322-0386

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 1750852. The authors wish to thank Prof. Marc Hillmyer and Dr. Gabriel dos Passos Gomes for helpful discussions. We also thank Prof. Jeffrey Moore and Huiying Liu for providing additional details on the thermodynamic values of substituted CP derivatives. W.J.N. wishes to thank Sue Neary for artwork contributions.

■ REFERENCES

- Tao, F.; Bernasek, S. L. Understanding Odd–Even Effects in Organic Self-Assembled Monolayers. *Chem. Rev.* **2007**, *107*, 1408–1453.
- Stempfle, F.; Ortmann, P.; Mecking, S. Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates. *Chem. Rev.* **2016**, *116*, 4597–4641.
- Mandelkern, L. *Crystallization of Polymers*, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, 2002.
- Vasile, C. *Handbook of polyolefins*, 2nd ed.; Marcel Dekker: New York, 2000.
- Yang, K.; Cai, Z.; Jaiswal, A.; Tyagi, M.; Moore, J. S.; Zhang, Y. Dynamic Odd–Even Effect in Liquid n-Alkanes near Their Melting Points. *Angew. Chem., Int. Ed.* **2016**, *55*, 14090–14095.
- Grubbs, R. H. *Handbook of Metathesis*; Wiley-VCH: Weinheim, Germany, 2003; Vol. 3.
- Buchmeiser, M. R. *Metathesis polymerization*; Springer: Berlin, 2005.
- Caire da Silva, L.; Rojas, G.; Schulz, M. D.; Wagener, K. B. Acyclic diene metathesis polymerization: History, methods and applications. *Prog. Polym. Sci.* **2017**, *69*, 79–107.
- Grubbs, R. H.; Khosravi, E. *Handbook of Metathesis*, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2015; Vol. 3.
- Schulz, M. D.; Wagener, K. B. Precision Polymers through ADMET Polymerization. *Macromol. Chem. Phys.* **2014**, *215*, 1936–1945.
- Atallah, P.; Wagener, K. B.; Schulz, M. D. ADMET: The Future Revealed. *Macromolecules* **2013**, *46*, 4735–4741.
- Trigg, E. B.; Gaines, T. W.; Maréchal, M.; Moed, D. E.; Rannou, P.; Wagener, K. B.; Stevens, M. J.; Winey, K. I. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. *Nat. Mater.* **2018**, *17*, 725–731.
- Tasaki, M.; Yamamoto, H.; Hanesaka, M.; Tashiro, K.; Boz, E.; Wagener, K. B.; Ruiz-Orta, C.; Alamo, R. G. Polymorphism and Phase

Transitions of Precisely Halogen-Substituted Polyethylene. (1) Crystal Structures of Various Crystalline Modifications of Bromine-Substituted Polyethylene on Every 21st Backbone Carbon. *Macromolecules* **2014**, *47*, 4738–4749.

(14) Hiemenz, P. C.; Lodge, T. *Polymer Chemistry*, 2nd ed.; CRC Press: Boca Raton, 2007.

(15) Li, Z.-L.; Lv, A.; Li, L.; Deng, X.-X.; Zhang, L.-J.; Du, F.-S.; Li, Z.-C. Periodic ethylene-vinyl alcohol copolymers via ADMET polymerization: Synthesis, characterization, and thermal property. *Polymer* **2013**, *54*, 3841–3849.

(16) Forbes, M. D. E.; Patton, J. T.; Myers, T. L.; Maynard, H. D.; Smith, D. W.; Schulz, G. R.; Wagener, K. B. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect. *J. Am. Chem. Soc.* **1992**, *114*, 10978–10980.

(17) Baughman, T. W.; Sworen, J. C.; Wagener, K. B. Sequenced Ethylene–Propylene Copolymers: Effects of Short Ethylene Run Lengths. *Macromolecules* **2006**, *39*, 5028–5036.

(18) Schrock, R. R. Recent Advances in High Oxidation State Mo and W Imido Alkylidene Chemistry. *Chem. Rev.* **2009**, *109*, 3211–3226.

(19) Bielawski, C. W.; Grubbs, R. H. Living ring-opening metathesis polymerization. *Prog. Polym. Sci.* **2007**, *32*, 1–29.

(20) Nelson, D. J.; Manzini, S.; Urbina-Blanco, C. A.; Nolan, S. P. Key processes in ruthenium-catalysed olefin metathesis. *Chem. Commun.* **2014**, *50*, 10355–10375.

(21) Ogbu, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. *Chem. Soc. Rev.* **2018**, *47*, 4510–4544.

(22) Singh, R.; Czekelius, C.; Schrock, R. R. Living Ring-Opening Metathesis Polymerization of Cyclopropenes. *Macromolecules* **2006**, *39*, 1316–1317.

(23) Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. Z-Selective and Syndioselective Ring-Opening Metathesis Polymerization (ROMP) Initiated by Monoaryloxidepyrrolide (MAP) Catalysts. *Macromolecules* **2010**, *43*, 7515–7522.

(24) Elling, B. R.; Su, J. K.; Xia, Y. Ring-opening metathesis polymerization of 1,2-disubstituted cyclopropenes. *Chem. Commun.* **2016**, *52*, 9097–9100.

(25) Anslyn, E. V.; Dougherty, D. A. *Modern physical organic chemistry*; University Science: Sausalito, CA, 2006.

(26) Schleyer, P. v. R.; Williams, J. E.; Blanchard, K. R. Evaluation of strain in hydrocarbons. The strain in adamantane and its origin. *J. Am. Chem. Soc.* **1970**, *92*, 2377–2386.

(27) Patton, P. A.; Lillya, C. P.; McCarthy, T. J. Olefin metathesis of cyclohexene. *Macromolecules* **1986**, *19*, 1266–1268.

(28) Hodge, P.; Kamau, S. D. Entropically Driven Ring-Opening-Metathesis Polymerization of Macroyclic Olefins with 21–84 Ring Atoms. *Angew. Chem., Int. Ed.* **2003**, *42*, 2412–2414.

(29) Xue, Z.; Mayer, M. F. Entropy-driven ring-opening olefin metathesis polymerizations of macrocycles. *Soft Matter* **2009**, *5*, 4600–4611.

(30) Strandman, S.; Gautrot, J. E.; Zhu, X. X. Recent advances in entropy-driven ring-opening polymerizations. *Polym. Chem.* **2011**, *2*, 791–799.

(31) Martinez, H.; Ren, N.; Matta, M. E.; Hillmyer, M. A. Ring-opening metathesis polymerization of 8-membered cyclic olefins. *Polym. Chem.* **2014**, *5*, 3507–3532.

(32) Ivin, K. J.; Mol, J. C. *Olefin Metathesis and Metathesis Polymerization*; Academic Press: San Diego, CA, 1997.

(33) Ofstead, E. A.; Calderon, N. Equilibrium ring-opening polymerization of mono- and multicyclic unsaturated monomers. *Makromol. Chem.* **1972**, *154*, 21–34.

(34) Tuba, R.; Grubbs, R. H. Ruthenium catalyzed equilibrium ring-opening metathesis polymerization of cyclopentene. *Polym. Chem.* **2013**, *4*, 3959–3962.

(35) Schrock, R. R.; Yap, K. B.; Yang, D. C.; Sitzmann, H.; Sita, L. R.; Bazan, G. C. Evaluation of cyclopentene-based chain-transfer agents for living ring-opening metathesis polymerization. *Macromolecules* **1989**, *22*, 3191–3200.

(36) Ivin, K. J. Thermodynamics of addition polymerization. *J. Polym. Sci., Part A: Polym. Chem.* **2000**, *38*, 2137–2146.

(37) Bachrach, S. M. The gem-Dimethyl Effect Revisited. *J. Org. Chem.* **2008**, *73*, 2466–2468.

(38) Jung, M. E.; Piuzzi, G. gem-Disubstituent Effect: Theoretical Basis and Synthetic Applications. *Chem. Rev.* **2005**, *105*, 1735–1766.

(39) Allinger, N. L.; Zalkow, V. Zalkow, V. Conformational Analysis. IX. The Gem-Dimethyl Effect. *J. Org. Chem.* **1960**, *25*, 701–704.

(40) Euleterio, H. S. Polymerization of Cyclic Olefins. U.S. Patent 3,074,918, Jan. 22, 1963.

(41) Jean-Louis Hérisson, P.; Chauvin, Y. Catalyse de transformation des oléfines par les complexes du tungstène. II. Télogénération des oléfines cycliques en présence d’oléfines acycliques. *Makromol. Chem.* **1971**, *141*, 161–176.

(42) Dounis, P.; James Feast, W.; Kenwright, A. M. Ring-opening metathesis polymerization of monocyclic alkenes using molybdenum and tungsten alkylidene (Schrock-type) initiators and ¹³C nuclear magnetic resonance studies of the resulting polyalkenamers. *Polymer* **1995**, *36*, 2787–2796.

(43) Trzaska, S. T.; Lee, L. B. W.; Register, R. A. Synthesis of narrow-distribution “perfect” polyethylene and its block copolymers by polymerization of cyclopentene. *Macromolecules* **2000**, *33*, 9215–9221.

(44) Wu, Z.; Wheeler, D. R.; Grubbs, R. H. Living ring-opening metathesis polymerization of cyclobutene: the thermodynamic effect of a reversibly binding ligand. *J. Am. Chem. Soc.* **1992**, *114*, 146–151.

(45) Myers, S. B.; Register, R. A. Block Copolymers Synthesized by ROMP-to-Anionic Polymerization Transformation. *Macromolecules* **2008**, *41*, 5283–5288.

(46) Myers, S. B.; Register, R. A. Synthesis of narrow-distribution polycyclopentene using a ruthenium ring-opening metathesis initiator. *Polymer* **2008**, *49*, 877–882.

(47) Lee, L.-B. W.; Register, R. A. Acyclic metathesis during ring-opening metathesis polymerization of cyclopentene. *Polymer* **2004**, *45*, 6479–6485.

(48) Bielawski, C. W.; Grubbs, R. H. Highly Efficient Ring-Opening Metathesis Polymerization (ROMP) Using New Ruthenium Catalysts Containing N-Heterocyclic Carbene Ligands. *Angew. Chem., Int. Ed.* **2000**, *39*, 2903–2906.

(49) Hejl, A.; Scherman, O. A.; Grubbs, R. H. Ring-opening metathesis polymerization of functionalized low-strain monomers with ruthenium-based catalysts. *Macromolecules* **2005**, *38*, 7214–7218.

(50) Mulhearn, W. D.; Register, R. A. Synthesis of Narrow-Distribution, High-Molecular-Weight ROMP Polycyclopentene via Suppression of Acyclic Metathesis Side Reactions. *ACS Macro Lett.* **2017**, *6*, 112–116.

(51) Neary, W. J.; Kennemur, J. G. A Precision Ethylene-Styrene Copolymer with High Styrene Content from Ring-Opening Metathesis Polymerization of 4-Phenylcyclopentene. *Macromol. Rapid Commun.* **2016**, *37*, 975–979.

(52) Neary, W. J.; Kennemur, J. G. Variable Temperature ROMP: Leveraging Low Ring Strain Thermodynamics To Achieve Well-Defined Polypentenamers. *Macromolecules* **2017**, *50*, 4935–4941.

(53) Sanford, M. S.; Love, J. A.; Grubbs, R. H. Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts. *J. Am. Chem. Soc.* **2001**, *123*, 6543–6554.

(54) Matson, J. B.; Grubbs, R. H. ROMP–ATRP Block Copolymers Prepared from Monotelicellic Poly(oxa)norbornenes Using a Difunctional Terminating Agent. *Macromolecules* **2008**, *41*, 5626–5631.

(55) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts. *J. Am. Chem. Soc.* **1993**, *115*, 9858–9859.

(56) Kang, E.-H.; Yu, S. Y.; Lee, I. S.; Park, S. E.; Choi, T.-L. Strategies to Enhance Cyclopolymerization using Third-Generation Grubbs Catalyst. *J. Am. Chem. Soc.* **2014**, *136*, 10508–10514.

(57) Neary, W. J.; Fultz, B. A.; Kennemur, J. G. Well-Defined and Precision-Grafted Bottlebrush Polypentenamers from Variable Temperature ROMP and ATRP. *ACS Macro Lett.* **2018**, *7*, 1080–1086.

(58) Mugemana, C.; Bukhryakov, K. V.; Bertrand, O.; Vu, K. B.; Gohy, J.-F.; Hadjichristidis, N.; Rodionov, V. O. Ring opening metathesis polymerization of cyclopentene using a ruthenium catalyst confined by a branched polymer architecture. *Polym. Chem.* **2016**, *7*, 2923–2928.

(59) Sanui, K.; MacKnight, W. J.; Lenz, R. W. Hydroformylation of a Polypentenamer and Preparation of Derivatives Therefrom. *Macromolecules* **1974**, *7*, 952–954.

(60) Sanui, K.; Macknight, W. J. Dynamic mechanical properties of polypentenamers with pendant ionic groups and their hydrogenated derivatives. *Br. Polym. J.* **1976**, *8*, 22–28.

(61) Rahrig, D.; MacKnight, W. J.; Lenz, R. W. Sulfonation of a Polypentenamer and Preparation of Its Hydrogenated Derivatives. *Macromolecules* **1979**, *12*, 195–203.

(62) Rahrig, D.; Mac Knight, W. J. Thermal, Dynamic Mechanical, and Dielectric Properties of Hydrogenated, Sulfonated Polypentenamers. In *Ions in Polymers*; American Chemical Society: 1980; Vol. 187, pp 91–120.

(63) Herz, K.; Imbrich, D. A.; Unold, J.; Xu, G. J.; Speiser, M.; Buchmeiser, M. R. Functional ROMP-Derived Poly(cyclopentene)s. *Macromol. Chem. Phys.* **2013**, *214*, 1522–1527.

(64) Hlil, A. R.; Balogh, J.; Moncho, S.; Su, H.-L.; Tuba, R.; Brothers, E. N.; Al-Hashimi, M.; Bazzi, H. S. Ring opening metathesis polymerization (ROMP) of five- to eight-membered cyclic olefins: Computational, thermodynamic, and experimental approach. *J. Polym. Sci., Part A: Polym. Chem.* **2017**, *55*, 3137–3145.

(65) Tuba, R.; Balogh, J.; Hlil, A.; Barlög, M.; Al-Hashimi, M.; Bazzi, H. S. Synthesis of Recyclable Tire Additives via Equilibrium Ring-Opening Metathesis Polymerization. *ACS Sustainable Chem. Eng.* **2016**, *4*, 6090–6094.

(66) Al-Hashimi, M.; Tuba, R.; Bazzi, H. S.; Grubbs, R. H. Synthesis of Polypentenamer and Poly(Vinyl Alcohol) with a Phase-Separable Polyisobutylene-Supported Second-Generation Hoveyda-Grubbs Catalyst. *ChemCatChem* **2016**, *8*, 228–233.

(67) Tuba, R.; Al-Hashimi, M.; Bazzi, H. S.; Grubbs, R. H. One-Pot Synthesis of Poly(vinyl alcohol) (PVA) Copolymers via Ruthenium Catalyzed Equilibrium Ring-Opening Metathesis Polymerization of Hydroxyl Functionalized Cyclopentene. *Macromolecules* **2014**, *47*, 8190–8195.

(68) Liu, H.; Nelson, A. Z.; Ren, Y.; Yang, K.; Ewoldt, R. H.; Moore, J. S. Dynamic Remodeling of Covalent Networks via Ring-Opening Metathesis Polymerization. *ACS Macro Lett.* **2018**, *7*, 933–937.

(69) An error within the Supporting Information document of ref 68 exists for the thermodynamic values of **9**. The corrected values of $\Delta H_p = -5.07 \text{ kcal mol}^{-1}$ and $\Delta S_p = -20.45 \text{ cal mol}^{-1} \text{ K}^{-1}$ were graciously provided by J. S. Moore and co-workers.

(70) Brits, S.; Neary, W. J.; Palui, G.; Kennemur, J. G. A new echelon of precision polypentenamers: highly isotactic branching on every five carbons. *Polym. Chem.* **2018**, *9*, 1719.

(71) Sita, L. R. Main-Chain Chiral Polymers from β -Citronellene via Tandem Diene Metathesis Cyclization/Ring-Opening Metathesis Polymerization. *Macromolecules* **1995**, *28*, 656–7.

(72) Kobayashi, S.; Pitet, L. M.; Hillmyer, M. A. Regio- and Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes. *J. Am. Chem. Soc.* **2011**, *133*, 5794–5797.

(73) Martinez, H.; Zhang, J.; Kobayashi, S.; Xu, Y.; Pitet, L. M.; Matta, M. E.; Hillmyer, M. A. Functionalized regio-regular linear polyethylenes from the ROMP of 3-substituted cyclooctenes. *Appl. Petrochem. Res.* **2015**, *5*, 19–25.

(74) Kobayashi, S.; Fukuda, K.; Kataoka, M.; Tanaka, M. Regioselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes with Ether Side Chains. *Macromolecules* **2016**, *49*, 2493–2501.

(75) Song, S.; Fu, Z.; Xu, J.; Fan, Z. Synthesis of functional polyolefins via ring-opening metathesis polymerization of ester-functionalized cyclopentene and its copolymerization with cyclic comonomers. *Polym. Chem.* **2017**, *8*, 5924–5933.

(76) Song, S.; Xing, Z.; Cheng, Z.; Fu, Z.; Xu, J.; Fan, Z. Functional polyethylene with regularly distributed ester pendants via ring-opening metathesis polymerization of ester functionalized cyclopentene: Synthesis and characterization. *Polymer* **2017**, *129*, 135–143.

(77) Song, S.; Zhang, Z.; Liu, X.; Fu, Z.; Xu, J.; Fan, Z. Synthesis and characterization of functional polyethylene with regularly distributed thioester pendants via ring-opening metathesis polymerization. *J. Polym. Sci., Part A: Polym. Chem.* **2017**, *55*, 4027–4036.

(78) Sperling, L. H. Sound and Vibration Damping with Polymers. In *Sound and Vibration Damping with Polymers*; American Chemical Society: 1990; Vol. 424, pp 5–22.

(79) Kieber, R. J.; Neary, W. J.; Kennemur, J. G. Viscoelastic, Mechanical, and Glasstomeric Properties of Precision Polyolefins Containing a Phenyl Branch at Every Five Carbons. *Ind. Eng. Chem. Res.* **2018**, *57*, 4916–4922.

(80) Chen, H. Y.; Stepanov, E. V.; Chum, S. P.; Hiltner, A.; Baer, E. Linear Stress Relaxation Behavior of Amorphous Ethylene–Styrene Interpolymers. *Macromolecules* **2000**, *33*, 8870–8877.

(81) Chen, H. Y.; Stepanov, E. V.; Chum, S. P.; Hiltner, A.; Baer, E. Creep behavior of amorphous ethylene–styrene interpolymers in the glass transition region. *J. Polym. Sci., Part B: Polym. Phys.* **1999**, *37*, 2373–2382.

(82) Chen, H. Y.; Stepanov, E. V.; Chum, S. P.; Hiltner, A.; Baer, E. Large Strain Stress Relaxation and Recovery Behavior of Amorphous Ethylene–Styrene Interpolymers. *Macromolecules* **1999**, *32*, 7587–7593.

(83) Chen, H.; Guest, M. J.; Chum, S.; Hiltner, A.; Baer, E. Classification of ethylene–styrene interpolymers based on comonomer content. *J. Appl. Polym. Sci.* **1998**, *70*, 109–119.

(84) Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). *Chem. Rev.* **2004**, *104*, 4587–4612.

(85) Duarte, A.; Pu, K.-Y.; Liu, B.; Bazan, G. C. Recent Advances in Conjugated Polyelectrolytes for Emerging Optoelectronic Applications. *Chem. Mater.* **2011**, *23*, 501–515.

(86) Kendrick, A.; Neary, W. J.; Delgado, J. D.; Bohlmann, M.; Kennemur, J. G. Precision Polyelectrolytes with Phenylsulfonic Acid Branches at Every Five Carbons. *Macromol. Rapid Commun.* **2018**, *39*, 1800145.

(87) Lyu, X.; Clark, B.; Peterson, A. M. Thermal transitions in and structures of dried polyelectrolytes and polyelectrolyte complexes. *J. Polym. Sci., Part B: Polym. Phys.* **2017**, *55*, 684–691.

(88) Xie, G.; Martinez, M. R.; Olszewski, M.; Sheiko, S. S.; Matyjaszewski, K. Molecular Bottlebrushes as Novel Materials. *Biomacromolecules* **2018**, DOI: 10.1021/acs.biomac.8b01171.

(89) Verduzco, R.; Li, X.; Pesek, S. L.; Stein, G. E. Structure, function, self-assembly, and applications of bottlebrush copolymers. *Chem. Soc. Rev.* **2015**, *44*, 2405–2420.

(90) Rzayev, J. Molecular Bottlebrushes: New Opportunities in Nanomaterials Fabrication. *ACS Macro Lett.* **2012**, *1*, 1146–1149.

(91) Feng, C.; Li, Y.; Yang, D.; Hu, J.; Zhang, X.; Huang, X. Well-defined graft copolymers: from controlled synthesis to multipurpose applications. *Chem. Soc. Rev.* **2011**, *40*, 1282–1295.

(92) Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. *Prog. Polym. Sci.* **2008**, *33*, 759–785.

(93) Bielawski, C. W.; Benitez, D.; Morita, T.; Grubbs, R. H. Synthesis of End-Functionalized Poly(norbornene)s via Ring-Opening Metathesis Polymerization. *Macromolecules* **2001**, *34*, 8610–8618.

(94) Hu, M.; Xia, Y.; McKenna, G. B.; Kornfield, J. A.; Grubbs, R. H. Linear Rheological Response of a Series of Densely Branched Brush Polymers. *Macromolecules* **2011**, *44*, 6935–6943.

(95) Dalsin, S. J.; Hillmyer, M. A.; Bates, F. S. Linear Rheology of Polyolefin-Based Bottlebrush Polymers. *Macromolecules* **2015**, *48*, 4680–4691.

(96) Liang, H.; Cao, Z.; Wang, Z.; Sheiko, S. S.; Dobrynin, A. V. Combs and Bottlebrushes in a Melt. *Macromolecules* **2017**, *50*, 3430–3437.

(97) Staudinger, H. Über Polymerisation. *Ber. Dtsch. Chem. Ges. B* **1920**, *53*, 1073–1085.

(98) Hong, M.; Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ -butyrolactone. *Nat. Chem.* **2016**, *8*, 42.

(99) Chaimongkolkunasin, S.; Nomura, K. (Arylimido)Vanadium-(V)-Alkylidenes Containing Chlorinated Phenoxy Ligands: Thermally Robust, Highly Active Catalyst in Ring-Opening Metathesis Polymerization of Cyclic Olefins. *Organometallics* **2018**, *37*, 2064–2074.

(100) Choi, T.-L.; Rutenberg, I. M.; Grubbs, R. H. Synthesis of A,B-Alternating Copolymers by Ring-Opening-Insertion-Metathesis Polymerization. *Angew. Chem., Int. Ed.* **2002**, *41*, 3839–3841.

(101) Parker, K. A.; Sampson, N. S. Precision Synthesis of Alternating Copolymers via Ring-Opening Polymerization of 1-Substituted Cyclobutenes. *Acc. Chem. Res.* **2016**, *49*, 408–417.

(102) Elling, B. R.; Xia, Y. Living Alternating Ring-Opening Metathesis Polymerization Based on Single Monomer Additions. *J. Am. Chem. Soc.* **2015**, *137*, 9922–9926.

(103) Lee, H.-K.; Bang, K.-T.; Hess, A.; Grubbs, R. H.; Choi, T.-L. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis. *J. Am. Chem. Soc.* **2015**, *137*, 9262–9265.