A family of monogenic S; quartic fields arising from elliptic curves

T. ALDEN GASSERT, HANSON SMITH, AND KATHERINE E. STANGE

ABSTRACT. We consider partial torsion fields (fields generated by a root of a
division polynomial) for elliptic curves. By analysing the reduction properties of
elliptic curves, and applying the Montes Algorithm, we obtain information about
the ring of integers. In particular, for the partial 3-torsion fields for a certain
one-parameter family of non-CM elliptic curves, we describe a power basis. As
a result, we show that the one-parameter family of quartic S fields given by
T* — 6T? — aT — 3 for o € Z such that o + 8 are squarefree, are monogenic.

1. INTRODUCTION
Consider the following result.

Theorem 1.1. Suppose a € Z is such that o £ 8 are squarefree. Let 0 be a root of
the irreducible polynomial T* — 6T? — oT — 3. Then the field K, = Q(0) has ring
of integers Z[0]; in other words, K, is a quartic monogenic field.

The discriminant of this polynomial, and hence the field Q(6), is —27(a —8)?(a+
8)2. We do not doubt that monogeneity can be deduced by classical computations,
but the novelty of this paper is our method: we discover this family of quartic
fields as partial torsion fields (fields generated by a root of a division polynomial)
of a particular family of elliptic curves, and deduce monogeneity by reference to
reduction properties of the elliptic curve. In particular, we prove the following.

Theorem 1.2. Let E be an elliptic curve defined over Q, such that some twist E’
of E has a 4-torsion point defined over Q. Then the following are equivalent:

(1) E" has reduction types Iy and I only;

(2) E has j-invariant with squarefree denominator except a possible factor of 4.

(3) E has j-invariant j = %, where a € Z, o £ 8 are squarefree.
Let K,, be the field defined by adjoining the x-coordinate of an n-torsion point of
E. If any of the above hypotheses holds, then Ks is monogenic with a generator
given by a root of T* — 6T?% — oT — 3. In particular, the field K3 has discriminant

—27(a — 8)%(a + 8)2.
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Some examples of small values of a for which K3 is monogenic are:
+2,43,45,46,+7, 49, +11, 13, £14, £15, +18, +21, +22, £23, +25.

The methods used in the proof turn information about reduction properties of an
elliptic curve into information about the index [(’)@(9) : Z[f]] where 6 is a special
value of an elliptic function (namely, a zero of a division polynomial). Theorem
is meant primarily to showcase our methods. A more detailed analysis using these
same methods can provide bounds and even formulae for the discriminants of partial
torsion fields in general.

In fact, Fleckinger and Vérant studied the number fields of Theorem moti-
vated by their status as partial torsion fields [10]. However, as they write, “We note
that the arithmetic of elliptic curves is not used once we have these polynomials.”
They describe a basis for the ring of integers in general (which is not a power basis),
and show that they are quartic Sy fields. See Section [6

There is an abundance of literature on both monogenic number fields and number
fields obtained by adjoining torsion points of elliptic curves. Generally, Bhargava,
Shankar, and Wang [5] have shown that the proportion of monic, integer polynomials
f(z) € Z|z] that are irreducible and such that Z[z|/f(x) is the ring of integers
in its field of fractions is ¢(2)~! = 6/x%. That is, about 61% of monic, integer
polynomials correspond to monogenic number fields. On the other hand, it is known
that almost all abelian extensions of Q with degree coprime to 6 are non-monogenic
[17]. For an in-depth bibliography of monogeneity, see Narkiewicz [29, pp. 79-81]
and the book of Gadl [13], and for fundamental algorithmic work, see Gyéry [20].
We content ourselves here with listing a few recent works concerning monogenic
quartic fields. In [33], Spearman describes an infinite family of A4 monogenic fields
arising from 2% + 1822 — 4tz + >+ 81 when t(t> 4 81) is squarefree. The Dy fields are
studied by Kable [22] and Huard, Spearman, and Williams [21I]. The pure quartic
case is investigated by Funakura, who finds infinitely many monogenic fields [12].
Fleckinger and Vérant also have a monogenic family which appears to be Dg [10,
(2)]. In [18], Gras and Tanoé list necessary and sufficient conditions for certain
biquadratic extensions of Q to be monogenic; Motoda constructs an infinite family
[27]. Tt is also known that infinitely many quartic cyclic fields are non-monogenic,
by work of Motoda, Nakahara, Shah and Uehara [28]. Gras [16] shows Q(¢5) and
Q(C16—¢jg') are the only two monogenic imaginary quartic cyclic fields. Olajos [30]
studies the simplest quartic fields. As for Sy fields, subsequent to this paper the
second author [32] has used the Montes algorithm to classify two infinite families.
Bérczes, Evertse and GyOry restrict the multiply monogenic orders in such fields
[]. See the experimental data in Section [7| for three more families of quartic fields
which appear to be monogenic.

The field over which the n-torsion points of an elliptic curve are defined is often
denoted Q(F[n]) and plays a crucial role in the study of elliptic curves and their
Galois representations. It is often referred to as a division field or a torsion field.
For a survey, see [I]. In general, the discriminants of such fields are not known,
although there has been some work on their ramification [23, 25| 26]. In the case
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when n is prime the different has been computed [0, 24]. In the case of 3-division
fields, generators, Galois groups and subfields have been very explicitly described [2];
see [3] for higher order. However, little similar work has been done on the subfields
defined by division polynomials.

The Fueter polynomial we study arises from changing coordinates to the Fueter
form of an elliptic curve: this choice has a history in explicit class field theory.
Specifically, in [7], Cassou-Nogues and Taylor pursue Kronecker’s Jugendtraum for
certain ray class fields of imaginary quadratic fields. They study elliptic curves with
complex multiplication and good reduction away from 2. Let K be an imaginary
quadratic field with discriminant dx < —4 and suppose 2 splits in K. For an ideal
I C Ok, let K(I) denote the ray class field of K mod I. Now suppose £ is an odd
Of ideal, that is, [Ok : {] is odd. Cassou-Nogues and Taylor show that Og(4¢) is
monogenic over O y4), using special values of the coordinates of the Fueter form.

Although the methods and the class of monogenic fields found in [7] differ from
ours, we adopt their use of the Fueter form to access special values of an elliptic
function. It is remarkable that in the non-CM case, these special values still seem
to offer some advantage in describing partial torsion fields explicitly, in the form of
monogenic generators. Is it possible that these special values provide computation-
ally efficient integral bases for general partial torsion fields?

Our main method involves two ingredients: the algorithm of Guardia, Montes
and Nart [I9], which computes [Oqg) : Z[0]]; and the p-adic valuations of values of
division polynomials (in particular, 7% — 672 — oT — 3, the 3-division polynomial
in Fueter form), which are computed in detail in work of the third author [34].
A basic description of the Montes algorithm is to be found in Section Briefly,
the algorithm uses the Newton polygon to compute vy,([Ogg) : Z[f]]) in terms of
the number of lattice points on and under the polygon. The simplest case is a
polygon which bounds no points, and this case corresponds to the p-adic valuation
being 0. Thus, by picking « so that all the polygons are simple, we ensure that the
corresponding field is monogenic.

It is possible to apply the Montes algorithm to the polynomial T4 — 672 —aT — 3
directly, but the computations are rather involved. This would provide a proof of
Theorem [I.1] but it would not demonstrate the new methods dependent upon inter-
preting the polynomial as a division polynomial of an elliptic curve. In particular,
the efficient choice of lift ¢; (see Section [2)) is guided by the elliptic curve.

One can view this project as part of the study the discriminants of number fields
associated with Lattés maps. Briefly, a rational map ¢: P' — P! is a Latteés map
if there exists an elliptic curve endomorphism v¢: F — E and a finite covering
7m: E — P! such that mo¢ = ¢ om.

For example, one may take 1)(P) = [n]P and 7(x,y) = x. The corresponding
Lattes map has degree n?, and it is from these maps that the division polynomials
are derived (see Section [3.2]).

The idea to compute the discriminants of number fields associated to Lattes
maps is motivated by similar computations done for the power maps and Chebyshev
polynomials. These three families of maps—Lattes, Chebyshev, and power—are
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postcritically finite. Consequently, if f is a member of any one of these families,
then the tower of number fields generated by f"(x) — ¢, where ¢ is a constant,
is unramified outside a finite set of primes [§]. In some sense this simplifies the
computation of the index as only finitely many primes need to be analysed. In the
case that f is a Chebyshev or power map, the first author has used the Montes
algorithm to compute the field discriminant precisely, and produced infinite towers
of monogenic fields [I4) 15]. In the case of the n-division polynomial, we need only
consider the primes dividing n and the discriminant of the curve. The shape of the
Newton polygons tend to evolve predictably from one iterate to the next.

Acknowledgements. The authors are indebted to David Grant, Alvaro Lozano-
Robledo and Joseph H. Silverman for helpful conversations.

2. THE MONTES ALGORITHM

In this section we give a basic description of the Montes algorithm so that Theorem
is understood. We refer more interested readers to [19] for the full details.

Let ® € Z[x] be a monic irreducible polynomial whose root 6 generates a number
field K, and denote by O the ring of integers of K. Define ind ® = [Ok : ZI[0])].
Let ind, ® = vp(ind ®) denote the p-adic valuation of ind ®. The value ind, ® may
be computed as follows.

First, factor ® modulo p and write

O(z) = dr(2) -+ ¢r(2)™ (mod p),

where the ¢; € Z[z] are monic lifts of the irreducible factors of ® modulo p. The
algorithm will terminate regardless of the choice of lifts, however this choice may
simplify the computations significantly.

For each factor ¢;, there is a unique expression

®(x) = ao(x) + a1 (2)¢i(x) + az(2)¢i(x)* + - -~ + as(w)di(2)*,

where the a; are integral polynomials satisfying dega; < deg ¢;. This expression is
called the ¢;-development of ®.

From the ¢;-development, construct the ¢;-Newton polygon by taking the lower
convex hull of the points

{(J,vplaj(x))) : 0<j <s}, (1)

where v,(a;(x)) is defined to be the minimal p-adic valuation of the coefficients of
aj(z). Only the sides of negative slope are of import, and we call the set of sides of
negative slope the ¢;-polygon. The set of lattice points under the ¢;-polygon in the
first quadrant carries important arithmetic data, and to keep track of these points,
we define

indg, (®) = (deg ¢;) - #{(z,y) € N*: (x,y) is on or under the ¢;-polygon}.
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To each lattice point on the ¢;-polygon, we attach a residual coefficient

) red(aj(m)/pvp(aj(x))) if (j,vp(aj(x))) is on the ¢;-polygon
res(j) =
J 0 otherwise,

where red : Z[z] — Fp[z]/(¢i(z)) denotes the reduction map modulo p and ¢;. For
any side S of the ¢;-polygon, denote the left and right endpoints of S by (¢, y0) and
(z1,y1), respectively. We define the degree of S to be deg S = ged(y1 — yo, £1 — x0).
In other words, deg.S is equal to the number of segments into which the integral
lattice divides S. We associate to S a residual polynomial

deg S

Ra(y) = 3 res (0 + 120 ) o € Byl ol
=0

We note that res(zg) and res(zq) are necessarily non-zero, and in particular, it is
always the case that deg .S = deg Rg.

Finally, if Rg is separable for each S of the ¢;-polygon, then @ is ¢;-regular, and
if ® is ¢;-regular for each factor ¢;, then ® is p-regular.

Theorem 2.1 (Theorem of the index). We have

ind, ® > ) " indy, (®)
=1

with equality if ® is p-regular.
Proof. See [19] 4.4]. O

For our purposes, we need only the following simple corollary.

Proposition 2.2. If ® is monic, and vy,(ag) = 1 for each ¢;-development, then
ind, & = 0.

Proof. The Newton polygon for each ¢;-development has exactly one side of negative
slope to consider, running from (0, 1) to (ko,0) for some 0 < kg < s. Therefore there
are no points under or on the segment, and ® is p-regular. The result follows from

Theorem [2.1] O

3. THE FUETER MODEL AND CURVES WITH A POINT OF ORDER 4

The goal of this section is to examine a particular one-parameter family of elliptic
curve equations, namely a normal form for a curve with a rational point of order
4 (although often called Tate’s normal forms, such families with rational n-torsion
were known in the 19th century). This family was suggested by experimental data.
In the next section we exhaustively analyse the valuations of special values of division
polynomials for this family, describing all situations in which the Montes algorithm
can be applied.
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3.1. Tate’s normal form and the Fueter Model. Tate’s normal form for an
elliptic curve over Q with a Q-rational point of order 4 is given by the Weierstrass
form

E:y* + (a+8B)zy + Bla+88)%y = 2° + Ba + 88)2?, (2)

where o, 5 € Q. However, by a change of coordinates, we may assume that «, 8 € Z
and are coprime. Up to isomorphism, this is a one-parameter family of curves with
(0,0) being a point of order 4. The invariants are:

_ (Oé2 _ 4862)3 (3)
B —8B)(a +88)
Throughout the remainder of the paper, we will often use a := a + 85 for
ease of notation.
Starting with an elliptic curve in Tate normal form ensures we have a point

of order four, but we also require a model that simplifies the coefficients of the
division polynomials. The Fueter model accomplishes this. Applying the change of

coordinates
3 2
(x,y): (Cf_a67;<(a@22Tl_ajﬁ>>, (4)

A =pYa—8B)(a+8p)",

one obtains
T2 :T<4T2+ZT+4> ,

which is known as the Fueter model [7]. The identity of the group is (7, 71) = (0,0),

and the point
Qo= (1.va3) - (L& ar)

is a point of order 4. Note that this change of coordinates is defined over the
extension Q(v/aB), but the field of definition of the z-coordinate of a point is the
same as the field of definition of the corresponding T-coordinate.

Suppose p is a prime at which E has bad reduction. If p | a or p | 3, then
the singular point modulo p on the Weierstrass model, namely (0,0), becomes Qg
modulo p on the Fueter model. However, if p | (o — 853), then the singular point
modulo p on the Weierstrass model, namely (—2°32,273%), becomes (—1,0) modulo
p on the Fueter model. When p is an odd prime that divides a — 88, a rational lift
of the singular point will not necessarily exist.

3.2. Division polynomials, Weierstrass and Fueter. By definition, the n-th
division polynomial ¥, (z,y) for an elliptic curve E in Weierstrass form

E:y? +aizy + a3 = 2% + asx® + asx + ag

has the property that
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where ¢,,,wy, ¥, are coprime polynomials. The n-th division polynomial can also
be defined by stipulating that ¥y (z,y) = 1, ¥a(x,y) = 2y + a2 + a3 and for n > 2,

n H, (x — z(P)) n is odd
PeE[n]~N{O}
\Iln(x7 y) = n ! .
5\1'2(% Y) H (x —x(P)) mnis even,
PEE[n\E[2]

where the ’ on the product indicates that we include only one of each pair P and
— P in the product. This definition makes it clear that the odd division polynomials
are univariate in x and have degree ”2; L Further, the n-th division polynomial has

divisor 3 pe gy (P) — n?(0). One can compute,

vy =1,

Uy =2y + a1 + as,

s = 32t + box® + 3byz® + 3bgz + b,

Wy = Uy (225 + bya® + Bbyx? + 100623 + 10bgx? + (bobs — babg ) + (babg — b2)).

The group law of the elliptic curve manifests as a recurrence relation among the ¥,,,
wy, and ¢,; in particular, for n > 3,

Wono1 =V U3 | — Wy W3 Wop Wy =0, (VW) | — Uy 007, ) . (5)

Therefore, having computed the first four division polynomials directly, we can
obtain all the others recursively.

The discriminants of division polynomials, as polynomials in x, have been com-
puted by Verdure:

Theorem 3.1 ([36, Theorem 1]).

n—1 7L273 7L4747L2+3

(=) =z n 2 A 2 n odd

Disc, (¥,,) = - n2-6  nt_10n2424
(—1)T16n 2 A 24 n even.

In [I1], Fueter defined similar polynomials in 7" and T} which we will call Fueter
polynomials. In particular, for an elliptic curve E given by the Fueter form T12 =
T(4T? + 37T +4), one defines Fy =1, Fp = T "and for n > 2,

\/T’
[ @-7P) n is odd
PcE[n|~N{O}
§F2 H (T'—T(P)) nis even.
PcE[n|\E[2]

Here the above products are taken over the nontrivial n-torsion points with distinct
T-coordinates. We also exclude the 2-torsion from the product when n is even. The
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first few Fueter polynomials are:

Fl=1,
Ty
3 —
2 \/T
Fy=T'—61%2— %13,
B
T ( 6 , Yp5 4 2 @ )
=21 (764275 1107 — 1072 - Z7 - 2).
VT B B

Furthermore, they satisfy a recurrence relation:

Fop1 = (=1)"(Foa Fy_y — FraFyY),
BBy = (—1)"Fy, (FryoFry — FpoF24). (7)

Our Fueter polynomials for odd n coincide with those defined by Cassou-Nogues and
Taylor in [7, IV.3]. However, our even Fueter polynomials are distinct. In making
our definition, we wished to preserve the recurrence relation.

One now observes that for odd n (our primary interest), the polynomials ¥, (x)
and F,(T) define the same field extension. We will refer to this field extension as
the n-th partial torsion field. When n is an odd prime, it is the field of definition of
the z-coordinate or T-coordinate of a single point of order n, which is generically of
degree (n? —1)/2.

Although we will only require the following proposition for odd n, we record the
full relationship between the division polynomials of the Weierstrass and Fueter
forms.

Proposition 3.2. We have

ne 2
(—I)T1 (2?) F, ifn is odd
\Iln - n2—1
n 2
(—1)%2 <af) F, ifn is even,

where Fy, is defined in equation @

Proof. Using the change of coordinates , we check the result directly for n =
1,2,3,4. Proceeding by induction, suppose we have the result for all n < N and
consider W y.

Case I: N odd. In this case, letting N = 2m + 1, we have by that

Uy = Voppg = Vo U — Wy 03
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Suppose m is even. Then, using and the inductive hypothesis,

(m+2)2—1+3m -3 (m—1)2-143(m+1)%2-3
ab\———= af 5
e () - ()
(2m+1) —1
a
= (ﬁ) (Fm+2F7?;L+Fm_1FT?;L+1)
2
a,ﬁ N 271
=—| = Fy.
( T ) N

An analogous computation yields the result if m is odd.
Case II: N even. Letting N = 2m, we have from that

VoW = WoWs,, = U2 _ 0, U0 — U, 00, U2
Again suppose m is even. We have from and the inductive hypothesis that

af 2(m—1)2—24m2—1+(m+2)2 -1

Vol = —(7> ’ Y FnFoys
.\ (¥) (m—2)2—1+m22—1+2<m+1)2—2 Fm_2FmF31+1
_ (?ﬁ) e (F2_1FnFogo — FnoFnF2 L)
—_ (%) S FyFy.

3
Dividing by ¥, = (aﬁ,}i;ﬂ we obtain our desired expression. Finally, as before, if m
is odd, an analogous computation finishes the proof. ]

We also record the discriminant of the odd Fueter polynomials.

Proposition 3.3. Forn odd, we have

ne1 n2_3 nt—4n243

DiSC(Fn) = (—1)TnT (5_2(04 _ SB)a) 24

Proof. To compute the discriminant, we use Proposition Let d = (n? —1)/2,
the degree of ¥,,. Let n be odd. Then,

Disc F,(T) = (aﬁ)_Qd(d_l) Disc(aB)LF,(T)

e (o () )

= (aB) """ Disc(W,(afT — af3))
= (af)~ """ Disc(¥,(T — aff))
= (a3)~%4=) Disc(W,,(T)).
Next, we use the discriminant of F and Theorem O
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3.3. Tate’s algorithm. The purpose of this subsection is to give a full analysis of
the reduction of the curve E in Tate’s normal form, via Tate’s algorithm.

Proposition 3.4. Let p be an odd prime, p | A. Let E denote the reduction of E
modulo p. Let f denote the exponent of p in the conductor of E. Let ¢ be the number
of components in the special fiber of the minimal proper reqular model of the curve
over Zy. Then:

(1) If p | B, then f =1, ¢ = 4vp(B), and E has Kodaira type Iy, 3). In this
case, E is in minimal Weierstrass form with respect to p, and the point (0,0)
has singular reduction.

(2) If p| (a—8B), then f =1 and E has Kodaira type I, (o—gp)- Furthermore,

(a) If p=1 (mod 4), then ¢ = vy(a — 83).
(b) If p=3 (mod 4), then

1 if vp(a—8pB) is odd
‘T2 if vp(a — 8) is even.

In these cases, E is in minimal Weierstrass form with respect to p, and the
point (—2°32,2733) on E is singular.
(3) If p | a, we let w = L”" J Then
(a) vap( ) is odd, then f =2, ¢ =4, and E has Kodaira type I -
(b) If vp(a) is even, then f =1, E has Kodaira type I,, (4), and

vp(a) if (’Bap 2w> =1
2 if (/3“1’ 2‘“) - 1.

In this case, E is in minimal Weierstrass form with respect to p after the
change of coordinates (z,y) = (p*“a’,p**y') and the point (0,0) has singular
reduction.

Proof. We follow Tate’s algorithm as described in [31) IV 9].

Case I: Suppose p | 3. We apply Tate’s algorithm and note that p { by = a®+40a.
Hence we have Kodaira type Iy, s and f = 1. Since T' 2 + aT splits completely
over Z/pZ, ¢ = 4v,(B).

Case II: Suppose p | (a« — 843). In this case the singular point on the reduced
curve is (—2°32,2733). Following Tate’s algorithm, we make a change of coordinates
(2',y') = (x — 2582,y + 2783). For ease of notation we will write 2’ as z and y' as
y. We now have

E' % + axy + (288 + 2°6%a + Ba?)y
— $3 + (_3 . 2562 +Ba)x2 + (_2663a _ 27/83a _|_3 . 210/84)33
+(—27B%* +5-2'98% — 3. 21°).

a)°

CcC =

Continuing, we compute by = a? + 4az. Note a = 2*3 mod p. We have
by = a? +22(—3-2°82 + Ba) = 2882 — 3. 272 + 2632 = —2632,
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This shows that p 1 be so that we have Kodaira type I, (a—sp) and f = 1. Continuing,
we consider T2 +aT+(3-2% 32— Ba) over Z/pZ. Reducing we have T2 +243T+5-2% 32,
Applying the quadratic formula, the roots are —83 # 43y/—1. Thus the splitting
field is Z/pZ if and only if p =1 mod 4. Hence ¢ = vy(a — 88) if p =1 mod 4.
Further, if p =3 mod 4, then ¢ = 1 if v,(ov — 8f) is odd and ¢ = 2 if v, (o — 80) is
even.

Case III: Now assume p | a. Recall w = LUPT@J We make the change of
coordinates (r,y) = (p?“a’,p**y’). We have a3 + a1p™¥, ag — asp 2%, and
ag — azp~¥. Note A’ = Ap~12¥ g0 that vy(A’) = Tvy(a) — 12w. Thus, if vy(a) is
odd, then v,(A’) = v,(a) + 6, and if vy(a) is even, then v,(A) = v,(a).

Part a: Suppose vp(a) is odd. Applying Tate’s algorithm, we see p | by =
(a1p™%)? + dagp™2®, p? | by = aza3p~®", and p? | by = a3p~®*. Hence we consider
T3 — asp~?w~1T? over Z/pZ. This polynomial has a double root at T' = 0 and
a simple root at T = asp~ @ . Thus we have Kodaira type I;‘p(a) and f =
Following the subprocedure to step 7, we find ¢ = 4

Part b: Suppose vp(a) is even. Applying Tate’s algorithm, we see that p t b =
(a1p~")? — dagp~2*. Hence we have Kodaira type Ly, 2y and f = 1. Considering

— Bap~2¥ over Z/pZ, we see that if (W) =1, then ¢ = vy(a). Conversely, if
<Bapp2w) = —1 then ¢ = 2. O

Care must be taken when F has bad reduction at 2. When 2 | 3, the results and
proof used above can be applied by replacing p with 2. When 2 | a we see 2 | o and
hence 2 | a — 85.

Proposition 3.5. Let the notation be as before and define w = L”Q(a IE

(1) If va(a) = 1, then E has Kodaira type I7, f = 3, and ¢ = 4. In this case,
E is in minimal Weierstrass form with respect to 2 and the point (0,0) has
singular reduction.

(2) If va(a) = 2, then E has Kodaira type I11.

(3) If va(a) is odd and greater than 1, then E has Kodaira type I;‘Z(a).

(a)

(4) If va(a) =4 and % is odd, then E has Kodaira type I§.
(5) If va(a )

(a) f 28 =1 mod 4, then E has Kodaira type 1.

(b) If B2 S5 =3 mod 4, then E has Kodaira type I3.
(6) If va(a) > 4 is even, we have several subcases:

(a) If 511—1-222‘:# is odd, then we have Kodaira type IZQ(Q)_4.

= 4 and % is even, then we have two subcases.

(b) If 8 afﬁif is even, we have further subcases:
(i) If va(a) = 6, we have Kodaira type IT1T*.
(ii) If va(a) = 8, then E has good reduction at 2.
(i) If va(a) > 10, we have Kodaira type I, (q)—g

Proof. We follow Tate’s algorithm as described in [31) IV 9].
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Case I: v9(a) = 1. Applying Tate’s algorithm, we see 2 | by, 4 | ag, 8 | bg, and

8 | bg. Thus we consider
P(T)=T°+ %TQ =T? <T+ 52“) .
We see P(T') has a simple root and a double root modulo 2. Hence we have Kodaira
type I) and f = v2(A) —4 — n. To determine n and ¢ we consider the polynomial

2
Y2+BTQY.

This polynomial has distinct roots in Z/2Z. Hence n = 1 and ¢ = 4. Noting
v2(A) = 8, the result follows.

Case II: v2(a) > 1. We make the change of coordinates (z,y) = (22¥a/, 23Wy/).
For ease of notation we will write z and y for 2’ and /.

Case II-A: vy(a) = 2. Then 81 bg and we have type I11.

Case II-B: v3(a) odd. If va(a) is odd we consider P(T) = T%(T + 1) mod 2.
When the subprocedure to step 7 terminates, we are left with type I;‘Q (a)°

Case II-C: vy(a) = 4. In step 6 we change coordinates to obtain

2 2
9 a pa* 4 Ba a 5 Pa

We consider

2w 2
3, Ba+2%%—2 9 Ba
P(T) =T1"+ 922w+1 "+ 23w+2 T.
If %# is odd, then we have type Ij. If %7652% is even we change coor-

dinates, setting x = 2’ + 2 and again abuse notation by letting x = 2’. Our curve
becomes

a Ba? a
v+ (55 +2) oy + (Q&U+2w1 +4>y

3 Ba+2%a —2%% 4+ 6220\ Ba?  Ba+2%a — 2%%
=X +( 92w r° + 2374‘ 92w +12 ) z.

Following the subprocedure to step 7, we obtain the desired result.
w 2w
Case II-D: v5(a) > 4 even and 2224-2"" odd. Then P(T) = T*(T +1) mod
2. Following the subprocedure to step 7, we find we have type I:Q (a)—4°

Case II-E: v3(a) > 4 even and %# even. Then P(T) has a triple root.

Case II-E-i: v3(a) = 6 and %# even. Then 161 a4 = %‘j so we have
type I11*.

Case II-E-ii: vs(a) > 6 even and %7‘1_1221” even. Then our Weierstrass
equation was not minimal. We make the change of coordinates (x,y) = (42’,8y’) to
obtain

a a® a+2%a — 22w a’
y2 + (W + 1) Ty + 2§w+3y - x3 + IB 22w+2 mZ + 2/510—&-437'
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Case II-E-ii-a: v3(a) =8 and % even. One checks that if va(a) =8,
our curve has good reduction at 2.

Case II-E-ii-b: v2(a) > 8 even and %1—122“’ even. We have type I,,(,)—s-

4. VALUATION OF Di1VISION POLYNOMIALS

The purpose of this section is to determine the valuation of F;, evaluated at the
singular point. This is done by reference to the valuations of W¥,, at the singular
point, and the change of variables of Proposition We demonstrate two methods
to obtain these valuations. The first is to apply the results of [34], which give explicit
valuations based on the reduction data of Proposition [3.4] The second is a hands-on
approach using the recurrence relations for division polynomials, which is possible
in simpler cases. We consider only odd primes.

4.1. Odd primes dividing « — 8. Recall that, when p | (o« — 84), the singular
point modulo p is (—2532,2733).

Proposition 4.1. Suppose p | (a—883). Let Q be a point of E(Q) which is singular
modulo p, and satisfies ©(Q) = —2°3%. Let Q' be the image of Q under the change
of coordinates to Fueter form. Suppose that n is odd. Then,

n?—1
g

vp(Fa(@Q) = vp(¥n(Q)) = vp(a — 83)
To prove Proposition we begin with a lemma.

Lemma 4.2. Suppose p | (a« — 88) and let Q be as above. Then, [2]Q does not
reduce to the singular point mod p.

Proof. Recall a = a + 83. We compute

22068 _ b421054 + b62652 o b8

z([2]Q) = 17 36 10 34 632
—21736 4+ 0921034 — 042032 + bg
92036 _ 910433 1 964452 _ 453
T 21731 1 2104232 1 212433 — 26433 + o
We divide the numerator and denominator by a — 168 = a — 83 to obtain
—CL4B +3. 24(1352 _ 28G2B3 _ 21261,84 _ 216B5
a3 —3- 24a26 + 28a52 + 21353

Reducing mod p we obtain

z(2)Q) = —2'6%.
Thus [2]Q does not reduce to the singular point. O

Following [34], we define, for any integers a, ¢ such that ¢ # 0, the sequence

Rufa.t) = | = - ®)
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where T denotes the least non-negative residue of  modulo ¢. Theorem 9.3 of [34]
gives the valuations of the sequence of division polynomials, evaluated at a point of
multiplicative reduction, in terms of such sequences. We apply this to our specific
situation here.

In particular, we will encounter the sequence R, (1,2), which begins from n =1
as follows:

0,1,2,4,6,9,12,16, 20, 25, 30, 36,42, . ..

The odd terms of the sequence have a simple closed form.

2

Lemma 4.3. Forn odd, R,(1,2) =~ 4_1.

Proof. For n odd, we have @ = na = 1 in (8). Therefore,
n? 1 n? n?—1
Lo)= |22 = |2 = .
w2 =[] =[] 7] -5
g

Proposition 4.4. Suppose p | (a — 883) and let Q be as above. Write K for the
minimal extension of Q so that Q € E(K), and write L for a minimal unramified
extension of K such that E has split multiplicative reduction over L. Proposition
shows such an L exists. Let v;) be a lift of vy to L. Let n > 0 and suppose 41 n.
Then UI/, = 2vy, if and only if v,(a — 8f) is odd; otherwise v], = v,. We have

P
"(a — 8
(@) = 22 (1.9,
If furthermore n is odd, then
21
0p(Ta(Q)) = vyl = 88) ——

Proof. One can compute that K is the extension obtained by adjoining
Vat —25a38 — 27262 + 5 - 21183 — 15 - 21234
= Vo — 86y a3 — 2402 — 320052 + 76808.

We also have
o — 24023 — 320032 + 768083 = 2283 (mod o — 88).

Therefore, since p is odd, divides (a — 853), and is coprime to 3, the extension K
is ramified at p if and only if v,(a — 83) is odd. Hence, v;, = 2v, if and only if
vp(a — 83) is odd; otherwise v;, = v,.

Since we have split multiplicative reduction, the group of components over L
is isomorphic to Z/v] (o — 83)Z. The component containing @) has additive order
exactly 2 by Lemma Thus it may be identified with vy, (a—843)/2. Hence, in the
language of [34], lg = v,(a — 83) and ag = v,(a — 83)/2. Applying [34, Theorem
9.3], we find that

U;(\I’n(Q)) = Rn(v;,)(a —88)/2, U;(O‘ —88)).
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By [34, Proposition 8.2(iv)],

vp(a — 85)
(@) = 2R, 1,2)
For odd n, ¥, (x) is a polynomial in z alone and therefore ¥, (Q) € Q. Accord-
ingly, by Lemma we obtain the given statement. O

Proposition follows from Propositions and (recall that a, B are coprime
integers).

4.2. Odd primes dividing a or 3. In this case, we apply the recurrence relation
for the division polynomial to obtain valuations.

Proposition 4.5. Suppose p | f or p | a (these cases are mutually exclusive). Then

(0,0) is a point of order 4 and has singular reduction on E; the corresponding point
in Fueter form has T = 1. Suppose that n is odd.

If p| B, then
2 _ 2 _
op((0)) = P20, (8) and (1)) =~y (6).
Ifp|a, then
5n% —5 n?—1
vp(¥n(0)) = 3 vp(a) and wvp(F,(1)) = 3 vp(a).

Proof. We will proceed by induction. Recall a = o+ 803. For the base cases we have
U1(0) = 1, Wa(z,y) = 2y + ax + a® so Wy(0,0) = a. Further, U3 = 32% + boa3 +
3byx® +3bgx+bg = 32t +(a?+48a)r3+3Ba3 2% +38%a* v+ 3. Hence U3(0) = £3a’.
We have ¥, = \112(21'6 + b21'5 + 5b4:l3'4 -+ 10[)6333 + 1068.%'2 + (bgbg — b4bﬁ).%' + (b4b8 — b%))
Evaluating at 0 we obtain W4(0,0) = W5(0,0)(bsbs —b3) = ¥2(0,0)(8%a®—B*a®) = 0.

First we prove that if 4 | n, then ¥, (0,0) = 0. Suppose we have the result for all
n < N and suppose 4 | N. Let N = 2m, so that m is even. Then

UV = oWy, = U2, 0, W, 0 — Uy, o0, 02

Now either 4 | m, or 4 | m — 2 and 4 | m + 2. Hence the result follows by induction.

Now suppose that v,(¥,(0)) = vp(a) 5"28_5 + v,(B) 3"28_3 for all odd n < N.
Suppose N is odd, and write N = 2m + 1. We have

Uy = Wopnp1 = Upyo W5, — Uy 05 ).
Suppose first that m is even. Then either m or m + 2 is divisible by 4. Hence
up(¥n(0)) = vp(¥m-1(0)) + 3vp(Vi11(0))
5(m—1)2 -5 3(m—1)2-3
=vplo) =+ ) ————
8 8
5(m+1)2 -5
+ vp(a)3¥ + vp(5)3

8
_ vp(a)5(2m +81)2 -5 N vp(ﬁ)3(2m +81)2 -3

3(m+1)2—3
8
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Likewise, if m is odd, either m — 1 or m + 1 is divisible by 4. Hence

vp(¥N(0)) = vp(¥rm12(0)) + 3up(Win(0))

5 2)2 -5 3 2)2 -3
— vp(a)(7n+8) + U”(m(mjLS)
+upla =2 (P =

5(2 1)2 -5 3(2 1)2-3

— Up(a)(erS) + Up(ﬂ)(erS)-

This gives the stated results for ¥,,. For F,, we use the change of coordinates
between Weierstrass and Fueter form and Proposition (3.2 O

5. PROOF OF THE MAIN THEOREM

Proof of Theorem[1.4. Suppose E is an elliptic curve defined over Q, and suppose a
twist E’ has a rational 4-torsion point, hence can be put into Tate normal form as
in with «, 8 € Z coprime. The j-invariant of the elliptic curve is invariant under
twisting. In Tate normal form, the discriminant and j-invariant are of the form

o (Ck2 _ 4862)3
77 Bla —8B)(a + 85)’

Therefore E’ has good reduction modulo p unless p | S(«a — 853)(« + 853).

We now show that conditions , and of the statement are equivalent.
Under condition (|1)), we have 8 = 1 by Proposition In this case, requirements
and are evidently equivalent. Assume condition holds. For odd primes,
Proposition implies that p? does not divide o + 8. For p = 2, Proposition
implies that ve(a + 8) € {0,1}. This implies vo(av — 8) € {0,1} also, and we have
demonstrated condition . Hence (1) implies and . Conversely, if condition
holds, we apply Propositions and to conclude that holds. Thus we
have demonstrated all the conditions are equivalent.

The field K, generated by the z-coordinate of a single point of order 3 is invariant
under the twist. Therefore we now assume E itself has a rational 4-torsion point.
Change coordinates so that F is in Tate normal form and Fueter form as in Section
with @ € Z and 8 = 1. We then find that the partial 3-torsion field is generated
by the 3-division Fueter polynomial, F5(T) = T* — 6T% — aT — 3. Let 0 be a root of
this polynomial, and let K = Q(#). Under the equivalent conditions of the theorem,
the polynomial F3(T') is irreducible, as observed in [10, Proposition 2.10], so K is a
quartic field.

We apply the Montes algorithm. It calls for examining the polynomial F3 devel-
oped around any lift of a repeated irreducible factor modulo p; each such situation
may contribute a factor to the index [Og : Z[f]]. If no such non-trivial factors
appear, we can conclude Ok = Z[6].

We will show prime-by-prime that the only repeated factors are linear of the form
T — TO and that Up(Fg(To)) =1.

A =B a—88)(a+88), o, 8 € 7.
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Case I: p = 2. Modulo 2, the polynomial F3 becomes T% — oT — 1. If o is odd,
this is irreducible with no repeated roots. If « is even, then the repeated root is 1,
so we develop F3 around T — 1, obtaining a constant term of —a— 8, which we have
assumed to be squarefree. Therefore in this case va(F3(1)) = 1.

Case II: p = 3. Modulo 3, the polynomial F3 becomes T% — o7, and « is a
repeated root. If 3 divides a, then a lift of this root is 0, and v3(F3(0)) = 1. If
a =1 (mod 3), then 4 is a lift, and v3(F3(4)) = 1. Else —4 is a lift of a, and
v3(F3(—4)) = 1.

Case III: p > 5. Now, suppose F3 has a repeated irreducible factor modulo an
odd prime p. The roots of F3 are the four x-coordinates of non-trivial 3-torsion;
this means that reduction modulo p fails to be injective on E[3]. This occurs if and
only if £ has bad reduction at p, or p = 3.

Suppose p > 5 is a prime of bad reduction, and suppose @ is a point on E having
singular reduction modulo p. Specifically, if p | a + 8, take @ = (0,0). If p | o — 8,
take £(Q) = —2°. Then, the only repeated root of F3 modulo p is T(Q) (since the
failure of injectivity under reduction must take the form of 3-torsion points mapping
to the singular point, as the map to the non-singular part has torsion-free kernel).
Then, using the fact that o 4= 8 are not divisible by p?, we learn from Propositions
and that v,(F3(T(Q))) = 1.

In each case, we find that v, (F3(1p)) = 1 where Tj is the repeated root. Therefore
the associated Newton polygon starts at height 1 on the y-axis. Hence, the polygon
cannot pass through any lattice points and cannot contain any lattice points, and
the polygon has only one segment, as in Proposition [2.2] Therefore it is p-regular.
By the Montes algorithm, this implies that the index [Ok : Z[f]] is not divisible by
.

As we have verified that the index [Ok : Z[f]] is not divisible by any prime, we
conclude that O = Z[0)]. O

Theorem [I.1] follows immediately.

6. FURTHER NOTES

Let 6 be a root of T* — 6T% — oT — 3. Consider the field K, = Q(#). This family
of number fields was studied by Fleckinger and Vérant [10]. Let « > 9, a € Z, and
o # 24. Then Fleckinger and Vérant showed that K, is an Sy quartic field with
two real embeddings [10, Proposition 2.10]. They give an explicit basis for the ring
of integers in general [10, Proposition 2.11], but it is not a power basis and they do
not mention monogeneity. Finally, they remark that when 3 | o, then 1+ 6 + 20
is a unit. In fact, they point out that there are no other parametrized units in this
field. Experimentally, we observed surprisingly small regulators and surprisingly
large class groups for these fields; the existence of a simple parametrized unit is a
possible explanation.

Fleckinger and Vérant also study the family of quartic fields given by

T4+%T3+6T2+%T+1
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of discriminant —4((a/2)? —16)3, which they observe arise from a point of order four
on a Fueter model [I0]. The authors prove that this family is monogenic whenever
(a/2)? — 16 is odd and squarefree, and « > 12 [10, Corollary 1.4]. This appears to
be a Dg family. We leave it as an open question whether the methods of this paper
may apply to this family.

7. EXPERIMENTAL DATA

As part of our exploration, we took a survey of elliptic curves to determine the
prevalence of monogenic fields, using Sage Mathematics Software [9] and pari/GP
[35]. Up to isogeny, there are 11575 curves of conductor less than 10000 whose
partial 3-torsion field is monogenic. The torsion points of many curves share the
same field of definition, and in all, these 11575 curves yield 1026 unique fields. In
particular, the following families of fields are prevalent.

Polynomial ‘ Discriminant

T4 — 6sT? —tT — 35> —33(1% — 6453)?

T4 — T3 —3sT? — (4t +3s2)T +t | —33(16t% + (245> + 125 + 1)t + (95 + 5?))?

T4 — 273 — 65T? — (2t + 652)T +t | —233(t? + (652 + 65 + 1)t + (95 + 253))?
In the table above, T is the indeterminate, while s,t € Z parametrize the family.

Each of these quartic field families appears to be 54 monogenic under appropriate
conditions on the discriminant and the parameters.
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