A family of S; quartic monogenic fields arising from elliptic curves
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ABSTRACT. We consider partial torsion fields (fields generated by a root of a
division polynomial) for elliptic curves. By analysing the reduction properties of
elliptic curves, and applying the Montes Algorithm, we obtain information about
the ring of integers. In particular, for the partial 3-torsion fields for a certain
one-parameter family of non-CM elliptic curves, we describe a power basis. As
a result, we show that the one-parameter family of quartic S fields given by
T* — 6T? — aT — 3 for o € Z such that o + 8 are squarefree, are monogenic.

1. INTRODUCTION
Consider the following result.

Theorem 1.1. Suppose that o £ 8 s squarefree, where oo € Z. Then the field
Ko = Q(0) where 0 is a root of the irreducible polynomial T* — 612 — T — 3 has
ring of integers Z[0]; in other words, K, is a quartic monogenic field.

The discriminant of this polynomial, and hence the field Q(6), is —27(a —8)?(a +
8)2. We do not doubt that monogenicity can be deduced by classical computations,
but the novelty of this paper is our method: we discover this family of quartic
fields as partial torsion fields (fields generated by a root of a division polynomial)
of a particular family of elliptic curves, and deduce monogenicity by reference to
reduction properties of the elliptic curve. In particular, we prove the following.

Theorem 1.2. Let E be an elliptic curve defined over Q, such that some twist E’
of E has a 4-torsion point defined over Q. Then the following are equivalent:

(1) E" has reduction types Iy and I only;

(2) E has j-invariant with squarefree denominator except a possible factor of 4.

(3) E has j-invariant j = %, where a € Z, o £ 8 are squarefree.
Let K,, be the field defined by adjoining the x-coordinate of an n-torsion point of
E. If any of the above hypotheses holds, then Ks is monogenic with a generator
given by a root of T* — 6T?% — oT — 3. In particular, the field K3 has discriminant

—27(a — 8)%(a + 8)2.
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The methods used in the proof turn information about reduction properties of
an elliptic curve into information about the index [Ogg) : Z[0]] where 0 is a special
value of an elliptic function (namely, a zero of a division polynomial). Theorem ??
is meant primarily to showcase our methods. A more detailed analysis using these
same methods can provide bounds and even exact formulae for the discriminants of
partial torsion fields in general. This will be described in a follow-up paper by the
second author.

In fact, Fleckinger and Vérant studied the number fields of Theorem 7?7, motivated
by their status as partial torsion fields [?]. However, as they write, “We note that
the arithmetic of elliptic curves is not used once we have these polynomials.” They
describe a basis for the ring of integers in general (which is not a power basis), and
show that they are quartic Sy fields. See Section 77?.

There is an abundance of literature on both monogenic number fields and number
fields obtained by adjoining torsion points of elliptic curves. Monogenicity is rare:
while our favourites, including quadratic fields, and the cyclotomic fields, are mono-
genic, it is known for example that almost all abelian extensions of Q with degree
coprime to 6 are non-monogenic [?]. For an in-depth bibliography of monogenicity,
see Narkiewicz [?, pp. 79-81] and the book of Gadl [?], and for fundamental algo-
rithmic work, see Gy6ry [?]. We content ourselves here with listing a few recent
works concerning monogenic quartic fields. In [?], Spearman describes an infinite
family of A4 monogenic fields arising from x* + 1822 — 4tz + 2 + 81 when ¢(¢% + 81)
is squarefree. The Dg fields are studied by Kable [?] and Huard, Spearman, and
Williams [?]. While the pure quartic case is investigated by Funakura, who finds
infinitely many monogenic fields [?]. Fleckinger and Vérant also have a monogenic
family which appears to be Dg [?, (2)]. In [?], Gras and Tanoé list necessary and
sufficient conditions for certain biquadratic extensions of QQ to be monogenic; Mo-
toda constructs an infinite family [?]. It is also known that infinitely many quartic
cyclic fields are non-monogenic, by work of Motoda, Nakahara, Shah and Uehara
[?] and also Olajos [?]. As for Sy fields, little is known; however, Bérczes, Evertse
and Gy6ry restrict the multiply monogenic orders in such fields [?]. See the experi-
mental data in Section 77 for three more families of quartic fields which appear to
be monogenic.

The field over which the n-torsion points of an elliptic curve are defined is often
denoted Q(E[n]) and plays a crucial role in the study of elliptic curves and their
Galois representations. It is often referred to as a division field or a torsion field.
For a survey, see [?]. In general, the discriminants of such fields are not known,
although there has been some work on their ramification [?, ?, ?]. In the case when
n is prime the different has been computed [?, ?]. In the case of 3-division fields,
generators, Galois groups and subfields have been very explicitly described [?]; see
[?] for higher order. However, little similar work has been done on the subfields
defined by division polynomials.

The Fueter polynomial we study arises from changing coordinates to the Fueter
form of an elliptic curve: this choice has a history in explicit class field theory.
Specifically, in [?], Cassou-Nogues and Taylor pursue Kronecker’s Jugendtraum for
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certain ray class fields of imaginary quadratic fields. They study elliptic curves with
complex multiplication and good reduction away from 2. Let K be an imaginary
quadratic field with discriminant dx < —4 and suppose 2 splits in K. If I is any
Ok ideal, let K(I) denote the ray class field of K mod I. Now suppose ¢ is an odd
O ideal. Cassou-Nogues and Taylor show that O (4¢) is monogenic over O y),
using special values of the coordinates of the Fueter form.

Although the methods and the class of monogenic fields found in [?] differ, we
adopt their use of the Fueter form to access special values of an elliptic function. It
is remarkable that in the non-CM case, these special values still seem to offer some
advantage in describing partial torsion fields explicitly, in the form of monogenic
generators. Is it possible that these special values provide the best power basis for
general partial torsion fields?

Our main method involves two ingredients: the algorithm of Guardia, Montes
and Nart [?], which computes [Ogg) : Z[0]]; and the p-adic valuations of division
polynomials (in particular, 7% — 672 — oT — 3, the 3-division polynomial in Fueter
form), which are computed in detail in work of the third author [?]. A basic descrip-
tion of the Montes algorithm is to be found in Section ??. Briefly, the algorithm
uses the Newton polygon to compute v,([Ogg) : Z[f]]) in terms of the number of
lattice points on and under the polygon. The simplest case is a polygon which
bounds no points, and this case corresponds to the p-adic valuation being 0. Thus,
by picking « so that all the polygons are simple, we ensure that the corresponding
field is monogenic.

It is possible to apply the Montes algorithm to the polynomial 7% — 672 —aT — 3
directly, but the computations are rather involved. This would provide a proof of
Theorem 77, but it would not demonstrate the new methods dependent upon inter-
preting the polynomial as a division polynomial of an elliptic curve. In particular,
the efficient choice of lift ¢; (see Section ??) is guided by the elliptic curve.

One can view this project as part of the study the discriminants of number fields
associated with Lattes maps. Briefly, if ¢: E — FE is an elliptic curve endomorphism
and 7: £ — P! a finite covering, then a rational map ¢: P — P! is a Lattes map
if To1 = ¢ om. For example, one may take ¢)(P) = [n|P and 7(x,y) = x. The
corresponding Lattes map has degree n?, and it is from these maps that the division
polynomials are derived (see Section ?7).

The idea to compute the discriminants of number fields associated to Lattes
maps is motivated by similar computations done for the power maps and Chebyshev
polynomials. These three families of maps—Lattes, Chebyshev, and power—are
posteritically finite. Consequently, if f is a member of any one of these families,
then the tower of number fields generated by f"(x) — ¢ is unramified outside a finite
set of primes [?]. In some sense this simplifies the computation of the index as
only finitely many primes need be analysed. In the case that f is a Chebyshev or
power map, the first author has used the Montes algorithm to compute the field
discriminant precisely, and produced infinite towers of monogenic fields [?, ?]. In
the case of the n-division polynomial, we need only consider the primes dividing n
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and the discriminant of the curve. The shape of the Newton polygons tend to evolve
predictably from one iterate to the next.

Acknowledgements. The authors are indebted to David Grant and Joseph H.
Silverman for helpful conversations.

2. THE MONTES ALGORITHM

In this section we give a basic description of the Montes algorithm so that Theorem
?? is understood. We refer more interested readers to [?] for the full details.

Let ® € Z[x] be a monic irreducible polynomial whose root 6 generates a number
field K, and denote by Ok the ring of integers of K. Define ind ® = [Ok : Z[0]].
Let ind, ® = v,(ind ®) denote the p-adic valuation of ind ®. The value ind, ® may
be computed as follows.

First, factor ® modulo p and write

O(z) = ¢1(2)" -+ ¢r(2)™ (mod p),

where the ¢; € Z[z] are monic lifts of the irreducible factors of ® modulo p. The
algorithm will terminate regardless of the choice of lifts, however this choice may
simplify the computations significantly.

For each factor ¢;, there is a unique expression

®(z) = ao(z) + a1(z) s (z) + as(x)di(2)* + -+ - + as(x)pi(z)*,

where the a; are integral polynomials satisfying dega; < deg ¢;. This expression is
called the ¢;-development of ®.

From the ¢;-development, construct the ¢;-Newton polygon by taking the lower
convex hull of the points

{(7,vp(aj(2))) : 0<j < s}, (1)

where vp(a;(x)) is defined to be the minimal p-adic valuation of the coefficients of
aj(z). Only the sides of negative slope are of import, and we call the set of sides of
negative slope the ¢;-polygon. The set of lattice points under the ¢;-polygon in the
first quadrant carries important arithmetic data, and to keep track of these points,
we define

indg, (®) = (deg ¢;) - #{(z,y) € N*: (x,y) is on or under the ¢;-polygon}.
To each lattice point on the ¢;-polygon, we attach a residual coefficient

) red(a;(z)/p*(@@)) if (j,vp(a;(z))) is on the ¢;-polygon
res(j) =
J 0 otherwise,

where red : Z[z] — Fp[z]/(¢i(z)) denotes the reduction map modulo p and ¢;. For
any side S of the ¢;-polygon, denote the left and right endpoints of S by (¢, o) and
(z1,y1), respectively. We define the degree of S to be deg S = ged(y1 — yo, £1 — x0).
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In other words, deg.S is equal to the number of segments into which the integral
lattice divides S. We associate to S a residual polynomial

deg S (x - )

(1 — o ;
Rs(y) = D res (wo + ds) y' € Fyla]/(6i())ly).

i=0 8
We note that res(zg) and res(zq) are necessarily non-zero, and in particular, it is
always the case that deg S = deg Rg.

Finally, if Rg is separable for each S of the ¢;-polygon, then ® is ¢;-regular, and

if ® is ¢;-regular for each factor ¢;, then ® is p-regular.

Theorem 2.1 (Theorem of the index). We have

ind, ® > indg, (P)
=1

with equality if ® is p-reqular.
Proof. See [?, 4.4]. O
For our purposes, we need only the following simple corollary.

Proposition 2.2. If ® is monic, and vy,(ag) = 1 for each ¢;-development, then
ind, ® = 0.

Proof. The Newton polygon for each ¢;-development has exactly one side of negative
slope to consider, running from (0, 1) to (ko,0) for some 0 < kg < s. Therefore there
are no points under or on the segment, and ® is p-regular. The result follows from
Theorem ?7. 0

3. FUETER FORM AND CURVES WITH A POINT OF ORDER 4

The goal of this section is to examine a particular one-parameter family of elliptic
curves, namely a normal form for a curve with a rational point of order 4 (although
often called Tate’s normal forms, such families of curves with rational n-torsion were
known in the 19th century). This family was suggested by experimental data. In
the next section we exhaustively analyse the valuations of special values of division
polynomials for this family, describing all situations in which the Montes algorithm
can be applied.

3.1. Tate and Fueter forms. Tate’s normal form for an elliptic curve with a
rational point of order 4 is given by the Weierstrass form

E:y? + (a+8B8)xy + Bla+88)%y = 2> + B(a + 86)z?, (2)
where «, f € Q. Though, by a change of coordinates, we may assume that o, 8 € Z
and are coprime. Up to isomorphism, this is a one-parameter family of curves with
(0,0) being a point of order 4. The invariants are:

(a? —4853%)

B —8B)(a +88)

A=pYa—88)(a+88)7, j= (3)



6 T. ALDEN GASSERT, HANSON SMITH, AND KATHERINE E. STANGE

Throughout the remainder of the paper, we will often use a := « + 83 for ease of
notation.
Appling the change of coordinates

a a % a2
(x,y)=<ﬁ—aﬁ,;<(@2ﬂ—f>>, (4)

Tf:T<4T2+gT+4>,

one obtains

which is known as a Fueter curve [?]. The identity of the group is (7,77) = (0,0),
and the point Qo := (1,v/a/B) = (1,1/8 4+ «/() is a point of order 4. Note that
this change of coordinates is defined over a potentially quadratic extension Q(v/af3)
but that the field of definition of the x-coordinate of a point is the same as the field
of definition of the corresponding 1" coordinate.

Suppose p is a prime at which E has bad reduction. If p | a or p | 3, then the
singular point modulo p on the Weierstrass curve, namely (0, 0), becomes Qp modulo
p on the Fueter curve. However, if p | (o — 803), then the singular point modulo p
on the Weierstrass curve, namely (—2°32,2733), becomes (—1,0) modulo p on the
Fueter curve. Generally, when p is an odd prime that divides o — 88, a rational lift
of the singular point will not necessarily exist.

3.2. Division polynomials, Weierstrass and Fueter. By definition, the n-th
division polynomial ¥, (z,y) for an elliptic curve E in Weierstrass form

E:y2+a1my+a3 :x3+a2x2+a4x+a6
has the property that

_( Pn(zy)  walz,y)
e = (G2 ooy

where ¢y, wn, ¥, are coprime polynomials. It can also be defined by stipulating that
Uy (x,y) =1,Vs(x,y) =2y + a1z + ag and for n > 2,

n H/ (x — z(P)) n is odd
PEE[n]~{O}
\:[Jn(:[,‘7 y) = n / .
5\112(% Y) H (x —x(P)) mnis even,
PEEn|~E[2]

where the ’ on the product indicates that we include only one of each pair P and
—P in the product. In particular,

Uy =1,
Uy =2y + a1z + as,

Uy = 3zt + boa® + 3bga® + 3bgx + b,

Uy = Uy (220 + boa® + 5byx? + 10062 + 10bgx? + (babs — babg)z + (bsbs — bZ)).
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The odd division polynomials have degree ”2{ L in z. The n-th division polynomial

has divisor _ pe g, (P) — n?(0). The group law of the elliptic curve manifests as a
recurrence relation among the ¥, w, and ¢,; in particular, for n > 3,

Wono1 = U1 U3 — Wy W3 Wop Wy =0, (VW) | — Uy 007, ) . (5)

Therefore, having computed the first four division polynomials directly, we can
obtain all the others recursively.
The discriminants of division polynomials have been computed by Verdure:

Theorem 3.1 ([?, Theorem 1]).

n—1 n2-3 4_4n243

()2 n 2 A 2 n odd

n—2 n2-6 . n*—10n2+24
(=1) 2 16n 2 A" 2 n even.

Disc(V,,) =

In [?], Fueter defined similar polynomials in 7" and 77 which we will call Fueter
polynomials. In particular, for a Fueter curve T2 = T(4T? + %T + 4), one defines

Fi=1F =" and forn>2,

\/T?
H/ (T —T(P)) n is odd
= P;leE[n}\{(’)}/ |
§Fg H (T —T(P)) niseven.
PEEn|~E[2]

Here the above products are taken over the nontrivial n-torsion points with distinct
T-coordinates. We also exclude the 2-torsion from the product when n is even. The
first few Fueter polynomials are:

F=1,
Th
ﬁa
F3:T4—6T2—%T—3,

T ( 6 , Y5 4 2 @ )
Fy=2—(|T°+-=-T°+101T" - 101 — =T -2 .
VT 5 B

Furthermore, they satisfy a recurrence relation:
Fop1 = (_1)n(Fn+1FS—1 - Fn*2Fs)>
BBy = (—1)"F, (FryoFr ) — FpoF2 ). (6)

=

Our Fueter polynomials for odd n coincide with those defined by Cassou-Nogues and
Taylor in [?, IV.3]. However, our even Fueter polynomials are distinct. In making
our definition, we wished to preserve the recurrence relation.

One now observes that for odd n (our primary interest), the polynomials ¥, (z)
and F,(T) define the same field extension. We will refer to this field extension as
the n-th partial torsion field. When n is prime, it is the field of definition of the
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z-coordinate or T-coordinate of a single point of order n, which is generically of
degree (n? —1)/2.

Although we will only require the following proposition for odd n, we record the
full relationship between the division polynomials of the Weierstrass and Fueter
forms.

Proposition 3.2. Let n be odd. Then

n271
. T
U, = (—-1)"7 <C;?> E,,

n?—1

where Fy, is a monic polynomial in T' of degree "=

Let n be even. Then

n2-1
" 7
U, = (—1)"2" (“T*B) F,,

where Fy, = %%fn with f, a monic polynomial in T of degree n’—4

2

Proof. Using the change of coordinates (?7?), we check the result directly for n =
1,2,3,4. Proceeding by induction, suppose we have the result for all n < N and
consider W y.

Case I: N odd. In this case, letting N = 2m + 1, we have by (?7?) that

Uy = Vo1 = Upnyo U5, — U 1 W5 ).

Suppose m is even. Then, using (??) and the inductive hypothesis,

(m+2)2—1+3m2-3 (m—1)2-143(m+1)%2-3
a - 2 a
() - ()
(2m+1)2-1
afy Emth=1
= —(%) ? (Fm_;'_QF%—‘-Fm_lF%J’_l)
2
a,ﬁ N271
- (& Fy.
( T ) N

Keeping in mind the relationship T7 = 4T3 + %TQ + 4T, we remark that Fiy is a
polynomial in 7. Finally, the leading term of Fy(T') is determined by Fm_lF%_i_l,
which has degree (N2 —1)/2 and is monic.

An analogous computation yields the result if m is odd.

Case II: N even. Letting N = 2m, we have from (??) that

VoW = VUoWyy, = \Ij?ﬂ_l\l’m\l’nﬂq — \I’m72\1’m\lf?ﬂ+1.
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Again suppose m is even. We have from (??) and the inductive hypothesis that

2 2 2
2(m—1)—24m*—14+(m+2)“—1
CLB ( ) ( )

‘I’z\PNZ—(T) ’ F??l—lFmFm—i-Q
(m—2)2—14+m2—1+42(m+1)2—2
a
+ (—6) ’ P 2P P2,
T
CL/B (2m ) )
= ( T ) (melFmFm-i-Q - Fm_gFmFm+1)
2
CLﬁ N2+2
==\ 5 FyFy.
( T ) 2EN

3
Dividing by ¥y = (a@iﬁﬁ we obtain our desired expression. Note that

Fr 1 FnFoio — FpoFuFp

T? (m? 4+ 2m m? —2m
= ?1 <4F31—1fmfm+2 - 4fm—2fmFr2n+1> .

The quantity in the large parentheses is a polynomial in 7", which, by induction, has
leading term of degree (N2 —4)/2 with coefficient m. Finally, as before, if m is odd,
an analogous computation finishes the proof. O

We also record the discriminant of the odd Fueter polynomials.

Proposition 3.3. For n odd, we have

1 n2_ n4 —4n2+3

Disc(F,) = (1) n" 2 (8 %(a —8B)(a+8B)) =

Proof. To compute the discriminant, we use Proposition ??. Let d = (n? — 1)/2,
the degree of ¥,,. Let n be odd. Then,

Disc F,(T) = (af)~2%4=Y Disc(aB)*F,(T)
= (af)” 2d(d—1) Dige (\IJ (aﬁ aﬂ) Td>
= ()" Disc(V,,(aBT — ap))
= (apB)” "~V Disc(¥,(T — af))
= (aB)" D) Disc(0,(T)).

Next, we use the discriminant of E (??) and Theorem ?7. O

3.3. Tate’s algorithm. The purpose of this subsection is to give a full analysis of
the reduction of the curve F in Tate’s Weierstrass form, via Tate’s algorithm.

Proposition 3.4. Let p be an odd prime, p | A. Let E denote the reduction of
E modulo p. Let f denote the exponent of p in the conductor of E. Let ¢ be the
number of components in the special fiber over the minimal proper regular model of
the curve over Z,. Then:
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(1) If p | B, then f =1, ¢ = 4v,(B), and E has Kodaira type Ly, p)- In this
case, E is in minimal Weierstrass form with respect to p, and the point (0,0)
has singular reduction.

(2) If p| (o —8B), then f =1 and E has Kodaira type I, (o—gp)- Furthermore,

(a) If p=1 (mod 4), then ¢ = vp(a — 83).
(b) If p=3 (mod 4), then

1 if vp(a — 88) is odd
‘T2 if vp(a — 83) is even.

In these cases, E is in minimal Weierstrass form with respect to p, and the
point (—2°32,2783) on E is singular.

(3) If p | (a+80), we let w = LMJ Then
(a) If vy(ov + 8B) is odd, then f = 2, ¢ = 4, and E has Kodaira type

I .
vp(a+85)
(b) prvp(oz + 803) is even, then f =1, E has Kodaira type I,, (o+83), and

a —2w
vplat88) if (P — g

2 e

When p | (o + 808), E is in minimal Weierstrass form with respect to p
after the change of coordinates (x,y) = (p*“z',p>“y’) and the point (0,0)
has singular reduction.

Proof. We follow Tate’s algorithm as described in [?, IV 9.

Case I: Suppose p | 8. We apply Tate’s algorithm and note that p 1 by =
(o + 83)? + 4B(a + 83). Hence we have Kodaira type Iy, (3 and f = 1. Since
T? — oT splits completely over Z/pZ, ¢ = 4v,().

Case II: Suppose p | (o« — 83). In this case the singular point on the reduced
curve is (—2°42,2733). Following Tate’s algorithm, we make a change of coordinates
(2',y') = (x—2°82,y+2783). Recall the notation a = (a+883). For ease of notation
we will write 2’ as  and ¢y’ as y. We now have

E' % + axy + (2882 + 2°6%a + Ba?)y
=23+ (=3-2°82 + Ba)z® + (—2°83%a — 27B3%a + 3 - 2198z
(27542 + 5. 21085 — 3. 2145).
Continuing, we compute by = a% + 4ay. Note a = 2*8 mod p. We have
by = a® + 22(3x1 + fa) = 286% — 32732 + 2032 = 2652,

This shows that p 1 by so that we have Kodaira type I, (a—gp) and f = 1. Continuing,
we consider T2 +aT+(3-2° 32— Ba) over Z/pZ. Reducing we have T2+4243T+5-2432.
Applying the quadratic formula, the roots are —8uf 4 43+/—1. Thus the splitting
field is Z/pZ if and only if p =1 mod 4. Hence ¢ = vy(a — 88) if p =1 mod 4.
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Further, if p =3 mod 4, then ¢ =1 if v,(a — 80) is odd and ¢ = 2 if v,(a — 80) is
even.

Case III: Now assume p | (a«+85). Recall w = LMJ We make the change
of coordinates (z,y) = (p?“a’,p*"y’). We have a1 — a1p™ %, az — asp 2¥, and
ag — azp~ Y. Note A’ = Ap~12¥ 50 that vy(A’) = Tv,(a —83) — 12w = v,(a — 8).

Part a: Suppose v,(a + 83) is odd. Applying Tate’s algorithm, we see p | by =
(a1p™%)? + dagp™2®, p? | by = aza3p~®, and p? | by = a3p~®". Hence we consider
T3 — agp~"T? over Z/pZ. This polynomial has a double root at 7' = 0 and a simple
root at T = asp~ 2. Thus we have Kodaira type I;p(a+86) and f = 2. Following
the subprocedure to step 7, we find ¢ =4

Part b: Suppose v,(a + 83) is even. Applying Tate’s algorithm, we see that
p 1 by = (a1p™™)% — dagp=?*. Hence we have Kodaira type Ly (a4sp) and f = 1.

Considering T? — B(a + 83)p~ 2% over Z/pZ, we see that if (W) =1, then

c = vp(a + 8f). Conversely, if (W) = —1 then ¢ = 2. O

Care must be taken when F has bad reduction at 2. When 2 | 3, the results and
proof used above can be applied by replacing p with 2. When 2 | (a + 83) we see
2 | @ and hence 2 | o — 80.

Proposition 3.5. Let the notation be as before and recall, a = o + 80.

(1) If va(a) = 1, then E has Kodaira type I7, f = 3, and ¢ = 4. In this case,
E is in minimal Weierstrass form with respect to 2 and the point (0,0) has
singular reduction.

(2) If va(a) = 2, then E has Kodaira type I11.

(3) If va(a) is odd and greater than 1, the E has Kodaira type I;Z(a).

)
(4) If va(a) = 4 and W is odd, then E has Kodaira type Ij.
(5) If va(a )—4 and w

(a) If B 28 =1 mod 4, then E has Kodaira type I5.

(b) If B S5 =3 mod 4, then E has Kodaira type I3.

(6) If va(a) > 4 is even, we have several subcases:
(a) If ’BaHa 16 is odd, then we have Kodaira type I*

va(a)—4"
(b) If 5a+4a 16 s even, we have further subcases:
(i) If’Uz( ) =6, we have Kodaira type II1T*.
(i) If va(a) = 8, then E is nonsingular at 2.
(iii) If va(a) > 10, we have Kodaira type I, (4)—g

is even, then we have two subcases.

Proof. We follow Tate’s algorithm as described in [?, IV 9.
Case I: v2(a) = 1. Applying Tate’s algorithm, we see 2 | ba, 4 | ag, 8 | bg, and
8 | bg. Thus we consider

P(T):T?’—i—%TQ:T? <T+ Bza)
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We see P(T') has a simple root and a double root modulo 2. Hence we have Kodaira
type I) and f = v2(A) —4 — n. To determine n and ¢ we consider the polynomial

Ba
4

This polynomial has distinct roots in Z/27Z. Hence n = 1 and ¢ = 4. Noting
v2(A) = 8, the result follows.

Case II: v3(a) > 1. We define w = L”T@J and we make the change of coordinates
(x,y) = (22¥2',23¥y'). For ease of notation we will write x and y for 2’ and ¥/

Case II-A: ’1)2( ) = 2. Then 81t bg and we have type II1.

Case II-B: v3(a) odd. If vy(a) is odd we consider P(T) = T*(T + 1) mod 2.
When the subprocedure to step 7 terminates, we are left with type I;Q (a)°

Y2

Case II-C: vy(a) = 4. In step 6 we change coordinates to obtain

y2+(;+2>xy+%y:x3+($+1> +§3§,
We consider
Pl =10 P
If % is odd, then we have type Ij. If % is even, we change

coordinates setting x = x’ + 2 and again abuse notation by letting z = 2’. Our
curve becomes

2 52 a
Y +<23+2>azy+ 23w+2w T t4])y

4w _22w+6'22w 4+ 9Wq 22111
<,6’a a 570 z? + g?(,lw + ba 97w +12 |z

:aj3+

Following the subprocedure to step 7, we obtain the desired result.

Case II-D: v3(a) > 4 even and W odd. Then P(T) = T*(T + 1) mod
2. Following the subprocedure to step 7, we find we have type I,,,(q)—4-

Case II-E: v3(a) > 4 even and W even. Then P(T) has a triple root.

Case II-E-i: v3(a) = 6 and W even. Then 16 { a4 = 23—3 so we have
type I11*.

Case II-E-ii: wvy(a) > 6 even and W even. Then our Weierstrass
equation was not minimal. We make the change of coordinates (x,y) = (42’,8y’) to
obtain

a a? a+ 2% — 2% a
y'+ <2w+1 T 1) Y + 2§w+3y ="+ d 92w+2 z? + 2§w+4

Case II-E-ii-a: v3(a) = 8 and W even. One checks that if va(a) = 8,
our curve is nonsingular at 2.
Case II-E-ii-b: v3(a) > 8 even an

d w even. We have type I,,,)-g. U
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4. VALUATION OF DIVISION POLYNOMIALS

The purpose of this section is to determine the valuation of F,, evaluated at the
singular point. This is done by reference to the valuations of ¥,, at the singular
point, and the change of variables of Proposition ??. To obtain the valuations of
U,,, we demonstrate two methods. The first is to apply the results of [?], which give
explicit valuations based on the reduction data of Proposition ?7. The second is a
hands-on approach using the recurrence relations for division polynomials, which is
possible in simpler cases. We consider only odd primes.

4.1. Odd primes dividing « — 83. Recall that, when p | (o« — 83), the singular
point modulo p is (—2°32,2733).

Proposition 4.1. Suppose p | (a—83). Let Q be a point of E(Q) which is singular
modulo p, and satisfies ©(Q) = —2°B%. Let Q' be the image of Q under the change
of coordinates to Fueter form. Suppose that n is odd. Then,

n?—1
Up(Fn(Q,)) = Up(\lln(Q)) = Up(a - 8&) s
To prove Proposition 7?7, we begin with a lemma.

Lemma 4.2. Suppose p | (o — 8B) and let Q be as above. Then, [2]Q) does not
reduce to the singular point mod p.

Proof. Recall a = o+ 83. We compute
220,68 o b4210ﬁ4 4 662652 o b8
2(21Q) = —775 1034 632
—21786 + 121034 — p208% + bg
22056 _ 210(1363 4 26a452 _ a5ﬁ
_21764 + 210(1252 + 212(153 _ 26(135 + a?’
We divide the numerator and denominator by a — 165 = a — 8 to obtain
_a46 +3. 240/352 _ 28@263 _ 212@64 _ 21665
a3 —3- 246125 + 28a52 + 21363
Reducing mod p we obtain

z([2]Q) = —2'4%.
Thus [2]@ does not reduce to the singular point. O

Following [?], we define, for any integers a, ¢ such that ¢ # 0, the sequence

e e (7

where Z denotes the least non-negative residue of 2 modulo ¢. Theorem 9.3 of [?]
gives the valuations of the sequence of division polynomials, evaluated at a point of
multiplicative reduction, in terms of such sequences. We apply this to our specific
situation here.
In particular, we will encounter the sequence R, (1,2), which begins from n = 1
as follows:
0,1,2,4,6,9,12,16, 20, 25, 30, 36,42, ...
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The odd terms of the sequence have a simple closed form.

Lemma 4.3. Forn odd, R,(1,2) = ”24_1.

Proof. For n odd, we have @ = na = 1 in (??). Therefore,
n? 1 n? n?—1
L2)= |2 |- =2 = .
w2 =[] =[] 7] -5
g

Proposition 4.4. Suppose p | (a — 88) and let Q be as above. Let K be the
potentially quadratic extension of Q so that Q € E(K) and let L be an unramified,
potentially quadratic extension of K such that E has split multiplicative reduction
over L (which exists by Proposition 7?). Let v]’J be a lift of v, to L. Let n > 0 and
suppose 4 t n. Then v, = 2vy, if and only if vy(a — 8B) is odd; otherwise v), = v,.

P
We have .
vy (o — 803)
2

v, (Tn(Q)) = Rn(1,2).
If furthermore n is odd, then
n?—1

vp(¥n(Q)) = vp(a — 85) g

Proof. One can compute that K is the quadratic extension obtained by adjoining
Vat—25a38 — 270282 + 5. 211083 — 15 - 21284
= Va —88v/a3 — 240283 — 320052 + 76805.

We also have
o — 24023 — 32003% + 768083 = 2283 (mod o — 88).

Therefore, since p is odd, divides (o — 83), and is coprime to 3, we have that the
extension K is ramified at p if and only if v,(a —88) is odd. Hence, v, = 2v, if and
only if v,(ar — 83) is odd; otherwise v, = v.

The group of components over L is isomorphic to Z/v;,(a—8/3)Z since we have split
multiplicative reduction. The component containing () has additive order exactly 2
by Lemma ??. Thus it may be identified with v,(a —83)/2. Hence, in the language
of [?], Lo = vy (o — 8B) and aq = v, (o — 83)/2. Applying [?, Theorem 9.3], we find
that

o (n(Q)) = Ralvl (e — 88)/2, v} — 8)).
By [?, Proposition 8.2(iv)],

v — 86)
p(¥n(Q)) = F————Ra(1,2).
For odd n, ¥, (z) is a polynomial in x alone and therefore ¥, (Q) € Q. Accord-
ingly, by Lemma 7?7, we obtain the given statement. O

Proposition ?? follows from Propositions 7?7 and ?? (recall that «, 8 are coprime
integers).
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4.2. Odd primes dividing « + 85 or (5. In this case, we apply the recurrence
relation for the division polynomial to obtain valuations.

Proposition 4.5. Suppose p | B orp | (a«+803) (these cases are mutually exclusive).

Then (0,0) is a point of order 4 and has singular reduction on E; the corresponding
point in Fueter form has T = 1. Suppose that n is odd.

Ifp| B, then
2 _ 2 _
oW (0) = 20 8), w(Fa) = -0 (6)
Ifp| (a4 8P), then
5n? — 5 n?—1
up(¥n(0)) = vp(ar+8B),  vp(Fu(l)) = 3 vp(ar + 80).

Proof. We will proceed by induction. Recall a = oo+ 8. For the base cases we have
U1(0) = 1, Wa(z,y) = 2y+ax+a® so ¥o(0) = a?. Further, U3 = 3z* +box3 +3by2? +
3bgz + by = 3z* + (a® +4Ba)x> + 3Ba3x? + 33%a*x 4 B3a®. Hence ¥3(0) = B3a®. We
have Uy = ‘112(21'6 + b21‘5 + 5b4$4 + 10[)6:1/‘3 + 10b81‘2 + (bgbg — b4b6):13 + (b4b8 — bg))
Evaluating at 0 we obtain W4(0) = Wo(0)(bybs — b2) = ¥5(0)(B%a® — p*a®) = 0.
First we prove if 4 | n, ¥,,(0) = 0. Suppose we have the result for all n < N and
suppose 4 | N. Let N = 2m, so that m is even. Then
VoW = UoWs,, = U2, 10, U0 — U,y o0, U2 .
Now either 4 | m or 4 | m — 2 and 4 | m + 2. Hence the result follows by induction.
Now suppose that v,(¥,(0)) = vy(a) 5”275 + vp(ﬁ)3”2873 for all n < N. Suppose
N is odd, and write N = 2m + 1. We have
Uy = Vo = Vo U3, — W, 00
Suppose first that m is even. Then either m or m + 2 is divisible by 4. Hence
up(UnN(0)) = vp(¥rm-1(0)) + 3vp (Vi 11(0))
5(m—1)2 -5 3(m—1)2 -3
= upla) T () 2

5(m+1)2—5+%(m3

8
52m +1)2 -5 32m+1)2 -3
= vp(a)f + vp(ﬁ)f.

Likewise, if m is odd, either m — 1 or m + 1 is divisible by 4. Hence

Up(¥N(0)) = vp(¥im+2(0)) + 3vp(Wi(0))

3(m+1)2—3

3
+ vp(a) 3

5 2)2 -5 3 2)2 -3
— Up(a)(erg) + vp(ﬁ)(m+8)
2 2 _
+ vﬂa)i%% + vp(ﬁ)?)w
52m +1)2 -5 32m+1)2 -3

= (@) 2 ()
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This gives the stated results for ¥,,. For F,, we use the change of coordinates
between Weierstrass and Fueter form and Proposition 77. ]

5. PROOF OF THE MAIN THEOREM

Proof of Theorem 7. Suppose F is an elliptic curve defined over @, and suppose a
twist E’ has a rational 4-torsion point, hence can be put into Tate normal form as in
(??) with a, 8 € Z coprime. The j-invariant of the elliptic curve is invariant under
twisting. In Tate normal form, the discriminant and j-invariant are of the form

o (a2 B 4852)3
77 B a —8B)(a +8B)’

Therefore E’ has good reduction modulo p unless p | S(«a — 853)(« + 853).

We now show that conditions (?7), (??) and (??) of the statement are equivalent.
Under condition (?7), we have 8 = 1 by Proposition ??. In this case, requirements
(??) and (?7?) are evidently equivalent. For odd primes, Proposition 7?7 implies that
p? may not divide o + 8. For p = 2, Proposition ?? implies that va(a + 8) = 0 or
1. This implies va(av — 8) = 0 or 1 also, and we have demonstrated condition (?7?).
Hence (?77) implies (??) and (??). Conversely, if condition (??) holds, we apply
Propositions 7?7 and ?7 to conclude that (?7) holds. Thus we have demonstrated
all the conditions are equivalent.

The field K, generated by the x-coordinate of a single point of order 3 is invariant
under the twist. Therefore we now assume E itself has a rational 4-torsion point.
Change coordinates so that F is in Tate normal form and Fueter form as in Section
7?7 with @ € Z and 8 = 1. We then find that the partial 3-torsion field is generated
by the 3-division Fueter polynomial, F5(T) = T* — 6T% — aT — 3. Let 6 be a root of
this polynomial, and let K = Q(#). Under the equivalent conditions of the theorem,
the polynomial F3(T) is irreducible, as observed in [?, Proposition 2.10], so K is a
quartic field.

We apply the Montes algorithm. It calls for examining the polynomial F3 devel-
oped around any lift of a repeated irreducible factor modulo p; each such situation
may contribute a factor to the index [Og : Z[f]]. If no such non-trivial factors
appear, we can conclude Ok = Z[6].

We will show prime-by-prime that the only repeated factors are linear of the form
T— TO and that Up(Fg(To)) =1.

Case I: p = 2. Modulo 2, the polynomial F3 becomes T% — o — 1. If « is odd,
this is irreducible with no repeated roots. If « is even, then the repeated root is 1,
so we develop F3 around 7' — 1, obtaining a constant term of —a— 8, which we have
assumed to be squarefree. Therefore in this case vo(F5(1)) = 1.

Case II: p = 3. Modulo 3, the polynomial F3 becomes T% — o7, and « is a
repeated root. If 3 divides «, then a lift of this root is 0, and v3(F3(0)) = 1. If
a = 1 (mod 3), then 4 is a lift, and v3(F3(4)) = 1. Else —4 is a lift of «, and
v3(F5(—4)) = 1.

Case III: p > 5. Now, suppose F3 has a repeated irreducible factor modulo an
odd prime p. The roots of F3 are the four x-coordinates of non-trivial 3-torsion;

A = pHa—8B)(a+88)", a,B e
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this means that reduction modulo p fails to be injective on E[3]. This occurs if and
only if F has bad reduction at p, or p = 3.

Suppose p > 5 is a prime of bad reduction, and suppose @ is a point on E having
singular reduction modulo p. Specifically, if p | a + 8, take @ = (0,0). If p | a — 8,
take 2(Q) = —2°. Then, the only repeated root of F3 modulo p is T(Q) (since the
failure of injectivity under reduction must take the form of 3-torsion points mapping
to the singular point, as the map to the non-singular part has torsion-free kernel).
Then, using the fact that a & 8 are not divisible by p?, we learn from Propositions
??7 and ?7? that v,(F5(T(Q))) = 1.

In each case, we find that v, (F3(1p)) = 1 where Tj is the repeated root. Therefore
the associated Newton polygon starts at height 1 on the y-axis. Hence, the polygon
cannot pass through any lattice points and cannot contain any lattice points, and
the polygon has only one segment, as in Proposition 77. Therefore it is p-regular.
By the Montes algorithm, this implies that the index [Of : Z[#]] is not divisible by
D.

As we have verified that the index [Ok : Z[f]] is not divisible by any prime, we
conclude that Ox = Z[6)]. O

Theorem ?7 follows immediately.

6. ALGEBRAIC NUMBER THEORY OF THE FAMILY T% — 6T% — aT — 3

Let 6 be a root of T* — 6T% — aT — 3. Consider the field K, = Q(#). This family
of number fields was studied by Fleckinger and Vérant [?]. Let a« > 9, « € Z, and
a # 24. Then Fleckinger and Vérant showed that K, is an Sy quartic field with
two real embeddings [?, Proposition 2.10]. They give an explicit basis for the ring
of integers in general [?, Proposition 2.11], but it is not a power basis and they do
not mention monogenicity. Finally, they remark that when 3 | o, then 1+ 6 + 2602
is a unit. In fact, they point out that there are no other parametrized units in this
field. Experimentally, we observed surprisingly small regulators and surprisingly
large class groups for these fields; the existence of a simple parametrized unit is a
possible explanation.

7. A RELATED FAMILY

. ’ . . . 4 3
Fleckinger and Vérant also study the family of quartic fields given by 7% + §7% +

3
612 + 5T + 1 of discriminant —4 ((%)2 — 16) , which they observe arise from a

point of order four on a Fueter model [?]. The authors prove that this family is
monogenic whenever (a/2)? — 16 is odd and squarefree, and o > 12 [?, Corollary
1.4]. This appears to be a Dg family. We leave it as an open question whether the
methods of this paper may apply to this family.

8. EXPERIMENTAL DATA

As part of our exploration, we took a survey of elliptic curves to determine the
prevalence of monogenic fields, using Sage Mathematics Software [?] and pari/GP
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[?]. Up to isogeny, there are 11575 curves of conductor less than 10000 whose 3-
division field is monogenic. The torsion points of many curves share the same field
of definition, and in all, these 11575 curves yield 1026 unique fields. In particular,
the following families of fields are prevalent.

Polynomial ‘ Discriminant

T4 — 6sT? —tT — 352 —33(t? — 64s%)?

T*— T3 —3sT? — (4t +3s)T +t | —33(16t% + (245% + 125 + 1)t + (9s* + 5°))?

T* — 273 — 65T? — (2t + 652)T 4+t | —2*33(t2 + (65 + 65 4 1)t + (9s* + 253))?
In the table above T is the indeterminate, while s,t € Z parametrize the family.

Each of these quartic field families appears to be 5S4 monogenic under appropriate
conditions on the discriminant and the parameters.
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