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Abstract—With the prevalence of smartphones, pedestrians
and joggers today often walk or run while listening to music.
Since they are deprived of their auditory senses that would have
provided important cues to dangers, they are at a much greater
risk of being hit by cars or other vehicles. In this paper, we
build a wearable system that uses multi-channel audio sensors
embedded in a headset to help detect and locate cars from
their honks, engine and tire noises, and warn pedestrians of
imminent dangers of approaching cars. We demonstrate that
using a segmented architecture consisting of headset-mounted
audio sensors, a front-end hardware platform that performs
signal processing and feature extraction, and machine learning
based classification on a smartphone, we are able to provide early
danger detection in real-time, from up to 60m away, and alert
the user with low latency and high accuracy. To further reduce
power consumption of the battery-powered wearable headset,
we implement a custom-designed integrated circuit that is able
to compute delays between multiple channels of audio with nW
power consumption. A regression-based method for sound source
localization, AvPR, is proposed and used in combination with the
IC to improve the granularity and robustness of localization.

Index Terms—wearables, sound source localization, pedestrian
safety, embedded systems.

I. INTRODUCTION

Smartphones have transformed our lifestyles dramatically,
mostly for the better. Unfortunately, smartphone usage while
walking has become a serious safety problem for many people
in urban areas around the world. Pedestrians listening to music,
texting, talking or otherwise absorbed in their phones are
putting themselves at risk by tuning out the traffic around
them [2], as reported by the Washington Post. Since a pedes-
trian is deprived of auditory input that would have provided
important cues to dangers such as honks or noises from
approaching cars, he or she is at a much greater risk of being
involved in a traffic accident. We have seen a sharp increase
in injuries and deaths from such incidents in recent years.
According to a study by Injury Prevention and CNN, the
number of serious injuries and deaths occurring to pedestrians
who were walking with headphones has tripled in the last
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Fig. 1. An inattentive pedestrian wearing a PAWS headset, and a screen shot
of the PAWS application user interface.

seven years in the United States [3]. This phenomenon affects
cities globally, and is an important societal problem that we
want to address by introducing advanced sensing techniques
and intelligent wearable systems.

We tackle these challenges in PAWS, a Pedestrian Audio
Wearable System aimed for urban safety. PAWS is a low-cost
headset-based wearable platform that combines four MEMS
microphones, signal processing and feature extraction elec-
tronics, and machine learning classifiers running on a smart-
phone to help detect and locate imminent dangers, such as
approaching cars, and warn pedestrians in real-time. Figure 1
shows PAWS in action.

With newer smartphones equipped with multiple built-in
microphones, it may be tempting to re-purpose those mi-
crophones in software to localize cars based on common
localization techniques. However, these approaches require the
user to constantly hold their phones steady and to not block
the built-in microphone while walking [4][5]. Further, most
built-in microphones are designed for voice and are often
band-limited. These two limitations prevent the smartphone
from capturing useful features produced by approaching cars
in realistic urban environments.

This is a challenging problem as the battery-powered wear-
able platform needs to detect, identify, and localize approach-
ing cars in real-time, process and compute large amounts
of data in an energy and resource constrained system, and
produce accurate results with minimal false positives and false
negatives. For example, if a user’s reaction-time is 500ms, the
system has 360ms to detect a 25mph car and alert the user
when it is 10m away. This problem is further compounded by
high levels of mixed noise, typical of realistic street conditions.

We address these challenges over two phases of design
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and development. In the first phase (PAWS), we develop
a segmented architecture and data processing pipeline that
partitions computation into processing modules across a front-
end hardware platform and a smartphone. The microcontroller-
based front-end hardware platform consists of commercial
off-the-shelf (COTS) components embedded into a standard
headset and collects four channels of audio from four MEMS
microphones that are strategically positioned on the headset.
Temporal-spatial features such as relative delay, relative power,
and zero-crossing rate are computed inside the front-end
platform using the four channels and transmitted wirelessly
to a smartphone. A fifth standard headset microphone is also
connected to the audio input of the smartphone, and together
with the data sent from the front-end platform, classifiers are
trained and used to detect an approaching car and estimate its
azimuth and distance from the user.

In the second phase of development (PAWS Low-Energy),
we tackle the challenge of power consumption through the
design and implementation of an application-specific inte-
grated circuit to extract some of the computationally expensive
features. We also develop new methods to increase the accu-
racy and granularity of our audio-based vehicle localization.
We evaluate PAWS using both controlled experiments inside
parking lots and real-world deployments on urban streets.

We make the following contributions in this paper:

e We propose a new acoustic feature, Non-Uniform
Binned Integral Periodogram, which is designed to cap-
ture frequency domain characteristics of low-frequency
noise-like sounds, such as the sound produced by the
friction between a car’s tires and the road. We develop
classifiers to recognize cars approaching the user and to
localize approaching cars in real-time.

o We create, PAWS, a low-cost, end-to-end wearable sys-
tem using COTS components accompanied with a smart-
phone application to provide real-time alerts of oncoming
cars to pedestrians in noisy urban environments. We
demonstrate that inattentive pedestrians can immediately
benefit from our system.

o We present a second system, PAWS Low-Energy, that
improves upon the power consumption of our COTS im-
plementation by offloading critical and computationally
expensive features onto an application-specific integrated
circuit. We additionally introduce Angle via Polygonal
Regression (AvPR), an easily calibrated method for es-
timating the direction of arrival of car sounds. AvPR
improves upon the granularity of direction estimates
over the classification approach employed in PAWS and
accommodates for noise better than classical geometric
approaches (e.g. triangulation) for estimating direction,
while remaining computationally inexpensive.

o We develop a segmented architecture and data processing
pipeline that intelligently partitions tasks across the front-
end hardware and the smartphone and ensures accuracy
while minimizing latency.

As the industry is investing heavily in intelligent head-
phones [6][7], our hardware-software co-design approach
presents a compelling solution towards protecting distracted

Fig. 2. Validation system: reference mannequin with eight MEMS micro-
phones and data acquisition board in a low-noise experimental setup.

pedestrians in urban environments.

II. STUDYING THE PROBLEM

Before developing PAWS into a wearable system, we stud-
ied the car sound recognition and localization problem using
a validation platform. The objective of this exercise was
to analyze the feasibility and complexity of our proposed
solution and to determine the specifications required to capture
the necessary information, e.g., audio sampling rate, sensor
placement, and most relevant features to use in the machine
learning algorithms.

As shown in Figure 2, the platform directly connects eight
MEMS microphones to a computer. The microphones were
placed on a mannequin head to reproduce the physical phe-
nomena of the final setup, such as the acoustic shadow of the
human head [8] and the approximate spacing among sensors
on a real user.

The study has been done in five different locations in two
different cites: a metropolitan area and a college town. The
locations were two parking spaces, a four-way intersection,
and two multi-lane streets. We analyzed recorded audio from
47 different cars. Other than the parking spaces, where we
conducted our first set of controlled experiments with labeled
distances, directions, and precise time-keeping of honks and
car passing, all other scenarios were uncontrolled.

A. Recording Specifications

In order to characterize the sounds of interest, such as an
approaching vehicle’s tire friction, engine noise, and honks, we
conducted controlled experiments in two parking lots (Figure 2
shows one of the experiments). These results are later cross-
checked against uncontrolled experiments’ for consistency.

Figure 3 shows the spectrogram of one of the recordings
from the controlled experiments. Both the top and the bottom
figures correspond to the same recording. Approximately 5s
after the recording starts, a car honks, resulting in distinct
stationary tones with fundamental frequencies near 500Hz.
The vehicle then accelerates towards the mannequin. In the
bottom figure, where the lower part of the spectrogram is
highlighted, we see the engine noise. The engine noise follows
its RPM. In an automatic car, the engine noise is bounded
between 60Hz and 200Hz (at the 7 seconds mark, the shift
in the engine gear is noticeable). Once the vehicle gets closer
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Fig. 3. Spectrogram of one of the recordings from the controlled environment.
The car was approaching the mannequin at 25mph.

to the mannequin, the friction noise from the tires and asphalt
gets louder. This noise has a band-limited spectrum with more
energy below 3kHz. When the car crosses the system near the
12s mark, a burst of air causes a loud white noise. Similar
spectrum components were found on several recordings of
different cars at similar speeds (20-30mph) on dry asphalt.

These observations indicate that to identify warning honks
and vehicles that are still approaching the user, the system
audio must reliably capture frequencies from 50Hz to 6kHz.
This requirement means that the system needs custom micro-
phone drivers with a cut-off frequency of less than 10Hz (in
contrast to standard headset microphones with approximately
100Hz cut-off frequency) and analog-to-digital converters with
sampling rates above 12kSamples/s.

B. Presence of a Car

The presence of a car can be determined from high-energy,
sharp sounds like honks, as well as from low-energy, noise-
like sounds such as the sound of friction between a tire and
the road. Being able to detect cars based on friction noise is
crucial given the increasing popularity of electric cars with
quieter engines.

Honks are louder and, thus, easier to detect than car tire or
engine sounds. We analyze the Mel-Frequency Cepstral Co-
efficients (MFCC) [9] of honks and compare them with non-
honk street sounds. We start with MFCC, since it is one of the
most commonly used acoustic features for detecting various
types of sounds [10][11][12][13] including car sounds [14].
For visualization purpose, we reduce the 13-dimension MFCC
features to two dimensions (using PCA [15]) and the result is
shown in Figure 4. We observe that honks are separable from
other sounds as they cluster around a different point in space.
Honks are easily detectable using all 13 coefficients.
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Fig. 4. Distribution of honks and other types of sounds in a 2D feature space.
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Fig. 5. Normalized relative delays of the microphones for left and right honks.

MFCCs, however, are not effective in detecting other types
of car noises such friction between tires and the road. The
fundamental reason behind this is that the Mel-scale, ex-
pressed by m = 2595log,o(1 + f/1000), was originally
designed to mimic human hearing of speech signals that maps
frequencies f < 1kHz somewhat linearly, and maps f >
1kHz logarithmically. Our analysis on tire friction sounds
shows that about 60% signal energy is attributed to frequency
components below 1 kHz. Hence, to model such low-energy,
low-frequency, noise-like sounds, we need to develop a new
feature that captures these sub-kHz characteristics. We propose
this new feature in Section III-C1.

C. Direction of a Car

To determine the direction, we record audio of cars ap-
proaching from different directions and analyze their effect
on the microphone set. Some of these recordings also have
honks in them. Intuitively, microphones that are closer to the
sound source and are not obstructed by the human head should
receive signals earlier, and the signals should be stronger.
Hence, the relative delays and the relative energy of the
received signals should be strong indicators of the direction
of an approaching car.

In Figure 5, we plot the relative delays of the microphones
with respect to the front microphone for left and right side
honks. We see that the relative delays change signs for left
and right honks. We do similar tests with eight directions
(each covering a 22.5° 3D cone surrounding the mannequin)
to successfully determine the directions of honks near the user.

Similarly, we plot the relative delays of the microphones
for a car that passes the mannequin from its left to the
right (Figure 6). We observe that the relative delays are quite
random on both left and right ends. As the car approaches the
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Fig. 7. The maximum cepstral coefficient follows a trend when an approach-
ing car is within about 30m from an observer.

mannequin, we see a trend in all the curves with one or more
of them reaching their peaks. The trend reverses as the car
passes the mannequin. This behavior suggest that patterns in
relative delays (when they are looked at together) are useful
to determine the direction of passing. Hence, by learning the
trend and the point when the trend reverses, it is possible to
differentiate between a car on the left from a car on the right,
as well as their angular directions.

D. Distance of a Car

In an attempt to estimate the distance, we formulate a
regression problem that maps sound energy to distances. Later
we realize that due to environmental noise and the weakness
of car sounds, a fine grained location estimation is extremely
inaccurate when the car is farther than 30m from the audio
recorder. When the car is within 30m, we find that the
maximum value of the cepstral coefficients (computed every
100 ms) is approximately linearly correlated with distance,
as shown in Figure 7 for a car that is driven toward the
mannequin. This relationship can be exploited to form a
regression problem that maps maximum cepstral coefficients
to distances.

For cars farther than 30m, although we are able to detect
their presence and estimate their direction, a precise distance
estimation results in a large error. However, we learn that the
distance estimation problem can be formulated as a multi-
class classification task by dividing the absolute distances
into a number of ranges such as (0, 20m], (20m, 40m], and
(40m, 60m]. Each of these ranges can be characterized with
additional features, such as zero-crossing rate, and can be
classified accurately using a machine learning classifier.

As such, one option is to use a two-level approach for
distance estimation. The first level employs a classifier to
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Fig. 8. A block diagram of PAWS. The components highlighted in red are
portions of the system that are enhanced and modified during the second
phase of development to create PAWS Low-Energy, which is discussed in
Section IV.

determine a coarse-grained distance range, and if a car is
detected within the nearest range, it applies regression to
obtain a fine grained distance estimate. A second option is to
disregard estimating coarse-grained distance and only provide
fine-grained distance measurements via regression. As shown
in Figure 7, for distances above 30 meters, the maximal
cepstral coefficient maps to approximately the same value. As
such, the regression model inherently classifies car distances
into two coarse groups: greater than 30 meters and less than
30 meters away. We considered both methods over the course
of designing both phases of PAWS, as detailed in Sections III
and IV.

III. OVERVIEW OF PAWS

PAWS is a wearable headset platform and smartphone appli-
cation that uses five microphones and a set of machine learning
classifiers to detect, identify, and localize approaching cars in
real-time and alerts the user using audio/visual feedback on
his smartphone.

The system consists of three main components: sensors
and their drivers, front-end hardware for multi-channel audio
feature extraction, and a smartphone host for machine-learning
based vehicle detection and localization, which are shown in
Figure 8. Four of the MEMS microphones, labeled MIC1 to
MIC4, are distributed over the user, at the left and right ear,
back of the head, and chest of the user, to provide relevant
information about the sound source’s location. The front-end
hardware synchronously acquires analog signals from these
microphones and locally extracts acoustic features that are
used by a smartphone application. PAWS performs signal
processing inside the front-end hardware so that only features
need to be transmitted wirelessly to the smartphone (via BLE)
instead of large amounts of raw audio data. The front-end
hardware is a battery-powered embedded platform that is
housed within the confines of the headset that uses its own
set of microphones for sound processing. It does not interact
with the speakers or microphone of the headset. As such, a
user would have not experience any degradation in sound or
microphone quality of the headset.
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Fig. 9. (Left) Teardown of the PAWS headset; the front-end hardware
is exposed inside the left ear housing. (Right) Close up of the PCB that
comprises the PAWSfront-end hardware.

The standard microphone of the headset (the fifth micro-
phone, MICS) is connected to the 3.5mm audio input of the
phone. Data from the fifth microphone is directly acquired
by the smartphone. The audio from the smartphone/headset
microphone is acquired in the same way as common messag-
ing and calling applications and does not affect the quality
or user experience of the microphone. Using the features
computed by the front-end hardware and an audio stream from
the headset microphone as inputs, machine learning classifiers
running inside the PAWS application detects the presence of an
approaching vehicle and estimates its position relative to the
user. Our architecture uses a single low-power microcontroller
in the front end and relies on the smartphone to run machine-
learning classifiers to deliver reasonable latency.

A. Front-End Hardware

The front-end hardware is responsible for three blocks on
the PAWS signal flow: synchronous ADC of microphone
channels, embedded signal processing, and wireless commu-
nication with the smartphone. The integration of these blocks
in a wearable resource-constrained system is a challenging
task, and computational bottlenecks such as memory and data
transfer rate require a careful distribution of resources.

In order to demonstrate PAWS’s system architecture and
algorithms, off-the-shelf components were used to build the
system. As shown in Figure 8, four MEMS microphones
are wired to an MCU. The MCU synchronously collects the
signals, calculates the temporal-spatial features, and sends the
result to a smart BLE module via UART. The BLE module
sets the link between the front-end hardware and the smart-
phone. The front-end hardware is powered by standard AAA
batteries and is designed to fit inside the left ear housing of a
commercial headset, as shown in the left figure in Figure 9.

B. Front-End Signal Processing

In this section we discuss the operations that are processed
by the front-end hardware. The MCU must sample the data
from the four MEMS microphones and perform feature ex-
traction, while the BLE module is responsible for transferring
the calculated features to the smartphone. Since cars may be
traveling at high speeds, fast response times and low latency
are critical. PAWS uses a Cortex-M4 MCU to perform data

acquisition and processing in real-time. The design choices
and evaluation are explained in detail in Section V.

1) Sampling Data: Audio is captured from four micro-
phones at 32kSamples/s with an 8-bit successive approxima-
tion ADC and a four channel analog multiplexer running in
the microcontoller. The sampling frequency was chosen as
a compromise between the lowest rate necessary to capture
the spectral content, as explained in Section II, and the
performance enhancement achieved by a delay estimation with
finer granularity.

2) Feature Extraction: Running the feature extraction algo-
rithms in real-time in a Cortex-M4 is challenging due to the
complexity and number of computations required across the
four channels. In order to service a continuous stream of in-
coming data, it is imperative that the feature extraction finishes
before the next window of data is completely received. The
feature extraction calculations were simplified to achieve low
latency; complex multiplications and division were avoided.
The following features were calculated on the acquired four
channels of data: relative power of each channel with respect to
MICl1, relative delay with respect to MIC1, and zero-crossing
rate of each channel. These features are calculated for every
time window of 100ms with 50% window overlap.

The relative power (IZpy,1) is calculated by summing the
difference of squares between samples from each microphone
to the reference microphone, MICI.

WL
Rpna = Y (XR[i] — X2[)) (1)
i=1
N is the channel number, W7, is the window length (in this
case 3200 samples), X is the channel signal, and X is the
reference MIC1 signal.
The relative delay is calculated using cross-correlation. The
lag between the channels is defined as the index where the
cross-correlation (XCORRYy;,1) is maximum.

Wi
XCORRN 1 [d] = Y Xnli — d]. Xy [i] )
i=0

This is the most computationally expensive calculation
of the front-end system. Since the physical separations of
microphones are limited, e.g. the average spacing between
ears is ~25cm, the range of valid relative delay is bounded,
making it possible to compute and compare the XCORR
only for d € [—40,40]. According to [16], these limits on the
time interval of interest make computing cross correlation in
the time domain much more efficient than computing in the
frequency domain.

The zero-crossing rate (ZCy) is the number of times a signal
changes sign within a given time window.

WL
ZCx = (sen(Xnli]) —sen(Xnfi—1)))) @)
i=1

3) Data Transfer: The BLE module gathers the resultant
10-element feature values and sends them to the smartphone

following a custom protocol in 40 byte packets. The protocol
consists of a validation header (3 bytes), followed by a set of
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Fig. 10. PAWS Smartphone data processing. The components highlighted in
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which is discussed in Section IV.

hardware configuration flags (1 byte), payload size (1 byte),
and the feature values (1 x 3 bytes for relative delays of MIC
{2, 3,4}, 8 x 3 bytes for relative powers of MIC {2, 3,4}, and
2 x 4 bytes for ZC of all four microphones).

C. Smartphone Data Processing

The PAWS smartphone app receives a 44.1kHz, single chan-
nel audio stream from the headset via the standard microphone
jack, acoustic features over BLE from the front end, and
processes them in real-time in a service. The application comes
with a graphical user interface that is used to start/stop the
service, configure alerts, and display a timeline of approaching
cars along with their distances and directions.

Figure 10 shows the data processing pipeline of the PAWS
smartphone application. The application implements a two-
stage pipeline for detecting and localizing cars, respectively.

1) Car Detection Stage: Two offline-trained classifiers are
used in this stage to detect cars honks and engine/tire sounds.
The first classifier uses standard MFCC features to detect the
presence of car honks. For the other type of car noises, we
propose a new acoustic feature, Non-Uniform Binned Integral
Periodogram (NBIP), that unequally divides the frequency
scale in order to capture variation in spectral energy at the
lower end of the frequency spectrum which characterizes the
friction sound from car noises. The steps to compute the NBIP
features are as follows.

o Step 1: The FFT of each audio frame x(t) is computed
to obtain the Fourier spectra X (f). Only the left half of
this symmetric spectra is retained.

o Step 2: The periodogram of z(t) is obtained from X (f)
by normalizing its magnitude squared, and then taking its
logarithm.

1

P,(f) =201 — X (N
(f) OglO(FSN‘ (f)| )
F, and N denote the sampling frequency and the signal
length, respectively.

o Step 3: The frequency range is divided into a total of B
bins, such that the frequencies below a threshold a are

Sg
T
0;) ..g 50 b bins < (B-b) bins -
o l«> X
g =
/ Freq Threshold (a)
-100 : : :
0 0.2 0.4 0.6 0.8 1
Frequency
Fig. 11. Illustration of the basic idea of non-uniform binning of spectral

energy in NBIP.
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equally divided into b bins, and the higher frequencies
are equally divided into B — b bins. The binning process
is illustrated in Figure 11. The optimal values of the
parameters B, a, and b are empirically determined, which
we will describe shortly.

o Step 4: The P,(f) is integrated in each bin to obtain a

B dimension feature vector v = (v1,v2,...,0p).
kA
/ P(f)df,  f1<k<b
—1A
U = (]Z+1(3cfb)A2
/ P.(f)df, otherwise
at+(k—b—1)As
where, Ay = 7 and Ay = }13’_‘2 are the bin sizes for

frequencies below and above the threshold a, respectively.

In order to find the optimum values of the parameters a,
and b, we vary the parameters 0 < a < land 1 < b < B in
small increments and compute the vector difference between
features of car noises and all other non-car sounds. Figure 12
shows the search space for a and b for a fixed value of
B = 20. We observe that when ¢ = 0.3 and b = 18, the
vector difference between the car noise features and the non-
car sound features is maximized. Figure 13 shows the mean
and standard deviation of each component of the two types of
feature vectors (i.e. NBIP and MFCC), for the two classes of
sounds. We observe that most of the NBIP feature components
(e.g., the first 10 components) are very dissimilar for the two
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Fig. 13. (a) The proposed NBIP feature vector for car tire and engine sounds
are designed to maximize their dissimilarity from non-car street noises like
human chatter, human motions, machine sounds, and loud music. (b) standard
MFCC features are not as effective in separating the two classes as our
proposed NBIP features.

classes, whereas the MFCC features for both classes are very
similar. Unlike MFCCs, NBIPs are designed to maximize their
vector representations for car engine/tire vs. non-car sounds,
which makes them effective in recognizing cars with a very
high accuracy.

The NBIP features introduced are only used to detect
approaching cars/engine and tire noises. Since honks exhibit
strong frequencies in narrow bands and are not noise-like, we
cannot use NBIP to accurately detect honks. As such, we use
standard MFCC features for honk detection. For both types of
classification (honks vs. engine/tire noises), we train separate
Random Forest classifiers [17] which perform significantly
better than other classifiers (e.g., Support Vector Machine [18])
that we applied on our data set.

The classifiers were trained using audio recorded from 60
different vehicles, ranging from sedans to buses and trucks,
including the initial 47 recorded for studying the problem.
We found similar performance using classifiers trained with
sounds recorded from as low as 30 different cars. Addition-
ally, we included environment sounds without cars recorded
from the college town and metropolitan areas in which we
conducted our study. These audio clips include a wide range
of non-car sounds typically found in an outdoor environment,
including but not limited to talking, wind, and wildlife.

2) Car Localization Stage: If the presence of a car is
detected, the second stage of the pipeline is executed. In
this stage, the smartphone acquires and uses the four-channel
acoustic features received from the embedded front-end system
to estimate the distance and direction of the car. Four multi-
class Random Forest classifiers are used to classify eight direc-
tions and three distance levels based on honks and engine/tire-
friction sounds, respectively. Because the feature vectors are
only of 10 dimensions, we feed all the features into both
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Fig. 14. Custom integrated circuit for computing acoustic features directly
from multi-channel audio [19], used in PAWS Low-Energy.

classifiers for a simpler implementation. However, our analysis
of principal components (PCA) reveals that relative delay
and relative powers are more relevant features for direction
classification, whereas relative delay combined with ZC and
relative power are relevant features for distance estimation.
Relative delay is relevant to the direction of the sound source
because the microphone closer to the sound source will receive
the audio signal sooner than the other microphones.

In addition to determining one of the three levels of
distances, when a car is detected within the nearest level
(within 30m), PAWS runs a linear regression-based fine-
grained distance estimator. This step includes computing the
cepstral coefficients and then fitting the maximum value to an
actual distance in meters. This step does not add any significant
cost as we obtain the cepstral coefficients as a byproduct of
MFCC computation during the car detection stage.

3) Alert Mechanism: The application alerts a user with
audio/visual feedback. If a car is detected within a user-
configured distance range (e.g., 40m) — the phone vibrates,
lowers the volume, and beeps. It can also be configured to play
a customized message, e.g., “a car is {approaching, honking}
on your {direction, left, right}”. The application also visually
shows the location and direction of the car on its user interface,
as shown in Figure 1.

1V. PAWS LOW-ENERGY

The PAWS front-end platform uses an MCU to sample and
compute audio features used in direction and distance classi-
fication. Some of these features, such as cross-correlation, are
computationally expensive and grow quadratically in window
size. While the MCU-based sensing system we developed
for PAWS is already optimized for power consumption, it
still consumes significant energy since MCUs are general-
purpose processing units that are not optimized for our specific
application. To address this challenge, we further reduce
power consumption of the front-end platform by designing and
implementing an application-specific integrated circuit (ASIC)
to compute digital acoustic features directly from analog
sound sources, as shown in Figure 14. In this section, we
introduce PAWS Low-Energy, an improved version of PAWS,
that uses our custom ASIC in place of an MCU to sample
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audio and compute critical audio features for localization to
further reduce power consumption. Additionally, we discuss
the limitations of using the ASIC and how our localization
methods change as a result. Finally, we introduce our com-
putationally efficient, noise-resilient, mapping-based method
for direction localization, Angle via Polygonal Regression
(AvPR), that provides finer granularity direction estimates than
the eight directions provided by the classifier-based method
implemented in PAWS.

A. Reducing Power through a Custom Application-Specific
Integrated Circuit

To reduce the power consumption of acoustic feature com-
putation, we replace the MCU in the front-end platform with
a custom-designed ASIC. We describe the design, fabrication,
and evaluation of our ASIC in detail in [19]. This ASIC
computes the relative delay between three channels of audio
with respect to one channel of audio in the analog domain,
using a technique called polarity-coincidence correlation. The
polarity-coincidence correlation (PCC) between two signals,
X1 and X, is shown in Equation 4 [20].

t+7
PCCx, x, () = /t sgn (X1 (t)).sen(Xa(t — 7))t (4)

The main difference between standard cross-correlation and
PCC is that PCC computes the relative delay between two
signals using only the the signs of signals instead of the entire
signals. Because only the signs of the signals are required,
our custom ASIC does not need to sample entire audio
streams to compute relative delay and is able to efficiently
extract the relative delay through a feedback circuit using only
comparators for computing signs and memory elements for
shifting signals. This design leads to a reduction in power
consumption of the front-end to nW levels compared to the
mW level consumption by using ADCs on an MCU to directly
sample the audio streams. Using the custom IC, we show in
Section V-B that the majority of consumption is due to other
components of the front-end, such as the BLE module. This
reduces the overall power consumption of the wearable system
by an order of magnitude, allowing us to power PAWS Low-
Energy for longer than PAWS even after replacing the AAA
batteries with CR2032 coin cells, which have one order of
magnitude less energy capacity.

B. Resolving Constraints Imposed by Utilizing the ASIC

As mentioned in Section III-B, PAWS uses a variety of
features, including zero-crossing rate and relative power, for
direction and distance classification. However, the ASIC only
provides a relative delay measurement; thus, PAWS Low-
Energy cannot utilize the same set of methods used in PAWS.

The distance classifier introduced in Section III-C uses rel-
ative power and zero-crossing rate, two features not computed
by the ASIC, to classify the distance of a detected car into
three coarse ranges. If the classifier detects that a car is within
30 meters of the user, we fit the maximal cepstral coefficient
computed from the audio stream sampled from the phone to a

distance learned via regression. Past 30 meters, the maximal
cepstral coefficient levels off to a base value as shown in
Figure 7, and we cannot distinguish different distances past
this point. This model inherently provides coarse distance
classification: greater than 30 meters away and less than 30
meters away. Additionally, if a car is further than 30 meters
away from a pedestrian, it is not critical for the user to know
the exact distance of the car. As such, PAWS Low-Energy
entirely removes the coarse-grained distance classifier and uses
only the regression model introduced in Section II-D for both
coarse and fine-grained distance estimation.

In the direction classifiers employed in PAWS, relative
delay and relative power features are used for classification.
Since relative power is no longer available, we can only use
relative delay to compute the angle of arrival of the car.
According to [21], [22], [23], relative delay is sufficient for
computing the direction of arrival of a sound source. One
option is to train another eight direction classifier using only
relative delay features. If the position of the microphones are
known in advance, a second option is to employ classical
geometric methods, such as triangulation, to directly compute
the location of the source with respect to the user. However,
the accuracy of triangulation methods depends heavily on
the distance between microphone sensors and the sampling
frequency of the audio streams.

Despite the higher localization granularity that can be
achieved, a small amount of noise can cause large amounts
of direction and distance error in classical geometric methods.
In the following section, we present AVPR, a training-based
direction of arrival estimation method that provides the same
localization granularity as classical triangulation methods,
while also being more robust to environmental noise.

C. Angle via Polygonal Regression

AvPR takes advantage of the idea of using data to build a
model to learn a physical phenomena and reduce the influence
of noise, similar to a machine learning classifier. In the
PAWS system, we trained the direction classifier by having
someone (or a mannequin) wear the headset and playing a
sound source (either generated or a real car sound) in each
of the eight directions we classify. Figure 15 displays the
relative delay measurements obtained by playing white noise
in each of the eight directions. The coordinates of each three-
dimensional point corresponds to one of the three relative
delay measurements computed in the front-end. We see that
samples obtained from all eight directions form a circular
shape on a relatively flat plane in three-dimensional space.
From this representation, we can easily see that each point
within this circular structure maps to a direction with respect
to the user. A standard machine learning classifier would
disregard this insight and learn boundaries between each of
these eight directions to classify future observations into one
of these eight categories.

Instead, AvPR provides direction estimates with similar
granularity to triangulation methods by creating a mapping
between direction, 6, and the circular structure that the relative
delays exhibit. For each direction, 6;, that we take measure-
ments from to build the AVPR model, there is a sample
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mean, u,;, and variance, a?. As shown in Figure 16, we can
approximate the structure of the relative delays, and therefore
any angle between two angles for which we have observations
for, as an n-sided polygon by interpolating between adjacent
direction observation means and variances using linear splines,
where n is the number of directions we use to calibrate
the model (eight is shown in the example). Now we have
interpolated a probability distribution, zg ~ D(j,,02 ,) for
all possible directions, 0 < 6 < 27, where z is the vector of
relative delay observations obtained from the ASIC.

Now that the model is built, whenever a new observation
of relative delays, z, arrive, we can estimate the direction,
0*, by optimizing over the observed and interpolated direction
distributions. There are multiple ways to accomplish this, but
a common method is to use a maximum likelihood estimator
and assume that a car has an equal probability of appearing
at any direction, as shown in Equation 5.

0" = OgnézgﬂP(xW) 5)

This optimization problem is computationally expensive
because we have to optimize over an uncountably infinite
number of angles. We considered two ways to simplify this
optimization. The first method is to quantize the angles into
bins and optimize over the finite number of bins. However, this
method is very similar to classification: the less bins we divide
the angles into, the lower the computation and granularity of
our estimator. The second method is to simplify the model
by assuming that the variance, o3, of all directions 6, are
equal. Then, the optimal angle corresponds to the point on
the polygon that the observation is closest to, which only
involves computing the length of the normal segment from
the observation to each side of the polygon, as shown in
Figure 17. If the normal segment extends beyond the polygon,
then the distance between observation and the polygon side
is computed as the distance between the observation and
the closest endpoint of the polygon segment. We adopt the
second optimization method into AvPR because we preserve
the granularity of direction estimation, while also being com-
putationally efficient.

In addition to being more granular than the classification
method, AVPR also requires less calibration points for greater
granularity than the classifier method employed in PAWS.
In theory AVPR has the same granularity as the classical
triangulation methods as long as the clusters of relative delay
calibration points can form a simple polygon. This is because a
simple polygon is two-dimensional and can capture all angles
360 degrees around the user. Since the simple polygon with
the least number of vertices is a triangle, AvPR can obtain
the same granularity of direction estimates as triangulation
methods while only requiring three training directions to build
the model. The classification methods require n calibration
directions to categorize new observations into n different
directions. In Section VI, we compare AvPR with the clas-
sifiers employed in PAWS as well as an implementation using
triangulation and show the robustness of AvPR over these
existing methods. We summarize the steps for building the
AvPR model and estimating new directions.
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Fig. 15. Plot of relative delay points from playing white noise in eight
directions around the user.

Mean Interpolation

————— Variance Interpolation

100

50 -

-50

Relative Delay 3

100 4_
100

Relative Delay 2 -100 Relative Delay 1

Fig. 16. AvPR mean and variance interpolation between sampled directions
to create the polygon model used to estimate all other directions.

1) AvPR Training Phase

a) Play sounds at n directions around headset and
record the relative delays as features to obtain
calibration directions.

b) Interpolate between the sample means of adjacent
directions. The resulting n-sided polygon in the
feature space corresponds to the car’s angle of
arrival around the user.

2) Estimating Direction with AvPR

a) For a new observation, x, containing the relative
delays sampled from the front-end platform, find
the point on the trained polygonal model that is
closest to the new observation in the feature space
of relative delays.

b) This closest point maps to the direction that AvPR
estimates the sound source is coming from.

D. PAWS Low-Energy System Architecture

The PAWS Low-Energy front-end and smartphone block
diagram has the same flow as PAWS, but some of the modules
within the flow are modified and updated using techniques
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Fig. 17. Estimating a new direction with AvPR. Blue dashed lines are example
cases of computing the shortest distance from the new point to a segment.
The solid black line denotes the path from the new point to the point on the
polygon that is closest to the new point.

introduced in this section. In the front-end platform, PAWS
Low-Energy replaces the MCU with the ASIC. This switch
occurs in the module enclosed by the upper red box in
Figure 8. In the smartphone pipeline, the phone no longer
receives relative power and zero-crossing rate features. The
lower left red box in Figure 10 marks the area of this difference
between PAWS and PAWS Low-Energy. Additionally, the
direction and distance classifiers for localization in PAWS
are replaced by AvPR and regression of maximal cepstral
coefficients respectively. The lower red box in Figure 8 along
with the upper and lower right boxes in Figure 10 show where
these differences occur in the front-end and smartphone data
pipelines. The car and honk detectors remain the same between
both PAWS and PAWS Low-Energy.

V. PLATFORM EVALUATION

In this section, we first analyze and compare the real-time
performance and timing analysis of each component in the
PAWS and PAWS Low-Energy systems. Second, we analyze
and compare the power consumption of both systems.

A. Real-Time Performance

In this section, we discuss and compare the real-time
performance of PAWS and PAWS Low-Energy, the timing
constraints involved, and the design decisions involved to
meet them. Specifically, we will analyze the timing on the
feature extraction in the front-end platform (the headset),
the BLE transmission from the front-end to smartphone, and
the detection and localization pipeline in the smartphone.
Response time is crucial for our system, as a few milliseconds
can make a difference in saving the life of a user.

1) Front-end Feature Extraction: The first part of the data
flow in PAWS and PAWS Low-Energy is sampling audio
and extracting features. In PAWS, the embedded front-end
hardware is handling 32kSamples/s with 8 bits per sample
for each of the 4 channels with MEMS microphones. To
minimize latency, we compute features in 100ms windows
every 50ms in a pipeline fashion. This means that features

are being calculated every 50ms with 50% window overlap.
The MCU uses a dedicated ADC module with direct memory
access (DMA) to leave more CPU cycles available for feature
calculation. The ADC is continuously sampling audio and
storing them in RAM while features from the previous frame
are being calculated. The data transfer from the MCU to the
BLE module is also done via a dedicated UART module. In
order for this pipeline to work in real-time, all features from
the current frame must be calculated before the acquisition of
the following frame ends, and the UART module must finish
sending the current feature vector before the next feature is
ready to be sent. The timing of the different parts of this
pipeline can be seen in the upper flow of Figure 18. The
features calculation consumes 36ms of the available 50ms in
one time slot, and the UART module completes each feature
vector transmission in 1.9ms.

In PAWS Low-Energy, the MCU is replaced with the ASIC.
The ASIC extracts the sign of the audio stream and provides
8-bit relative delay measurements at 50kS/s per channel for
three channels. However, we are unable to transmit 50kS/s
per channel worth of 8-bit relative delay measurements to the
smartphone due to bandwidth limitations of BLE. To keep
the same wireless transmission rate of PAWS, we only read
one set of relative delays per channel every 2500 samples and
transmit to the phone. This yields a transmission rate to the
phone of 20 measurements per second. In order for the BLE
module to support a transmission rate of 20 measurements per
second per channel, the module must be able to read one set
of relative delay measurements in less than 50 ms from the
ASIC, which uses a custom communication protocol. From
our measurements, the BLE module requires 9us to completely
read one relative delay measurement from each channel, which
fits our timing requirements for real-time operation. The timing
for the ASIC to BLE module extraction for PAWS Low-Energy
is shown in the bottom flow of Figure 18.

Since the BLE module is directly reading the relative
delays from the ASIC, it does not need to spend time to
compute relative delay; it can directly send this value to
the smartphone. As such, PAWS Low-Energy directly sends
data to the smartphone after only spending 9us extracting a
measurement from the ASIC, while PAWS requires 1.9ms for
the BLE module to read the relative delay measurement from
the MCU on top of the 36ms of computing the relative delay.
This is a significant decrease in latency over PAWS, which
will effect the wireless transmission latency test, detailed in
the following section.

2) Front-end to Smartphone Wireless Transmission: An-
other crucial timing aspect of the system is the latency to
transmit the features from the BLE module to the smartphone.
This latency will not only add to the response time of the
system, but it can also cause a mismatch between the vehicle
detection and its localization. If the temporal-spatial features
calculated in the front-end hardware take too long to reach
the smartphone, the location estimation displayed to the user
might refer to a different sound source than the vehicle that the
system just detected. To verify that the smartphone will receive
the data within an acceptable time interval, an adaptation to
the system was made, as shown in Figure 19. A button was
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Fig. 18. Pipeline of the PAWS and PAWS Low-Energy feature extraction
process. In the PAWS flow, the “Features Calc.” block represents all the
operations involved in the features extraction, and “TX” represents the UART
communication between the MCU and BLE module. In the PAWS Low-
Energy flow, “Extract” refers to the BLE module reading relative delays from
the ASIC.

simultaneously connected to one of the inputs of the front-end
hardware and the microphone input of the smartphone (as the
regular microphone buttons). A verification app was developed
to compare the difference between the time when the button-
press event was detected by the smartphone application and
when the smartphone received the data packet containing the
same event. All aspects of the systems, including firmware,
remain equivalent to the setup for standard operation. Both
PAWS and PAWS Low-Energy were tested.

The average delay of the PAWS wireless transmission la-
tency is on the order of 55ms as shown in Figure 20. Since the
event can be captured by the MCU anywhere within the 50ms
sampling windows, this latency is not expected to be lower
than the 38ms required for the calculations and transmission.
However, due to randomness in the delay on the smartphone
path, a few samples on the histogram have lower latencies.
Figure 21 shows that the wireless transmission latency of
PAWS Low-Energy is around 27 ms, which is much lower
than PAWS. This huge improvement is from the addition of
the ASIC, as explained in the previous section. The ASIC
updates relative delay measurements at every audio sample,
and the BLE module must only read from the ASIC. However
in PAWS, the MCU must wait for an entire window (50ms) of
samples before spending more than half of a window (36ms)
extracting and transmitting features to the BLE module, which
adds significant delay to the pipeline. As such, we have shown
that PAWS Low-Energy improves upon the front-end feature
extraction + wireless transmission latency of PAWS.

3) Smartphone Processing: Figure 22 shows the execution
times of various components inside the smartphone application
of PAWS and PAWS Low-Energy. The application runs four
threads in parallel. Thread 1 is responsible for getting audio
data using the single channel microphone for car detection. We
have taken 10 frames per window (448ms) for robust feature
calculations. Thread 2 is responsible for receiving acoustic
features over BLE. Thread 3 runs the car detector, which
takes 86ms. In addition to car detection, thread 3 also runs the
distance and direction estimators. PAWS requires merely 2 ms
to classify distance and direction because these classifiers use
precomputed features from the headset. PAWS Low-Energy
requires a slightly less, though similar, amount of time to run
its localization algorithms. The Ul thread (Thread 4) takes 3ms
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Fig. 19. Block diagram of the test setup for the latency between the features
from the front-end hardware and the smartphone.
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Fig. 20. Histogram of PAWS front-end hardware to smartphone latency
acquired with the test setup shown in Figure 19.
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Fig. 22. Execution times of various components of the PAWS and PAWS
Low-Energy smartphone app.

to update the UI and to notify the user for both systems as
well. The worst case execution time for the PAWS and PAWS
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TABLE I
POWER CONSUMPTION AND PRICE BREAKDOWN OF PAWS AND PAWS
LOW-ENERGY (PAWS LOW-ENERGY TOTAL IN BOLD)

Idle [mA] Active [mA]  Unit Price [U$]
MCU (STM32f4)/ASIC 4.37/~0 50/~0 3.20
BLE Transciever (nRF52) 0.46 7 6.40
MEMS Mics x 4 048 x 4 048 x 4 0.40 x 4
Amplifiers x 4 234 x 4 234 x 4 1.60 x 4
Regulators 0.1/0.6 0.1/0.6 0.50/3.00
Total 16.21/11.84 68.4/18.9 18.10/20.60

Low-Energy apps is 91ms. Because we use a 50% overlap
between successive windows for car detection, the PAWSapp
runs the full classification pipeline every 448/2 = 224ms, and
detects and localizes cars in 91ms (i.e., in real-time), giving
users plenty of time to respond to oncoming dangers.

B. Power Consumption and Price Breakdown

We evaluate the energy consumption of PAWSand PAWS
Low-Energy by measuring the power consumptions for both
the embedded platform and the smartphone during idle and
active states. In the active state, data is processed, features
are computed, and results are transmitted to provide danger
feedback to the user, whereas in the idle state, the smartphone
application is not connected to the headset and most of the
clocks in the embedded front-end platform are turned off
to conserve power. The sole purpose of the idle state is to
conserve power when the user is not using the system (e.g.
when the headset is not paired with the phone).

The PAWS embedded platform uses an STM32f4 Cortex-
M4 chip as the MCU that samples and extracts features, as
well as a BMD-300 module that acts as the BLE transceiver.
Operating at 180MHz clock speed, the STM32 MCU con-
sumes the most power at 5S0mA when active. While not
in active use, the power can be reduced to 4.37mA. The
Cortex-M4 architecture provides a familiar environment for
firmware development with an acceptable energy footprint and
a low cost of U$3.20 at major part suppliers. The BMD-
300 BLE transceiver module transmitting at OdBm power
consumes 7mA when active and consumes 0.46mA when in
idle mode, only transmitting advertisement packets. The BMD-
300 module integrates the Nordic nRF52 BLE chipset and
antenna in a small footprint component that fits this application
for a low price of U$6.40. The other components of the front-
end hardware are the 3.3V regulator, the MEMS microphones,
and the pre-amplifiers. They consume 0.1mA, 0.48mA, and
2.34mA per component, and cost U$0.50, U$0.40, and U$1.60
per unit respectively. The overall power consumption of the
system is below 70mA, allowing for 17 hours of continuous
operation when powered by 3 AAA Alkaline batteries.

The main source of power consumption in PAWS Low-
Energy is the BLE module as the ASIC has nW-level consump-
tion. The same MEMS microphones and pre-amplifiers from
PAWS were used in PAWS Low-Energy. The ASIC requires
multiple voltage inputs to function. As a result, multiple
regulators are required, increasing power consumption and
price. Since the ASIC requires almost no power to operate, the
overall power consumption of the PAWS Low-Energy front-
end is more than three times lower than PAWS, allowing for

PAWS USER

Fig. 23. Experiment scenario in campus street.

more than two days of continuous operation if powered by
standard AAA Alkaline batteries and around half a day of
continuous operation if powered by standard CR2032 coin
cell batteries. Table I quantifies and compares the power
consumption and price breakdown of PAWS and PAWS Low-
Energy. The components of PAWS Low-Energy is only around
U$2.00 more expensive than PAWS, but result in significant
power savings. To obtain the cost estimate for PAWS Low-
Energy, we made the assumption that the ASIC would cost
the same amount as the STM32f4 MCU if mass produced.
For the smartphone, the most energy consuming component
is the display, which is only used to configure the app,
and therefore, it is not necessary to keep it always on. The
BLE communication consumes about 0.2mA. The energy
consumption for the rest of the application is between 0.3uAh
to 0.8uAh per frame for both PAWS and PAWS Low-Energy.

VI. REAL-WORLD EVALUATION

To evaluate the end-to-end performance of the complete
PAWS and PAWS Low-Energy systems in realistic settings,
experiments were conducted in three environments: 1) a street
inside a university campus and a residential area, containing
pedestrian-borne sounds such as walking and talking; 2) by the
side of a highway, with wind being the most prevalent non-car
sound; and 3) in a metropolitan area, where both pedestrian-
borne and wind sounds are common.

A. Experimental Setup

1. Campus street and residential neighborhood. The first
experiment was done in a campus street and a residential
neighborhood with a speed limit of 25mph. The background
sounds in this environment were mainly pedestrian-borne (e.g.
groups of people walking and talking). To evaluate PAWS, we
used three fixed markers (yellow cones) on the sidewalk and
the PAWS app to evaluate the detection, direction, and distance
accuracy. Every time a vehicle passed a cone, a volunteer
raised a flag and the event was logged in the PAWS smartphone
application. The setup is shown in Figure 23. The experiment
was repeated multiple times. Each time the user faced the
road at a different angle, €, so that we could test the accuracy
of the direction and distance estimation for as many different
angles as possible. For PAWS Low-Energy, we recorded time-
stamped video to obtain the ground truth.

2. Side of highway. The second experiment was done by the
side of a highway (NC HWY-54) where we observe a constant
flow of cars of diverse models, e.g., sedans, SUVs, trucks, and
buses. The speed limit for the vehicles in this segment of the



IEEE INTERNET OF THINGS JOURNAL

TABLE II
SUMMARY OF DEPLOYMENT EVENTS.
Deployment User (Facing Angle) Honks Car Events
Metro Area 0°, +45°, 180° 48 165
Campus 0°, +45°, 90°, £135°, 180° 0 97
Highway 0°, +45°, 90°, £135°, 180° 0 65

highway is 45 mph as it is close to residential areas. In this
experiment, we were exposed to less pedestrian-borne noise,
but experienced heavy wind noise due to the location of the
highway and because we were in hurricane season. For ground
truth collection, we marked the road in the similar way as we
did in the campus street. However, unlike the campus street,
cars on the highway were driven at a higher speed (around
50-55 mph) and they were large in number. Therefore, instead
of appointing human volunteers, we recorded a time-stamped
video and analyzed the video offline to obtain the ground truth.

3. Metropolitan area. The third experiment was done
in the streets of Manhattan, New York, where the number
of cars, adjacent streets, and buildings in the surrounding
area is very dense. This environment is replete with sounds
commonly found in the first two scenarios, including wind
and the bustle of pedestrians and wildlife (e.g. birds and pets).
Just as with the second experiment conducted near a highway,
a time-stamped video was recorded and analyzed offline to
obtain ground truth. To evaluate the detection, direction, and
distance classifiers of PAWS and PAWS Low-Energy, the es-
timator outputs were logged and compared against the ground
truth. During all the experiments we simulated a distracted
pedestrian’s ability to detect cars by logging car events while
listening to music in parallel with PAWS.

Table II provides statistics of the deployment in all envi-
ronments. The table shows how the PAWS and PAWS Low-
Energy user faced the road, and the number of logged honks
and car events. Though the experiments presented in this
section were conducted with a stationary user, we observe
similar performance when the user moves at walking pace. We
did not run experiments in scenarios where the user is moving
at higher speeds, but will explore this avenue in future work.

B. Results

1) Car Detection: We measure the car detection accuracy
of PAWS and compare its performance with that of the ground
truth collector’s and distracted user’s reports. Since PAWS
Low-Energy uses the same car detector, the results of PAWS
Low-Energy are aggregated with the results of PAWS. Fig-
ure 24 compares the exact counts of total logged approaching
car events for all environments. We see that almost all the cars
logged by the ground truth collector have been identified by
PAWS, whereas the distracted participant missed about 19%-
36% of them. This shows that PAWS is a highly efficient
system for detecting and alerting pedestrians of approaching
cars. In summary, the car event detection accuracy is 97.30%,
99.48% and 95.59% in metro area, campus and highway
respectively. Additionally, a confusion matrix for the detection
classifier running on PAWS is presented in Figure 25 for the
metro area. The difference in the counts shown in Figure 25
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Fig. 24. Car detection performance.
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Fig. 25. Metro area car detection confusion matrix.

and Figure 24 is that in Figure 24, the values correspond to
car events. For instance if one car passes by the user, it will
count as a single car event in this figure, but PAWS will have
multiple frames or windows it processes that will show up as
car detections from the raw classifier outputs. Figure 25 on the
other hand displays the confusion matrix for each individual
frame computed by the PAWS application. We see that only
one frame was misclassified as a noncar in the case where a
car was present, and around 5% of the noncar samples were
misclassified as cars. These values show that PAWS has fairly
low false positive and false negative rates as well as high true
positive and true negative rates. In other words, PAWS is able
to correctly detect the presence of cars and reject cases where
no car is present in common urban environments, rich with
wind and pedestrian-borne noises in the background.

2) Localization Performance: In this section we will
present evaluation on the direction and distance estimators
of PAWS and PAWS Low-Energy. First, we compare the
performance of the direction estimators of PAWS, the AvPR
method employed in PAWS Low-Energy, and the classical
triangulation method. The results of the PAWS direction
classification is shown in Figure 28 for all environments and
the eight directions that we trained the classifier to discern.
We assume that the accuracy of the directions reported by
the ground truth collector is accurate. Each reported direction
from the ground truth collector is mapped to the classification
results of PAWS. We observe that the average accuracy of the
direction classifier over all directions is 86.7%.



IEEE INTERNET OF THINGS JOURNAL

Mean Error = 11.3906 deg, Std Error = 9.8718 deg
350 | o S5

[+

(=}

o
T

e

a

o
T

200

150

100

O Observation
Ground Truth

4]
o

Estimated Direction (degrees)

100 150 200 250 300 350
True Direction (degrees)

Fig. 26. Estimated direction vs. true direction estimated via AvPR.

Mean Error = 47.6797 deg, Std Error = 43.8262 deg

— 300}
O
g
(o))
©
E 200t
o
kel
8
—
5 100}
B O Observation
© % Ground Truth
E 9 g
2 o% ®
it o
o o ©
100 . . ‘ ‘ . . .
0 50 100 150 200 250 300 350

True Direction (degrees)

Fig. 27. Estimated direction vs. true direction estimated via triangulation.

Figure 26 plots the mean and variance of the estimated vs.
true angle of the AvPR method employed by PAWS Low-
Energy. We see that the average error over all directions
is around 11 degrees, which is less than the 12.5 degree
sections that the classifier in PAWS outputs. This shows that
AvPR is more accurate and granular than the classification
approach employed by PAWS. We also show the mean and
variance of the estimated vs. true angle of the car computed
via triangulation in Figure 27 as a comparison. The average
error is around 45 degrees, which is larger than the error of
AvPR. The standard deviation of error for AvPR is around
10 degrees compared to 44 degrees for triangulation, which
shows that AvPR provides more consistent predictions than
triangulation. The mean and variation in errors show that AvPR
outperforms AvPR for direction estimation.

Next, we present the results of the distance estimators of
PAWS and PAWS Low-Energy. Recall that PAWS performs
coarse distance classification and only performs fine-grained
distance estimation if the car is detected to be within 30
meters, while PAWS Low-Energy leverages the coarse-grained
estimator found inherently within the fine-grained estimator
for coarse-grained and fine-grained estimations. Figure 30
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Fig. 30. confusion matrices for distance estimation.

shows the combined confusion matrix for all distance pre-
dictions of the coarse-grained classifier. Each distance section
presents an accuracy of 77.9%, 76.4%, and 72.3% for ranges
from above 60m to 40m, to 20m from the user. The overall
accuracy the coarse-grained estimator is 75.6%. Figure 31
plots the estimated distance vs. true distance of cars driving
towards the user wearing our systems. We see that for cars
within 30 meters, the distance estimator has an average error
of 2.8 meters.

Figure 29 summarizes the direction and distance classifier
results for all environments. We observe that the overall
accuracy of the distance classifier is 63% — 78%, and that
the average direction classifier ranges from 80% — 98.5%
depending on the environment.
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C. Limitations and Future Work

In this work, we present novel, audio-based, wearable
methods for enhancing pedestrian safety that is effective in
typical urban scenarios, providing accurate and real-time alerts
of vehicle presence and location. However, we recognize that
our system is still at the research level and not ready for com-
mercialization, as there are several scenarios in which PAWS
and PAWS Low-Energy are ineffective. We discuss these
situations next.

1) Noisy Streets: PAWS is designed to detect the presence
of cars in real-world environments. Streets may contain diverse
kinds of noise, some of which may be different from the ones
we have calibrated our system for. PAWS should be trained in
as many scenarios as possible for robustness.

Additionally, just as if a camera in a vision-based approach
is unable to see the car (e.g. car is not in line of site or
if it is dark outside), if for any reason the microphones are
unable to pick up the sounds of the car (e.g. microphones are
covered or noise overpowers everything in the environment),
then PAWS would be rendered ineffective. We are currently
looking into other sensing modalities, vehicular networking
methods, and crowdsourcing to overcome the limitations in
our audio processing methods.

2) Nearby Cars: The current design of PAWS considers
only the positions of vehicles relative to the user, but not
their trajectories. We can foresee occasions where a pedestrian
is walking parallel to a busy road, and the system is giving
warnings, even though the user is not in danger of being hit.
Future work that takes into account the trajectory of both the
vehicle and the user is under development.

3) Multiple Approaching Cars: The presence of multiple
cars approaching the user can impair the reliability of the
system. It does not matter if there are multiple cars present
or if there is only a single car, PAWS will reliably detect
the presence of vehicles, using the methods presented in
Section ITI-C1, at no additional computational cost if multiple
cars are present. The localization portion of PAWS and PAWS
Low-Energy both use relative delay computed via time-domain
cross-correlation methods, which are dominated by the highest
energy source (e.g. the loudest vehicle). In summary, PAWS
can detect the presence of vehicles and localize the loudest
vehicle. PAWS cannot estimate the number of vehicles present,
nor localize multiple present vehicles. We are currently inves-
tigating sound source source separation and multiple sound
source localization techniques to overcome this challenge.

It should be noted that although PAWS is unable to localize
multiple oncoming cars, the majority of accidents occur when
there are less cars in the streets. According to the National
Highway Traffic Safety Administration (NHTSA), 70% to
80% of all pedestrian-related accidents in the United States
occur between 6PM to 6AM [24], when there are arguably
less cars on the road than during the day. Additionally, the
NHTSA also reports that 90% of accidents that included the
death of a pedestrian involved a single vehicle. These statistics
suggest that despite its shortcomings in handling multiple car
cases, PAWS can still handle the more common scenarios
involving accidents with fewer vehicles.

VII. RELATED WORK

Object recognition and localization have been vastly ex-
plored in the literature. Almost all of them mirror techniques
that are present in nature, such as the use of stereo imag-
ing [25], ultrasonic radars [26], and acoustic source localiza-
tion [27]. In vehicular tracking, video based approaches have
been widely used [28][25][29]. The amount of information
that can be extracted from images is undoubtedly greater than
any other types of sensors. Commonality in vehicles’ shapes
and standardized road signs have enabled machine learning
algorithms to identify and predict the movement of cars [30].
Although such systems offer outstanding solutions for devices
that can be hosted in large platforms, e.g. in an autonomous car
for collision prevention [31], these are not suitable for use in
wearable systems. A major limitation is the high computational
requirements for real-time image processing. Another major
issue is the privacy of the user. Video can reveal an alarming
amount of personal identifiable information.

Active techniques like radar and LIDAR can certainly be
used to detect the presence of obstacles and even some of
its spatial behaviors [32][33], but such solutions face great
challenges in classifying what those obstacles are. This is
particularly problematic in urban environments where moving
and stationary obstacles are abundant, but only a few are
real threats to the user. On the implementation side, the
inherently high power dissipation of active transducers are
usually discouraging for portable devices.

Passive audio sensors, on the other hand, provide enough
information to allow classification and localization of the
source with less computational and power requirements. But,
unlike other techniques already published [34][27][23], PAWS
uses machine learning algorithms to improve its predictions.
By doing so, the system requires a large amount of learning
data, but gains in flexibility, speed, and complexity. Audio
classification has been used for event detection like, coughing
detection [35], gun shot detection [36], human activity (e.g.
talking, crying, running etc) detection [37]. These works
mostly focus on identifying prominent sounds like gun shots
or shouting rather than noise-like car sounds. [38] classified
subtle sounds like keyboard typing, door knock etc. but all of
the sounds were in an isolated environment not in real life
noisy environment. [39] considered bus and trucks as events
but had a very low accuracy of 24%. Other signals like video
[40] [41] or seismic signals [42] have been used for vehicle
detection but are not suitable for a wearable system like PAWS.
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Other works that leverage sensors to enhance pedestrian
safety utilize sensors placed on the shoe [43] or the camera on
the smartphone [44], but these approaches are either unable to
detect and localize cars or provide limited coverage.

In recent years, developments in vehicle to vehicle, pedes-
trian, and infrastructure communications are beginning to
allow cars and pedestrians to directly communicate with each
other in close proximity. Dedicated Short Range Commu-
nication (DSRC), a wireless protocol developed specifically
for vehicular networking, is becoming a popular protocol in
vehicular networks to transmit information and alerts [45][46],
but is not natively supported on smartphones and require
modifications to existing vehicles. Solutions that leverage
standard WiFi or cellular protocols generally require every car
to have a wireless transmitter [47][48], do not meet timing
and latency requirements [49][50], or modify the SSID of
smartphone WiFi beacons [51] and cannot be implemented
on a smartphone with standard privileges. Additionally, a
single pedestrian only requires our custom headset to receive
the full functionality of PAWS and PAWS Low-Energy. In
contrast, V2X systems commonly require modifications to
support specific wireless protocols on all passing cars before
a single pedestrian can benefit.

VIII. CONCLUSION

This paper presents PAWS and its low-power variant PAWS
Low-Energy, a wearable system that uses multiple audio
sensors to protect pedestrians by identifying and localizing
approaching vehicles. PAWS is carefully designed to recognize
honks and noises of an approaching vehicle. Using machine
learning algorithms and signal processing techniques, PAWS
is able to identify honks and tire/engine sounds with near
100% precision across all tested environments. It further
provides feedback on the direction of the sound source with
80% — 98.5% accuracy and predicts the distance from the user
with 62% — 78% accuracy. As technology evolves and new
dangers surround modern cities, innovative safety solutions
must arise to uphold the welfare of common citizens.

IX. ACKNOWLEDGEMENTS

This research was partially supported by the National Sci-
ence Foundation under Grant Numbers CNS-1704899 and
CNS-1815274. The views and conclusions contained here
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of Columbia University, NSF, or
the U.S. Government or any of its agencies.

REFERENCES

[1] D. de Godoy, B. Islam, S. Xia, M. T. Islam, R. Chandrasekaran, Y. Chen,
S. Nirjon, P. R. Kinget, and X. Jiang, “Paws: A wearable acoustic
system for pedestrian safety,” in 2018 IEEE/ACM Third International
Conference on Internet-of-Things Design and Implementation (IoTDI),
April 2018, pp. 237-248.

[2] K. Shaver, “Safety experts to pedestrians: Put the smartphones down
and pay attention,” September 2014, [Online]. [Online]. Available:
https://www.washingtonpost.com/local/trafficandcommuting/safety-
experts-to-pedestrians-put-the-smartphones-down-and-
pay-attention/2014/09/19/278352d0-3f3a-11e4-9587-
5datd96295£0_story.html

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]
[18]

[19]

[20]

[21]

(22]

[23]

[24]
[25]

[26]

[27]
(28]

[29]

16
M. Park, “Injuries while walking with headphones tripled,
study  finds,”  January 2012, [Online]. [Online].  Avail-
able: http://thechart.blogs.cnn.com/2012/01/16/injuries-while-walking-

with-headphones-triple-study-finds/

S. Li, X. Fan, Y. Zhang, W. Trappe, J. Lindqvist, and R. E. Howard,
“Auto++: Detecting cars using embedded microphones in real-time,”
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies, vol. 1, no. 3, p. 70, 2017.

K. G. Shin and Y.-C. Tung, “Real-time warning for distracted pedestrians
with smartphones,” Sep. 25 2015, uS Patent App. 14/865,262.

M. Galleso, AirPods: An Easy Guide to the Best Features. CreateSpace
Independent Publishing Platform, 2016.

A. Champy, “Google pixel budswireless headphones that help
you do more,” October 2017, [Online]. [Online]. Available:
https://www.blog.google/products/pixel/pixel-buds/

C. J. Plack, The sense of hearing. — Lawrence Erlbaum Associates
Publishers, 2005.

R. S. S. Molau, M. Pitz and H. Ney, “Computing mel-frequency cepstral
coefficients on the power spectrum,” in Acoustics, Speech, and Signal
Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International
Conference on. 1EEE, 2001.

A. Martin, D. Charlet, and L. Mauuary, “Robust speech/non-speech
detection using lda applied to mfcc,” in Acoustics, Speech, and Signal
Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International
Conference on, vol. 1. IEEE, 2001.

T. Kinnunen, E. Chernenko, M. Tuononen, P. Frinti, and H. Li, “Voice
activity detection using mfcc features and support vector machine,” in
Int. Conf. on Speech and Computer (SPECOMO07), 2007.

J. Portelo, M. Bugalho, I. Trancoso, J. Neto, A. Abad, and A. Serralheiro,
“Non-speech audio event detection,” in Acoustics, Speech and Signal
Processing, ICASSP 2009. 1EEE, 2009.

S. G. Koolagudi and K. S. Rao, “Emotion recognition from speech: a
review,” International journal of speech technology, vol. 15, no. 2, 2012.
N. Bhave and P. Rao, “Vehicle engine sound analysis applied to traffic
congestion estimation,” in Proc. of International Symposium on CMMR
and FRSM2011, 2011.

B. Moore, “Principal component analysis in linear systems: Control-
lability, observability, and model reduction,” Automatic Control, IEEE
Transactions on, vol. 26, no. 1, 1981.

B. Van Den Broeck, A. Bertrand, P. Karsmakers, B. Vanrumste, M. Moo-
nen et al., “Time-domain generalized cross correlation phase transform
sound source localization for small microphone arrays,” in Education
and Research Conference, 2012 5th European DSP. IEEE, 2012.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, 2001.
C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, 1995.

D. de Godoy, X. Jiang, and P. R. Kinget, “A 78.2 nw 3-channel time-
delay-to-digital converter using polarity coincidence for audio-based
object localization,” in IEEE Custom Integrated Circuits Conference,
2018.

S. Wolft, J. Thomas, and T. Williams, “The polarity-coincidence correla-
tor: A nonparametric detection device,” IRE Transactions on Information
Theory, vol. 8, no. 1, pp. 5-9, January 1962.

M. Omologo and P. Svaizer, “Acoustic event localization using a
crosspower-spectrum phase based technique,” in Acoustics, Speech,
and Signal Processing, 1994. ICASSP-94., 1994 IEEE International
Conference on, vol. 2. 1EEE, 1994, pp. II-273.

J. C. Chen, K. Yao, and R. E. Hudson, “Source localization and
beamforming,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp.
30-39, 2002.

J.-M. Valin, F. Michaud, and J. Rouat, “Robust localization and tracking
of simultaneous moving sound sources using beamforming and particle
filtering,” Robotics and Autonomous Systems, vol. 55, no. 3, 2007.
“2016 pedestrians traffic safety fact sheet,” March 2018. [Online]. Avail-
able: https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812493

M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele, “Stereo vision-based
vehicle detection,” in IEEE Intelligent Vehicles Symposium, 2000.

B. Barshan and R. Kuc, “A bat-like sonar system for obstacle localiza-
tion,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 22,
no. 4, 1992.

J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust localiza-
tion in reverberant rooms,” in Microphone Arrays. Springer, 2001.
'W. Wang, “Reach on sobel operator for vehicle recognition,” in Artificial
Intelligence, International Joint Conference on. 1EEE, 2009.

G. J. McDonald, J. S. Ellis, R. W. Penney, and R. W. Price, “Real-
time vehicle identification performance using fpga correlator hardware,”



IEEE INTERNET OF THINGS JOURNAL

(30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

(48]

[49]

[50]

[51]

Intelligent Transportation Systems, IEEE Transactions on, vol. 13, no. 4,
2012.

S. Zhou, J. Gong, G. Xiong, H. Chen, and K. Iagnemma, ‘“Road detection
using support vector machine based on online learning and evaluation,”
in Intelligent Vehicles Symposium (1V), 2010 IEEE. IEEE, 2010.

Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006.
S.-L. Jeng, W.-H. Chieng, and H.-P. Lu, “Estimating speed using a
side-looking single-radar vehicle detector,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 15, no. 2, 2014.

Z. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, and
D. Rus, “Synthetic 2d lidar for precise vehicle localization in 3d
urban environment,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on. IEEE, 2013.

M. S. Brandstein, J. E. Adcock, and H. F. Silverman, “Microphone-array
localization error estimation with application to sensor placement,” The
Journal of the Acoustical Society of America, vol. 99, no. 6, 1996.

A. Harma, M. F. McKinney, and J. Skowronek, “Automatic surveillance
of the acoustic activity in our living environment,” in Multimedia and
Expo, 2005. ICME 2005. 1EEE, 2005.

C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-
based surveillance system,” in Multimedia and Expo, 2005. ICME 2005.
IEEE International Conference on. IEEE, 2005.

P. K. Atrey, N. C. Maddage, and M. S. Kankanhalli, “Audio based event
detection for multimedia surveillance,” in Acoustics, Speech and Signal
Processing, 2006. Proceedings. International Conference on. 1EEE,
2006.

A. Temko, R. Malkin, C. Zieger, D. Macho, C. Nadeu, and M. Omologo,
“Clear evaluation of acoustic event detection and classification systems,”
in International Evaluation Workshop on Classification of Events, Ac-
tivities and Relationships. Springer, 2006.

A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic event
detection in real life recordings,” in Signal Processing Conference, 2010
18th European. 1EEE, 2010.

D. A. Sadlier and N. E. O’Connor, “Event detection in field sports
video using audio-visual features and a support vector machine,” IEEE
Transactions on Circuits and Systems for Video Technology, 2005.

M. Xu, N. C. Maddage, C. Xu, M. Kankanhalli, and Q. Tian, “Creating
audio keywords for event detection in soccer video,” in Multimedia and
Expo, 2003.. Proceedings. International Conference on. IEEE, 2003.
N. Evans, “Automated vehicle detection and classification using acoustic
and seismic signals,” Ph.D. dissertation, University of York, 2010.

S. Jain, C. Borgiattino, Y. Ren, M. Gruteser, Y. Chen, and C. F.
Chiasserini, “Lookup: Enabling pedestrian safety services via shoe
sensing,” in Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys *15.  ACM,
2015. [Online]. Available: http://doi.acm.org/10.1145/2742647.2742669
T. Wang, G. Cardone, A. Corradi, L. Torresani, and A. T. Campbell,
“Walksafe: A pedestrian safety app for mobile phone users who walk
and talk while crossing roads,” in Proceedings of the Twelfth Workshop
on Mobile Computing Systems; Applications, ser. HotMobile "12. ACM,
2012. [Online]. Available: http://doi.acm.org/10.1145/2162081.2162089
X. Wu, R. Miucic, S. Yang, S. Al-Stouhi, J. Misener, S. Bai, and
W. Chan, “Cars talk to phones: A dsrc based vehicle-pedestrian
safety system,” in 2014 IEEE 80th Vehicular Technology Conference
(VIC2014-Fall), Sep. 2014, pp. 1-7.

Z. Liu, L. Pu, Z. Meng, X. Yang, K. Zhu, and L. Zhang, “Pofs: A
novel pedestrian-oriented forewarning system for vulnerable pedestrian
safety,” in 2015 International Conference on Connected Vehicles and
Expo (ICCVE), Oct 2015, pp. 100-105.

P. Ho and J. Chen, “Wisafe: Wi-fi pedestrian collision avoidance
system,” IEEE Transactions on Vehicular Technology, vol. 66, no. 6,
pp. 45644578, June 2017.

J. J. Anaya, P. Merdrignac, O. Shagdar, F. Nashashibi, and J. E. Naranjo,
“Vehicle to pedestrian communications for protection of vulnerable road
users,” in 2014 IEEE Intelligent Vehicles Symposium Proceedings, June
2014, pp. 1037-1042.

C. Lin, Y. Chen, J. Chen, W. Shih, and W. Chen, “psafety: A collision
prevention system for pedestrians using smartphone,” in 2016 IEEE 84th
Vehicular Technology Conference (VIC-Fall), Sep. 2016, pp. 1-5.

M. Won, A. Shrestha, and Y. Eun, “Enabling wifi p2p-based pedestrian
safety app,” 2018.

K. Dhondge, S. Song, B. Choi, and H. Park, “Wifihonk: Smartphone-
based beacon stuffed wifi car2x-communication system for vulnerable
road user safety,” in 2014 IEEE 79th Vehicular Technology Conference
(VIC Spring), May 2014, pp. 1-5.

Stephen Xia received his B.S. in electrical engi-
neering from Rice University, USA, in 2016, and
his M.S. in electrical engineering from Columbia
University in 2018. He is currently a Ph.D. can-
didate in the Department of Electrical Engineering
at Columbia University, where his current research
focuses on designing intelligent systems for mo-
bile/wearable computing, connected health, and the
Internet of Things.

Daniel de Godoy Peixoto was born in Recife,
Brazil, in 1988. He received the B.Eng. degree in
electrical engineering from the Federal University of
Pernambuco (UFPE), Brazil, in 2012, and the M.S.
degree in electrical engineering from Columbia Uni-
versity, New York, in 2015, where he received the
Columbia Electrical Engineering Department Re-
search Award. He is currently working towards his
Ph.D. at Columbia University, where he is focusing
on ultra-low-power analog feature extraction front-
end integrated circuits for machine-learning audio-
based systems. During his studies at Columbia, Daniel was awarded the
Science Without Borders Fellowship, from CAPES, Brazil, and the Lemann
Foundation Fellowship. His research interest includes ultra-low-power analog
and mixed-signal sensor interfaces and their roles in embedded IoT systems.

Bashima Islam received her B.Sc. degree in com-
puter science and engineering from Bangladesh Uni-
versity of Engineering and Technology (BUET).
From 2016 she has been a Ph.D. student at Uni-
versity of North Carolina at Chapel Hill, USA. Her
research interest falls into low power computing and
machine learning in resource-constrained devices.
Currently, she is working on energy-harvested sys-
tems for efficient computing.

Md Tamzeed Islam received his B.Sc. degree in
computer science and engineering from Bangladesh
University of Engineering and Technology (BUET).
He is now a Ph.D. student at University of North
Carolina at Chapel Hill, USA. He is in his third
year of his Ph.D. program. His research interest is
in acoustic signal processing and applied machine
learning.

Shahriar Nirjon is an assistant professor in the
Department of Computer Science at the Univer-
sity of North Carolina at Chapel Hill. Shahriar
(who goes by “Nirjon”) is interested in Embedded
Intelligence—the general idea of which is to make
resource-constrained embedded systems capable of
sensing, learning, adapting, and evolving in real-
time. Research challenges that he deals with include
on-device machine learning, RF sensing, real-time
issues, and a variety of optimization problems on
resource-constrained embedded platforms. His work
has applications in the area of smart cities, remote health and wellness
monitoring, and the Internet of Things. Nirjon received his Ph.D. from the Uni-
versity of Virginia, Charlottesville in 2014. He has won a number of awards,
including two Best Paper Awards at the Mobile Systems, Applications, and
Services (MOBISYS 2014), and the Real-Time and Embedded Technology
and Applications Symposium (RTAS 2012). Nirjon has worked as a Research
Scientist in the Networking and Mobility Lab at the Hewlett-Packard Labs in
Palo Alto, CA (2014-2015), and as a Research Intern at Microsoft Research,
Redmond, WA (Summer 2013) and at Deutsche Telekom Lab, Los Altos, CA
(Summer 2010). Several of his work has been highlighted in the electronic
and print media, including the Economist, the New Scientist, and the BBC.



IEEE INTERNET OF THINGS JOURNAL

Peter R. Kinget (M’90-SM’02-F’11) received the
engineering degree in electrical and mechanical en-
gineering and the Ph.D. degree in electrical engi-
neering from the Katholieke Universiteit Leuven,
Belgium, in 1990 and 1996, respectively. From 1996
to 1999, he was with the Bell Laboratories, Lucent
Technologies, in Murray Hill, NJ, USA as a Member
of Technical Staff with the Design Principles Depart-
ment. From 1999 to 2002, he held various technical
and management positions in IC design and devel-
opment with Broadcom, CeLight, and MultiLink. In
2002, he joined Columbia University, NY, USA where he currently is the Dept.
Chair and the Bernard J. Lechner Professor of Electrical Engineering. From
2010 to 2011, he was with the Université Catholique de Louvain, Belgium,
on sabbatical leave. He also serves as an expert on patent litigation and a
technical consultant to industry. His research interests are in analog, RF and
power integrated circuits and the applications they enable in communications,
sensing, and power management. He has widely published in circuits and
systems journals and conferences, has co-authored 3 books and holds 32 US
patents with several applications under review.

Xiaofan (Fred) Jiang is an Assistant Professor of
Electrical Engineering and Computer Engineering at
Columbia University and co-Chair of Smart Cities
Center at the Data Science Institute. Jiang received
his B.Sc., M.Sc., and Ph.D. in Electrical Engineering
and Computer Science from UC Berkeley, in 2004,
2007, and 2010, respectively. He was Director of
Analytics and IoT Research at Intel Labs China prior
to joining Columbia University in 2015. His research
interest lies at the intersection of systems and data,
with a focus on intelligent embedded systems and
their applications in mobile and wearable computing, intelligent built environ-
ments, Internet of Things, and connected health. Jiang led one of the earliest
projects on IP-based smart-buildings, bringing about the first IPv6/6LowPAN
smart metering network and fine-grain real-time energy analytics. His ACme
building energy platform was widely adopted by industry and academia. His
city-scale air-quality project was featured on China Central Television and
Peoples Daily and was successfully incubated into a startup. Jiang has 8§ US
patents. He has published in top-tier venues with over 3,500 total citations
and was awarded Best Paper at IEEE/ACM IPSN ’05, Best Demo at ACM
SenSys *11, Best Poster at ACM BuildSys 16, Best Paper-Runner Up at ACM
BuildSys 17, and Best Demo at ACM IoTDI ’18. He has chaired BuildSys
14, ToT Expo ’16, ICCCN HoT 17, and is serving as General co-Chair of
ACM SenSys ’19.



