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Abstract—The task of predicting virality has far-reaching
consequences, from the world of advertising to more recent
attempts to reduce the spread of fake news. Previous work
has shown that graphlet distribution is an effective feature for
predicting virality. Here, we investigate the use of aggregated
edge-centric local graphlets around source nodes as features for
virality prediction. These prediction features are used to predict
expected virality for both a time-independent Hawkes model
and an independent cascade model of virality. In the Hawkes
model, we use linear regression to predict the number of Hawkes
events and node ranking, while in the independent cascade model
we use logistic regression to predict whether a k-size cascade
will multiply by a factor X in size. Our study indicates that
local graphlet frequency distribution can effectively capture the
variances of the viral processes simulated by Hawkes process and
independent-cascade process. Furthermore, we identify a group
of local graphlets which might be significant in the viral processes.
We compare the effectiveness of our methods with eigenvector
centrality-based node choice.

Index Terms—Hawkes process,
graphlets, virality

Cascade process, local

[. INTRODUCTION

Network virality is how quickly and widely an event travels
throughout a network. Studying virality is key to understand-
ing event spread in real-life networks. In addition to predicting
the virality of events given a single node or set of nodes,
it allows people to preemptively pick nodes which increase
the chances of events going viral. For example, by building
a model which predicts whether a cascade from a certain
node will go viral, a user can run that model on all nodes
to predict which ones will yield the most viral event cascades.
From predicting viral posts on social media (i.e. Facebook
and Twitter) to finding strategic ambassadors for advertising
products [1], the ability to predict successful event spread
has many potentially profitable applications. Researchers have
used virality to study the spread of subjects as diverse as
memes [2] and computer viruses [3].

There are many different methods currently used to predict
network virality; some of the most basic use global centrality
measures like degree and eigenvector centrality [4]. Degree
centrality, one of the most intuitive measures of node impor-
tance, assigns more importance to nodes with higher degree.
Therefore, according to this centrality, events originating at
high-degree nodes should spread farther than those originating

at lower-degree nodes. One of the best global centrality mea-
sures is eigenvector centrality. In this centrality, high-scoring
nodes are those which are linked to other high-scoring nodes
(for example, a low-degree node with high-degree neighbors
may have a higher centrality score than a high-degree node
with low-degree neighbors). Such global centrality measures
are indeed fairly reliable and effective in choosing viral nodes.
However, in real-life applications, the whole network structure
may not be available or good global centrality measures may
be too time-consuming to calculate.

More recent research has used network sub-structures called
graphlets to predict virality. By giving a more detailed picture
of structures within a network than degree, studying graphlets
allows for the utilization of more graph information than more-
established structural properties. Global graphlets of size 3,
4, and 5 can be counted efficiently using GUISE [5] and a
recent study [6] has shown that global graphlets can be used to
predict Hawkes virality. Moreover, edge-wise local graphlets
up to size-5 can also be counted efficiently by using a method
named E-CLoG [7]. So far, however, the application of local
rather than global graphlets as predictive features has not been
explored.

By using local graphlet counts to predict event spread,
our methods allow users to predict overall virality given
only limited scope of the graph. In this paper, we present
ways to find the most potentially viral starting nodes in two
different models: the Hawkes process [8], [9], [10], [11] and
independent cascade [12]. These models of virality differ in
their inherent predictability and way of spreading, but our
results indicate that the structural information revealed by local
graphlets is a good predictor for both of them. We consider two
questions central to network virality application: (1) whether
we can predict the size of Hawkes process and independent
cascade process, and (2) whether we can choose the best nodes
to start the Hawkes process and independent cascade in order
to maximize their size.

Our contributions to studying virality in this paper can be
summarized as follows. In our first section, we find that local
graphlet counts are strong predictors for the size of Hawkes
process, as well as for identifying the top nodes which produce
the largest event count. Using local graphlet counts, we can
train linear regression models which predict ultimate event



count better than models using first-degree and second-degree
counts. In the next section, we show that graphlet counts are
also good at predicting whether an independent cascade will
grow 10-fold, and using this, we propose an algorithm for
predicting the N-best nodes in an independent cascade model.
In this N-nodes problem, local graphlets identify alternate
node groupings which produce high-count cascades similar or
bigger in size to groupings found via eigenvector centrality.
Overall, local graphlet counts are conclusively good features
for virality in both the Hawkes and independent cascade
models, and have potential for solving the N-best nodes
problem. Another advantage to our approach is that we are
able to find specific graphlets and graphlet patterns which
characterize nodes with high virality potential.

II. BACKGROUND
A. Local Graphlets

Graphlets are small subsections of a network which are
classified by their specific structure. Figure 1 shows the
different graphlets of size 3, 4, and 5 used by the E-CLoG
algorithm [7]. In this algorithm, the program counts some
graphlet types and uses combinatorial methods to deduce the
other graphlet counts.
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Fig. 1: 3,4,5-size local graphlets

B. Hawkes Process

Hawkes process is a special kind of point process where the
conditional intensity function increases upon new events. For
Hawkes process on a network G, given a sequence of events
represented by (v;, t;) pairs where v; is the node where an
event occurs and t; is when it occurs, the conditional intensity
at node v, )\U(t) is of the form [8]

t)=p+ Z

t>t;
v; EN (v)

(t—t;) (1)

where > 0 is the base intensity and N(v) is a set of
neighbors of v. The triggering kernels g(t — ¢;) are summed
over all events that occurred on a neighboring node v; at a
previous time ;.

III. METHODS
A. Generating Simulation Graphs

As indicated in [7], degree distribution can partially explain
the evolution of viral process in a network. To nullify the
influence of degree distribution in our analysis, for each
network in Table I we generate a collection of synthetic
networks which have the same degree distribution as the
original network. In particular, we adopt an edge-swapping
method [13], [14] where two edges el and e2 are selected at
random and their second vertices are swapped to generate two
new edges e3 and e4. If e3 or e4 already exists, this proposed
swap is rejected and the process is repeated with a new pair of
randomly chosen edges el and e2. As a result, the degree of a
vertex is invariant under edge-swapping and the overall degree
distribution remains constant. A series of degree-preserving
graphs can thus be generated for further analysis.

B. Modeling Virality

To model the virality of a network, we run a series of
Hawkes processes [9], [10], [11] originating from every node
of the network. The Hawkes process is a specific kind of self-
exciting point process where discrete events occur according to
a stochastic intensity A\(¢) that increases upon the arrival of a
new event and decreases between two consecutive events. Our
implementation of the Hawkes process starts from one active
node, and during each iteration an active node has a chance
to activate any of its neighbors if the neighbor is inactive. As
a result, any node can be activated at most once. Moreover,
an active node can only attempt once to activate a neighbor
regardless the outcomes. Our Hawkes process ends when all
nodes exhaust their attempts. The virality can be measured
by the Hawkes event count HE which is the total number
of nodes that are active when the Hawkes process completes.
Therefore, a large H E indicates high virality.

In our implementation of the Hawkes process, 6 serves
as a threshold, below which an inactive node would not be
activated. Specifically, an active node can activate a neighbor
if a randomly generated number € [0,1) is not greater than
0. In general, 6 has to be less than certain critical value 6,
for Hawkes process to converge. The critical value 6. can be
calculated by

0. = 1/ Am 2

where )\, is the largest eigenvalue of the adjacency matrix
A of a network G. To obtain A,,, we adopt ARPACK [15],
a software which is capable of solving a few eigenvalues
for large sparse matrices efficiently. Alternatively, one can
approximate \,, by its upper bound. For instance, for graphs
with power law degree distribution with exponent 3, the
largest eigenvalue of the adjacency matrix is almost surely
approximately the square root of the maximum degree, d,l,{fr



if 3 > 2.5, and is almost surely approximately cd>.? if
2 < 8 < 2.5, where c is a constant [16]. In order for Hawkes
process to finish in finite steps, we define the 6 value as the
following

0 = ad, 3)

where « € [0, 1].

In independent cascades, each edge in a network is assigned
a random weight, which represents the probability of an event
spreading through the edge. Additionally, each node can be
activated once; each node can attempt to spread events to
its neighbors only one time. In this paper, we assign random
weights to the edges using a gaussian distribution (@ = 0.2,
o =0.3).

C. Counting Local Graphlets

To obtain local graphlet distribution by enumeration is
expensive and not scalable for very large real-life networks.
In fact, for a network of |V| vertices, the brute-force com-
plexity of counting local graphlets up to size 5 is O(|V]?).
Alternatively, we adopt a hybrid algorithm E-CLoG [7] which
obtains local graphlet distribution efficiently by combining
enumeration and combinatorial calculation. E-CLoG counts
all size 3, 4, and 5 local graphlets considering all possible
edge orbits. Specifically, E-CLoG enumerates 4 out of 8 size-
4 local graphlets and 14 out of 32 size-5 local graphlets,
and generates the counts for the rest of the local graphlets in
constant time through combinatorial calculation. Furthermore,
E-CLoG can run in parallel, thus highly scalable. However, E-
CLoG counts the local graphlets with respect to a given edge.
To convert from edge-centric to node-centric, we sum up the
local graphlet counts of all edges that connect a given node.
To be specific, for vertex v;, the node-centric count of the kth
local graphlet can be calculated by

Cu)lkl = > Clei;)[K] (4)
JEN(3)

where N (i) is a set of neighbors of v;. For edge e; ; in network
G, E-CLoG outputs a 42-dimensional vector C(e; ;) whose
kth element is the count of the kth local graphlet in Figure 1
(local graphlet figure). After converting the vectors from edge-
centric to node-centric, we obtain a 42-dimensional vector
C'(v;) for node v;, which would be the features (explanatory
variables) for our regression.

D. Regression Model for Predicting Virality

Given a real-world network G, after degree-preserve-
rewiring, we generate K rewired networks G; ~ Gg. For
G, where i =0, ..., K, we perform the following steps:

1) obtain 6; for G; using the method described above;

2) run Hawkes process from each node v; in G;, and record
the Hawkes event count HE;(v;);

3) run E-CLoG on G; to obtain edge-centric local graphlet
count C;(ejx);

4) convert edge-centric local graphlet count Cj(e; ) to
node-centric local graphlet counts C;(v;);

5) repeat step 1 to 4 fori=0, ..., K;

6) randomly select 70% (K + 1) networks as the training
set to learn a linear regression model;

7) evaluate R? and M SFE on the remaining 30% test set.

Specifically, to learn a linear regression model, we adopt the
node-centric local graphlet distribution C;(v;) as features and
log Hawkes event count log(H E;) as label. Therefore, our
regression is of the form

41
log(HE;(v;)) = bi + Y _be x Ci(v;)[k] +¢ (5

k=0
where b; is the intercept and by are the coefficients of the
linear regression where the errors are assumed to be normal.

E. Ranking

Starting Hawkes process from different nodes would result
in different total Hawkes event counts. In real-life applications,
people are usually interested in finding the top k£ nodes that
give rise to the largest event spread. Given that our linear
regression model is able to predict the total Hawkes event

count H E;We 4 for the Hawkes process initiated at node v;, we
can thus rank v; by HE;Ted, for i = 1,2,...,|V|, and pick

the top k£ nodes with the largest H E),.q. Alternatively, we
can assign v; a label y; = 1, if its actual Hawkes event count
HE},,. is among the top k, otherwise a label y; = 0. We can
thus learn a logistic classifier with such binary labels.

FE. Cascade Prediction

Our goal is to predict whether a cascade will grow by a
certain factor or not, as it has been stipulated in previous
research that actual cascade size is inherently difficult to
predict [12]. In previous research, researchers used structural
as well as temporal variables to correctly predict real-life
cascade doubling with a high accuracy (80% for k = 5) [12].
In accordance to their approach, we use logistic regression
to predict whether a k-size cascade will grow by a chosen
factor (X) or not. We obtain our k-size cascades by the
following process: we simulate independent cascade from a
given number of random nodes until our time limit is reached
or the cascade ends naturally. The first £ nodes reached make
up the k-size cascade spread.

We then use logistic regression to predict whether a given
k-size cascade will grow by a certain factor. Cascade spread
is very network specific: to determine the correct factor to
use for a smaller k-size (i.e. Kk = 6 ~ 20, which is what
most applications are interested in) we need to understand the
distribution of cascade sizes in a network. For our applications,
we test factors X = {10,20}. Given a network, k value
of interest and factor X, our data-generating process is as
follows:

1) Simulate a cascade from a random node(s) and deter-
mine whether it exceeds size k.

2) If it exceeds size k, take the first k nodes reached
and find the extended subgraph considering up to 2-hop
neighbors of the vertices of initial k-subgraph.



3) Ignoring edges between the k£ nodes, take the global
graphlet count of the k nodes and their up to 2-hop
neighbors. These are our graphlet features.

4) If the cascade size exceeds kX, then this cascade is
a positive instance of growth for the logistic model;
otherwise, it is a negative instance.

5) Repeat steps 1-4 p times. In this paper, we set p = 100.

Once we have our training and test data, we use 5-fold cross-
validated logistic regression to return 5 ROC-AUC scores of
our model. To gain an accurate idea of how well graphlet
models predict growth, we randomly reassign weights and
repeat the above process multiple p times. In this paper, we
set p = 15. As a comparison method, we use the aggregated
degree of the k£ nodes and up to 2-hop neighbors, excluding
edges between the k nodes. This gives an equivalent of single-
node degree centrality for multiple connected nodes.

G. Cascades: Choosing N-Best Nodes

To choose the N-best nodes in a network, we implement
LIR, a measure which gives a relative degree centrality of a
node in comparison to its neighbors [17]. Say G = (V, E) is a
network with vertices V' and edges F. Letting v; be our node
of interest, d; its degree, and N (v;) = {v;|(vi,v;) € E}, the
corresponding LIR score is

L) = > Qdj—d) 6)

v; EN (v;)

where Q(d; —d;) =1if dj —d; > 0 and Q(d; —d;) =0
otherwise. We call nodes with a LIR score of 0 0-LIR nodes.
Identifying the 0-LIR nodes as centers of communities in a
network, we run cascade simulations from each of the 0-LIR
nodes. By taking the graphlet count features as described in
the methods section, we can predict which nodes have the
highest probability of growing by factor X.

1) Identify the 0-LIR nodes and choose an existing cascade
prediction model to apply. We ideally use a logistic
regression model trained on the network of interest via
the process in Section F, with an initial size k£ and growth
factor X of interest.

2) For each node, run a cascade simulation with the k£ used
in the chosen model; find the graphlet count of the k
nodes and the up to 2-hop neighbors using GUISE[5].

3) Use the logistic regression model to predict the prob-
ability that the cascade emanating from that node will
grow by X.

4) Once probabilities have been calculated for all 0-LIR
nodes, take the top N nodes with the highest probabil-
ities of growing.

5) Repeat so that each node has a cascade simulated from
it j times. In this paper, we set j = 5. Pick the top N
occurring nodes of the aggregated cascade runs as the
N nodes we activate initially.

We compare the performance of this procedure to nodes
chosen via eigenvector centrality.

IV. RESULTS
A. Linear regression

For our experiments, 12 real-world networks from
two domains are collected from the Network Repository
[18]. Among them, socfb-Caltech36, socfb-Reed98, socfb-
Haverford76, socfb-Simmons81, socfb-Swarthmore42, and
socfb-Bowdoin47 are Facebook friendship networks, while
soc-dolphins, soc-wiki-vote, soc-hamsterster, soc-advogato,
soc-anybeat, and soc-gplus are social networks. Some basic
statistics such as number of vertices (|V]), number of edges
(|E)), largest degree (dmaz), and average degree (davg) for
these networks are shown in Table I.

TABLE I: networks adopted in experiments

Network [V] [E| dmax || davg
socfb-Caltech36 769 17K 248 43
socfb-Reed98 962 19K 313 39
socfb-Haverford76 1K 60K 375 82
socfb-Simmons81 2K 33K 300 43
socfb-Swarthmore42 2K 61K 577 73
socfb-Bowdoin47 2K 84K 670 74
soc-dolphins 62 159 12 5
soc-wiki-vote 889 3K 102 6
soc-hamsterster 2K 17K 273 13
soc-advogato 5K 47K 947 18
soc-anybeat 13K 67K 9K 10
soc-gplus 24K || 392K 3K 3.32

By degree-preserving rewiring, we generate 92 rewired
networks for each real-world network. For each rewired net-
works along with the original network, we obtain the largest
eigenvalues of their adjacency matrices using ARPACK [15].
Correspondingly, 6 can be calculated using Eq. 2 and 3. In
our simulations, we adopt o = 0.99 for all networks so
that Hawkes process can finish in finite steps. It is worth
mentioning that instead of using 6 of the original network
for all rewired networks like in [6], we calculate 6 for each
rewired network. Had adopted a fix 6, Hawkes process on
some rewired networks which have small 6. might never
converge. On the other hand, Hawkes process would finish
quickly after few events on rewired networks with large 6.

Next we apply E-CLoG [7] on each network including
the original and the rewired. Then we convert the resulting
edge-centric local graphlet (LG) distribution to node-centric
local graphlet distribution which is used as a feature set. In
addition, we adopt log Hawkes event count log(H E) as a label
set. As mentioned in the Method section, Hawkes process is
invoked from every node for 100 times, and H F is the average
node-base Hawkes event count. For linear regression, we use
70% training set and 30% test set. The R? score and mean
square error M SE of each real-world network are shown in
Table IV. The regression results are in general very good -
except for soc-gplus, all networks have R? higher than 90%.
In particular, for the Facebook networks, the R? scores are all
higher than 95%. Moreover, M SE are small for all networks.
As a baseline, we learn linear models using first order degree
distribution (FD) which is essentially the degree distribution



of each graph and second order degree distribution (SD) which
is defined as d;f + ;¢ n(a,) d;0* where the first term is the
degree d; of node v; scaled by 6 and the second term is the
sum of the degree d; of all the neighbors of v; scaled by 62
As shown in Table II, LG outperforms FD and SD in terms
of R? and M SE.

With a linear regression model in hand, we proceed to
identify which local graphlets are predictive of viral process
(i.e. Hawkes event count). The counts of local graphlets can
be viewed as independent variables in our linear regression
model, therefore their p-values can be calculated. In Table
III, we list the local graphlets which are significant at the .01
level. It appears that most of the local graphlets are significant
in predicting the Hawkes event count. In particular, for soc-
hamsterster, all local graphlets are significant at the .01 level.

To further identify the local graphlets with the most pre-
dictive power, we calculate the increase in R? that each local
graphlet produces when it is added to the linear regression
model. We start with the local graphlet that gives the largest
R? when it is the only feature. We then identify the next local
graphlet that raises R? the most when added on top of the
first feature. Along this line, we rank local graphlets by the
amount of unique variance in addition to those before them.
In Table IV, we list the top 4 local graphlets of each real-
network. It appears that most Facebook networks have g0 and
g4 as important local graphlets, while most social networks
have g4 and ¢g32 play important roles. We also perform linear
regression using the top 4 local graphlets as the feature set, and
it turns out that for the various Facebook networks more than
80% of the variance is captured, while for the social networks
the R? score ranges from about 50% to 90% (Table IV). In
addition, M SE remains small despite that only top 4 local
graphlets are adopted (Table IV).

B. Ranking

We further test our linear regression model’s ability to
identify the k£ most influential nodes. Specifically, we choose
k = 10. We rank node v; by the predicted Hawkes event

counts H E;Wed. On the other hand, we rank v; by their
actual Hawkes event counts HE}, .. Let the top 10 nodes

given by the former be U = {uy,us,...,u10} and the later
be U = {uj,ub,...,ufy}, where w;,u, € V. We can
then calculate the size of their intersection, |U N U’| as an
estimation to the hit rate (out of 10). As shown in Table V,
our linear regression model correctly predict at least 8 out of
10 top nodes for the six networks tested. In particular, for the
three social networks (soc-wiki-vote, soc-dolphins, and soc-
hamsterster), we achieve a hit rate about 9 out of 10.

As a comparison, we construct a logistic regression model
with local graphlet counts as features and whether a node is
among the top 10 as labels. Specifically, we label a node 1
if it is one of the top 10 nodes, and O otherwise. We use the
same dataset and train-test split (30% test set) as the linear
regression model. For the six networks tested, this logistic
regression model correctly predicts more than 6 out of 10 top
nodes (Table V), and for the three social networks the hit rates

are higher than 85%. However, as indicated in Table V, the
logistic model is outperformed by the linear regression model
in most cases.

C. Cascade Logistic Regression

We use 3 real-world social networks and 2 other domain
networks from the ones used for Hawkes linear regres-
sion: socfb-Caltech36, socfb-Reed98, soctb-Haverford76, soc-
Hamsterster, and soc-advogato. To compare performance with
an alternative prediction method, we create another logistic
regression model using the sum of degrees of an initial
cascade’s nodes and up to 2-hop neighbors as a feature. This
aggregated degree feature is meant to represent the multi-node
equivalent of a degree centrality metric. Especially for smaller
values of k, logistic regression using graphlets as features
outperforms this aggregated degree feature on average (Fig. 2).
There appears to be different optimal X for different networks;
values of X which are too large lead to poor AUC values for
both graphlet and aggregated degree features (Fig. 2e), while X
which are too small often lack enough negative classification
instances to build a meaningful model. However, in all our
tested networks, graphlet features on average outperformed
aggregated degree and AUC didn’t fall below 0.7, for at least
one of the two X values. The fact that graphlet features are
able to predict 10-fold growth with relatively high accuracy
for all our networks indicates they are useful predictors of
virality.

D. Cascade: Best N Nodes

Given a generated logistic model, we apply it to all O-
LIR nodes in a network to determine the most significant
independent nodes (if there are fewer 0-LIR nodes than NV,
we extend our search to 1-LIR nodes). Aggregating the N
most common important nodes (we test N = 3,4, andb), we
then run independent cascades originating from those N nodes.
Compared to the top N nodes found via eigenvector centrality,
this approach works better or about as well in sparse networks
with many O-LIR values and does identically to eigenvector
centrality in networks with fewer O-LIR values (where we also
include the 1-LIR values). Even in cases where the algorithm
does identically to eigenvector centrality, different nodes are
often chosen, which gives users useful alternatives to nodes
chosen through eigenvector centrality. When the narrowing-
down process was changed from 0 and 1-LIR nodes to the
50 most-central nodes via eigenvector centrality, the graphlet
counting process consistently performed worse. This indicates
that in most graphs, eigenvector centrality undervalues nodes
with high potential of cascade spread which our method is
able to discover. The fact that our method usually doesn’t
outperform the eigenvector method is likely due to our initial
narrowing down of nodes to be tested (from all nodes to O
and 1-LIR nodes). It is too temporally expensive to test all
nodes, so this algorithm would benefit from a more effective
narrowing-down process.
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TABLE II: Linear regression for Local graphlet and Degree distribution

Network LG R? LG MSE FD R? FD MSE SD R? SD MSE
socfb-Caltech36 0.984 0.009 0.786 0.126 0.807 0.114
socfb-Reed98 0.978 0.012 0.768 0.121 0.793 0.108
socfb-Haverford76 0.976 0.013 0.787 0.112 0.802 0.104
socfb-Simmons81 0.971 0.016 0.751 0.136 0.769 0.126
socfb-Swarthmore42 0.970 0.016 0.763 0.123 0.784 0.111
socfb-Bowdoin47 0.963 0.021 0.748 0.143 0.767 0.132
soc-dolphins 0.943 0.011 0.869 0.025 0.909 0.017
soc-wiki-vote 0.935 0.023 0.659 0.119 0.748 0.088
soc-hamsterster 0.952 0.025 0.695 0.156 0.739 0.134
soc-advogato 0.936 0.030 0.635 0.168 0.712 0.133
soc-anybeat 0.925 0.021 0.146 0.236 0.485 0.142
soc-gplus 0.819 0.022 0.251 0.093 0.468 0.066

TABLE III: Important variables

Network

Important variables (.01 level)

socfb-Caltech36
socfb-Reed98
socfb-Haverford76
socfb-Simmons81
socfb-Swarthmore42
socfb-Bowdoin4d7
soc-dolphins
soc-wiki-vote
soc-hamsterster
soc-advogato
soc-anybeat
soc-gplus

20-7,29-16,g18,219,221-23,25,227-29,g31-36,38-41
20-20,g22-34,236-38,240,g41
20-3,26-12,214-18,220,221,223-30,233-40
20-7,210-24,226-30,g32-41

20-6,29-14,216,218,221-23,227,228,233,234,239,241

£0-23,625-29,031-41
20-31,g33-36,238-40

20-28,230-37,239-41
£20-41
g0-17,219-36,g38-41
20-38,240,g41
20-10,g12-41

TABLE IV: linear regression results

Network R? MSE || Top 4 graphlets || Top 4 graphlets R? Top 4 graphlets MISE
socfb-Caltech36 0.984 0.009 24,232,20,g10 0.950 0.029
socfb-Reed98 0.978 0.012 24,232,234,213 0.817 0.096
socfb-Haverford76 0.976 0.013 20,210,22,228 0.952 0.025
socfb-Simmons81 0.971 0.016 20,210,22,226 0.921 0.043
soctb-Swarthmore42 || 0.970 0.016 g4,223,20,g12 0.906 0.049
socfb-Bowdoin47 0.963 0.021 24,822,20,210 0.874 0.072
soc-dolphins 0.943 0.011 20,210,g12,21 0.925 0.014
soc-wiki-vote 0.935 0.023 24,223,¢18,g1 0.677 0.113
soc-hamsterster 0.952 0.025 g4,223,85,213 0.728 0.139
soc-advogato 0.936 0.030 24,232,234,235 0.650 0.161
soc-anybeat 0.925 0.021 g4,232,224,923 0.466 0.148
soc-gplus 0.819 0.022 233,234,235,232 0.449 0.068

TABLE V: top 10 ranking results

Network

socfb-Caltech36
socfb-Reed98
socfb-Haverford76
soc-wiki-vote
soc-dolphins
soc-hamsterster

Logistic || Linear
7.3 8.1
6.7 8.0
6.9 8.0
8.9 8.8
8.5 9.0
8.5 9.0

V. CONCLUSIONS

In this work, we propose a linear regression model for
predicting Hawkes process event count and a logistic regres-
sion model for forecasting the growth of independent cascade
process using local graphlet distribution. We show that local
graphlet distribution outperforms other topological metrics for

predicting Hawkes event count in terms of accuracy. We also
rank the local graphlets by their contributions to the total
variance of the model and discover that networks of the same
kind share similar important local graphlets. Graphlet counts
have potential in determining N-best nodes for independent
cascades, performing on par with eigenvector centrality while



uncovering different combinations of nodes. However, a more
efficient way of finding these nodes should be researched
more. Overall, our paper concludes that local graphlet features

are

applicable for predicting virality and provides viable

models for prediction.
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