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Verification of Markov Decision Processes with Risk-Sensitive Measures

Murat Cubuktepe and Ufuk Topcu

Abstract— We develop a method for computing policies in
Markov decision processes with risk-sensitive measures subject
to temporal logic constraints. Specifically, we use a particular
risk-sensitive measure from cumulative prospect theory, which
has been previously adopted in psychology and economics.
The nonlinear transformation of the probabilities and utility
functions yields a nonlinear programming problem, which
makes computation of optimal policies typically challenging. We
show that this nonlinear weighting function can be accurately
approximated by the difference of two convex functions. This
observation enables efficient policy computation using convex-
concave programming. We demonstrate the effectiveness of the
approach on several scenarios.

I. INTRODUCTION

Markov decision processes (MDPs) model sequential
decision-making problems in stochastic dynamic environ-
ments [30]. MDP formulations typically focus on the risk-
neutral expected cost or reward model. On the other hand,
MDPs with risk-sensitive measures, such as exponential
utility [17], percentile risk criteria [14] and conditional value
at risk [13], [12], [34] have been studied in the literature have
also found applications in portfolio management [8], robotics
[27], stochastic shortest-path problems [7], optimal control
[16] and operations research [10], [17]. These measures
capture the variability in the cost due to stochastic transitions
in an MDP, and aim to minimize the effect of the outcomes
with high cost.

We focus on a particular risk-sensitive measure that comes
from cumulative prospect theory (CPT) [35]. This measure
is widely used in psychology and economics to build models
that explain the risk-sensitive behavior of humans in decision-
making. Empirical evidence suggest CPT characterizes hu-
man preferences in decision-making [24], [35]. The key
elements of this theory are a value function that is concave
for gains, convex for losses, and steeper for losses than
for gains, and a nonlinear transformation of the probability
range, which inflates small probabilities and deflates high
probabilities. It is also a generalization of other risk-sensitive
measures like VaR or CVaR [28]. Additionally, with different
nonlinear weighting functions, CPT-based measures can rep-
resent risk-taking measures as well as risk-averse measures.

We investigate model checking with respect to temporal
logic specifications. Formal verification of temporal logic
specifications has been extensively studied for MDPs with
risk-neutral measures [5], and mature tools exist for efficient
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verification with such risk-neutral measures [19]. Probabilis-
tic model checking verifies reachability properties such as
“the probability of reaching a set of unsafe states is less than
5% and expected costs properties such as “the expected
cost of reaching a goal state is less than 10%”. A rich set
of properties, specified by temporal logic specifications, can
be reduced to reachability properties, which can then be
verified automatically [18]. To the best of our knowledge,
formal quantitative verification with respect to risk-sensitive
measures has not been considered in the literature.

Dynamic programming equations for MDPs with CPT-
based measures for finite-horizon MDPs in [22] and for
infinite-horizon MDPs in [21] exist. However, computing
an optimal policy requires optimizing integrals of nonlinear
functions over continuous variables, which can be compu-
tationally impractical. CPT-based measures have been used
in reinforcement learning [28], where it was shown that the
policy gradient approach converges to the optimal CPT value
asymptotically.

The main challenge in computing policies with CPT-based
measures is the nonlinear transformation of the probability
range and utilities. This transformation yields a nonlinear
programming problem. For efficient verification of MDPs
with CPT-based measures, we approximate the nonlinear
CPT weighting function by a difference of convex function
to utilize convex-concave procedure [23], which efficiently
computes locally optimal solutions for optimization problems
with difference of convex functions. We propose methods to
approximate the CPT weighting function, and discuss the
trade-offs between different approximations. Experimental
results show the applicability of our approach in numerical
experiments.

II. PRELIMINARIES

Definition 1 (Distribution): A  probability  distribution
over a finite or countably infinite set X is a function
p: X —[0,1] € R with 7\ pu(xz) = 1. The set of all
distributions on X is denoted by Distr(X).

Definition 2 (Monomials, Posynomials): Let 'V =
{x1,...,2,} be a finite set of strictly positive real-valued
variables. A monomial over V is an expression of the form
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where ¢ € R is a real coefficient, and a; € R are exponents
for 1 < i < n. A posynomial over V is a sum of one or

more monomials:
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Definition 3 (Markov decision process): A Markov deci-
sion process (MDP) is a tuple M = (S, sy, Act,V, P) with a
finite set .S of states, an initial state s; € S, a finite set Act of
actions, and a transition function P: Sx Act xS — Distr(S)
satisfying for all s € S: Act(s) # 0, where Act(s) = {a €
Act | 38’ € S.P(s, o, s') # 0}. For given a state s, we
denote the set of successor states by S(s). A state s’ is in
S(s) if there exists an o € Act such that P(s, «, s’) > 0.
If for all s € S it holds that |Act(s)| = 1, M is called a
discrete-time Markov chain (MC).

Act(s) is the set of enabled actions at state s; as Act(s) #
(), there are no deadlock states. Costs are defined using a
state—action cost function Cy: S x Act x T — R,.. Rewards
are defined similarly.

Definition 4 (Policy): Given a finite horizon 7', a (random-
ized) policy for an MDP M is a function o: S x T —
Distr(Act) such that o(s;, ) > 0 implies o € Act(s;) at
time ¢. The set of memoryless policies over M at time ¢ is
denoted by Pol{\/l, which only depends on the current state.

Definition 5 (Induced Markov chain): For MDP M =
(S,sr,Act,P) and policy o € Pol™, the Markov chain
induced by M and o is M° = (S, sy, Act,P°) where for
all s, € S,

P(s,s') = Z a(s)(a)-P(s,a,s").
acAct(s)

We consider reachability properties. For Markov chain
D with states S, let Pr2(OT) denote the probability of
reaching a set 7" C S of target states from state s € S;
simply, Pr”(0T) denotes the probability for initial state
s;. We use the standard probability measure as in [5].
The interest of this paper is a synthesis problem, where
the objective is to find a policy in Pol{vl such that the
probability Pr? (OT) of satisfying the reachability property
is maximized or minimized.

The classical risk-neutral MDP problem is [30]

T
Z Ct(Sm th)‘| . (2)
t=0

The problem in (2) can be solved with value iteration,
policy iteration or linear programming, and the optimal
policy will be a deterministic memoryless policy. The op-
timal policy for problem (2) will maximize the proba-
bility of satisfying the reachability property or minimize
the expected cost, therefore it is a risk-neutral solution.
Following from [32], we consider the risk-sensitive value
function starting at so, with a policy Pol™, and the resulting
trajectory (so,Polé\A,sl,Pol{V‘,...,ST), which is given by
Cr(Pol™, s0) = po(c(so, Poly") + p1(c(s1, Poltt) + ... +
pr_1(c(sp_1, Pol3t ) + Cr(sr))...)), where p; is a one-
step conditional risk measure at time ¢. Then, we consider
the following optimization problem where p is replaced by
a CPT-based measure:

inf CT(POIM,S]). 3)

w€ PolM

inf E

w€ PolM

A dynamic programming equation exists for the problem
in (3), and the optimal policies are memoryless [32]. Any

CPT-based measure is a one-step conditional risk measure,
therefore the problem (3) can be solved by solving the
dynamic programming equations [22].

III. CUMULATIVE PROSPECT THEORY (CPT)

For a random variable X, the CPT value is a generalization
of the expected value of X with a utility function that is
concave on gains and convex on losses, and a probability
weighting function that transforms the probability measure
such that it inflates small probabilities and reduces larger
probabilities.

Definition 6 (CPT value): For a random variable X, the
CPT value is defined as

C(X) = /Ooow+ (P(uy (X) > 2))dz

_ /O Tl (P (X)> )z, (4

where w4 and w_ : [0,1] — [0,1] are two continuous
non-decreasing functions with w,(0) = w_(0) = 0 and
wi(1)=w_(1) =1, uy and u_ : R — R, are two utility
functions.

Remark 1: CPT value generalizes the expected value
of a random variable, ie, C(X) = E[X] =
IS (P (X > 2)dz— [ (P(—X > z)) dz, when u(z) =
u_(z) =z, and wy (z) = w_(x) = a.

The functions w4 and w_ are the weighting functions that
capture the concept of humans deflating high probabilities
and inflating low probabilities when they make decisions
under uncertainty. For instance, consider a scenario where
one can earn $100 with probability 1/100 and nothing
otherwise, or can earn $1 with probability 1. It is shown
that the humans tend to choose the former option [35], [6],
showing that the value of a decision by a human is nonlinear
with respect to the transition probabilities. Reference [29]
suggests the weighting function w(k) = exp(—0.5(—In k)"),
with 0 < 7 < 1 and [35] suggest,.%?7

w(k) =

(k + (1 — kym!/"

Both of the functions have a similar inverted-S shape and
they are concave for small values of p, and convex for large
values of p.

The utility functions w4 and u_ represent how humans
value gains (X > 0) and losses (X < 0) separately. For
example, if we change the scenario in the above paragraph
into losses, i.e, one will lose $100 with probability 1/100 and
nothing otherwise, or will lose $1 with probability 1, then the
humans tend to choose the latter option, showing that there is
a difference between evaluating the gains and losses, and the
CPT-based measures can handle losses and gains separately.
A suggestion for the utility function is given in [35], which
is ug(z) = |z|™, and u_(x) = —2.25|z|™, with m = 0.88.
Note that, u is a concave function for x > 0, and u_ is a
convex function for x < 0.

Remark 2 ([28]): CPT-based measures generalize other
risk-sensitive measures. For example, it is possible to rep-
resent value at risk or conditional value at risk by proper
choice of weighting and utility functions.



IV. MDPs wITH CPT-BASED MEASURES

Reference [22] shows the existence of a dynamic program-
ming equation in an MDP with CPT-based measures, and
the optimal policy that comes from the dynamic program-
ming equation is a memoryless randomized policy. Dynamic
programming equations can be solved as a nonlinear pro-
gramming problem. Specifically, the objective is a nonlinear
function and the objective is minimized or maximized over
randomized policies for a given state and time. However,
solving optimization problems with a nonlinear objective
function is generally impractical [22].

To come up with a scalable procedure, we approximate
the weighting function by a function that is the difference of
two convex functions, which will reformulate the nonlinear
programming problem to a difference of convex problem.
Methods such as branch and bound methods [20] or cutting
plane methods [3] can find the globally optimal solution for a
difference of convex problem, but these methods can be slow
in practice. Instead of seeking a global solution, a locally
optimal (approximate) solution can be found by utilizing the
techniques of general nonlinear optimization [26].

Definition 7 (Difference of convex problem): Difference
of convex (DC) problems have the following form
fo(z) = go(z)

subject to  fi(z) — gi(x) <0,
where x € R" is the variable vector, and the functions f;, g; :
R™ — R for ¢ =0,1,...,m are convex.

The convex-concave procedure (CCP) [23], [33] is a
heuristic algorithm for finding a locally optimal solution to
a DC problem. As a first step, we replace concave functions
with a convex upper bound. We then solve the approximate
convex problem, and the optimal value of the approximate
problem will be an upper bound of the original problem at
each iteration. The CCP algorithm to solve DC problems is
described in Algorithm 1.

Algorithm 1: CCP algorithm

given an initial feasible point xy and convex functions

fis gi-

k=0

repeat

1. Convexify. §i(z) = gi(zx) + Vgi(x)T (x — x3,)
for i=0,1,...,m
2. Solve. Set the value of x4 to the solution of
the convex problem
minimize fo(z) — go(z)
subject to f;(z) — gi(z) <0,
3. Update iteration. k =k + 1,
until stopping criterion is satisfied.

minimize

i=1,2,..,m,

for i=1,2,...,m.

Given an initial feasible point for a DC problem, (e.g.
any policy from Distr(Act)), all of the successive iterates
in Algorithm 1 will be feasible. The procedure given by
Algorithm 1 is a descent algorithm, i.e, the objective will
monotonically decrease over the iterations for a minimization
problem or it will increase for a maximization problem, and
it will converge to a local optimum [23]. Therefore, the above

algorithm can be used to compute locally optimal solutions
by solving a sequence of convex optimization problems,
which is efficiently solvable by well-studied methods [11].

A. Approximating the weighting function with a DC function

In general, CPT weighting functions are nonlinear func-
tions, and we can not use the weighting functions directly
in convex-concave programming. Therefore, we approximate
the weighting functions by a DC function to utilize convex-
concave programming. A possible way to approximate the
weighting function is least-squares polynomial approxima-
tion [9] or Chebyshev polynomial approximation [25], but
these methods can be inaccurate, as the CPT weighting
functions that are frequently used in the literature are not
Lipschitz continuous around zero probability. See Figure 1
for an example where the Chebyshev approximation method
fails to approximate a weighting function.
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Fig. 1: An example of a CPT weighting function (red) and
approximation of the CPT weighting function (blue) by a
25th degree Chebyshev polynomial with error tolerance € =
10~%. As the CPT weighting function is not Lipschitz, the
approximation with a Chebyshev basis diverges with smaller
€ with larger values of p.

Since the Chebyshev and least-squares polynomial meth-
ods perform poorly, we modify the least-squares polynomial
approximation method by extending the polynomial basis
functions with monomial basis functions to accurately ap-
proximate the CPT weighting function. For example, we
approximate the function exp(—0.5(—In(k))%?), which is
used in [22], by a posynomial function, 0.00231k%-0% 4
0.00128%°! 4 0.19578k"-3% 4 0.59897k* 4 0.15968k°-95 +
0.03318k3 + 0.00847k?3. Figure 2 shows the posynomial
function and the CPT weighting function.

B. Computing locally optimal policies

When the weighting functions are given as w4 (z) =
w_(z) = x and similarly for utility functions u4(z) =
u_(xz) = x, the dynamic programming equation to find
the policy that maximizes the probability of satisfying the
reachability property is

Dt (S) = o{leli)gt P(Sv a, S/) ' pt+1(8/)7
s'eS

pr(s)=1, Vse@, t=1,..T, 5)

where p;(s) denotes the probability of satisfying the reach-
ability property at state s and time ¢. Equivalently, we can
write the dynamic programming equation in following for a
given state s and time ¢:
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Fig. 2: Top: An example of a CPT weighting function (blue)
versus a regular transition function (green) and approxima-
tion of the CPT weighting function (red) by a DC posynomial
function. Note that curve of the approximation is not visible,
which shows that the approximation is accurate. Bottom: The
error of the approximation of the CPT weighting function by
a DC posynomial function.

maximize n /
o(s,a),acAct Z Z (s,0) - P(s, o, 8) - prya(s’)
acAct(s) s'€S
subject to
Z o(s,a) =1, Va € Act(s), o(s,a) >0. (6)
acAct(s)

The optimization problem in (6) maximizes the expected
value of the probability for satisfying the reachability prop-
erty, therefore it is a risk-neutral solution. Note that we
can compute the expected value by solving the following

problem:
s"s“)‘ES(s)
o . /
mavimize 3> (4 (praa(s) ~ et )
sgzles(s)
subject to
Z o(s,a) =1, Vae€ Act(s), o(s,a) >0,
a€Act(s)
515(2) €5(5)
Z Z O'(S,Oé) "P(S,OK,S;TL), (7

a€Act(s) sp,—,€5(s)

where ¢ = 1,2, ...,]5(s)]| gives the index of the state in S(s)
after it is sorted with increasing probability of satisfying the
property at time ¢ + 1, i.e, they are sorted with the values
per1(sy), and pria(sg) = 0.

The sum of the objective in (7) is over the successor states.
The first sum in ®, is over the actions, and the second sum
in ®, computes the probability of transitioning the successor
state with at least probability p;11(s;_;) as a function the
policy.

The problem in (7) can be viewed as maximizing the
Riemann integral of the expected value, and the problem in
(6) maximizes the Lebesgue integral. See the Figure 3 as an
example from the MDP in Figure 4 with o(1,a) = 0.3 and
o(1,a) = 0.7. Both problems will maximize the expected
value, i.e, the area under the curve in Figure 3.

Note that the probability of satisfying the specification up
to 0.2 probability is 1, regardless of the policy we choose,
as 0.2 is the lowest probability of the successor states. Then,
the probability of transitioning a state with at least 0.5
probability of satisfying the property can be obtained by the
sum of the probabilities of transitioning the state 3 and state
4, which is given by o(s,a) 4+ 0.4 - o(s,b) in the MDP in
Example 1. Similarly, the probability of transitioning to state
4is 0.4-0(s,b), which gives the probability of satisfying the
specification with 0.9 probability.

When wy(z) = w_(z) = z and uy(z) = u_(z) = =z,
both problems in (6) and (7) can be used to maximize the
expected value of satisfying the property. However, with
general weighting and utility functions, we cannot use the
formulation in (6), as w(z + y) # w(z) + w(y) in general.
Therefore, with a CPT weighting and utility function, we use
a modified version of (7), because we can approximate the
weighting function accurately.

1
=
= 05
O | |
0 0.2 0.4 0.6 0.8 1

Probability z of satisfying the property

Fig. 3: The graph of the random variable with respect to the
probability of satisfying the property versus probability of
obtaining that value in Example 1.

Example 1: Consider the MDP in Figure 4 with 4 states
at time ¢t with pt+1(2) = 02, pt+1(3) = 05, pt+1(4) =0.9.
The linear program that computes the maximum probability
of satisfying the specification is:

I?ax)im(izg) ((o(s,a) +0(s,b)) - (0.2)+
(o(s,a) +0.4-0(s,b)) - (0.5—0.2)+
(04-0(s5,0)) - (0.9 0.5) )

subject to o (s,a) +o(s,b) =1,0(s,a) > 0,0(s,b) > 0.
For general CPT weighting and utility functions, we
approximate the CPT weighting function by a posynomial.
Then, for a given state s and horizon ¢ and the approximation
function f(p) with K monomials, we compute a locally
optimal policy by solving the following problem:
maximize
o(s,a),a€Act
s1s(s) €5(5)
2

s,—1€5(s)

<<I>:I . (u+(p/,+1(8f1)) - U+(P/,+1(5f;1))>>
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Fig. 4: An MDP with 4 states. The label a : v on the transi-
tions represents that the transition happens with probability
~, when the a action is taken.

subject to

Z o(s,a) =1, Vae€ Act(s), o(s,a) >0,
acAct(s)
s"s(s)‘ES(s)

ck - ( Z Z o(s,a) - P(s,a, s;n))ak.

a€Act(s) sp,—,€5(s)
®)

We highlight the differences between the optimization
problems in (7) and (8). First difference is, we replace @,
in (7) to @ in (8). &, computes the expected value of the
probability of transitioning to another state with he successor
state with at least probability p;+1(s;_;) as a function the
policy, and it is used in the risk-neutral measure. On the other
hand, <I>ZI approximately computes the expected value of the
probability with respect to the CPT weighting function in
a CPT-based measure by approximating the CPT weighting
function with f(p).

The second difference is, u4 () = z in the problem (7).
Therefore, we replace p;11(s;) to uy(pi+1(sy)). Note that
the probability of satisfying the property is always between
0 and 1, therefore we use u in the objective in problem (8).

Let B € Rt and g : R* — R™*. The function g(y) = v*
is concave for 0 < $ < 1, and convex for 8 > 1 [11].
Therefore the problem in (8) is a DC problem, and Algorithm
1 computes a locally optimal policy.

Remark 3: For rational p, the function y? can be repre-
sented by linear matrix inequalities (LMIs) [1]. For instance,
the constraints y3 < z and y > 0 are equivalent to

z oy T oz
{y 1}20 and [z y]zO. )

M=

o
fI)q =
k=1

In [1], it is shown that for p = p,/ps > 1, we have

k(pn,pa) < logy pn + a(pn), where k(p,,, pq) is the number
of LMI constraints that are generated to represent z3 < v,
and «a(p,) is a term that grows slowly compared to log,
term. Therefore, it is beneficial to use as few basis functions
as possible to efficiently compute the solutions of the DC
problems because we need extra variables and constraints
to represent the functions y?. Therefore, Chebyshev poly-
nomials become a rather inefficient choice, as they tend to
be dense polynomials with high degrees, which is required
for accurate approximation. Recall that, Figure 1 shows the
Chebyshev approximation diverges, when the error tolerance
is set to be small.

Example 2: Consider the MDP in Figure 4. The DC prob-
lem that computes the maximum probability of satisfying the
specification, giyen a pOS(nomial with K basis functions,

Z <c;C . (o(s,a) + U(s,b))ak . (u+(0.2))
k=1

+ (o(s,0) + 04 (s, b))“’“ (04 (0.5) = us (0.2))+

(0.4- (s, b))a'“ (w4 (0.9) - u+(0.5)))>

subject to  o(s,a) + o(s,b) =1,0(s,a) > 0,0(s,b) > 0.

maximize
o(s,a),0(s,b)

We note that the objective in the above problem is a sum
of DC functions and the functions in the constraints are
affine functions, the above problem is a DC optimization
problem and a locally optimal solution of the problem can
be computed using Algorithm 1.

So far, we considered formal quantitative verification of
the systems, and these problems do not include cost or reward
function. If we want to include cost or reward functions
in a MDP to minimize the expected cost or maximize the
expected reward with CPT-based measures, then objective
of the optimization problem in (7) will be replaced by the
following:

5155 €5(5)
maximize <I>’~( !
maximize Y ( i (v (51)
sg=1€S5(s)

— Uy (Vs + D1 (%—1))))

Z o(s, )™ -Rt(s,a)), (10)

acAct(s)

where v;(s;) denotes the value of a state with index ¢ at
time ¢.

Note that, the term u. (vs+vi11(s;)) is a composition two
convex or concave functions, which is not convex or concave
in general, also that term is multiplied with a DC function
®,. To the best of our knowledge, no general method exists
to solve problems with this type of objective. But for two
special cases, we can efficiently compute locally optimal
solutions using CCP. If the cost or reward function is a
function of state instead of state and action, then we can
modify the objective function in (8) as:

s?s(s)‘ES(s)
S / ’
e, 2 <‘I’Q' CICEEE)
sg=1€S5(s)

—uy (C(s) n vtﬂ(s;_l)) >> . an

As the cost is a constant, the objective in (11) is a sum of
DC functions, therefore we can compute the locally optimal
solution for the case when the cost or reward function is
function of a state.

The second special case we consider is when the utility
functions are u_(z) = u4(x) = z. Then, adding 7, to
the objective term in (8) will result in a formulation that
computes the optimal policy for this special case.



V. NUMERICAL RESULTS

We demonstrate the proposed approach on three domains:
(1) A robot in a gridworld, (2) a consensus protocol, and (3)
a ride sharing example. The simulations were performed on
a computer with an Intel Core i5-7200u 2.50 GHz processor
and 8 GB of RAM with MOSEK [2] as solver and using the
CVX [15] interface.

A. Grid world

Consider a grid world, where states are defined as grid
points on a map. An agent starts in an initial state and
the objective of the agent is to reach to a given state with
minimial cost. The agent can move in four directions by se-
lecting actions (north, south, east, and west). The probability
of arriving at the intended cell is §, and with probability
1 — 4, the agent moves to a random neighboring state. The
cost in each move until reaching the destination is 1 for each
state. The grid world has a number of static obstacles and
the agent has to avoid these obstacles as hitting an obstacle
has a high cost of M = 50. Therefore, the objective is to
compute a safe (i.e., not hitting to obstacles) path that is
cost efficient. In our experiments, we choose a 50 x 50 grid-
world, and the gridworld MDP has 2,500 states with horizon
T = 100, § = 0.2 and 300 states consisting of obstacles
that the agent tries to evade. We use the weighting function
exp(—0.5(—In(p))°?) and the utility function 2°-58,

After obtaining the policies using Algorithm 1, we eval-
uate the policies on 500 simulation runs. The risk-neutral
policy finds a shorter route (with average cost equal to 38.137
on successful runs), yet it crashes into obstacles in 41 runs.
In contrast, the risk-averse policy chooses longer routes (with
average cost equal to 57.638 on successful runs), but it
crashes into obstacles only in 6 runs.

B. Consensus Protocol

This case study deals with modeling and verifying the
shared coin protocol of the randomized consensus algorithm
of Aspnes and Herlihy [4]. The shared coin protocol returns
a preference 1 or 2, with a certain probability, whenever
requested by a process at some point in the execution of
the consensus algorithm. It implements a collective random
walk parameterized by the number of processes N and the
constant K > 1 (independent of V).

The first property that we want to compute is the minimal
probability of finishing the process and all processes being
1, which can be expressed as maximizing the probability
states, where the execution is finished, and all coins will have
the value 1, after the process. For each benchmark instance,
Figure 5 gives the number of states (#states), the computation
time for CPT-based measures, the minimum probability of
satisfying the specification with CPT-based measure (CPT
P) and the actual minimum probability of satisfying the
specification P in the model. We use the same weighting
and utility function as in the previous example.

We considered the verification of another property, where
we want to compute the maximum probability of finishing

Parameters #states Time (s) CPT P P
K=2 272 34.49 0.615 0.383
K=16 2064 384.93 0.722 0.484
K =64 8208 1961.34 0.673 0.498

Fig. 5: Results for consensus benchmark with the property
of all coins having the same value.

the process and all coins not having the same value. Figure
6 shows the results for each instance.

Parameters #states Time (s) CPT P P
K=2 272 41.68 0.315 0.108
K =16 2064 472.19 0.212 0.016
K =64 8208  2953.75 0.163 0.002

Fig. 6: Results for consensus benchmark the property of all
coins not having the same value.

Both examples in consensus protocol shows, the CPT-
based measure tends to inflate the probability of satisfying
the properties. The weighting function overestimates the
small probabilities of the transition probabilities in MDPs
and the utility function that we choose inflates the reachabil-
ity probabilities.

C. Ride Sharing

We consider a ride sharing example, inspired by [31]. This
case study concerns modeling the behavior of a passenger
in a sequential decision-making scenario. Many ride-sharing
companies set prices on their rides based on both supply of
drivers and demand of passengers. Therefore, the price of
a ride may fluctuate. The passengers account for the price
fluctuation, which influences their behavior.

We model the ride-sharing MDP with S = {0, 1,2, 3,4},
where states 0, ...,3 denote the cases where the passenger
did not take a ride and state 4 represents the case when the
passenger takes a ride. The price multipliers for states 0, 1,2
and 3 are 1.0,1.4,1.8 and 2.2 respectively. Act = {0,1}
where action 0 is waiting, and action 1 is taking a ride. We
consider a horizon length 7' = 5, and the transition matrix
for action 0 is

0.876 0.099 0.017 0.008
D 0.347 0.412 0.167 0.074
0.106 0.353 0.259 0.282
0.086 0.219 0.143 0.552

If action 1 is taken, the passenger transitions to state 4
with probability 1, which implies that a ride has been taken.
We define the reward function as

R(St, at) = {

R at:O,

St — Tt (pbase +pmileD + pmznT) ag = 17

where R is a constant, D is the distance in miles, 7" is time
in minutes, S; is a constant that decreases linearly in time,
x; is the price multiplier, and ppase, Pmite, and Py are the
base, per mile, and per min prices, respectively. We choose



the prices based on Uber’s Washington, DC operation', and
we use the same weighting function as in the previous
examples and utility function u4 () = x. Table 1 shows
the probabilities of taking a ride at a price multiplier and
time. We note that our passenger model is relatively risk-

TABLE I: Probabilities of taking a ride with respect to the
price multiplier and time.

Price multlpher 1 1.4 1.8 29
Time

1 0.88 | 025 | 0.17 | 0.13

2 094 | 0.89 | 0.56 | 0.45

3 097 | 0.83 | 0.82 | 0.78

4 099 | 095 | 095 | 0.86

5 099 | 099 | 098 | 0.98

averse, i.e, the probability of taking a ride is very high when
the price multiplier is 1, and the probability decreases with
increasing price multipliers. The passengers tend to take a
ride with increasing time to avoid taking any further risks in
case of an increase in price multiplier in the future.

VI. CONCLUSIONS

We proposed a computational method for verification of
temporal logic specifications in Markov decision processes
(MDPs) with measures from cumulative prospect theory
(CPT). CPT-based measures are empirically known to faith-
fully capture the asymmetry in the risk-averseness and risk-
taking behavior of humans in decision-making. Computation
of optimal policies is impractical with CPT-based measures
due to the nonlinear weighting and utility functions. The pro-
posed method approximates the nonlinear weighting function
with a difference of convex (DC) function, then computes
a locally optimal policy by solving a DC problem. On the
other hand, computing a policy with a CPT-based measure
takes more time than computing a policy with expected-value
measure, as we need to represent the DC functions as a series
of linear matrix inequalities. We demonstrate the practical
applicability of our approach on several scenarios. For future
work, we are interested in establishing error bounds between
the globally optimal CPT-value and the CPT-value that is
obtained from our method in MDPs.
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