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Unimodular graded Poisson Hopf algebras

Kenneth A. Brown and James J. Zhang

ABSTRACT

Let A be a Poisson Hopf algebra over an algebraically closed field of characteristic zero. If A is
finitely generated and connected graded as an algebra and its Poisson bracket is homogeneous of
degree d > 0, then A is unimodular; that is, the modular derivation of A is zero. This is a Poisson
analogue of a recent result concerning Hopf algebras which are connected graded as algebras.

Introduction

Poisson algebras have lately been playing an important role in algebra, geometry, mathematical
physics and other subjects. For example, Poisson structures have been used in the study of
discriminants, in the work of Nguyen—Trampel-Yakimov [23] and Levitt—Yakimov [16], and in
the representation theory of Sklyanin algebras of global dimension 3, in the work of Walton—
Wang—Yakimov [29]. Restricted Poisson Hopf algebras were introduced in [4], and further
investigated in [2].

Throughout, k will denote an algebraically closed field of characteristic zero; all algebras
considered in what follows are k-algebras, and all unadorned tensor products are over k.

We are concerned here with the unimodularity of a Poisson Hopf algebra A which is an affine
connected graded algebra. Here, in the light of the smoothness which holds in our characteristic
zero setting, A is a polynomial algebra in finitely many variables. Since Poisson Hopf algebras
were introduced by Drinfeld [10] in 1985, (see Definition 1.1), they have been intensively studied
in connection with homological algebra and deformation quantization; see, for example, recent
work in [17-20]. A Poisson algebra is said to be unimodular if the class of its modular derivation
in a certain factor of the first Poisson cohomology group is trivial; further details and references
are given in Subsection 3.1. The purpose of this paper is to provide further evidence that
unimodularity for commutative Poisson algebras is an analogue of the Calabi—Yau property
of a noncommutative algebra, reinforcing results in this direction in [9, 19, 20]. Thus, just as
is the case for the Calabi-Yau property in a noncommutative setting, unimodularity can be
viewed as a homological property of Poisson algebras.

A result of [6] states that a Hopf k-algebra of finite Gelfand—Kirillov dimension which is
connected graded as an algebra is Calabi—Yau. One might suspect that there should be a
Poisson version of this result, and indeed our main result is the following theorem, whose proof
uses this noncommutative result from [6], applied to the Poisson enveloping algebra of a graded
Poisson Hopf algebra.

THEOREM 1. Let A be a Poisson Hopf k—algebra. Suppose that

(i) as an algebra, A is finitely generated and connected graded; and that
(ii) the Poisson bracket {—, —} is homogeneous of degree d > 0.

Then A is unimodular; that is, the modular derivation of A is zero.
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In parallel with duality results for Hochschild homology and cohomology in the setting
of noncommutative Calabi—Yau algebras, the above result yields consequences for duality of
Poisson homology and cohomology. Thus, as an immediate consequence of the theorem and
[20, Theorem 3.5 and Remark 3.6], we have

COROLLARY 2. Let A be as in the above theorem and let n = GKdim A, the rank of the
polynomial algebra A. Then there is a Poincaré duality between the Poisson homology and
cohomology: for every Poisson A-module M, there is a functorial isomorphism

HP;(M) = HP" (M)

foralli=0,...,n.

We refer to [19, 20] for other terminology in Corollary 2. Section 1 contains background
on Poisson Hopf algebras, algebra, coalgebra and Hopf gradings. In Section 2 we recall the
definition of the enveloping algebra U(A) of a Poisson algebra A, and collect some of the
properties of U(A) needed for the proof of Theorem 1. In particular, we show that if A is a
connected Poisson Hopf algebra, then U(A) is a connected Hopf algebra. Background on the
modular derivation is contained in Section 3, which also includes the proofs of Theorem 1 and
Corollary 2. An example (which is not an enveloping algebra of a Lie algebra) to which the main
theorem applies is given in Example 1.9, and further examples to illustrate the necessity of the
hypotheses of the theorem appear in Section 4. Given a Hopf algebra, its coproduct, antipode
and counit will be respectively denoted by A, S and e. The definition of the Gelfand—Kirillov
dimension, denoted GKdim, can be found in [14].

1. Definitions and preliminaries

1.1. Poisson algebras

Recall (from [13, Definition 1.1], for example) that a commutative associative k-algebra is a
Poisson algebra if there is a k-bilinear map, the Poisson bracket of A,

{-,-}:A® A — A,
such that (A, {—, —}) is a Lie algebra, and the Leibniz rule holds, namely
{ab, c} = a{b,c} + {a,c}b

for all a,b,c € A. Given Poisson algebras A and B, an algebra homomorphism a: A — B is a
Poisson morphism if a({a, c}) = {a(a),a(c)} for all a,c € A. If A and B are Poisson algebras,
then by [13, Proposition 1.2.10] so is A ® B, with bracket

{a®b,c®d} ={a,c} ®bd+ ac® {b,d}.

DEFINITION 1.1 ([11, p. 801 and 802; 13, Definitions 3.1.3 and 3.1.6]).

(1) A Poisson Hopf algebra is a Poisson algebra A which is also a Hopf algebra, such that
A:A— A® Ais a Poisson morphism.

(2) A Poisson algebraic group G over k is an affine algebraic k-group whose coordinate
algebra k(G) is a Poisson Hopf algebra; equivalently, the multiplication m : G x G — G
is a Poisson map.

It is well known that the category of affine commutative Hopf algebras is dual to the category
of affine algebraic groups. When restricted to the Poisson setting, the category of affine Poisson
Hopf algebras is dual to the category of Poisson algebraic groups.
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In fact, when Definition 1.1(1) applies, it is not hard to show that € is a Poisson morphism
and S is a Poisson anti-morphism; see for example, [18, p. 96].

1.2. Gradings on algebras and coalgebras

We fix some terminology to discuss gradings on three operations — the multiplication, the
Poisson bracket and the comultiplication. The graded algebras A under consideration in this
paper will typically be N-graded; that is, A = €, A(¢) for k-subspaces A(i), with A(7) A(j) C
A(i + 7). We say that A is connected as an algebra if A(0) = k.

Suppose that an N- or Z-graded algebra A is commutative and Poisson. If there exists an
integer d with

{A®@), A} C AP+ +4d)

for all 7 and j, we say that the bracket of A has degreed. In this case, A is called a graded
Poisson algebra, or — equivalently — that {—, —} is homogeneous.

Recall that the coradical filtration of a coalgebra H is the ascending chain of subcoalgebras
{H, :n >0} of H, with Hy the coradical of H and H,, defined inductively by

H, = A ' H®Hy+H,  ®H)

for n > 0, [22, 5.2]. Then H = Un>0 H,,; and if H is a pointed Hopf algebra, then {H,} is an
algebra filtration, [22, Lemma 5.2.8]. We shall say that the Hopf algebra H is connected as a
Hopf algebra if it is connected as a coalgebra — that is, if Hy = k.

The following lemma is easily proved by induction on n.

LEMMA 1.2 [18, Lemma 7.1]. Let A be a pointed Poisson Hopf algebra with coradical
filtration {A,}. Suppose that {g,h} =0 for all group-like elements g,h € A. Then, for all
i,j 20,

{Ai, A} € Aiy;j.
Turning now to gradings on Hopf algebras, the relevant definitions are as follows.

DEeFINITION 1.3. Let H be a Hopf algebra.

(1) H is a graded Hopf algebra if it is simultaneously N-graded as an algebra and as a
coalgebra — that is, H = P, H (i) for some vector subspaces H (i), with H(i)H (j) C H(i +
), S(H(i)) € H(i) and

A(H(i) CE@H) @ H(i — t)
>0

for all 4,5 > 0.
(2) H is a coradically graded Hopf algebra if it is a graded Hopf algebra with
H; =@, H(j) for all i > 0.

When working with graded Hopf algebras it is frequently useful to make use of the adjustment
permitted by the following lemma, a slight improvement of [6, Lemma 2.1(2)].

LEMMA 1.4. Let H be a Hopf algebra which is a connected graded algebra,
H= @i>0 H(i).

(1) There is an algebra grading of H, H = €, B(i), such that kere = B, B(i).

(ii) Suppose that H is a graded Hopf algebra through the given grading H = @i>0 H(i).
Then ker e = @@1 H(i).
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Proof. (i) This is [6, Lemma 2.1(2)].
(ii) Clearly it is enough to show that H (i) C kere for all i > 1. So, let ¢ > 1 and let x € H (7).
We show that ¢(z) = 0 by induction on 4. Since H is a graded coalgebra and H(0) = k,

Alz) =1 01+1Rx3+ vy, (E14.1)

K3

where y € @J;ll H(j)® H(i— j). By induction, y = > 41 ® yo with all terms yi,y- € kere.

Apply po (Id®e) to (E1.4.1), where u: H® H — H is multiplication, yielding
x =z + €(x2).

Since x and z; are in H (i) while e(x2) € H(0), we deduce that e€(x2) = 0 and 21 = x. Similarly,
using instead p o (e ® Id), it follows that e(x1) = 0. Thus « € ker € as required. O

Coradically graded Hopf algebras occur very naturally in the study of pointed Hopf algebras.
The first part of following result is recorded for example in [1, Definition 1.13]; the second part
is proved in [33, Theorem 6.9].

PROPOSITION 1.5. Let H be a pointed Hopf algebra with coradical filtration C = {H,,}. Set
H(0) := Hy and H(i) := H;/H;_, fori > 1, and let

greH = @H (4)
i>0
be the associated graded algebra, which is a Hopf algebra with the operations induced
from H.

(i) groH is a coradically graded Hopf algebra.
(ii) If H is a connected Hopf algebra of finite GK-dimension n, then groH is a commutative
polynomial algebra in n variables.

Let H be a graded Hopf algebra. Then it is straightforward to show that, keeping the assigned
grading,

H a connected graded algebra = H a connected Hopf algebra. (E1.5.1)

To prove (E1.5.1), note first that the coradical Hy is graded, and then prove that Hy N H (i) =
{0} for ¢ > 1 by induction on i. However, the reverse implication is false even when H is
commutative, as explained in Theorem 1.6.

1.3. Gradings of commutative Hopf algebras

Our focus in this paper is on polynomial algebras and their deformations. The possible Hopf
structures in this case are as described in the following theorem. Details concerning part (i)
can be found at [6, Theorem 1]. Its nontrivial content is due to Serre for (1) = (3), (see
for example, [3, Theorem 6.2.2]), and to Lazard [15] for (3) = (4). Note that a unipotent
algebraic k-group U is Carnot if its Lie algebra u is N-graded, u = @le u;, with u = (uy). See
for example [7] for further details and references.

THEOREM 1.6. Let H be an affine commutative Hopf k-algebra.

(i) Then the following are equivalent.
(1) H is connected graded as an algebra.
(2) H is connected as a Hopf algebra.
(3) H is a polynomial algebra of finite rank.
(4) H is the coordinate algebra of a unipotent algebraic k-group U.
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(i1) Let H satisfy the equivalent hypotheses of (i). Then the following are equivalent.
(5) H is coradically graded.
(6) U is a Carnot group.

Proof. (ii)(5)==(6): Suppose that H is coradically graded, with, in view of (i),
H=k(U)=k[X,...,X,] = koD H(),

i>1

for some n > 1. Moreover, setting u to be the Lie algebra of U we have

Uu) = EB H(i)*,
i>0
the graded dual of H, by [5, Proposition 5.5(1) and (3)], and ¢ (u) is generated by u; = H(1)*,
by [1, Lemma 5.5], see also [5, Proposition 5.5(4)]. Thus u is a graded Lie algebra generated
in degree 1. Hence u and, equivalently, U, are Carnot.

(6)=(5): Suppose H = k(U) with U a Carnot group. Consider the associated graded
algebra groH with respect to the coradical filtration C = {H,,} of H. By Lemma 1.5 this is a
connected and coradically graded Hopf algebra, and it is easy to see — for example, it follows
by considering the graded dual, as in the proof of (5)==-(6) — that grp H is the coordinate
algebra of the associated graded (Carnot) unipotent group gr(U) of U. But U is Carnot, so
U = gr(U), and hence H is coradically graded. O

It is natural to synthesise the concepts defined in Subsection 1.2 for the Poisson and
Hopf categories, thus arriving at graded versions of the concepts introduced by Drinfeld, see
Definition 1.1, as follows.

DEFINITION 1.7. Let n > 1,let dy, ..., d, be nonnegative integers and let A = k[x1,...,z,],
graded so that x; is homogeneous of degree d; for i = 1,...,n. Suppose that {—, —} is a Poisson
bracket on A.

(1) If A is a Poisson Hopf algebra, simultaneously graded both as a Hopf algebra and a
Poisson algebra, then A is called a graded Poisson Hopf algebra.

(2) If in (1) the Poisson bracket has degree d, as defined in Subsection 1.2, then A is a
graded Poisson Hopf algebra of degree d.

(3) Ifin (1) [respectively, (2)] A is coradically graded, then A is a coradically graded Poisson
Hopf algebra [respectively, of degree d].

Here are important mechanisms for the construction of coradically graded Poisson Hopf
algebras. The first is an immediate corollary of Lemma 1.2 and Proposition 1.5(i), and the
second and third follow from Proposition 1.5(ii), using the commutator bracket on H to induce
a Poisson bracket on gro H. Note that (ii) is the more familiar case t = 1 of (iii). The proof of
the general case is straightforward, and is left to the reader.

COROLLARY 1.8. (i) Let A be a pointed Poisson Hopf algebra with coradical filtration C =
{A,.}, and suppose {g, h} = 0 for all group-like elements g, h,€ A. Then gro A carries a Poisson
bracket induced from the bracket on A, and as such it is coradically graded Poisson Hopf
algebra of degree 0.

(ii) Let H be a connected Hopf algebra of finite GK-dimension n and coradical filtration C.
Then groH = K[z1,...,x,] is a coradically graded Poisson Hopf algebra of degree —1.

(iii) In the setting of part (ii), let x; € groH (m;) where m; € N, and choose y1,...,y, € H

be such that groy; = 4, fori =1,...,n. Let t € Z be maximal such that [y;,y;] € Hy,, 1 m, ¢
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for all i and j, (so that t > 1 by Proposition 1.5(i1)). Taking images of the brackets [y;,y;] in
the space Hm,;+m7'7t/Hmi+m77t71 C groH yields a coradically graded Poisson Hopf algebra
structure of degree d = —t on k[x1,...,x,]. This Poisson bracket is trivial if and only if H is
commutative.

Similar terminology to that in Definition 1.7 can be introduced in an obvious way for a
commutative N-graded bialgebra A.

We conclude this section by giving an example of a Poisson Hopf algebra to which Theorem 1
applies. It should be observed that this example illustrates the fact that a Poisson Hopf
polynomial algebra may be a graded Poisson Hopf algebra with respect to more than one
grading, and that the hypotheses of the main theorem may apply in a proper subset of the
possible cases.

EXAMPLE 1.9. Let H be the connected Hopf algebra of GK-dimension 5 constructed in
[6, Theorem 5.6]. That is, H = k{(a, b, ¢, 2,1) with relations given by setting all commutators
of the generators equal to 0, except for [a,b] = ¢ and [2,w] = %63 Here, a,b, ¢ are primitive,

AR)=1®2+:2@14+a®¢+¢®a.
and
A) =100+l +b®é+eé®b.
It is shown in [6] that H is not isomorphic as an algebra to U(L) for any Lie algebra L. It is
easy to confirm that
Hy =k + ki + kb+ ké and Hy = Hy + H? + kz + kb,

so that A :=gr.H = k[a,b, ¢, z,w], with a,b and ¢ having degree 1, z and w degree 2. Thus,
by Corollary 1.8, A is a coradically graded Poisson Hopf algebra of degree —1, with

1
{a,b} = ¢, {z,w} = 503,

and all other Poisson brackets of the generators equal to 0.

Another way of understanding A is the following. Let T be the subgroup of SL(4, k) with
1s on the diagonal and 0s below the diagonal, and let U = T'/Z, where Z = Z(T), which is
the subgroup of T" with all off-diagonal entries equal to 0 except for the (1,4)-entry. Then it is
easy to check that A = O(U); indeed, with the obvious notation, one takes a = X12,b = X34,
c=Xo3,2= X3 —5(X13) = 2X13 — X12Xo3,w = Xog — S(Xo4) = 2Xo4 — X34 X03.

Now we set

dega = degb = 1; degc = 2; degz = degw = 3.

Then one checks that A is a graded Poisson Hopf algebra of Poisson degree 0; but of course A
is no longer coradically graded. Nevertheless, the main theorem, Theorem 1, still applies, and
we conclude that A is unimodular. Another way of checking the unimodularity of A is to use
(E3.0.1).

2. The enveloping algebra of a Poisson algebra

2.1. Definition of U(A)

The proof of Theorem 1 is carried out by passing to the enveloping algebra U(A) of the
Poisson algebra A, whose definition we recall from [24]. Let A be a Poisson algebra, and let
ma ={mq | a€ A} and hy = {h, | a € A} be two copies of the vector space A endowed with
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two k-linear isomorphisms m : A — my :a+— mgand h: A — ha : a— h,. Then the universal
enveloping algebra U/(A) is an associative algebra over k, with an identity 1, generated by m 4
and h4 with relations

Mgy = hzmu - myhx = [hzvmyL (E204)
my = 1. (E2.0.5)

Given a commutative k-algebra A, an A-module and Lie algebra L, and an A-module and Lie
algebra map p from L to Dery A satisfying a compatibility condition, Rinehart [28] defined in
1963 a certain associative algebra which he denoted V (A, L) and which is nowadays called the
the enveloping algebra of the Lie-Rinehart algebra of A, L and the anchor map p. Huebschmann
showed in 1990 [12, Theorem 3.8] that one can construct such an enveloping algebra starting
from any Poisson algebra (A, {—, —}), taking L to be the A-module Q4 of Kéahler differentials
of A, with p(da) = {a,—} for a € A. In fact it follows from earlier work of Weinstein et al
[8, 31], that there is an algebra isomorphism

UA) = V(A,Q),

which is the identity on A; a detailed account of this isomorphism can be found as
[18, Proposition 5.7].

2.2. Properties of U(A)

Most of the following facts about U(A) which we need are already in the literature, or are easy
consequences of known results.

PROPOSITION 2.1. Let A be an affine Poisson k-algebra, A = k{x1,...,x,). Let U(A) be
the Poisson enveloping algebra of A.

(i) U(A) is an affine k-algebra, generated by {m,,, h,, : 1 <i,j < n}.

(ii) (Here we abuse notation slightly by simply writing a for the image m, of a € A in
U(A).) When U(A) is Zxo-filtered by the filtration F obtained by assigning dega = 0 fora € A
and degh,, =1 fori=1,...,n, grr(A) is a commutative affine k-algebra with a generating
set of cardinality at most 2n.

(iii) Suppose that A is regular, with module of Kéhler differentials 1(A). Then

grr(A) = Sym,(Qa),
the symmetric algebra of )4 over A.
(iv) Suppose that A is regular of global dimension t. Then GKdim (U (A)) = 2¢.

Proof. (i), (ii): These are easily deduced from the defining relations for ¢4(A), (E2.0.1)-
(E2.0.5).

(iii) This is the Rinehart’s PBW theorem [28, Theorem 3.1], since Q4 is A-projective when
A is regular.

(iv) It follows from [21, Section 1.4, Corollary] that

GKdim(A4) = GKdim(grz(A4)),

since grr(A) is an affine commutative k-algebra by (3). However the GK-dimension of gr »(A)
equals its Krull dimension. Let m be a maximal ideal of grr(A), so that m' :=mnN A is a
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maximal ideal of A. The localisation of grr(A) at A\ m’is Sym, ,(Q4_,). This algebra is
thus a polynomial algebra in ¢’ variables over the ¢’ —dimensional reg‘{‘llar local ring A/, where
t" = height(m’) < ¢. Thus all of its maximal ideals, and in particular mSym, (4 _,), have
height 2¢'. Since the maximum value of ¢’ is £, Sym , (€24) has Krull dimension 2¢ as required. [

2.3. Gradings on U(A)

When A is graded there are straightforward ways to extend the grading to U/(A). The following
result summarises what we will need.

PROPOSITION 2.2. Let A be an affine Poisson k-algebra, A = k(x1,...,x,). Let U(A) be
the Poisson enveloping algebra of A.

(i) Suppose that A is Z-graded and {—,—} is homogeneous of degree d. Then U(A) is
Z-graded with degm, = degx and degh, = degx + d for all homogeneous elements x in A.
(i) If, in (i), A is connected N-graded with d > 0, then U(A) is also connected N-graded.
(iii) Suppose that A is a connected N-graded algebra, generated in degree 1, and that {—, —}
is homogeneous of degree d > 0. Then U(A) is a connected N-graded algebra, and is minimally
generated by my, and ha,.

Proof. (i),(ii) First note that m : A — m4 and h : A[d] — h4 are graded k-linear maps. It
is clear that U(A) is generated by homogeneous elements in m 4 and h 4 since both m and h are
k-linear. The relations of U(A) given in (E2.0.1)-(E2.0.5) are homogeneous. Therefore U(A) is
naturally Z-graded. Finally, (ii) is an immediate consequence of (i).

(iii) In this case we can assume that the generators x; are linearly independent and
homogeneous of degree 1, so degm,, =1 and degh,, =1+d > 1foralli =1,...,n. Therefore
U(A) is connected graded, by (ii). Since degm,, =1 for all 4, {m,, : 1 <i < n} is a linearly
independent subset of a minimal homogeneous generating set. Let m be the maximal graded
ideal of U(A). It is clear that m/m? is spanned by {m,, : 1 <i<n}U{h,, : 1 <i<n}. Let
x € A(1). Since degh, = 1 +d, if h,, is in m?, then it is generated by elements of small degrees,
namely by m (). However, any homogeneous relation involving h, (see (E2.0.2)-(E2.0.4))
has degree at least d + 2. Therefore h, € m* does not follow from any relations of U(A), a
contradiction. Thus {h,, : 1 <i < n} maps to a linearly independent subset of m/m?. The
same argument shows that (m (1) +m?/m*) N (ha) +m?/m?) = 0. Hence U(A) is minimally
generated by m 1) Uha)- O

2.4. Bialgebra structure on U(A)

We shall need the following results of [18, 25]. The proof of the claim in [25] that a Poisson
Hopf structure on an algebra A always induces a structure of Hopf algebra on U(A) appears
not to be completely clear as regards the extension of the antipode from A to U(A), so we
address that aspect separately, for the cases of concern to us, in what follows.

THEOREM 2.3. Let A be a Poisson Hopf algebra.

(i) U(A) admits a bialgebra structure with A as a sub-bialgebra.
(ii) The coradical of U(A) is the coradical of A.
(iii) If A is pointed, then U(A) is a Hopf algebra with sub-Hopf algebra A, with G(U(A)) =
G(4).
(iv) If A is a connected Hopf algebra, then so is U(A).

Proof. (i) See [25, Theorem 10].
(ii) This is [18, Proposition 6.6].
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(iii) Suppose that A is pointed. Then (ii) shows that U(A) is also pointed, with G(U(A)) =
G(A), so that every grouplike element of U(A) is invertible. It follows from [26, Theorem 1]
that the bialgebra U(A) is a Hopf algebra.

(iv) This is a special case of (iii). O

3. Proof of theorem 1

3.1. The modular derivation.

We refer to [9, 20] for further details about several important invariants of a Poisson algebra.
There is a geometric notion of unimodular Poisson manifold introduced by Weinstein [32]. In
algebraic terms, let A be a smooth Poisson algebra with trivial canonical bundle — for instance
in our case A will be a polynomial k-algebra in n variables. A Poisson derivationd of A is a
derivation in the usual sense with the additional property that

d({a,b}) = {d(a),b} + {a,d(b)}
for all a,b € A. Then the modular derivation of A (with respect to a given volume form) is
a certain Poisson derivation J, defined in [20, Definition 2.3]. Now the modular class of A
is the class of § in the space of Poisson derivations modulo the subgroup of log-Hamiltonian
derivations, see both [9, p. 208; 20, Section 2.2]. If the modular class of A is trivial, then
A is called unimodular. If A is the polynomial ring (or more generally, if the only invertible
elements in A are scalars), then there are no nonzero log-Hamiltonian derivations. In this case,

A is unimodular precisely when the modular derivation is zero.
When A is the polynomial ring k[zi,...,z,] (and the volume form can be taken to be
1 :=dxy Adxs A -+ Adxy,), the modular derivation § of A is given in [20, Lemma 2.4]: namely,

A=) = 3o AL (6301

j=1
for all f € A.

We refer to [27] for some basic definitions concerning Calabi—Yau algebras (or CY algebras for
short), skew Calabi—Yau algebras and the Nakayama automorphism. There is a close connection
between modular derivations and Nakayama automorphisms via deformation theory, see
[9, Theorem 2]. A further such result, in this case connecting the modular derivation of a
Poisson algebra with the Nakayama automorphism of its Poisson enveloping algebra, is the
following. We shall apply the result below in the case where A is a polynomial algebra. In
its statement, one has to interpret the expression ‘the ... automorphism ... of U(A) ... is
... 28" in the following manner. Recall that U(A) is generated by {mg, h, : a € A}. So, if 7
is a Poisson derivation of A, we define the corresponding map on U(A) by 7(m,) = m, and
T(ha) = ha +m;(q). For details, see [19, Lemma 2.2].

PropoSITION 3.1 [19, Corollary 5.6, Proposition 1.12, Theorem 5.8 and Remark 5.9]. Let
A be a CY Poisson algebra; that is, by definition, A is an affine smooth Poisson algebra of
finite global dimension n, with trivial canonical bundle. Then U(A) is skew CY of dimension
2n. Moreover, the Nakayama automorphism of U(A) is given by 26, where ¢ is the modular
derivation of A. As a consequence, if A is a polynomial ring, then A is unimodular if and only
if the modular derivation is zero, and if and only if U(A) is CY.

3.2. Proof of Theorem 1

Theorem 1 follows easily from the above proposition and [6, Theorem 0.2].
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Proof. Since A is a commutative affine connected graded algebra of finite global dimen-
sion, it is a polynomial algebra, by [3, Theorem 6.2]. Its coalgebra structure is thus also
connected, by Theorem 1.6. By the hypothesis on the grading of the Poisson bracket and
by Proposition 2.2(ii), U(A) is a connected N-graded algebra, and has finite GKdimension by
Proposition 2.1(iv). By Theorem 2.3(iv), U(A) is a connected Hopf algebra which is moreover
connected graded as an algebra. Applying [6, Theorem 0.2], U(A) is Calabi-Yau. It follows
from Lemma 3.1 that the modular derivation ¢ of A is zero — that is, A is unimodular. O

Corollary 2 is an immediate consequence of Theorem 1 and [20, Theorem 3.5 and Remark
3.6] (or [19, Theorem 4.3)).

4. Examples and counterexamples

Theorem 1 does not remain true for Poisson bialgebras as the following example demonstrates.

EXAMPLE 4.1. Let A be the polynomial algebra C[z,y], let i be a nonnegative integer, and
consider the bialgebra structure on A given by

Aly) =y®y, Al)=z01+y 0,

with e(x) =0 and e(y) = 1.Then, setting {z,y} = xy, it is straightforward to check that A
is a Poisson bialgebra. Moreover, A is a connected graded algebra, with the Poisson bracket
homogeneous of degree 0. However, A is not unimodular — one calculates from (E3.0.1) that
the modular derivation § of A is given by §(z) = z and §(y) = —y.

EXAMPLE 4.2 [20, Example 2.8(2)]. The Kostant — Souriau Poisson bracket. The familiar
Poisson bracket induced by the bracket of a Lie algebra g = > | kz; on its symmetric algebra
S(g) gives rise to a Poisson Hopf structure on S(g).

For, with its polynomial generators x; all assigned degree 1, S(g) is a coradically graded
Poisson Hopf algebra of degree d = —1. Using (E3.0.1) one easily calculates that the modular
derivation is given by

0(x;) = tr(ad(x;)) 1<i<n,

where ad denotes the adjoint representation of g.

Thus, when g is, for example, the two-dimensional solvable nonabelian Lie algebra, S(g)
is not unimodular. This shows that the hypothesis in Theorem 1 that the Poisson bracket is
homogeneous of degree d > 0 is necessary.

ExAMPLE 4.3 (Connected Hopf algebras of small GK — dimension). The connected Hopf
k-algebras of GK-dimensions 3 and 4 are determined in [30, 33] respectively. Applied to these
algebras, the recipe of Corollary 1.8(ii) and (iii) yields infinite families of coradically graded
Poisson Hopf algebra structures on the polynomial k-algebras in 3 and 4 variables. Two of these
families, manufactured respectively from [30, Example 4.4; 33, Section 7, Example 2], are given
as [18, Examples 3.2 and 3.3]. Here are brief details of the three-dimensional examples.

(a) Let A, € k and o € {0,1}, and let A := A(\, i, @) be the family of Hopf k-algebras of
GK-dimension 3 defined at [33, Section 7, Example 2]. So A = k(X,Y, Z), with

[X,Y]=0, [ZX]=)X+aY, [ZY]=pY.

The space of primitive elements is kX @ kY, and A(Z)=2ZR1+1Z+ X ®Y, so that
7 € As. Thus, applying Corollary 1.8(iii) and using the obvious notation,

gre A\ p, ) = klz,y,2];  degr =degy =1; degz =2.
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Therefore gro A(A, 1, &) = O(U) is a coradically graded Poisson Hopf algebra of Poisson degree
—2, with U the three-dimensional Heisenberg group and
{z,y} =0, {zz}=A+ay, {zy}=mny.
Using (E3.0.1), the modular derivation of the Poisson algebra O(U) is determined by
5(z) =0, d(y) =0, d(z) = A+ p.

By [33, Proposition 7.9], a complete set of isomorphism classes of the Hopf algebras A(\, p, a)
is given by

{(1,0,0),(0,0,0),(0,0,1), (1,1,1), (1, =", 0) : p € k*}. (E4.3.1)
It is not hard to deduce from this result that the same list of parameter values (E4.3.1) gives
the complete list of isomorphism classes of the Poisson Hopf algebras gr, A(A, i, o). We sketch
an argument. It is enough to show that distinct parameter triples from (E4.3.1) yield distinct

Poisson Hopf algebras. Suppose that 6 is an isomorphism of Poisson Hopf algebras between two
such algebras. Since 6 preserves the counits, that is (m) = n say, it induces an isomorphism of

Lie algebras (m/m?, {—, —}) = (n/n?,{—, —}). Moreover, 6§ preserves the coalgebra structure,
and hence preserves the structures of Lie bialgebras (see [18, Section 6]) on (m/m?, {—,—})
and (n/n? {—, —}). From this the desired conclusion easily follows.

(b) Let B(X) be the family of Hopf k-algebras of GK-dimension 3 defined at [33, Section 7,
Example 3]. So B(A\) = k(X,Y, Z), with A € k and
1
The space of primitive elements is kX ® kY and A(Z)=Z®14+1®Z+ X QY. Thus,
exactly as with (a) we get a coradically graded Poisson Hopf algebra

greB(A) = k[z,y,2]; degr =degy =1; degz=2.

This time, however, the Poisson degree d is —1. We see that groB()) is a Poisson Hopf algebra
with the underlying Poisson unipotent group again being the three-dimensional Heisenberg
group, with

1
{xvy}:yv {Z,{L‘}:—Z, {Zvy} = 52/2
Using (E3.0.1), the modular derivation of this Poisson algebra is determined by
6(x) =2, 6(y) =0, 6(z) =y.

From [33, Proposition 7.10], B(\) = B(u) as Hopf algebras if and only if A = p, whereas it is
evident that one obtains the same Poisson Hopf algebra gr,B()) for every value of X € k.
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