
Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Toward learned chemical perception of
force �eld typing rules
Camila Zanette1,a, Caitlin C. Bannan2,a, Christopher I. Bayly3, Josh Fass4,5, Michael K.
Gilson6, Michael R. Shirts7, John D. Chodera5, David L. Mobley1,2*

1Department of Pharmaceutical Sciences, University of California, Irvine; 2Department of
Chemistry, University of California, Irvine; 3OpenEye Scienti�c, Santa Fe, NM 87507;
4Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065;
5Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan
Kettering Cancer Center, New York, NY 10065; 6Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of California, San Diego; 7Department of Chemical and Biological Engineering,
University of Colorado Boulder, Boulder, CO 80309; aThese authors contributed equally

Abstract Molecular mechanics force �elds de�ne how the energy and forces in a molecular system
are computed from its atomic positions, thus enabling the study of such systems through computational
methods like molecular dynamics and Monte Carlo simulations. Despite progress toward automated force
�eld parameterization, considerable human expertise is required to develop or extend force �elds. In
particular, human input has long been required to de�ne atom types, which encode chemically unique
environments that determine which parameters will be assigned. However, relying on humans to establish
atom types is suboptimal. Human-created atom types are often developed without statistical justi�cation,
leading to over- or under-�tting of data. Human-created types are also di�cult to extend in a systematic
and consistent manner when new chemistries must be modeled or new data becomes available. Finally,
human e�ort is not scalable when force �elds must be generated for new (bio)polymers, compound classes,
or materials. To remedy these de�ciencies, our long-term goal is to replace human speci�cation of atom
types with an automated approach, based on rigorous statistics and driven by experimental and/or quantum
chemical reference data. In this work, we describe novel methods that automate the discovery of appropriate
chemical perception: SMARTY allows for the creation of atom types, while SMIRKY goes further by automating
the creation of fragment (nonbonded, bonds, angles, and torsions) types. These approaches enable the
creation of move sets in atom or fragment type space, which are used within a Monte Carlo optimization
approach. We demonstrate the power of these new methods by automating the rediscovery of human
de�ned atom types (SMARTY) or fragment types (SMIRKY) in existing small molecule force �elds. We assess
these approaches using several molecular datasets, including one which covers a diverse subset of DrugBank.

*For correspondence:
dmobley@mobleylab.org (David L. Mobley)

1 Introduction
Molecular simulations can provide detailed views of chemical and biological events that involve conforma-
tional changes and noncovalent binding, such as allostery, protein folding, and ligand-protein binding.1–3

1 of 33

dmobley@mobleylab.org


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

INPUT 

FILES

REFERENCE 

DATA

CHEMICAL PERCEPTION SAMPLER
TARGET

MOLECULE 

LEARNED CHEMICAL PERCEPTION TREE 

Figure 1. Table of Contents Figure

They also can be used to estimate various experimental observables, including solvation free energies of
small molecules , 4–6 binding free energies of small molecules to proteins and molecular hosts, 7–10 and the on
and o� rate constants for noncovalent association events.11,12 Molecular simulation technologies rely on po-
tential functions, or force �elds, mathematical functions which estimate the energy of the molecular system
and the forces on its atoms as a function of the atomic coordinates. The force �eld used in a simulation is a
critical determinant of the accuracy of the results. The centrality of the force �eld has motivated decades of
pioneering and innovative research and development.1,13–27 In spite of these e�orts, recent studies indicate
that force �eld issues still signi�cantly limit the accuracy of simulations.9,28–41

The Open Force Field Initiative seeks a systematic approach to the continuing challenge of improving
force �elds, reducing the human e�ort required and generating new force �elds that make statistically sound
use of appropriate reference data.42 One major goal of our e�ort is to automate the development of new
force �elds given a choice of functional form and reference data. Later, we aim also to automate decisions
about what functional forms to use and what reference data to �t. These capabilities will dramatically reduce
the human time required to create new force �elds, while also producing more accurate force �elds with
clear dependencies on the underlying data. Such capabilities would also support advances in force �eld
science, such as determining what functional form achieves the best accuracy for particular applications at a
speci�ed level of computational cost. For example, a force �eld that explicitly treats electronic polarizability
and includes �xed electric multipoles, such as AMOEBA,25,43–49 should be able to reach higher accuracy than
a force �eld with �xed, atom-centered point partial charges. But howmuch additional accuracy do multipoles
and polarizability actually provide? We cannot currently answer these questions because the question of
the functional form is con�ated with other issues, such as the use of di�erent input data, di�erent atom
types, di�erent �tting methods, and di�erences in the chemical intuition brought to the problem. In contrast,
an automated approach would allow systematic evaluation of the bene�ts of an advanced functional form
within a given context.

Although some force �eld parameterization tools already exist, 50–57 the full process of force �eld develop-
ment has not been automated. For example, the parameterization software ForceBalance58–60 advanced
the �eld by automating the adjustment of force �eld parameters against experimental and theoretical
observables with a gradient-based optimizer. However, the researcher must still address not only how to
weight the components of the objective function24,61–63 but also the fundamental question of what atom
types to use.

As we seek to automate parameterization, it is important to take note of where human expertise is
typically employed, and one key place is in determining which chemical environments (usually treated as
atom types) will be treated separately by a force �eld. This process of distinguishing between di�erent
chemical environments in order to assign force �elds parameters we call the chemical perception. Chemical
perception has been a key ingredient in building general purpose small molecule force �elds.35,64–70 Chemical
perception in current force �elds largely consists of assigning atom types or fragment (nonbonded, bond,

2 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

angle, torsion) types, de�ned using human intuition. Ideally, force �eld �tting should involve adjusting not
only the numerical parameters of a force �eld, but also the chemical perception. For example, we could start
a force �eld parameterization process with only a single type of carbon-carbon bond, but the automated
process might propose adding a second bond type, thus allowing distinct parameters to be assigned to single
versus double bonds. If this proposal led to improved accuracy su�cient to justify the increased number of
parameters, it would become part of the force �eld de�nition. Thus, we need a way to sample not only over
the numerical parameters of a force �eld, but also over its atom or fragment types. However, we are not
aware of any existing algorithm or software tools to carry out this type of automated parameter sampling.

In this paper, we address this fundamental problem with a novel approach to sampling over atom or
fragment types typically used in biomolecular force �elds, so that these de�nitions can ultimately be learned
automatically without a human expert. In particular, we introduce methods of sampling over hierarchical
chemical perception trees. That is, we organize force �eld atom or fragment types into hierarchical trees,
such that child types contain more speci�c types than parent types. We utilize the SMARTS and SMIRKS
substructure de�nition languages71,72 to specify atom types and more general fragment types which may be
associated with distinct numerical parameters. Then, we show how a Monte Carlo scheme can be used to
sample over chemical perception trees de�ned using these languages. Both tools for sampling chemical
perception trees, SMARTY (atom types) and SMIRKY (fragment types), are freely available to the community
on GitHub along with Open Force Field Initiative software (https://github.com/openforce�eld). As a proof
of principle for this approach, we compare the chemical complexity of sampled atom and fragment types
to those in existing force �elds. These algorithms set the stage for future applications in which the scoring
function will be based on the agreement of simulations with experimental, quantum, or other reference
data.

2 Methods
We consider two di�erent approaches for assigning force �eld parameters to a molecule: direct and indirect
chemical perception.73 Indirect chemical perception is exempli�ed by the traditional approach to parameter
assignment (such as the AMBER and CHARMM force �eld families) in which, once a molecule’s atoms have
been typed, all other information about chemical environments (including bond orders) is discarded.74 All
force �eld parameters, including valence terms, are then assigned using only the atom types and the way
they are connected.75 Thus, in indirect chemical perception, atom types encode the information needed
to assign all valence and bonded parameters.69,76–79 Alternatively, in direct chemical perception, parameters
are assigned based on the full molecular graph—a full valence representation of the molecule including
elements, connectivity and bond orders, rather than just atom types and local connectivity. This approach
thus involves direct analysis of the full molecular graph, including bond orders, instead of indirect analysis
through connected atom types, as in indirect chemical perception. As previously detailed, direct chemical
perception allows force �elds to be fully speci�ed with far fewer numerical parameters than required with
indirect chemical perception.73

We recently introduced a new force �eld format, the SMIRKS Native Open Force Field (SMIRNOFF)73 which
uses SMIRKS patterns to allow direct assignment of force �eld parameters, thereby implementing direct
chemical perception. This is a substantial break from indirect chemical perception which uses a graph labeled
with atom types to assign parameters. SMIRNOFF instead uses direct chemical perception, using substructure
searches via di�erent SMIRKS strings to assign parameters when the target molecular substructures are
encountered. Thus, the chemical perception and parameters for each force term are separate from those
applied to other force terms. For example, a new set of Lennard-Jones parameters could be introduced
without needing to introduce additional valence terms, or vise versa.

In this paper, we introduce approaches to sample chemical perception trees with both traditional atom
types and SMIRNOFF fragment types. Here, we use the term chemical perception tree to describe a hierarchical
classi�cation of molecular substructures in order to assign parameters. One of our major interests is to
sample over a variety of chemical perception trees to see if we can match the chemical perception used
in existing force �elds. We further use the term fragment type to refer to the more generalized notion of

3 of 33

https://github.com/openforcefield


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

an “atom type” used by direct chemical perception— a particular substructure that would be assigned a
particular parameter. The SMIRNOFF format, then, has four categories of fragment types— bond, angle,
torsion, and nonbonded types — corresponding to the valence and nonbonded interaction force �eld
parameters.

In order to automate sampling of chemical perception trees, a language to express atom or fragment
types directly was required. We utilize the SMILES Arbitrary Target Speci�cation (SMARTS) and SMILES Reaction
Speci�cation (SMIRKS) languages for this purpose.71 A SMARTS string is a chemical substructure query, where
a substructure is a set of atoms connected by bonds, and both atoms and bonds are typically further
characterized with “decorators” (Table 1). For example, a bond may be decorated with “@” to indicate that it
in a ring, and/or “-“ to indicate a single bond, and detailed speci�cations may be constructed by the use of
Boolean operators. Atoms are set apart from bonds with square brackets, for example, “[#6X4]!@[#6r5]”
describes a tetrahedral carbon atom (“[#6X4]”) connected by a non-ring bond (“!@”) to another carbon atom
which is in a �ve-membered ring (“[#6r5]”). SMIRKS strings provide a language similar to SMARTS but which
also includes atom indexing. SMIRKS were created to allow description of reactions, but here we use only
the atom indexing feature. For our purposes, we take advantage of the indexing in SMIRKS to track relevant
atoms involved in fragment types such as bond, angle, or torsion types. For example, the SMARTS above
could become a SMIRKS string with the addition of “:” to identify the atom indices (“[#6X4:1]!@[#6r5:2]”).
Following the SMIRNOFF notation, a bond parameter involves two indexed atoms, an angle parameter three,
and so on.73

Symbol De�nition

Atom

#n atomic number
* any atom
A aliphatic
a aromatic
Hn hydrogen count
Xn connectivity
±n charge

Bond
Ì any bond
@ ring bond
* single bond

Boolean modi�ers

, logical or
& high precedence logical and
; low precedence logical and
! logical not

Table 1. Decorators for elaborating SMIRKS and SMARTS strings. A selection of decorators that can be used for atoms
(top section) and bonds (middle section) in SMIRKS or SMARTS strings. Decorators on atoms and bonds can be combined
using Boolean operators (bottom section), where the high precedence and is applied before an or operator and the low
precedence and is applied after. For a complete list of decorators and documentation for SMARTS and SMIRKS see the
Daylight Theory Manual. 71

The atom and fragment type de�nitions used here are based on the chemical environment of each atom
extending up to two bonds away. In both SMARTY and SMIRKY, we only consider the chemical environment
around the primary atom and atoms one bond away (alpha) or two bonds away (beta). Moves propose
changes at any of these positions. The primary atom is the atom being typed by SMARTS or all of the indexed
atoms in a SMIRKS. Atoms beyond this beta position are not currently considered. For example, consider a
SMARTS describing the hydroxyl oxygen in an alcohol (Figure 2). Here, the oxygen is the atom to be typed
(yellow), the hydrogen and carbon bonded to the oxygen are the alpha atoms (blue), and the carbon two
bonds away is a beta atom (pink), as are the ring oxygen and the hydrogen atom bonded to the alpha carbon
(not included in the SMARTS pattern). Including just atoms up to two bonds away leads to a wide variety of

4 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

possible SMARTS or SMIRKS patterns. The number of possible SMARTS patterns that can be generated using
environments including atoms only out to the beta position is on the scale of 1016, estimated using the
number of possible atoms in one pattern and the number of SMARTS decorators available. Atom types in
most present-day force �elds usually depend only on atoms out to the beta position, although future force
�elds might require going further. Therefore, SMARTY and SMIRKY currently do not propose new atom or
fragment types that involve atoms past the beta position.

Beta

AlphaBase Type

Decorator Bonds

[#8X2$(*-[#1])$(*-[#6]~[#6])]

Figure 2. Describing a speci�c chemical group with SMARTS. An example of how a particular type of hydroxyl oxygen
in a molecule (top) can be described using SMARTS strings. In this case, the SMARTS pattern (bottom) is for a hydroxyl
connected to a carbon which is itself connected to another carbon. The alpha atoms (light blue) for the oxygen base type
(“[#8]”) are one hydrogen (“[#1]”) and one carbon (“[#6]”), and they are connected to the base type via a single bond (“-”).
The carbon (“[#6]”) atom is connected to another carbon (“[#6]”, which is considered a beta atom (pink)) via any bond
(“Ì”). The oxygen has a decorator (light green) (“X2”) which means it has two connected atoms.

Like existing atom typing schemes,72,80 both SMARTY and SMIRKY take a hierarchical approach to de�ning
atom and fragment types. That is, the SMARTS and SMIRKS strings specifying types are listed in a speci�c
order, and the last string that matches an atom or fragment is the one assigned (“last one wins”). For
example, in Figure 3, HC (“[#1$(*-#6)]”) would match all hydrogens bound to carbons, but then the string H1
(“[#1$(*-[#6]Ì[#8])]”) overrides HC on the hydrogens with one oxygen in the beta position. In the SMARTS
language the “$” is used to specify neighboring atoms, in “[#1$(*-[#6]Ì[#8])]” the hydrogen is connected
to a carbon bonded to an oxygen. This hierarchy allows a general pattern to catch all hydrogens that are not
described by more speci�c patterns later in the list. We call a complete, hierarchical type speci�cation of this
sort a chemical perception tree. The same approach can be used on a hierarchical list of SMIRKS patterns for
fragment types. The PATTY algorithm81 was developed to automatically assign traditional atom types from a
hierarchy, where each atom was assigned the last type matched to it. We adapted PATTY for use in SMARTY
and SMIRKY. Speci�cally, the set of SMARTS or SMIRKS is matched to a molecule using OpenEye’s OEChem
Toolkit 82–84 ’ and then only the last pattern to match a given atom or fragment is stored.

In the subsections below, we describe methods of varying the SMARTS and SMIRKS strings used to de�ne
atom or fragment types, respectively, in order to sample over chemical perception trees. We �rst provide
a general description for our Monte Carlo sampling procedure including how we sample over chemical
perception trees with a scoring function based on the agreement of the sampled atom or fragment types
with those of an existing force �eld .85–88 Next, we detail two software packages for testing this procedure.
The �rst is SMARTY, which learns chemical perception trees in the setting of traditional indirect chemical
perception, such as the atom types found in an AMBER-family force �eld (Section 2.2). The second is SMIRKY,
which learns chemical perception trees using direct chemical perception, such as the fragment types in a
SMIRNOFF-format force �eld. Our description of SMIRKY focuses on those aspects which di�er from SMARTY
(Section 2.3). Both approaches are diagrammed in Figure 4. We then describe how we evaluate the ability of
these methods to sample chemical perception trees of the chemical complexity found in the reference force
�elds. This analysis mirrors our ultimate goal of using a scoring function to measure the ability of a chemical

5 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

H3

HO

H1 

HC 

H2 

HO

H1 

HC 

HC HC 
[#1$(*­[#6])]

[#1$(*­[#6](­[#8])~[#8])] 

[#1]

[#1$(*­[#6]~[#8])] 

[#1$(*­[#6](­[#8])(­[#8])~[#8])] 

Figure 3. Illustration of the parm99/parm@Frosst hydrogen atom types for AlkEthOH set. This speci�c set has �ve
di�erent hydrogen types, OH (highlighted in blue), HC (highlighted in yellow), H1 (highlighted in green), H2 (highlighted in
lilac), and H3 (highlighted in pink) atom types. Reference atom types labels for each hydrogen atom are shown in italics
next to each atom. SMARTS recovered by SMARTY for these atom types are shown in the corresponding color.

perception tree, combined with suitable numerical parameters, to replicate a set of reference experimental
and/or quantum chemical data. Finally, we describe the molecule sets used and details of simulations run to
test both SMARTY and SMIRKY (Section 2.4).

2.1 Monte Carlo sampling over chemical perception trees
We use the Metropolis Monte Carlo (MC) algorithm89,90 to sample over chemical perception trees by making
changes to a set atom or fragment types. We call this set of atom or fragment types being changed the
“working types” and to be more speci�c we would say “working atom types” or “working fragment types”. A
single iteration of the algorithm comprises

1. choosing an atom or fragment type at random from the working set
2. proposing a move in which the type is either deleted (if it is not in the base set) or used as the starting

point to create a new, more speci�c type
3. computing the change in a scoring function due to the proposed move
4. using the Metropolis criterion89 to either accept or reject the proposed move, where the scoring

function plays the role of the energy.

The e�ective temperature used in the Metropolis accept/reject decision and the desired number of iter-
ations are user-speci�ed inputs. Note that, if the user-de�ned temperature is zero, SMARTY and SMIRKY
act as strictly optimizers, only accepting moves which result in a higher total score, whereas at nonzero
temperatures, it is possible for a move with a decreased score to be accepted.

2.1.1 The scoring function measures agreement of a chemical perception tree with that of an
existing force �eld

For this proof of principle study, we developed a scoring function that quanti�es the agreement of a chemical
perception tree proposed in the course of MC sampling with the chemical perception assignments associated
with an existing, operational force �eld. This scoring function compares how the working types categorize
atom and fragments, with reference types from the existing force �eld. Our basic problem here is to
determine which of our working types best corresponds to which reference type when applied to the same
set of molecules. Here, in explaining the scoring function, we focus on atom types, but the same approach is
also used for other fragment types arising from direct chemical perception, as considered at the end of this
subsection.

We use a bipartite graph with a maximum weight matching91,92 to score the working types (Figure 5).
A bipartite graph is a graph with vertices divided into two disjoint sets, X and Y, where each edge only
connects a vertex in X with a vertex in Y; that is, there are no X-X or Y-Y edges. Here, set X comprises the
working atom types and set Y comprises the reference atom types. To compose a graph for scoring, we

6 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

RESULT

ITERATIONS

SMARTY

CHOOSE ATOM
TYPE SMARTS

PROCESS

ACCEPT OR
REJECT PROPOSAL

REFERENCE 
DATA

MOLECULES

INPUT 
FILES

CHANGE
(EQUAL PROB)

RESULT

ITERATIONS

SMIRKY

CHOOSE 
PARAMETER

TYPES SMIRKS

PROCESS

ACCEPT OR
REJECT PROPOSAL

REFERENCE
DATA

MOLECULES

INPUT 
FILES + ODDS

CHANGE
(WEIGHTED PROB)

Figure 4. SMARTY and SMIRKY. Work�ows for the SMARTY (left) and SMIRKY (right) tools are shown. There are three
input data categories for SMARTY and SMIRKY (shown at top). In SMARTY (on the left), there are input �les (such as
base types, initial atom types, and decorators), molecules (input via a molecule set �le), and reference data consisting
of typed molecules (parm99/parm@Frosst atom typing was used in this work). SMIRKY has similar inputs, shown in the
purple area on the right, and additionally allows the user to set the decorator odds and its reference data is fragment
types (here, from smirno�99Frosst). The algorithms are represented in the green area and are available on GitHub
(https://github.com/openforce�eld/smarty). Both tools begin by reading and processing the input �les (top part of the
green area). SMARTY (on the left) then conducts a series of moves (coral area) consisting of choosing one working atom
type per iteration (icon with connected atoms), and deleting or modifying (pencil icon) this atom type, making choices
made with equal probabilities (Section 2.2). SMIRKY (on the right) is similar, but samples over working fragment types
(such as nonbonded types, bonds, angles, and proper and improper torsions; in the �gure these are represented by two
di�erent icons with connected atoms) and uses weighted probabilities on their choices (Section 2.3). The acceptance
criteria (diamond icon) for both tools are the same, using Equation 3 (Section 2.1.1). Both tools run a user-speci�ed
number of iterations and iterate over the steps in the coral area (repeat icon), then write out a �nal results �le after all
iterations are completed.

7 of 33

https://github.com/openforcefield/smarty


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

hydrogen
[#1]

carbon
[#6]

oxygen
[#8]

OH

H2

H3

H1

H0

HC

OS

CT

Working atom
types 

Reference
atom types

224

hydrogen
[#1]

carbon
[#6]

oxygen
[#8]

OH

H2

H3

H1

H0

HC

OS

CT

Working atom
types 

Reference
atom types

224

68

232

hydrogen
[#1]

carbon
[#6]

oxygen
[#8]

OH

H2

H3

H1

H0

HC

OS

CT

Working atom
types 

Reference
atom types

hydrogen
[#1]

carbon
[#6]

oxygen
[#8]

OH

H2

H3

H1

H0

HC

OS

CT

Working atom
types 

Reference
atom types

0

33

3

116
68

0

0

(a) (b)

(c) (d)

Figure 5. Illustration of the bipartite graph used to calculate the score for a new proposed move. (a) A bipartite
graph is created with a node for each working (light red) and reference (light blue) atom type. (b) Edges (represented by
lines) are created for all possible connections between the nodes of the two sets. Initially each edge has a weight of zero.
(c) For each atom, the weight is incremented by one on the edge connecting that atom’s working and reference atom
types. In this �gure, we illustrate the case for potential graph matches to hydrogen working atom type (“#1”) using the
AlkEthOH molecule set (Section 2.4). However, in practice this process is applied to all working atom types simultaneously.
(d) Each node is then restricted to have only a single edge, such that the total weight is maximized.

8 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

�rst process a set of molecules (Section 2.4), assigning every atom a working atom type and reference atom
type. The set of working atom types in the molecules become vertices in set X and the set of reference atom
types in the molecules become vertices in set Y (Figure 5(a)). The graph is initialized by construction of an
edge of zero weight between each node in X and each node in Y (Figure 5(b)). Then, for each atom in each
molecule, we identify its working and reference atom types and increment the weight of the edge joining the
corresponding set X and set Y vertices by one (Figure 5(c)).

We then determine the set of X-Y edges that maximizes the number of atoms assigned the same working
types that are also assigned the same types in the reference set. This corresponds to a maximal weight
graph-matching problem.93,94 A matching set in a graph is a subset of edges that are non-adjacent; i.e.,
no two edges share a common vertex.94 Thus, determining the matching set ensures we never have the
same working atom type connected by edges to two or more di�erent reference types, and vice versa. For
example, in Figure 5(c), we would select only one of the edges for the “#1” node. A maximal weight graph
matching is one in which the sum of the weights of the retained edges is maximized. Thus, in Figure 5(c),
we select only the edge of highest weight, here 224. More generally, a maximal weight graph match would
include all possible working and reference types, such as the result for the three working types in Figure 5(d).

Given the resulting maximum weight graph matching, we use partial scores from each remaining edge
and a total score for the graph to evaluate the set of working atom types. We de�ne the partial score for
each reference atom type as

S

i

=
N

i,edge

N

i,mol

(1)

where N

i,edge

is the weight of the edge associated with reference atom type i and N

i,mol

is the number of
atoms in the molecule set with reference atom type i. Thus, S

i

= 1 provides an assessment for how accurately
the working atom type captures the chemistry of a speci�c reference atom type. The total score across types
then is

S

Total

=

n≥
i=1

N

i,edge

N

T

(2)

where n is the number of reference atom types and N

T

= ≥
n

i

N

i,mol

is the total number of atoms in the
molecule set. Thus the MC acceptance criterion is given by

R < e

S

proposed

*S
previous

T (3)

where R is a random number from 0 to 1, S
proposed

and S

previous

are the graph match scores computed for the
proposed and previous move, respectively, and T is the temperature assigned by the user.

The atom type scoring function just described pertains to the SMARTY method of sampling indirect
chemical perception trees, which de�ne only atom types. For the SMIRKY algorithm, which samples direct
chemical perception trees, the atom type scores are supplemented with analogous scores for bond, angle
and torsion types.

2.2 SMARTY is an algorithm for learning indirect chemical perception trees
The SMARTY algorithm de�nes its chemical perception tree using an ordered list of SMARTS strings, as
described above, and manipulates these strings in to order vary and optimize this chemical perception
tree using a selected scoring function. In this work, we use the graph-based scoring function de�ned in
Section 2.1.1 to measure similarity to the atom types in a target force �eld. Ultimately, our initiative we will
use a scoring function that re�ects the ability of a force �eld using the working chemical perception tree to
replicate experimental data. In this subsection, we describe the algorithm, including user speci�ed inputs
and move sets in SMARTS space.

2.2.1 User speci�ed inputs allow for customization
The present SMARTY implementation takes �ve input �les. The �rst is a �le containing a set of SMARTS strings
de�ning “base atom types” or base types, which will not be changed. These are typically the most generic
type de�nitions. The second is a �le containing “initial atom types,” which form a superset of the base types.

9 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Typically, the initial types include not only generic base types, but also some more speci�c types, with the
generic types listed before the speci�c types to de�ne a hierarchical chemical perception tree. Initial types
provide an initial con�guration for the simulation in the search space of types. The third is a �le listing the
SMARTS atom decorators which will be used during sampling (see examples in Table 1). These three �les are
provided in a format where the �rst entry in each line is a complete SMARTS string or SMARTS decorator, and
the second item is an informal name for the string or decorator. For example, “[#7] nitrogen” could be an
entry in the initial type �le, and “X4 connectivity-4” could be an entry in the decorator �le. The other two
input �les relate to our speci�c test in this study, where we seek to determine how well sampled chemical
perception trees can capture the typing of an existing force �eld (Section 2.1.1). Thus, our fourth input �le
provides the set of molecules to be typed in the process of evaluating a chemical perception tree, and the
�fth contains the same molecules labeled with the atom types associated with the target force �eld.

After processing the user provided input, there is a preparation step before sampling can begin. The
�rst step is to assign the base and initial atom types to the molecules via SMARTS chemical matching to
substructures and to remove those base and initial types that match no atoms, in order to simplify the
sampling problem. The remaining initial atom types become the working set of atom types. After the
completion of this preparation phase, our atom type sampling works via the MC algorithm detailed above
(Section 2.1). We next detail the speci�c move set used in SMARTY.

2.2.2 Move set for Monte Carlo sampling over atom type chemical perception trees
As illustrated in Figure 6, an MC move proposal either removes a non-base atom type from the working set
of atom types or creates a more speci�c child type from an existing atom type, A. For creation of a new
child, A’, if the de�nition of A comprises only the primary atom, a decorator may be added to it; or an alpha
substituent may be added. When a new substituent is added, the type of bond connecting it, single, double,
triple, or aromatic, is also chosen. If A already has an alpha substituent, then A’may be created by adding a
decorator to A; by adding a second alpha substituent; or by adding a beta substituent to any non-hydrogen
alpha substituent. Finally, if A already has an alpha and a beta substituent, then a new decorator may be
added to A, or a new alpha or beta substituent may be added. It is possible that in the future, move types
might be added to allow the addition of decorations to alpha and beta substituents, but those moves are
not included in our current SMARTY tests.

Before the chemical perception tree resulting from the move is scored, it is subject to several validity
checks:

1. All atoms in the molecule set must be assigned an atom type from the proposed list.
2. A new child, A’, must match at least one atom in the molecule set.
3. A new child A’must not be a duplicate of any other atom type.
4. The parent atom type A of a new child must still match at least one atom in the molecule set, unless it

is a base type.

Note that criterion 2 eliminates any atom type speci�cations that violate valence restrictions, such as a
carbon with more than four bonds. All of these criteria are applied when the molecules are typed with the
full chemical perception tree, so criteria 2 and 4 will only hold if types A and A’ are both assigned to at least
one atom. If these criteria are met, the proposed atom type set is valid and can be scored (Section 2.1.1).

The SMARTY implementation also o�ers the option of allowing proposed moves only for atom types
involving a single element. For example, one might allow deletion and child creation for only carbon atom
types. This elemental SMARTY sampler, SMARTY

elem

, avoids the combinatorial complexity that results when
changes are allowed for all elements and thus can speed convergence to the global optimum.

2.3 SMIRKY is an algorithm for learning direct chemical perception trees
We recently argued that direct chemical perception73 has major advantages over indirect chemical perception
and illustrated the application of direct chemical perception via a prototype smirno�99Frosst force �eld in
the new SMIRNOFF format.95 The SMARTY algorithm (Section 2.2) is not adequate to sample over direct
chemical perception trees, because it samples only over atom types, and not the independent bond, angle,

10 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Figure 6. Flowchart illustrating the decision tree used for SMARTY move proposals. The numbers attached to
certain arrows correspond to the probability of following that arrow; all moves are made with equal probability in SMARTY.
The diamonds represent decisions and the rectangles are processes. We start the SMARTY move proposals with the
working atom types and decide randomly with equal probability if we want to remove or add an atom type to the set. If
we decide to remove, we randomly choose a working type to be removed and re-score the new set. If we decide to add,
we pick a working atom type from the set and check if it has an alpha substituent. If the answer is no, we either add an
alpha substituent or a decorator. If the answer is yes, we �rst check if the working atom type describes a hydrogen, and if
yes, we add a beta substituent, if not, we either add an alpha or a beta substituent. The new atom type SMARTS created is
added to the end of the list of its corresponding parent. The end result (black circle on the bottom) is a move proposal
which is then evaluated via scoring function (Section 2.1.1).

11 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

and torsion types used in direct chemical perception. Therefore, we have developed a second algorithm,
SMIRKY, to sample over chemical perception trees corresponding to these fragment types. SMIRKY uses
the same Metropolis MC method to sample over a chemical perception tree, and also uses an analogous
scoring function (Section 2.1.1). The di�erences are the use of more general fragment types instead of
atom types, and the resulting di�erences in the move set. SMIRKY also di�ers in that it uses of unequal
probabilities for move proposals. We made this choice based on the unequal distribution of di�erent SMIRKS
decorators in SMIRNOFF fragment types. These unequal probabilities come from two sources — odds
speci�ed by user in the input �les (Section 2.3.2) and odds speci�ed in the SMIRKY move set (Section 2.3.3).
Unlike SMARTY’s elemental approach, we do not currently have a mechanism for reducing the combinatorial
problem associated with sampling SMIRKS patterns by limiting the considered chemical space. We now
present a new tool developed speci�cally to manipulate SMIRKS strings and then detail the SMIRKY input �les
and move set.

2.3.1 ChemicalEnvironment objects are used to parse complex SMIRKS patterns
We created the ChemicalEnvironment Python object which divides a SMIRKS string into atoms connected by
bonds, and stores the decorators associated with each (Figure 7). This object also uses the atom indexing
in the SMIRKS string to allow extraction of any indexed atom, any atom alpha or beta to an indexed atom,
or any associated bond. The user can then easily modify the ChemicalEnvironment by adding neighboring
atoms, removing neighboring atoms, or changing the list of decorators for a given atom or bond. Each
ChemicalEnvironment is loaded and output as a SMIRKS string, so this object integrates with any other tool
that can generate and interpret SMIRKS.

The ChemicalEnvironment object categorizes decorators on atoms and bonds based on the type of
Boolean operator used to combine them; that is, the decorators are separated into OR and AND types. For
example, consider "[#6X3H2,#7X2H1;A+0:1]-[#1:2]" in Figure 7, which is a SMIRKS pattern for a bond type,
and hence has two indexed atoms. For atoms, OR types are composed of a base atom type (typically an
atomic number) and a list of decorators to be combined via a logical OR (“,”). In this example, atom 1 has
two OR types (“#6X3H2” and “#7X2H1”) which are divided into OR bases (“#6” and “#7”) and their corresponding
decorators. For atoms, AND types are decorators that will be combined via a logical AND (“;”). Our example
atom 1 has two AND decorators (“A” and “+0”) which apply to both the carbon and nitrogen OR types. Bonds
connecting atoms can also have OR and AND decorators. When no Boolean operator is used then the
decorator is considered an OR type, so the bond in the present example, “-”, would be considered an OR.

2.3.2 SMIRKY inputs are like those for SMARTY but add user-selected move probabilities
The present SMIRKY implementation takes ten input �les which allow users more customized control of
probabilities while sampling. Three of these �les are similar to SMARTY inputs: a �le with initial fragment
types (that is SMIRKS strings) de�ning a hierarchical chemical perception tree; a �le containing molecules to
be typed in the course of scoring the direct chemical perception tree; and a SMIRNOFF �le which provides
the reference fragment types for use in scoring. As in SMARTY, any of the initial fragment types that do not
match any fragments are removed, creating a working set of fragment types for the MC algorithm. The next
�ve �les provide the atom, bond, and decorator types: OR atom types; OR and AND decorators for atoms;
OR bond types; and AND decorators for bonds (Section 2.3.1). Each decorator �le includes a column for the
odds of proposing a given decorator in the course of the MC sampling. The �nal category of �les allows the
user to specify the odds of picking a certain atom or bond in a fragment that will be changed during the
move. There are two �les in this category— one for atoms and one for bonds. There are two columns in
this format, one specifying if the move is to an indexed, alpha or beta atom or bond using the SMIRKS index
number or the key words “alpha“ or “beta.” Then the second column is used to set the odds. For example, in
a torsion, a user might want to make it more likely to make changes to the outside atoms (1 and 4) than to
the inside atoms (2 and 3).

12 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Figure 7. Mapping between ChemicalEnvironment and corresponding SMIRKS pattern. This illustrates a SMIRKS pattern
“[#6X3H2,#7X2H1;A+0:1]-[#1:2]” (middle) for a substructure (top) being partitioned and how it would be stored in a
ChemicalEnvironment object (bottom). The SMIRKS pattern (middle) represents a bond parameter “-” (gray) between two
labeled atoms— a carbon (light blue) or nitrogen (light blue) atom and a hydrogen atom (light red). In this �gure, we show
two matches for this SMIRKS pattern on the top structure. The matches are highlighted in light blue (atom 1) and light
red (atom 2) circles on the substructure (top). In the ChemicalEnvironment representation, at bottom, atom 1 (light blue
rectangle), there are two ORtypes ‘’‘#6X3H2” with a carbon atom base “#6” and OR decorators “[‘X3, ‘H2’]”, corresponding
to a connectivity of three and a total hydrogen count of one and “#7X2H1” with nitrogen atom base “#7” and OR decorators
“[‘X2, ‘H1’]” (light green). The AND decorators for the atom 1 are “[‘A’, ‘+0’]” (light green) corresponding to an
aliphatic atom with a zero charge. In SMIRKS strings, the high precedence “and” operator is given by a semi-colon “;”, so
the bond described by this pattern is one between a carbon atom with connectivity three and hydrogen count two or a
nitrogen atom with connectivity two and hydrogen count one that is also aliphatic with zero charge.

2.3.3 Move set for Monte Carlo sampling over fragment type chemical perception trees
SMIRKY uses the same general move set as SMARTY; that is, a fragment type A is chosen and then either
deleted or used as the starting point for a child fragment type A’ (Figure 8). The input odds �les for SMIRKY
allow the user to customize sampling for a speci�c fragment type, but the probabilities determining which
type of move, for example adding or removing a non-indexed atom, are set internally. When creating a child
fragment type, the �rst choice made is whether to change an atom or a bond. If an atom is chosen, then
decorators on the atom can be added, swapped, or removed; a new connected atom can be added as a
neighbor; or if the atom selected is not an indexed atom it can be removed (indexed atoms must be retained
in order for the fragment to be fully de�ned). An atom can be removed from a fragment de�nition only
if it is connected to just one other atom; the associated bond is removed at the same time. If a bond is
chosen instead of an atom, either type of decorator can be added, swapped, or removed. As with SMARTY,
we only consider substructures that extend to the beta position of any indexed atom. Because there are
more SMIRKS decorators available for atoms than bonds, the move set is weighted to choose atom moves
more often than bond moves.

To allow e�cient construction of complex SMIRKS patterns that make chemical sense, symmetric moves
are also sometimes proposed. In symmetric moves, equivalent modi�cations are proposed simultaneously
to both outer atoms in a bond, angle, or torsion. The probability of making a symmetric move is �xed inside
SMIRKY. Speci�cally, the frequency of symmetric bond, angle, and torsion types in smirno�99Frosst was
used to assign the probability of making symmetric moves for each fragment type by category.

2.4 SMARTY and SMIRKY were evaluated using multiple molecule sets compared
to reference force �elds

We sought to determine whether our machinery could discover SMARTS or SMIRKS patterns that replicate the
chemical complexity of types in an existing force �eld, thus providing a proof of principle for automating a
step in force �eld development that has in the past been done only by hand. In order to measure chemical
complexity we de�ned success based on the total and partial scores for the sample types compared to

13 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Figure 8. Flowchart to illustrate the decision tree used for SMIRKY move proposals. The numbers attached to
certain arrows correspond to the probability of following that arrow, as currently implemented in SMIRKY. The diamonds
represent decisions and the rectangles are processes. We start the SMIRKY move proposals by choosing an initial fragment
type SMIRKS from the set. SMIRKY then decides randomly with speci�ed probabilities whether it will remove or add a
fragment type SMIRKS. To add, the algorithm chooses between making a change to an atom or a bond. If the change is in
a bond, SMIRKY picks OR or AND decorators to change, but if the change is in an atom, SMIRKY can pick OR decorator or
OR base to change; and then choose between deleting, adding or swapping one of those decorators. The last step is to
choose if a change to an outer atom should be symmetric, if so both outer atoms are changed. Also, if SMIRKY chooses to
change an atom, it can delete or add a new atom to this atom. The new fragment type is added to the end of its parent’s
list. The end result (black circle) is a move proposal which is then evaluated via the scoring algorithm described in Section
2.1.1.
* - The probability of “yes” for this particular decision is 0.2, 0.6, and 0.15 for bond, angle, and torsion types
respectively).

14 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

reference types (Section 2.1.1). A total score of 100% corresponds to patterns matching all reference atom or
fragment types and would indicate complete success for a set of working atom or fragment types. However,
it is not necessary that we exactly reproduce the atom typing or fragment typing of existing force �elds to
succeed, especially in view of the combinatorial challenge we face; it is su�cient that we sample comparable
chemical complexity. Thus, achieving a high total score on average would also be acceptable, especially
if we can achieve at the same time a partial score of 100% for most atom or fragment types. That is, for
both SMARTY and SMIRKY, we seek to recover SMARTS or SMIRKS which will mirror the previously de�ned
indirect or direct chemical perception from the reference force �eld, by separating atoms or fragments into
similar types. However, the automatically generated trees do not necessarily need to encode the exact same
chemical perception trees as those from the reference force �eld.

To understand the evaluation of results, we consider the concrete example of sampling atom types for
1,3-dioxepane-2,4-diol, which has �ve di�erent hydrogen atom types when typed with parm99/parm@Frosst:

• hydrogen bonded to oxygen (HO),
• hydrogen bonded to an aliphatic carbon (HC),
• hydrogen bonded to an aliphatic carbon with one electron withdrawing substituent (H1),
• hydrogen bonded to an aliphatic carbon with two electron withdrawing substituent (H2), and
• hydrogen bonded to an aliphatic carbon with three electron withdrawing substituent (H3).

If SMARTY is successful, it will discover SMARTS strings that identify these types (Figure 3), starting from a
chemically undistinguished initial hydrogen base type. Finding all �ve reference types simultaneously would
give a 100% total score, but we would also consider discovering SMARTS patterns that receive a 100% partial
score for all of these types during di�erent parts of a simulation a success. Partial success might come from
distinguishing four for the �ve types instead.

The chemical perception trees sampled in both SMARTY and SMIRKY were scored against the typing in
existing force �elds (Section 2.1.1). For SMARTY, we used a traditional indirect chemical perception force �eld
speci�cation as the reference, namely, AMBER’s parm9996 with the parm@Frosst97 extension. For SMIRKY,
we used the direct chemical perception force �eld smirno�99Frosst, 95 which was generated by hand to
closely follow the parameters in the parm99/parm@Frosst force �eld.

We developed three molecule sets to test SMARTY and SMIRKY. All three are included as images in the
Supporting Information and molecule �les in the Additional Information.

For the �rst set, our goal was to have a small set of molecules with minimal complexity to test whether
these tools could work as intended. Thus, this set was limited to molecules composed of carbon, oxygen,
and hydrogen atoms, with only single bonds; that is, to alkanes, ethers, and alcohols and the compounds
were drawn from the AlkEthOH compound set.73 The speci�c set of compounds used here comprises 42
molecules, with a total of 803 atoms. We refer to this minimal set as AlkEthOH in our results.

The second set, PhEthOH, is the �rst set additionally supplemented with aromatic compounds, and
comprises 200 molecules with a total of 7,185 atoms. Chemically, the di�erence in these sets is that PhEthOH
includes aromatic rings, along with alkanes, ethers, and alcohols. AlkEthOH has one atom type not found in
PhEthOH, namely H3, corresponding to a hydrogen bound to a carbon which is connected to three electron
withdrawing groups. The aromatic groups in PhEthOH introduce two atom types not found in AlkEthOH
— speci�cally, CA for aromatic carbons and HA for the hydrogens connected to those carbons. However,
PhEthOH has more bond, angle, and fragment types than AlkEthOH.

The third set of molecules was obtained by �ltering DrugBank, a free database of drug and drug-like
molecules.98–101 Molecules with fewer than three or more than 100 heavy atoms were removed, as were
any molecules with metals or metalloids. Next, the molecules were assigned parm99/parm@Frosst atom
types, and any molecule that could not be typed was removed. The molecules were then also typed with
smirno�99Frosst version 1.0.5 and any molecules assigned a generic parameter, for example any bond
(“[*:1]Ì[*:2]”), were also removed. Finally, we selected a reduced set of compounds that include all
atom and fragment types in the reference force �elds used in DrugBank after this �ltering. The �nal set,
termed MiniDrugBank, has 371 molecules containing 15,678 atoms, and is available separately on GitHub
(https://github.com/openforce�eld/MiniDrugBank).

15 of 33

https://github.com/openforcefield/MiniDrugBank


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

2.4.1 Total and partial scores were used to evaluate SMARTY and SMIRKY results
A series of tests were performed to evaluate success for each tool described above— the original SMARTY
sampler (SMARTY

orig

), the elemental SMARTY sampler (SMARTY
elem

), and SMIRKY— in discovering chemical
perception of the complexity in existing force �elds. Each test was run on each of the three molecule sets
described above, AlkEthOH, PhEthOH, and MiniDrugBank. For SMARTY

elem

, tests were performed for each
element with more than one atom type in the molecule set. Using the elemental sampler on elements with
only a single atom type (such as halogens) would not provide useful insight since even a generic SMARTS
pattern could match the relevant chemical perception. SMIRKY tests were performed for bond, angle, proper
torsions, and nonbonded (vdW) fragment types. While the SMIRNOFF format and SMIRKY support improper
torsions, there are a very limited number in smirno�99Frosst so those were not tested.

MC sampling was run at eight e�ective temperatures: 0, 10*6, 10*5, 0.0001, 0.001, 0.01, 0.1, and 1. Ten
initial tests of 10,000 iterations were performed for each combination of molecule set, temperature, and tool.
These were followed by three additional tests with �rst 50,000 and then 100,000 iterations for MiniDrugBank
with SMIRKY, since the search space for fragment types is so large. Output for both tools was saved in two
ways: a human-readable log of the run, and a comma-separated trajectory �le which stores the partial score
for each reference atom or fragment type and the total score at each iteration.

Output �les and plots of score versus time for all simulations along with analysis scripts used for the
results shown here can be found in the Additional Information. Source code and usage examples for SMARTY
and SMIRKY can also be found on our GitHub repository (https://github.com/open-force�eld-group/smarty).

3 Results and Discussion
A central goal of this study is to test the ability of the SMARTY and SMIRKY sampling methods to discover
type de�nitions closely matching those in existing force �elds. As detailed above, if successful, we would
recover SMARTS and SMIRKS patterns matching all atom or fragment types, by achieving total scores of 100%
or partial scores of 100% for all reference types (Section 2.4). However, we would consider high total scores
along with a 100% partial score for most reference types to also indicate success, showing promise for
expanding these algorithms for sampling chemical perception trees beyond the proof of principle in this
paper. Both methods were tested on three molecule sets of increasing complexity— AlkEthOH, PhEthOH,
and MiniDrugBank (section 2.4).

3.1 SMARTY
We performed 10 SMARTY runs, of 10,000 steps each, for each of the three molecule sets, at e�ective
temperatures of 0, 10*6, 10*5, 0.0001, 0.001, 0.01, 0.1, and 1, using both the original SMARTY sampler
(SMARTY

orig

) and the elemental sampler (SMARTY
elem

). The results of these calculations are analyzed in the
following two subsections.

3.1.1 High scores are achieved for the AlkEthOH and PhEthOH molecule sets
We �rst tested SMARTY on the AlkEthOH and PhEthOH sets. Although these have only eight atom types,
some of the �ve hydrogen types used in these sets require multiple atoms in the beta position, so they
still provide a signi�cant challenge. For the AlkEthOH set run at e�ective temperatures between 10*6 and
10*2, the original sampler, SMARTY

orig

, yielded total scores, averaged across the 10 runs, of > 90% (Table
2), and the lowest average score is still fairly high, at 69%. The degradation of performance at lower and
higher temperatures is reasonable for the MC method, as low temperatures can lead to trapping in local
maxima, while high temperatures can lead to a lower preference for favorable states. Figure 9 provides
sample plots of total score against step number for MC runs at various temperatures. As expected, the
higher temperatures lead to greater score �uctuations. Equivalent results were obtained for the PhEthOH
set (Table 2), which has a similar number of atom types (Section 2.4). To summarize results, we also report
total scores for the initial atom types used in each simulation and the maximum total score received across
all simulations (Table 3). Overall, these results strongly support the ability of SMARTY to sample chemically
relevant ensembles of atom types.

16 of 33

https://github.com/open-forcefield-group/smarty


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Average Score (%)*
Temperature AlkEthOH (%)* PhEthOH (%)* MiniDrugBank (%)*

1.0 68.9 ± 0.1 56.9 ± 0.1 42.98 ± 0.10
0.1 75.3 ± 0.1 62.2 ± 0.2 45.71 ± 0.19
0.01 94.4 ± 1.1 88.1 ± 1.4 67 ± 1
0.001 97.5 ± 0.8 96 ± 1 77.0 ± 1.1
0.0001 97.9 ± 0.9 95 ± 1 77.9 ± 1.6
1e-05 98.5 ± 0.7 94.6 ± 2.3 70.0 ± 1.5
1e-06 97.4 ± 0.8 95 ± 1 73.6 ± 1.7
0 88.6 ± 2.6 73 ± 4 72.2 ± 1.5

Table 2. Average of average total scores of 10 SMARTY simulations with AlkEthOH and PhEthOH. We took the
average score at each temperature for each of our 10 simulations (10,000 iterations each), then averaged this across all 10
simulations. * - uncertainties were estimated by the standard error over all 10 trials.

AlkEthOH (%) PhEthOH (%) MiniDrugBank (%)
Initial Maximum Initial Maximum Initial Maximum

All 67.8 100.0 54.5 100.0 40.5 93.0
Hydrogen 52.6 100 39.0 100 35.9 97.0
Carbon 100 100 71.0 100 39.0 95.7
Oxygen 63.6 100 84.1 100 38.3 98.0
Nitrogen n/a n/a n/a n/a 33.1 84.0
Sulfur n/a n/a n/a n/a 52.2 100

Table 3. Initial and maximum total scores for all SMARTY simulations with AlkEthOH, PhEthOH, and MiniDrug-
Bank. Initial scores are the score from the initial types in each molecule set. Maximum scores are the highest total
score measured during a single iteration in any simulation performed. SMARTY

orig

scores are shown in the ‘all’ row, and
SMARTY

elem

scores are shown broken out in the ‘hydrogen’, ‘carbon’, ‘oxygen’, ‘nitrogen’, and ‘sulfur’ rows.

Analysis of the partial scores o�ers a �ner-grained view of these overall results. Thus, we made heat
maps showing the frequency of generating a partial score of 100% for each reference atom type (Figure 10),
at the various simulation temperatures. These show that some reference atom types are easier to discover
than others. This can be for multiple reasons, including because they have simpler speci�cations, and
because they occur more frequently. Also, although low to moderate temperatures yield the best results for
most atom types, higher temperatures worked better for atom type HC, at least for the PhEthOH molecule
set.

Figure 11 shows a sample working atom type hierarchy tree (top panel) that was generated during a
SMARTY simulation, with levels of the hierarchy represented by di�erent colors. The bottom panel shows
which reference atom types are matched by each SMARTS pattern, and the partial score for each match. It
is worth noting in this regard that SMARTY’s hierarchical approach to sampling dramatically simpli�es the
complex search problem. For example, in the parm99/parm@Frosst force �eld for AlkEthOH, there are four
atom types for hydrogens bound to carbon, di�ering in the number of electron withdrawing groups bound
to the carbon atom (i.e., in the beta position). As mentioned before, these hydrogens provide a signi�cant
challenge to SMARTY. With hierarchical sampling, SMARTY can �rst discover less specialized SMARTS and then
proceed to more complex derivative types further down the tree (Figure 11). SMARTY would not be able to
�nd H1 (“[#1$(*-[#6]-[#8])]”), a carbon with one electron withdrawing group, without �rst discovering HC
(“[#1$(*-[#6])]”), because moves are made one atom at a time. This also highlights the importance of the
hierarchy when matching; if the more complex child SMARTS patterns were placed above their parents, then
all hydrogen atoms would be assigned to the more general “[#1]” type; the more complex pattern is only
valuable when it is a child of and placed below the less complex pattern.

This point is further illustrated by considering the additional hydrogen types used in AlkEthOH. The

17 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Figure 9. Total score as a function of iteration for SMARTY
orig

sampling AlkEthOH. The graph shows the total score
(fraction of atoms matching the parm99/parm@Frosst reference atom types) as a function of iteration varies with the
temperature for SMARTY

orig

sampling AlkEthOH. The lines in the graph represent the temperatures 0 (pink), 0.0001
(orange), 0.01 (green) and 0.1 (gray). We can see a high variation throughout the simulation and a predominance of lower
scores for extreme temperatures such as 0 and 1.0. At intermediate temperatures, such as 0.01 and 0.0001, SMARTY
scored higher. The Supporting Information includes plots for simulations at all temperatures.

(a) (b)

Figure 10. Frequency of success for SMARTY
orig

on the AlkEthOH and PhEthOH sets. Heat maps show the results
of SMARTY

orig

for the AlkEthOH (A) and PhEthOH (B) molecule sets. We plot the fraction of simulation time that each
reference atom type (x axis) is matched by a SMARTS pattern with a partial score of 100%. We tested eight di�erent
temperatures (y axis) and ran 10 simulations of 10,000 iterations each. Darker colors imply a higher rate of matching
100% of that reference atom type; see color bars at right. If we never found the reference atom type, the corresponding
cell would be white, but this does not occur here.

18 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Figure 11. Example of a SMARTY hierarchy and inheritance in AklEthOH. This �gure shows the �nal hierarchy
achieved in one SMARTY simulation with the AlkEthOH set at T = 0.0001 after 10,000 iterations. The top shows the
hierarchy of SMARTS strings discovered where each color represents a di�erent level. For example, the initial types are
represented in light blue, and the yellow squares are the working atom types derived from the initial types; the same logic
applies for the other colors. For hydrogen, we see SMARTS patterns that match the parm99/parm@Frosst reference types
HC (yellow), H1 (light green), H2 (lilac), and H3 (light red). The bottom (large gray box) shows all �nal working types and their
respective reference atom types as well as partial score for that pairing.

19 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Figure 12. Comparison of SMARTY
elem

(hydrogen and oxygen) versus SMARTY
orig

(all atoms) on AlkEthOH. Here
we determine the �rst iteration at which each sampler achieves a 100% total score (numerical values, out of 10,000 in
total), then average this number for all runs which were successful in achieving a score of 100% at some point (out of 10
trials in total). The y axis shows which sampler was used (SMARTY

orig

for all atoms versus SMARTY
elem

for hydrogen and
oxygen) and the x axis shows the temperature employed. In general lighter colors indicate higher success rates, and lower
numbers indicate success was achieved more rapidly. Results for SMARTY

elem

for carbon is not shown since AlkEthOH has
only one carbon atom type (CT).

hydrogen atom types used by parm99/parm@Frosst are relatively complex because previous work concluded
the nonbonded parameters for these atoms need to be di�erent, 102 and thus SMARTS patterns to match
these must also be fairly complex. Speci�cally, these atom types require SMARTS strings extending out far
enough to describe multiple atoms in the beta position. If SMARTY did not use SMARTS patterns already
generated as parent types, �nding these complex patterns would be impossible. Here, the relevant atom
types cover hydrogen attached to carbon with zero (HC), one (H1), two (H2) or three (H3) electron withdrawing
groups (Figure 3). For example, a SMARTS pattern which can recognize H3 (in AlkEthOH as shown in Figure 3 in
red) is “[#1$(*-[#6](-[#8])(-[#8])-[#8])]”. But arriving at H3 directly from HC (“[#1$(*-[#6])]” ) would be
impossible without very complex move proposals (yellow to red in Figure 3). Instead, a move in SMARTY
could use HC as a parent type and propose a move to create H1. A subsequent move could take H1 as a
parent and generate H2 as a child then the same for creating H3 from H2. Of course, this will only work if
uncovering each new intermediate type provides some incremental increase in total score, which it does
here. Our assumption is that the chemistry of more diverse sets can be described in a similar way, starting
with the most simple (or generic) SMARTS and then extending that pattern only where necessary.

The analysis so far has focused on the original SMARTY algorithm, which samples over all elements
simultaneously. This approach is comprehensive, but leads to a combinatorial sampling problem. Imagine
we want to �nd the hydrogen atom types in AlkEthOH. The most complex of these is H3, which requires
specifying one atom in the alpha position and three atoms in the beta position (Figure 11). When adding
either an alpha or beta substituent, the probability of choosing a speci�c base type (i.e. correct element) is
approximately 0.15. This means it could potentially take SMARTY more than 0.15*4 ˘ 1, 000moves to �nd H3
when starting with a hydrogen parent type. Including the necessity of choosing the correct parent element
decreases the probability of each move to 0.015, meaning it could take SMARTY on the order of 10,000,000
moves to generate the correct SMARTS pattern for H3. The elemental SMARTY method, SMARTY

elem

, speeds
the search by sampling only one element (base type) at a time. Thus, fewer iterations are required to �rst
discover a SMARTS with a total score of 100%, as shown for AlkEthOH in Figure 12.

3.1.2 MiniDrugBank provides a more di�cult molecule set for testing SMARTY
The MiniDrugBank molecule set was drawn from the DrugBank database, and contains a similar diversity of
atom types in a smaller number of molecules (Section 2.4). Initial and maximum scores across all SMARTY
simulations for MiniDrugBank are shown in Table 3. The total number of reference atom types represented in
MiniDrugBank, 37, is considerably larger than the number of reference atom types in AlkEthOH or PhEthOH,
making this a more challenging test case. As a consequence, the average total scores run lower, often at
70-80%, than in the case of the simpler test sets (Table 2). We therefore focus further evaluation on the the
elemental SMARTY sampler (SMARTY

elem

), which reduces the combinatorial explosion of types and thus is
particularly suitable for bigger and more complex molecule sets. Accordingly, the evaluation of these results
is in terms of partial scores, rather than total scores (Section 2.4).

We �nd that SMARTY
elem

is capable of �nding SMARTS patterns for the majority of reference atom types

20 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

(a) (b)

(c) (d)

Hydrogen

Oxygen

Carbon

Nitrogen

Figure 13. Frequency of success for SMARTY
elem

on the MiniDrugBank set. For SMARTY
elem

for MiniDrugBank, we plot
the fraction of simulation time where the partial score is 100% for a given parm99/parm@Frosst atom type. The elements
shown here are (a) hydrogen, (b) carbon, (c) nitrogen, and (d) oxygen. We used 10 simulations of 10,000 iterations each to
construct the plots at di�erent temperatures (y axis). At high temperatures, most of the reference atom types reach 100%
partial score. However, at low temperatures, there are more well populated reference atom types but also more which
never achieve 100% at any iteration.

(Figure 13). Overall, SMARTY is more likely to match 100% of all reference atom types at relatively high
temperatures. When we decrease the temperature, SMARTY’s behavior changes and no longer �nds many
reference atom types (shown by white in the heat maps), but it matches 100% of some atom types more
frequently (darker colors), until the temperature becomes too low.

SMARTY is able to generate multiple di�erent SMARTS patterns matching typical reference atom types in
MiniDrugBank. In 10 runs of 10,000 iterations each, we found 16,564 unique SMARTS strings which match at
least some fraction of any reference atom type. When we look at the SMARTS patterns which match 100%
of any reference atom type, the number is still rather large, at 801 unique SMARTS strings. This was true
even for simple atom types, such as CM, which is represented by “[#6X3]” in parm99/parm@Frosst. For CM,
SMARTY found 24 di�erent SMARTS strings that matched 100% of this reference atom type. Some of these 24
SMARTS are very generic, such as “[#6]”, others more complex (“[#6X3$(*-[*])$(*=[#6])]”). Our goal was
not to replicate exactly the same SMARTS patterns written by human experts, but instead to determine what
extent automated sampling can capture equivalent— or at least similar— chemical perception. SMARTY’s
ability to discover a wide diversity of SMARTS patterns corresponding to each reference atom type appears to
demonstrate success in this regard.

21 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Figure 14. SMARTY scoring with the bipartite graph. We illustrate how SMARTY scores working atom types (red on the
left) compared to reference atom types (blue on the right) using a bipartite graph. (a) When there is only one generic
SMARTS string (“[#6]”), this pattern is assigned to both CT and CA atom types through the PATTY-adapted scheme, but it
will be matched only to the more populated reference atom type (CT highlighted in yellow); (b) when SMARTY creates a
new set of working types, containing both “[#6]” and “[#6X4]”, the generic atom type will not match CT anymore, since it
chemically matches the new working atom type (“[#6X4]”) instead.

When working types have only very generic SMARTS pattern they will match the most populated reference
atom type due to our typing scheme and scoring function. The scoring function uses a bipartite graph where
the matching is based on the maximum total weight and the weight on each edge is determined by the
number of atoms assigned that working and reference type (Section 2.1.1). For this reason, a reference type
with the highest population is more likely to be matched with a generic working type. To understand the
implications of this, consider the frequency of two of the carbon types in MiniDrugBank, CT and CA. The
parm99/parm@Frosst atom type CT is assigned to 2213 atoms, while CA is used for 2097. If we have only one
carbon SMARTS string, such as the generic one “[#6]”, all carbon atoms in the molecule set will be assigned
as “[#6]”, and after scoring, the SMARTS pattern will match the reference atom type CT because it leads to the
highest total score. In that case, CA (and all other carbon atom types) are not matched to any SMARTS. But, if
we discover a new working atom type that matches CT only, such as “[#6X4]”, then the generic SMARTS will
match CA (Figure 14).

For MiniDrugBank we were only partially successful; we were not able to �nd a 100% partial score for the
HX, N2, C*, and HP atom types with SMARTY. It is worth brie�y examining these types to understand why. HX
was created to address a very speci�c problem occurring with hydroxyl hydrogens; to match it, a SMIRKS
pattern would need to describe an atom in the gamma position (3 bonds away from the primary), but
SMARTY sampling extends out only to the beta position. N2 requires multiple SMARTS patterns to be able to
match 100% (it combines several di�erent chemical groups into a single atom type) and the bipartite graph
matching only allows one working atom type per reference atom type, meaning that SMARTY will never
discover it. C* is very similar to other �ve-membered ring carbon atom types (CW, CC, and CR) in our tests;
it also occurs less frequently which would require SMARTY to generate and keep highly specialized SMARTS
patterns that match the other atom types uniquely before it could be discovered. In order to �nd HP, the
SMARTS pattern would need a decorator in the beta position, but SMARTY does not currently add decorators
to the beta position making it impossible to match this particular atom type. More details about all of these
atom types and why they never get a partial score of 100% can be found in the Supporting Information.

Nevertheless, SMARTY was fairly successful �nding a 100% partial score for most reference atom types
in parm99/parm@Frosst with only a few exceptions. In our tests, we were able to �nd patterns matching
33 out of 37 parm99/parm@Frosst atom types with a 100% partial score— overall an 89.2% success rate.
While some reference atom types are not found, this seems to be less a commentary on our chosen
sampling algorithm and move set; but a byproduct of the complex human decisions made in constructing
parm99/parm@Frosst. The very complex atom typing employed in parm99/parm@Frosst may provide a

22 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

further argument in favor of moving toward a force �eld with direct chemical perception and away from
those with human de�ned atom types.

3.2 SMIRKY
SMIRKY extends SMARTY, testing our ability to sample over chemical perception trees used for fragment
types in SMIRNOFF format force �elds. It automatically samples SMIRKS patterns for fragment types for
bond, angle, torsion, and nonbonded types then compares the fragment type SMIRKS with that in a reference
force �eld for the same set of molecules. As with SMARTY, the overall goal with SMIRKY is to ensure we can
�nd SMIRKS patterns that sample comparable chemical complexity to that used in our reference force �eld,
smirno�99Frosst. Scoring works the same as with SMARTY—we evaluate both the total score and the partial
score for each iteration. In the case of SMIRKY, a partial score of 100% corresponds to SMIRKY discovering a
SMIRKS pattern that matches a single reference fragment type (Equation 1).

With SMIRKY, we were at least partially successful with all molecule sets as evidenced by our ability
to �nd high total scores and 100% partial scores for the majority of fragment types in smirno�99Frosst.
Initially, we performed simulations of comparable length with SMIRKY as with SMARTY; however, increased
complexity made longer simulations necessary. Speci�cally, we began by performing 10 simulations with
10,000 iterations for each fragment type at all eight temperatures (0, 10*6, 10*5, 0.0001, 0.001, 0.01, 0.1, 1).
However, because SMIRKY goes beyond atom types to fragment types, it necessarily must sample more
complex chemical perception trees. For example, torsion fragment types require at least four atoms and
potentially substituents as well; decorators may also be required for all these atoms. This results in SMIRKS
patterns which involve four or more atoms (three or more bonds) all with decorators—a challenging problem.
In SMARTY, the combinatorial problem of discovering su�ciently complex SMARTS patterns was tackled by
creating the elemental sampler in order to limit the chemical space being searched. But with SMIRKY, we
cannot currently sub-divide the chemical space for these more complex fragments (Section 2.3), so we
instead increased the number of iterations. For the most complex molecule set, MiniDrugBank, we increased
the number of iterations to 50,000 and then 100,000. In each case, we performed three simulations at
each temperature for each fragment type. To summarize our results, we report total scores for in the
initial fragment types used in each simulation and the maximum total score received across all simulations
(Table 4). We also report the fraction of reference fragment types to receive a 100% partial score during any
simulation (Table 5).

AlkEthOH PhEthOH MiniDrugBank
Initial Maximum Initial Maximum Initial Maximum

Bond 91.5 100.0 78.9 100.0 59.1 96.2
Angle 80.3 100.0 65.2 100.0 48.8 93.6
Torsion 32.0 100.0 34.7 100.0 29.4 76.0

Nonbonded 30.4 100.0 24.2 99.7 18.1 99.5

Table 4. Initial and maximum total scores achieved across all SMIRKY simulations with AlkEthOH, PhEthOH, and
MiniDrugBank. Initial scores are the score from the initial types for each fragment type in each molecule set. Maximum
scores are the highest total score measured during a single iteration in any simulation performed.

3.2.1 SMIRKY is able to recover all smirno�99Frosst types in AlkEthOH
As with SMARTY, AlkEthOH provides a useful toy example for testing our methods, and SMIRKY is successful
based on total scores for all fragment types. In smirno�99Frosst, there are nonbonded parameters cor-
responding to the same hydrogen parm99/parm@frosst atom types discussed above (Section 3.1.1). To
distinguish all of these types, multiple beta position atoms must be identi�ed. Thus, AlkEthOH is a good
test set, although there are only a few fragment types in each category. SMIRKY discovers fragment type
SMIRKS for all �ve bond, four angle, 11 proper torsion, and eight nonbonded fragment types required to type
AlkEthOH with smirno�99Frosst (Table 5). SMIRKY is able to generate sets of SMIRKS patterns which achieve

23 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Fragment Type AlkEthOH PhEthOH MiniDrugBank
Bond 5/5 10/10 68/73
Angle 4/4 6/6 32/34
Torsion 11/11 16/16 117/136

Nonbonded 8/8 9/9 25/26

Table 5. Number of fragment types with 100% partial score in all SMIRKY simulations. This table summarizes
results for all SMIRKY simulations. For each molecule set, we report the fraction of reference fragment types that get a
100% partial score during at least one simulation. It shows that we were successful in identifying all fragment types in the
AlkEthOH and PhEthOH sets where all fractions are equal to one. As with SMARTY, we were still partially successful for
MiniDrugBank given that we �nd the majority of fragment types.

a total score of 100% for all smirno�99Frosst fragment types in AlkEthOH (Table 4). An average total score of
> 90% at multiple temperatures provides further evidence of SMIRKY’s success (Table 6).

AlkEthOH Average Score (%)*
Temperature Bond Angle Torsion Nonbonded

1 86.7 ± 0.3 67.4 ± 0.3 57.4 ± 0.4 58.6 ± 0.2
0.1 91.8 ± 0.2 77.2 ± 0.4 68.8 ± 0.6 66.1 ± 0.2
0.01 99.66 ± 0.07 94.0 ± 0.4 90.9 ± 0.8 89 ± 1
0.001 99.95 ± 0.01 97.4 ± 0.7 97.7 ± 0.4 91 ± 2
0.0001 99.92 ± 0.03 97.9 ± 0.7 98.3 ± 0.4 93 ± 1
1e-05 99.93 ± 0.03 97.9 ± 0.7 97.3 ± 0.9 89 ± 2
1e-06 99.94 ± 0.02 97.9 ± 0.6 98.3 ± 0.4 87 ± 2
0 99.94 ± 0.02 94.6 ± 0.9 93 ± 1 76 ± 1

Table 6. Average of average total scores of 10 SMIRKY simulations with AlkEthOH. We took the average score at
each temperature for each of our 10 simulations (10,000 iterations each), then averaged this across all 10 simulations. * -
uncertainties were estimated by the standard error over all 10 trials.

While SMIRKY is quite successful in general, its success is not universal at all temperatures. At moderate
temperatures, SMIRKY is able to discover SMIRKS patterns complex enough to agree with the fragment
typing used in smirno�99Frosst, achieving a successful total score of 100%. But, as is expected with an MC
algorithm, we achieve relatively poor scores both at T = 0 and at the high temperature of 0.1. However, at
the intermediate temperature of 0.001, SMIRKY eventually generates torsion SMIRKS with a 100% score and
maintains that high score (Figure 15). In addition to the examples depicted here, multiple simulations at the
temperatures of 10*6, 10*5, and 0.0001 also reached a 100% total score. The fact that multiple temperatures
reach a total score of 100% indicates we have been successful in automatically sampling the chemical
perception trees for torsion parameters in AlkEthOH. Details for all simulations are included in the Additional
Information.

3.2.2 PhEthOH demonstrates the complexity of SMIRNOFF parameters
PhEthOH adds a small amount of complexity relative to AlkEthOH, including aromatic rings in addition to
alkanes, ethers, and alcohols. It requires a total of 10 bond, six angle, 16 torsion, and nine nonbonded
smirno�99Frosst parameters. As with AlkEthOH, we performed 10 SMIRKY simulations at each temperature
for each fragment type. This small increase in complexity also increased the di�culty of matching all
reference types simultaneously, as shown by the drop in average total score for all fragment types (Table 7).
For bonds, angles, and nonbonded fragment types, SMIRKY is able to achieve a 100% total score; however,
the same could not be said for torsions (Table 4). However, SMIRKY is able to �nd a 100% partial score for all
torsions at most temperatures (Table 5).

A 100% partial score is evidence that SMIRKY can generate the SMIRKS of the same chemical complexity

24 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

Figure 15. Total score versus iteration for SMIRKY sampling torsion fragment types in AlkEthOH. At a temperature
of zero (pink line), SMIRKY works solely as a stochastic optimizer and gets stuck in a local optimum. When temperatures
are too high, such as 0.1 (gray line), the probability of accepting moves that cause a decrease in score is very high, leading
to dramatic changes in score throughout the simulation. At more moderate temperatures, such as 0.001 (blue line), a total
score of 100% is eventually achieved.

(a) (b)

Figure 16. Frequency of success for SMIRKY simulations with AlkEthOH and PhEthOH. For torsion fragments in both
AlkEthOH (a) and PhEthOH (b), we plot the fraction of simulation time where each reference fragment type has a torsion
SMIRKS pattern that receives a partial score of 100%. For AlkEthOH, at temperatures below 0.001, all of the reference
fragments spend at least 50% of the simulation time with a 100% partial score. However, for PhEthOH, many of the
reference fragments spend a signi�cant amount of simulation time without a 100% partial score.

25 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

PhEthOH Average Score (%)*
Temperature Bond Angle Torsion Nonbonded

1 80.0 +/- 0.4 61.3 +/- 0.3 49.8 +/- 0.5 46.8 +/- 0.2
0.1 85.0 +/- 0.3 69.5 +/- 0.5 55.5 +/- 0.5 54.4 +/- 0.2
0.01 97.5 +/- 0.1 88.5 +/- 0.9 83.3 +/- 0.7 83 +/- 2
0.001 99.73 +/- 0.06 94.8 +/- 0.4 91.1 +/- 0.9 91 +/- 2
0.0001 99.78 +/- 0.04 95.5 +/- 0.5 93.0 +/- 0.5 90 +/- 3
1e-05 99.83 +/- 0.03 95.8 +/- 0.4 91.3 +/- 0.8 85 +/- 3
1e-06 99.83 +/- 0.04 96.8 +/- 0.6 92 +/- 1 90 +/- 3
0 99.7 +/- 0.1 92.8 +/- 0.8 87 +/- 2 71 +/- 3

Table 7. Average of average total scores of 10 SMIRKY simulations with PhEthOH.We took the average score at each
temperature for each of our 10 simulations (10,000 iterations each), then averaged this across all 10 simulations. * -
uncertainties were estimated by the standard error over all 10 trials.

found in the smirno�99Frosst. As with SMARTY, we examine the partial score for each reference torsion type
and consider the fraction of iterations spent at 100% (Figure 16). For all but one reference torsion type (t2),
SMIRKY is able to achieve a partial score of 100% for at least a fraction of time at all temperatures. It does
achieve a 100% partial score for t2 at most temperatures, only failing at temperatures of 0 and 0.1. However,
PhEthOH is slightly more challenging, as evidenced by the fact that heat map colors are lighter in general.

Unlike in AlkEthOH, SMIRKY was not able to achieve a total score of 100% when sampling torsions
in PhEthOH (Table 4). PhEthOH only has six more torsion types, yet these make it substantially more
challenging to �nd and keep su�ciently complex SMIRKS. In Section 3.1.1, we estimated the number of
moves required to generate certain SMARTS patterns. When considering fragment types with more atoms,
the combinatorial problem grows further since there are multiple atoms and bonds that require decorators.
The lower frequency of 100% partial scores for torsions in PhEthOH is our �rst example of the implications
of this combinatorial problem. For PhEthOH, we are able to generate SMIRKS for all reference torsions
during at least some fraction of most simulations. However, if we are going to e�ectively sample chemical
perception trees for the development of force �elds, future move proposals will need to move through
chemical space more e�ciently. We will examine this problem more closely when analyzing SMIRKY’s results
on MiniDrugBank (Section 3.2.3).

Future move proposal engines could be made more e�cient by taking advantage of basic chemical
information. For example, if a double bond was already speci�ed between a carbon and another atom, that
carbon atom cannot have four bonds; however, as currently implemented, SMIRKY will occasionally propose
moves which attempt to add a “X4” decorator to that carbon. We could take this concept one step further
by learning which decorators can productively be applied to which atoms. For example, hydrogen can only
have one bond and it is always single, so adding decorators to a hydrogen atom or its connecting bond
will never usefully impact the separation of fragment types. Currently, SMIRKY makes many naïve moves,
wasting many of its iterations generating SMIRKS patterns that cannot help separate fragments for these and
other reasons.

3.2.3 MiniDrugBank is a signi�cantly more challenging molecule set
MiniDrugBank covers signi�cantly more chemical space than either of the other molecule sets with 73 bond,
34 angle, 136 proper torsion, and 26 nonbonded parameters from smirno�99Frosst. It uses all parameters
employed in molecules from the DrugBank database that can be atom typed by the parm99/parm@Frosst
force �eld, as described in Section 2.4. This is a more complex set, so despite considerable success, we
are often unable to obtain a total score of 100%. Speci�cally, we were unable to �nd a total score of 100%
for bonds, angles, torsions or nonbonded fragment types with 10,000 iterations. We also saw a signi�cant
decrease in the average total score for all fragment types during our ten simulations (Table 8) relative to
other molecule sets. For this reason we repeated the simulations with 50,000 and then 100,000 iterations.
SMIRKY still did not �nd a total score of 100% during the longer simulations. However, overall, SMIRKY was

26 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

partially successful for MiniDrugBank. We achieve total scores over 90% for nonbonded, bond, and angle
types for the highest scoring iterations (Table 4). The highest total score for torsion types is 76%, which is still
promising considering the large combinatorial problem.

On combining the results from every iteration in all simulations (10,000, 50,000, and 100,000 iterations at
all temperatures) we �nd a 100% partial score for the majority of smirno�99Frosst reference fragment types
(Table 5). Heat maps for MiniDrugBank, like the examples shown for torsions in AlkEthOH and PhEthOH
(Figure 16), are available in the Supporting Information. There are �ve bond, two angle, 19 torsion, and one
nonbonded reference fragment types where SMIRKY never �nds a 100% partial score. Potential reasons
for missing these fragment types are summarized in this section and discussed in further detail in the
Supporting Information. While it would be ideal to �nd all the fragment types, SMIRKY is able to �nd SMIRKS
patterns that agree with 91% of the smirno�99Frosst fragment types, indicating that we do recover a great
deal of the target chemistry.

MiniDrugBank Average Score (%)*
Temperature Bond Angle Torsion Nonbonded

1.0 67.0 ± 0.4 50.3 ± 0.3 32.7 ± 0.4 35.9 ± 0.3
0.1 70.3 ± 0.7 53.5 ± 0.5 34.9 ± 0.8 44.0 ± 0.4
0.01 82.9 ± 0.4 70 ± 1 47 ± 1 77 ± 1
0.001 90.1 ± 0.6 76.4 ± 0.9 55 ± 1 87 ± 2
0.0001 91.6 ± 0.4 81.4 ± 0.7 56 ± 1 86 ± 2
1e-05 91.9 ± 0.5 81 ± 1 54 ± 2 86 ± 1
1e-06 90.7 ± 0.6 77 ± 1 60 ± 1 86 ± 1
0 90 ± 1 81.7 ± 0.9 60 ± 2 79 ± 2

Table 8. Average of average total scores of 10 SMIRKY simulations with MiniDrugBank. We took the average score
at each temperature for each of our 10 simulations (10,000 iterations each), then averaged this across all 10 simulations. *
- uncertainties were estimated by the standard error over all 10 trials.

As with SMARTY, there are a few fragment types that SMIRKY never recovers. In the Supporting Infor-
mation we provide information about these missing fragment types, exploring in more detail why some
are so challenging and why others are undiscoverable with SMIRKY’s current algorithm. In the following
paragraphs we summarize the categories where SMIRKY’s algorithm could be improved in order to discover
these missing types.

The order of the fragment type hierarchy and relationship between parent and child types could help
explain some missing types. The two missing angle types, a6 (“[*:1]Ì;!@[*;r3:2]Ì;!@[*:3]”) and a12
(“[*:1]Ì;!@[*;r5:2]Ì;@[*;r5:3]”), highlight the importance of where newly generated SMIRKS are placed
in the hierarchy. In smirno�99Frosst these patterns always match carbon atoms in 3- and 5-membered rings,
but atoms 1 and 3 can be any element, meaning it is easy to lose progress made toward these two patterns
when patterns lower in the hierarchy also match the ring carbon. SMIRKY requires that when a child SMIRKS
pattern is created the parent SMIRKS still matches at least some molecules. In most cases this prevents the
creation of unnecessarily speci�c SMIRKS, but in some cases makes it impossible to OR decorators together.
For example, we would be unable to �nd the exact pattern for n7 (“[#1:1]-[#6X4]Ì[*+1,*+2]”) because
creation of a child with a second OR type on the beta atom will always empty the parent. This is also true for
many of the other 19 missing torsions. SMIRKY is not trying to discover the exact SMIRKS patterns used in
smirno�99Frosst so it is possible our algorithm could still succeed �nding SMIRKS matching these reference
types using a di�erent combination of moves. However, allowing moves to combine SMIRKS decorators could
make distinguishing this type of chemistry easier. Another possible solution is allowing a child to completely
replace a parent when the generated SMIRKS matches a larger section of chemical space, but not when it
types the same group of fragments the parent typed.

The combinatorial problem that occurs in SMARTY is exacerbated in SMIRKY since multiple atoms may
require decorators or alpha or beta substituents. It is di�cult to identify a speci�c reason SMIRKY does not

27 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

reach a 100% partial score for some of the torsion types and the �ve missing bond types. This suggests that
the combinatorial problem described above (Section 3.2.2) is the most likely source of failure. Thus it seems
likely that chemical perception sampling tools in future force �eld parameterization will need improved move
sets with higher acceptance rates.

To estimate the size of the search problem posed by torsions in SMIRKY, we considered an example refer-
ence torsion t78 (“[*:1]-,:[#6X3:2]=[#7X2:3]-[*:4]”), a deceptively simple example where SMIRKY never
reaches a 100% partial score. SMIRKY simulations for torsions are initialized with the center two atoms speci-
�ed and no bond information provided, so the initial torsion relevant to t78 is “[*:1]Ì[#6:2]Ì[#7:3]Ì[*:4]”
— that is, a carbon atom connected by any bond to a nitrogen atom. For the purpose of this exercise we
will assume we want to generate this exact same SMIRKS; while that is not actually the goal of SMIRKY, it
is a helpful example to illustrate the scope of the combinatorial problem. In this case, the probability of
adding any one particular atom or bond decorator is approximately 0.01. In t78, there are an additional
two atom decorators (X3 on carbon and X2 on nitrogen) along with four extra bond decorators. For each
SMIRKY step, one torsion type from the working set is chosen (this is the parent type) and then the child
fragment is created by making changes to this parent type (Figure 4). In order to generate this particular
SMIRKS we also need to include the probability of choosing the correct parent type, which is about 0.02. Even
if we assume the order of adding each decorator is unimportant, it will typically take SMIRKY over 1 billion
steps to generate this exact SMIRKS pattern.

One way to simplify the combinatorial problem in SMIRKY or future packages for sampling chemical
perception trees would be creating a more e�cient move set. As discussed in Section 3.2.2, SMIRKY currently
considers all possible decorators for the atoms and bonds, whether or not they make chemical sense, and
thus wastes considerable time proposing patterns that do not match any molecules. Considering the low
probability of picking a given decorator, the fact that SMIRKY is able to �nd SMIRKS patterns which match
120 (88%) of the reference torsions is further evidence that we have been fairly successful in sampling the
chemical perception tree e�ectively. However, if we could increase the probability of picking good decorators,
we could decrease the number of moves required to sample the requisite chemistry. Future progress of
these tools should leverage moves which only employ chemically reasonable combinations of decorators.
For example, a double bond decorator should never be allowed next to a tetrahedral carbon which only
has single bonds. This information would not necessarily need to be provided by a human expert; instead,
molecule sets used for training could be used to extract this information.

Overall, SMIRKY’s ability to �nd over 90% of the smirno�99Frosst fragment types in MiniDrugBank shows
it can automatically sample suitable chemical perception trees. Despite the shortcomings discussed above,
SMIRKY is clearly capable of generating complex chemical perception like that historically generated by hand.

4 Conclusions
SMARTY and SMIRKY have proven capable of automatically sampling chemical perception trees relevant to
general small molecule force �elds. Both of our tools were tested �rst with relatively simple sets (AlkEthOH
and PhEthOH) and then using MiniDrugBank, which provided a test set of molecules encompassing the
diversity of the DrugBank database. SMARTY generated SMARTS patterns which resulted in a 93% total score
for MiniDrugBank, and 100% for AlkEthOH and PhEthOH. SMIRKY achieved a total score of over 90% for
nonbonded, bond, and angle fragment types in MiniDrugBank.

In some cases, the signi�cant chemical complexity encoded in certain existing atom types limits our
ability to �nd these types via individual SMARTS patterns. This may in part be because of overly complex atom
typing, which, in traditional force �elds, needs to encode the chemistry required for all force �eld parameter
types simultaneously. Switching to direct chemical perception may allow for much more straightforward
parameter assignment.73

Our SMIRKY tool for working with direct chemical perception also had considerable success. SMIRKY
generated SMIRKS patterns which capture more than 90% of the fragment types in smirno�99Frosst for
MiniDrugBank and 100% for AlkEthOH and PhEthOH. Coverage was less than perfect in part because there
is a signi�cant combinatorial problem in sampling chemical perception trees. This combinatorial problem

28 of 33



Open Force Field Consortium— preprint ahead of submission— October 12, 2018

is most pronounced in SMIRKY’s results on torsions, where many atoms and bonds may require multiple
decorators. The ability to automatically recover the chemical perception in these existing force �elds is a
promising �rst step toward sampling over chemical perception as part of force �eld parameterization.

SMARTY and SMIRKY are prototypes created as a part of the Open Force Field Initiative,42 which aims to
create open source parameterization tools that can provide accurate force �elds without human experts
being required in the parameterization process. The overall initiative is expected to have a signi�cant impact
on the quality of biophysical modeling and molecular design for a variety of �elds, and facilitate force �eld
science.

Historically, many force �elds used atom types, a form of indirect chemical perception, where all atom
types were generated by hand by an expert. As discussed in the Introduction, the complexity of these
atom types has been a major contributor to the di�culty of force �eld development and a barrier to cross-
comparing force �elds. The new SMIRNOFF format, with direct chemical perception, is an important step
forward, but as currently implemented still uses hand-encoded SMIRKS patterns to assign parameters. In
order to automate force �eld development, the generation of these SMIRKS patterns must be done automati-
cally. SMARTY and SMIRKY are able to generate SMARTS and SMIRKS with comparable chemical complexity to
parm99/parm@Frosst and smirno�99Frosst. These tools are a promising �rst step to determining chemical
perception for general force �elds without relying on human expertise.

While SMARTY and SMIRKY both show considerable promise, they both face challenges with the size of
the combinatorial search problem, suggesting room for further improvement. The combinatorial problem
becomes especially important for fragment types involving the most potential atoms and decorators —
angles and torsions. One step to improving performance could include a better optimization algorithm, such
as simulated annealing. Here, however, the sampling problem is exacerbated by the fact that move proposals
are not necessarily chemically sensible, so future work will need to make more reasonable chemical moves
to improve e�ciency. Before introducing a new optimization algorithm, the move set needs to be improved.
Particularly, instead of using any SMARTS decorator, these tools should take advantage of basic chemistry.
For example, no molecule will have a tetrahedral carbon with a double bond, so such a move should never
be proposed.

Our ultimate goal is to move past comparisons to existing force �elds and to develop new force �elds
which hopefully provide improved accuracy. While SMARTY and SMIRKY are both promising examples of
tools which sample over chemical perception trees, our work here used them in the context of existing
force �elds. Longer-term, they will instead be used to help sample over chemical perception as well as
force �eld parameters, since our real goal is to improve force �elds. New scoring functions will be used
to evaluate SMIRKS patterns and parameters in the SMIRNOFF format compared to experimental and/or
quantum chemical reference data. These tools will allow the development of next generation force �elds in
a completely automated way.

5 Acknowledgements
The authors are grateful to Patrick B. Grinaway (ORCID: 0000-0002-9762-4201), Kyle A. Beauchamp (OR-
CID: 0000-0001-6095-8788), Robert McGibbon (ORCID: 0000-0003-3337-954X), Kim Branson (ORCID: 0000-
0002-5326-8911), and Vijay S. Pande (ORCID: 0000-0003-2774-1178) for insightful discussions on Bayesian
approaches to sampling atom types. We would like to also acknowledge Victoria T. Lim (ORCID: 0000-0003-
4030-9312) for advice on code organization and help reviewing code. We are also thankful for helpful
discussions with all the members of the Open Force Field Initiative.

DLM, CCB, and CZ appreciate the �nancial support from the National Science Foundation (CHE 1352608)
and the National Institutes of Health (1R01GM108889-01) and computing support from the UCI GreenPlanet
cluster, supported in part by NSF Grant CHE-0840513. CCB is also supported by a fellowship from The
Molecular Sciences Software Institute under NSF grant ACI-1547580. CZ also appreciates the Brazilian
Science without Borders scholarship (Capes - BEX 1865612-9). MKG appreciates �nancial support from
the NIH (GM061300). JDC appreciates support from the Sloan Kettering Institute and NIH grant P30 758
CA008748, Cycle for Survival. JF acknowledges support from NSF grant CHE-1738979. MRS acknowledges

29 of 33

http://orcid.org/0000-0002-9762-4201
https://orcid.org/0000-0001-6095-8788
https://orcid.org/0000-0003-3337-954X
https://orcid.org/0000-0002-5326-8911
https://orcid.org/0000-0002-5326-8911
https://orcid.org/0000-0003-2774-1178
https://orcid.org/0000-0003-4030-9312
https://orcid.org/0000-0003-4030-9312


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

support from NSF grant CHE-173897. CIB acknowledges support by OpenEye Scienti�c Software for his
sabbatical term contributing to this work. MKG has an equity interest in, and is a co-founder and scienti�c
advisor of, VeraChem LLC. The contents of this publication are solely the responsibility of the authors and
do not necessarily represent the o�cial views of the NIH. DLM serves on the scienti�c advisory board of
OpenEye Scienti�c Software. JDC serves on the scienti�c advisory board of Schrödinger.

6 Supporting Information Available
The supporting information consists of a PDF �le with extended details and images considered too long
for the main text. There are images of all molecules in each of the molecule sets tested for these results:
AlkEthOH (42), PhEthOH (200), and MiniDrugBank (371). Additionally, we provided further details and analysis
of the reference atom types (SMARTY) and fragment types (SMIRKY) which never receive a 100% partial score.
We also provide heat map images for all SMIRKY fragment types and molecule sets not shown here in the
same form as Figures 10, 13, and 16.

7 Additional Information
Additional information is available free of charge online through the University of California Dash at https:
//doi.org/10.7280/D1CD4C. It includes input �les, output �les, and score vs. iteration plots for all SMARTY
and SMIRKY simulations with every molecule set discussed. This also includes molecule �les that are human
and machine readable. It contains heat map results both as images and as computer readable csv �les, as
well as all of the Python scripts used to analyze these results and to create the �gures in this paper. The
Python package to run SMARTY and SMIRKY, along with example simulations, can be found in our GitHub
Repository at https://github.com/openforce�eld/smarty.

References
[1] Klepeis, J. L.; Lindor�-Larsen, K.; Dror, R. O.; Shaw, D. E. Curr. Opin. Struct. Biol. 2009, 19, 120–127.

[2] Sellers, B. D.; James, N. C.; Gobbi, A. J. Chem. Inf. Model. 2017, 57, 1265–1275.

[3] Fischer, N. M.; van Maaren, P. J.; Ditz, J. C.; Yildirim, A.; van der Spoel, D. J. Chem. Theory Comput. 2015, 11, 2938–2944.

[4] Christ, C. D.; Mark, A. E.; van Gunsteren, W. F. J. Comput. Chem. 2010, 31, 1569–1582.

[5] Pohorille, A.; Jarzynski, C.; Chipot, C. J. Phys. Chem. B 2010, 114, 10235–10253.

[6] Mohamed, N. A.; Bradshaw, R. T.; Essex, J. W. J. Comput. Chem. 2016, 37, 2749–2758.

[7] Jiao, D.; Golubkov, P. A.; Darden, T. A.; Ren, P. PNAS 2008, 105, 6290–6295.

[8] Hansen, N.; van Gunsteren, W. F. J. Chem. Theory Comput. 2014, 10, 2632–2647.

[9] Mishra, S. K.; Calabró, G.; Loe�er, H. H.; Michel, J.; Ko�a, J. J. Chem. Theory Comput. 2015, 11, 3333–3345.

[10] Mobley, D. L.; Gilson, M. K. Annu. Rev. Biophys. 2017, 46, 531–558.

[11] Piana, S.; Lindor�-Larsen, K.; Shaw, D. E. Biophys. J. 2011, 100, L47–L49.

[12] Senftle, T. P.; Hong, S.; Islam, M. M.; Kylasa, S. B.; Zheng, Y.; Shin, Y. K.; Junkermeier, C.; Engel-Herbert, R.; Janik, M. J.;
Aktulga, H. M.; Verstraelen, T.; Grama, A.; van Duin, A. C. T. npj Comput. Mater. 2016, 2, 15011.

[13] van Gunsteren, W. F.; Berendsen, H. J. C. Angew. Chem. Int. Ed. Engl. 1990, 29, 992–1023.

[14] Dey, A.; Nath Pati, N.; R. Desiraju, G. CrystEngComm 2006, 8, 751–755.

[15] Lindor�-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins 2010, 78,
1950–1958.

[16] Vanommeslaeghe, K.; Yang, M.; MacKerell, A. D. J. Comput. Chem. 2015, 36, 1083–1101.

[17] Wang, L. et al. J. Am. Chem. Soc. 2015, 137, 2695–2703.

30 of 33

https://doi.org/10.7280/D1CD4C
https://doi.org/10.7280/D1CD4C
https://github.com/openforcefield/smarty


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

[18] Aldeghi, M.; Heifetz, A.; Bodkin, M. J.; Knapp, S.; Biggin, P. C. Chem Sci 2016, 7, 207–218.

[19] Bannan, C. C.; Burley, K. H.; Chiu, M.; Shirts, M. R.; Gilson, M. K.; Mobley, D. L. J.Comput. Aided Mol. Des. 2016, 30, 1–18.

[20] Wu, S.; Angelikopoulos, P.; Papadimitriou, C.; Moser, R.; Koumoutsakos, P. Phil. Trans. R. Soc. A 2016, 374, 20150032.

[21] Anisimov, V. M.; Vorobyov, I. V.; Roux, B.; MacKerell, A. D. J. Chem. Theory Comput. 2007, 3, 1927–1946.

[22] Monticelli, L.; Tieleman, D. In Biomolecular Simulations; Monticelli, L., Salonen, E., Eds.; Methods in Molecular Biology
924; Humana Press, 2013; pp 197–213.

[23] Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.; Schnieders, M. J.; Haque, I.; Mobley, D. L.; Lambrecht, D. S.;
DiStasio, R. A.; Head-Gordon, M.; Clark, G. N. I.; Johnson, M. E.; Head-Gordon, T. J. Phys. Chem. B 2010, 114, 2549–2564.

[24] Wang, L.-P.; Martinez, T. J.; Pande, V. S. J. Phys. Chem. Lett. 2014, 5, 1885–1891.

[25] Wu, J. C.; Chattree, G.; Ren, P. Theor. Chem. Acc. 2012, 131, 1138.

[26] Halgren, T. A. J. Comput. Chem. 1996, 17, 490–519.

[27] Halgren, T. A. J. Comput. Chem. 1996, 17, 520–552.

[28] Damm, W.; Frontera, A.; Tirado–Rives, J.; Jorgensen, W. L. J. Comput. Chem. 1997, 18, 1955–1970.

[29] Cailliez, F.; Pernot, P. J. Chem. Phys. 2011, 134, 054124.

[30] Geballe, M. T.; Guthrie, J. P. J. Comput. Aided Mol. Des. 2012, 26, 489–496.

[31] Rizzi, F.; Najm, H.; Debusschere, B.; Sargsyan, K.; Salloum, M.; Adalsteinsson, H.; Knio, O. Multiscale Model. Simul.
2012, 10, 1460–1492.

[32] Deublein, S.; Metzler, P.; Vrabec, J.; Hasse, H. Mol. Simul. 2013, 39, 109–118.

[33] Köster, A.; Spura, T.; Rutkai, G.; Kessler, J.; Wiebeler, H.; Vrabec, J.; Kühne, T. D. J. Comput. Chem. 2016, n/a–n/a.

[34] Hopkins, C. W.; Roitberg, A. E. J. Chem. Inf. Model. 2014, 54, 1978–1986.

[35] Hédin, F.; El Hage, K.; Meuwly, M. J. Chem. Inf. Model. 2016, 56, 1479–1489.

[36] Baskin, I. I.; Winkler, D.; Tetko, I. V. Expert Opin. Drug Discovery 2016, 11, 785–795.

[37] Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B. L.; Grubmüller, H.; MacKerell Jr, A. D. Nat Meth
2017, 14, 71–73.

[38] Folgoc, L. L.; Delingette, H.; Criminisi, A.; Ayache, N. IEEE Trans. Med. Imaging 2017, 36, 607–617.

[39] Lesch, V.; Diddens, D.; Bernardes, C. E. S.; Golub, B.; Dequidt, A.; Zeindlhofer, V.; Sega, M.; Schröder, C. J. Comput.
Chem. 2017, 38, 629–638.

[40] Smith, J. S.; Isayev, O.; Roitberg, A. E. Chem. Sci. 2017, 8, 3192–3203.

[41] Xu, P.; Guidez, E. B.; Bertoni, C.; Gordon, M. S. J. Chem. Phys. 2018, 148, 090901.

[42] Chodera, J. D.; Gilson, M. K.; Mobley, D. L.; Shirts, M. R.; Wang, L.-P.; Kroenlein, K.; Bayly, C. I. Open Force Field Group.
openforce�eld.org, 2018.

[43] Ren, P.; Ponder, J. W. J. Comput. Chem. 2002, 23, 1497–1506.

[44] Gross�eld, A.; Ren, P.; Ponder, J. W. J. Am. Chem. Soc. 2003, 125, 15671–15682.

[45] Noskov, S. Y.; Lamoureux, G.; Roux, B. J. Phys. Chem. B 2005, 109, 6705–6713.

[46] Yu, H.; Geerke, D. P.; Liu, H.; van Gunsteren, W. F. J. Comput. Chem. 2006, 27, 1494–1504.

[47] Laury, M. L.; Wang, L.-P.; Pande, V. S.; Head-Gordon, T.; Ponder, J. W. J. Phys. Chem. B 2015, 119, 9423–9437.

[48] Lemkul, J. A.; Huang, J.; Roux, B.; MacKerell, A. D. Chem. Rev. 2016, 116, 4983–5013.

[49] Liu, C.; Li, Y.; Han, B.-Y.; Gong, L.-D.; Lu, L.-N.; Yang, Z.-Z.; Zhao, D.-X. J. Chem. Theory Comput. 2017,

[50] Liu, Y.; Tao, L.; Lu, J.; Xu, S.; Ma, Q.; Duan, Q. FEBS Letters 2011, 585, 888–892.

31 of 33

openforcefield.org


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

[51] Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P. J. Chem. Phys. 2012, 137, 144103.

[52] Olubiyi, O. O.; Strodel, B. Data Brief 2016, 9, 642–647.

[53] Wang, L.-P.; McKiernan, K. A.; Gomes, J.; Beauchamp, K. A.; Head-Gordon, T.; Rice, J. E.; Swope, W. C.; Martínez, T. J.;
Pande, V. S. J. Phys. Chem. B 2017, 121, 4023–4039.

[54] Wildman, J.; Repi��ák, P.; Paterson, M. J.; Galbraith, I. J. Chem. Theory Comput. 2016, 12, 3813–3824.

[55] Qi, R.; Wang, Q.; Ren, P. Bioorg. Med. Chem. 2016,

[56] Botu, V.; Batra, R.; Chapman, J.; Ramprasad, R. J. Phys. Chem. C 2017, 121, 511–522.

[57] Zahariev, F.; De Silva, N.; Gordon, M. S.; Windus, T. L.; Dick-Perez, M. J. Chem. Inf. Model 2017,

[58] Pande, V. Biophys. J. 2014, 106, 44a.

[59] Wang, L.-P.; Head-Gordon, T.; Ponder, J. W.; Ren, P.; Chodera, J. D.; Eastman, P. K.; Martinez, T. J.; Pande, V. S. J. Phys.
Chem. B 2013, 117, 9956–9972.

[60] Torabifard, H.; Starovoytov, O. N.; Ren, P.; Cisneros, G. A. Theor. Chem. Acc. 2015, 134, 101.

[61] Mu, X.; Wang, Q.; Wang, L.-P.; Fried, S. D.; Piquemal, J.-P.; Dalby, K. N.; Ren, P. J. Phys. Chem. B 2014, 118, 6456–6465.

[62] Bradshaw, R. T.; Essex, J. W. J. Chem. Theory Comput. 2016, 12, 3871–3883.

[63] Albaugh, A. et al. J. Phys. Chem. B 2016, 120, 9811–9832.

[64] Artemova, S.; Jaillet, L.; Redon, S. J. Comput. Chem. 2016, 37, 1191–1205.

[65] Avendaño-Franco, G.; Romero, A. H. J. Chem. Theory Comput. 2016, 12, 3416–3428.

[66] Cole, D. J.; Vilseck, J. Z.; Tirado-Rives, J.; Payne, M. C.; Jorgensen, W. L. J. Chem. Theory Comput. 2016, 12, 2312–2323.

[67] Vanommeslaeghe, K.; MacKerell, A. D. J. Chem. Inf. Model. 2012, 52, 3144–3154.

[68] Zhang, Q.; Zhang, W.; Li, Y.; Wang, J.; Zhang, L.; Hou, T. J. Cheminform. 2012, 4, 26.

[69] Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Model. 2006, 25, 247–260.

[70] Yesselman, J. D.; Price, D. J.; Knight, J. L.; Brooks, C. L. J. Comput. Chem. 2012, 33, 189–202.

[71] Daylight Chemical Information Systems Inc., Daylight Chemical Information Systems Inc. 2011, Daylight Version 4.9.

[72] Ehrlich, H.-C.; Rarey, M. J. Cheminform. 2012, 4, 13.

[73] Mobley, D.; Bannan, C. C.; Rizzi, A.; Bayly, C. I.; Chodera, J. D.; Lim, V. T.; Lim, N. M.; Beauchamp, K. A.; Shirts, M. R.;
Gilson, M. K.; Eastman, P. K. bioRxiv 2018, 286542.

[74] Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157–1174.

[75] Böcker, S.; Bui, Q. B. A.; Truss, A. Theoretical Computer Science 2011, 412, 1184–1195.

[76] Wildman, S. A.; Crippen, G. M. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873.

[77] Pedretti, A.; Villa, L.; Vistoli, G. Theor. Chem. Acc. 2003, 109, 229–232.

[78] Lipkowitz, K.; Boyd, D. Reviews in Computational Chemistry; Reviews in Computational Chemistry v. 14; Wiley, 2009.

[79] Brown, I. D. IUCrJ 2017, 4, 514–515.

[80] Jin, Z.; Yang, C.; Cao, F.; Li, F.; Jing, Z.; Chen, L.; Shen, Z.; Xin, L.; Tong, S.; Sun, H. J. Comput. Chem. 2016, 37, 653–664.

[81] Bush, B. L.; Sheridan, R. P. J. Chem. Inf. Comput. Sci. 1993, 33, 756–762.

[82] OpenEye Scienti�c Software, I. OEChem. http://www.eyesopen.com, 2010; www.eyesopen.com.

[83] Marcou, G.; Rognan, D. J. Chem. Inf. Model. 2006, 47, 195–207.

[84] Stahl, M.; Mauser, H. J. Chem. Inf. Model. 2005, 45, 542–548.

32 of 33

www.eyesopen.com


Open Force Field Consortium— preprint ahead of submission— October 12, 2018

[85] Green, P. J. Biometrika 1995, 82, 711–732.

[86] Binder, K.; Heermann, D. Monte Carlo Simulation in Statistical Physics: An Introduction, 5th ed.; Graduate Texts in
Physics; Springer-Verlag: Berlin Heidelberg, 2010.

[87] Farrell, K.; Oden, J. T.; Faghihi, D. J. Comput. Phys. 2015, 295, 189–208.

[88] Ferguson, A. L. J. Comput. Chem. 2017, 38, 1583–1605.

[89] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J. Chem. Phys. 1953, 21, 1087–1092.

[90] Kroese, D. P.; Brereton, T.; Taimre, T.; Botev, Z. I. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 386–392.

[91] Diestel, R. Graph Theory, 5th ed.; Springer, 2016.

[92] Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons, 2016.

[93] Galil, Z. ACM Comput. Surv. 1986, 18, 23–38.

[94] Glover, F. Naval Research Logistics 1967, 14, 313–316.

[95] Bayly, C. I.; Bannan, C. C.; Mobley, D. L. smirno�99Frosst. doi.org/10.5281/zenodo.1186466, 2016.

[96] Wang, J.; Cieplak, P.; Kollman, P. A. J. Comput. Chem. 2000, 21, 1049–1074, parm99.

[97] Bayly, C.; McKay, D.; Truchon, J. An Informal AMBER Small Molecule Force Field: Parm@ Frosst. http://www.ccl.net/
cca/data/parm_at_Frosst/, 2010.

[98] Wishart, D. S.; Knox, C.; Guo, A. C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. Nucleic Acids Res.
2006, 34, D668–672.

[99] Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. Nucleic Acids Res.
2008, 36, D901–906.

[100] Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.;
Guo, A. C.; Wishart, D. S. Nucleic Acids Res. 2011, 39, D1035–1041.

[101] Law, V. et al. Nucleic Acids Res. 2014, 42, D1091–1097.

[102] Veenstra, D. L.; Ferguson, D. M.; Kollman, P. A. J. Comput. Chem. 1992, 13, 971–978.

33 of 33

doi.org/10.5281/zenodo.1186466
http://www.ccl.net/cca/data/parm_at_Frosst/
http://www.ccl.net/cca/data/parm_at_Frosst/


download fileview on ChemRxivsmarty_paper_reviews.pdf (1.79 MiB)

https://chemrxiv.org/ndownloader/files/13259513
https://chemrxiv.org/articles/Toward_Learned_Chemical_Perception_of_Force_Field_Typing_Rules/6230627/3?file=13259513


Supporting Information: Toward learned chemical perception of
force �eld typing rules

Camila Zanette,† Caitlin C. Bannan,‡ Christopher I. Bayly,¶ Josh Fass,§,k Michael K. Gilson,?
Michael R. Shirts,# John D. Chodera,§ and David L. Mobley⇤,†,‡

†Department of Pharmaceutical Sciences, University of California, Irvine
‡Department of Chemistry, University of California, Irvine

¶OpenEye Scienti�c, Santa Fe, NM �����
§Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer

Center, New York, NY �����
kTri-Institutional Training Program in Computational Biology and Medicine, New York, NY �����
?Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego

#Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO �����

E-mail: dmobley@mobleylab.org
Phone: ���-���-����

� Molecule structures

The chemical structures for the AlkEthOH and PhEthOH
molecule sets are shown in Figure � and Figures �, �, �
respectively. Figures �, �, �, and � show the chemical
structures for MiniDrugBank molecule set. The chemi-
cal structure �gures can be found in the Electronic Sup-
porting Information.

� SMARTY Results

�.� Atom types not found by SMARTY

Despite fairly good overall success on MiniDrugBank,
there are still some challenges. One is the case of
HX, which we never match. It turns out that, in
parm��/parm@Frosst, HX was constructed by a hu-
man expert to avoid a speci�c problem with minimal
perturbation to the overall force �eld (avoiding cer-
tain crashes caused by atoms with zero Lennard-Jones
parameters — hydroxyl hydrogens — in close proxim-
ity, while not changing typical hydroxyl hydrogens, only
those which were likely to cause crashes); because it
was essentially a one-time way to avoid a particular
problem. It is not our goal to recover a similar pattern.
This atom type is applied to polar hydroxyl hydrogens
in two di�erent contextsa:

aThe �le parmaFrosst_atyper_v1.2.xpat included in
the Electronic Supporting Information and on github (https:

• “[$([#1]-O-[#6]-,:[#7])]” – Hydroxyl
group where the neighboring carbon is bound
to nitrogen.

• “[#1$(*-[OX2]-[CX4]-[OX2$(*-[#1]),
NX3+0])]” – Hydroxyl group where the carbon
is bound to either another hydroxyl group or a
neutral nitrogen with three connections.

In both patterns, the hydrogen is connected to an oxy-
gen with a carbon in the beta position, but the gamma
position di�ers substantially – a nitrogen in the �rst
case, and a divalent oxygen bonded to hydrogen or a ni-
trogen with three connections in the second case. Two
molecules containing this atom type are shown in Fig-
ure �(a) and (c). Since SMARTY considers only alpha
and beta positions, it is impossible for us to recover
these cases, but additionally, our view is that since two
SMARTS patterns are necessary to describe this atom
type, it could be better understood as two atom types.
Investigation as to whether this level of detail will be
needed in force�eldswill need to be reserved for a sep-
arate study involving parameterization as well as atom
typing. At present, it seems best to interpret HX as an
atom type applied for hydrogenswhich do not �t neatly

//github.com/openforcefield/open-forcefield-data/
blob/master/Model-Systems/AlkEthOH_distrib/
parmaFrosst_atyper_v1.2.xpat) provides the SMARTS
patterns used to assign parm��/parm@Frosst atom types. We
will reference these SMARTS patterns while trying to understand
where SMARTY succeeds and fails.

�

dmobley@mobleylab.org
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat
https://github.com/openforcefield/open-forcefield-data/blob/master/Model-Systems/AlkEthOH_distrib/parmaFrosst_atyper_v1.2.xpat


Figure �: Chemical structures of AlkEthOH molecule set used in this work. While the full AlkEthOH set� contains
both rings and chains, we used rings only here, though for our purposes the di�erence is unimportant since they
involve the same atom types.

�



Figure �: Chemical structures of PhEthOH molecule set — Part �.

�



Figure �: Chemical structures of PhEthOH molecule set — Part �.

�



Figure �: Chemical structures of PhEthOH molecule set — Part �.

�



Figure �: Chemical structures of MiniDrugBank molecule set — Part �.

�



Figure �: Chemical structures of MiniDrugBank molecule set — Part �.

�



Figure �: Chemical structures of MiniDrugBank molecule set — Part �.

�



Figure �: Chemical structures of MiniDrugBank molecule set — Part �.

�



into other categorizations, and as such, is not an atom
type we should necessarily expect SMARTY to recover.
None of the SMARTY simulations we performed

found a SMARTS string that matched ���% of
the parm��/parm@Frosst atom type N2. In
parm��/parm@Frosst, N2 is assigned with six di�er-
ent parm��/parm@Frosst SMARTS patterns:

• “[NX3$(*-[c,n])]” – An aliphatic nitrogen
that has three connections bound to an aro-
matic carbon or nitrogen.

• “[#7X3$(*([#1])=;!@*)]” – A nitrogen with
three connected atoms, one of which is a proton
and another of which is to any atom via a non-
ring double bond.

• “[#7X2-1$(*([#1])[#6X3])]” – Anionic ni-
trogen with two connections: hydrogen and car-
bon with three connections

• “[#7X2-1$(*-[#6X3])]” – Anionic nitrogen
with two connections, one of which is a carbon
with three connections.

• “[NX3$((*-[#1])*=[#6X3,#7X2])]” –
Aliphatic nitrogen with three connections, one
of which is a hydrogen and the other of which
is a carbon with three connections or nitrogen
with two connections.

• “[NX1-1]” – Anionic nitrogen with one connec-
tion.

This is di�cult for SMARTY to discover, because
SMARTY attempts to match each reference type using
only a single SMARTS pattern. Thus, SMARTY is capable
of discovering SMARTS stringswhichmatch a fraction of
the N2 atoms; however, it is not capable of generating
the multiple patterns needed to achieve a partial score
of ���% here. This helps to illustrate a larger point
— in some cases, humans may have encoded partic-
ularly complex patterns when de�ning current atom
types, and we do not necessarily need to be able to
discover exactly the same atom typing here. Perhaps a
future automated force �eld development procedure
might conclude that nitrogen in each of these di�erent
chemical environments ought to end up with very sim-
ilar parameters, but perhaps they might end up with
di�erent parameters.
Another failure was related to a single atom type C*.

This carbon atom type corresponds to carbon in an aro-
matic �ve-membered ring in parm��/parm@Frosst; it

was created to (and used only to) parameterize tryp-
tophan, where it is applied to the carbon in the �-
membered ring that connects to the aliphatic carbon
chain as shown in Figure �(b). Checking all the results
of our SMARTY tests, we do recover a suitable SMARTS
pattern but it matches ���% of several di�erent car-
bon atom types (CW, CC, and CR in our tests). The atom
types CC, CW, CR, CB, and C* all refer to carbons placed
only slightly di�erently in �-membered heteroaromatic
rings. �–� However, thematching algorithm gives prefer-
ence to matching reference atom types that are more
populated. In MiniDrugBank, most carbons in �ve-
membered rings have the CW, CC, and CR atom types
(���, ���, and �� atoms, respectively) compared to C*
which is only used on nine carbon atoms in the whole
set, and thus the former get priority when scoring. To
match these types, SMARTY would need to distinguish
CW, CC, and CR by specifying multiple decorators on the
alpha and beta atoms. This means that in order for
SMARTY to �nd C* it would need to keep highly special-
ized SMARTS patterns for the other �ve-membered ring
carbons. Thus in this case, apparently SMARTY is telling
us there is a lot of redundancy in the chemical space
covered by these di�erent atom types for carbons in
heteroaromatic rings; perhaps this level of di�erentia-
tion in atom types may not be needed in future force
�elds employing direct chemical perception.�
Atom type HP was also not found in our tests on

MiniDrugBank. The Parm��/parm@Frosst SMARTS
string for HP is “[$([#1]-C-[*+1])]”, a hydrogen
bound to a carbon bound to a positively charged atom
(+�). In MiniDrugBank, all of the positively charged
atoms in the beta position are nitrogens. SMARTY does
not use decorators on the beta position, so it is im-
possible for SMARTY to match this particular SMARTS
pattern. However, it can also match HP by placing a
nitrogen in the beta position; unfortunately, this also
matches other atom types. To match HP and only HP,
these other atom types must be discovered as children
of the proposed hydrogen-carbon-nitrogenmatch, and
not in any other way; this is a fairly di�cult combinato-
rial problem and thus we do not observe any matches
to HP. Work discussed below on SMIRKY is able to dis-
cover corresponding chemistry because of its use of
decorators in the beta position.

� SMIRKY Results

�.� Frequency of success of SMIRKY

In Figures ��, ��, ��, ��, ��, we plot the fraction of simu-
lation time of SMIRKY where each reference fragment

��



(a) (b)

Figure �: Atom types from the MiniDrugBank
set that SMARTY failed to discover. Example of
molecules from MiniDrugBank set containing the
Parm��/parm@Frosst atom types we could not �nd
���% on SMARTY. (a) Molecule containing atom type
HX (highlighted in lilac) and HP (highlighted in light
green). (b) Molecule containing N2 (highlighted in light
blue) and C* (highlighted in light yellow).

has a SMIRKY-generated SMIRKS pattern related to dif-
ferent parameter types.

�.� Fragment types not found in SMIRKY

This section provides details on the reference frag-
ment types which never achieve a ���% partial score
in any SMIRKY simulation. The missing one non-
bonded, �ve bond, � angle, and �� torsion fragments
are listed in Table � with their associated SMIRKS from
smirno���Frosst. These will correspond to where heat
map columns are zero (white) in the �gures provided.

Nonbonded parameters There is only one non-
bonded parameter that SMIRKY was unable to ever
match, n7 (“[#1:1]-[#6X4]⇠[*+1,*+2]”). This pa-
rameter matches hydrogens which have neighboring
carbon atoms that are bound to something positively
charged. In MiniDrugBank, there are quaternary ni-
trogens with a formal charge of +1 and hyper-valent
sulfurs with a formal charge of +2. As described in the
methods section, after creating a new SMIRKS pattern,
SMIRKY makes a variety of checks before moving on
to scoring the proposed list. The inability to �nd n7
is due to an assumption in our checks for newly gen-
erated SMIRKS patterns. A new pattern to be scored

must be assigned to at least some molecules in the
set, but the parent type must also still be assigned
to at least one molecule. To �nd this speci�c non-
bonded SMIRKS, which matches hydrogens with a beta
atom that has a +1 or +2, we would be required to
override the parent. Imagine we have already found
(“[#1:1]-[#6X4]”); the next step could �nd an in-
termediate — either “[#1:1]-[#6X4]⇠[*+1]” or
“[#1:1]-[#6X4]⇠[*+2]” — and lead to an increase
in score since either pattern would match some of the
n7 atoms. Regardless of which of these intermediates
is generated �rst, when the other positively charged
decorator is added via an OR in the �nal step, the in-
termediate will match no atoms in the set because all
are matched by the child parameter (due to the last-
match-wins hierarchy employed). SMIRKY was unable
to �nd a single SMIRKS pattern matching the n7 atoms
in smirno���Frosst due to this requirement that a
newly created SMIRKS patterns must not empty the
parent type. This is an important choice in the SMIRKY
algorithm. If we allowed a child type to override a par-
entwe could end up generating very decorated SMIRKS
patterns that would not meet the desired behavior of
separating fragment types.
It is important to remember that the param-

eters used in smirno���Frosst were selected by
a human expert based on parameters present in
parm��/parm@Frosst; these choices may not always
be optimal. In this particular case, it is possible that
having two parameters for “n�”, with +1 decorator
in the beta position and another with +2 in the beta
position would be preferred. However, it is worth
considering the possibility that a data driven chemi-
cal perception sampling tool would need to consider
similar combinations of decorators. This could mean
allowing certain parent types to no longer match a
molecule. An alternative possibility would be to use
an additional move type which would propose com-
bining existing fragment types that have already been
found. For example, SMIRKS patterns could be au-
tomatically combined if (“[#1:1]-[#6X4]⇠[*+1]”)
and (“[#1:1]-[#6X4]⇠[*+2]”) had been found, but
the data showed you were unnecessarily separat-
ing two types. Future sampling tools could incorpo-
rate moves in chemical space that combined existing
SMIRKS rather than just adding or removing a pattern.

Angle parameters Both of the missing angle
parameters pertain to specialized SMIRKS pat-
terns for ring systems (Figure ��). Angle a6
(“[*:1]⇠;!@[*;r3:2]⇠;!@[*:3]”) matches an an-
gle centered on a carbon atom in a �-membered

��



(a) (b) (c)

Figure ��: Frequency of success of SMIRKY for AlkEthOH, PhEthOH, andMiniDrugBank for nonbonded parameter.
For nonbonded parameter in (a) AlkEthOH, (b) PhEthOH, and (c) MiniDrugBank we plot the fraction of simulation
time of SMIRKY where each reference fragment has a SMIRKY-generated SMIRKS pattern that receives a partial
score of ���%.

(a) (b)

(c) (d)

Figure ��: Frequency of success of SMIRKY for AlkEthOH, PhEthOH, and MiniDrugBank for angle parameter. For
angle parameter in (a) AlkEthOH, (b) PhEthOH, and (c) MiniDrugBank we plot the fraction of simulation time of
SMIRKY where each reference fragment has a SMIRKY-generated SMIRKS pattern that receives a partial score of
���%.

��



(a) (b) (c)

(d) (e) (f)

Figure ��: Frequency of success of SMIRKY for MiniDrugBank for torsion parameter. For torsion parameters in
MiniDrugBank, we plot the fraction of simulation time of SMIRKY where each reference fragment has a SMIRKY-
generated SMIRKS pattern that receives a partial score of ���%. The results are separated in six sub�gures (a), (b),
(c), (d), (e), and (f).

(a) (b)

Figure ��: Frequency of success of SMIRKY for AlkEthOH and PhEthOH for bond parameter. For bond parameters
in (a) AlkEthOH and (b) PhEthOH, we plot the fraction of simulation time of SMIRKY where each reference fragment
has a SMIRKY-generated SMIRKS pattern that receives a partial score of ���%.

��



(a) (b) (c)

Figure ��: Frequency of success of SMIRKY for MiniDrugBank for bond parameter. For bond parameters in
MiniDrugBank, we plot the fraction of simulation time of SMIRKY where each reference fragment has a SMIRKY-
generated SMIRKS pattern that receives a partial score of ���%. The results are separated in six sub�gures (a), (b),
and (c).

Figure ��: Nonbonded parameter from the
MiniDrugBank set that SMIRKY failed to discover
This �gure shows an example of n7 (“[#1:1]-
[#6X4]⇠[*+1,*+2]”) in a molecule (highlighted in
blue) from MiniDrugBank. This parameter is assigned
to �� atoms. n7 is the only nonbonded parameter
SMIRKY never gets a partial score of ���%.

ring where both other atoms are not in the ring.
On the other hand, a12 (“[*:1]⇠;!@[*;r5:2]⇠;
@[*;r5:3]”) matches angles between one exocyclic
atom and two atoms in a �-membered ring. It may
appear that the center atom, which is generic (⇤) in
both cases, could refer to any element; however, due
to placement near the top of the angle parameters
in smirno���Frosst and the hierarchical nature of
parameter assignments, these parameters can only
match angles centered around carbon atoms in �-
or �-membered rings. However, both atoms � and �
could be any element, making the order in which these
SMIRKS patterns are discovered very important. Ad-
ditionally, if a similar SMIRKS is found, but one of the
outside elements is speci�ed then it will only match a
subset of the angles assigned these reference patterns.
In the current SMIRKY algorithm, newly generated
SMIRKS patterns are placed at the end of the hierarchy
with no consideration for the parent type or the rest
of the hierarchy. This means if some progress is made
towards matching a pattern and then a new SMIRKS
pattern matching some of these angles is added be-
low it, any progress is e�ectively lost. The struggle
to identify these deceptively simple angle parameters
illustrates the importance the importance of the hier-
archy when discovering new patterns.

Torsion parameters SMIRKY was unable to �nd a
���% partial score for a variety of torsion parameters,
many of which require a large number of decorators.
As with the missing nonbonded parameter, n7, seven
of these torsion parameters (t48, t69, t74, t75, t99,
t114, and t134) also include atom decorators that are
“OR’d” together (Table �). Our goal is not to gener-
ate the exact same SMIRKS patterns, but to separate

��



Figure ��: Angles parameters from the MiniDrugBank set that SMIRKY failed to discover. There are two angle
parameters which do not receive a ���% partial score during SMIRKY simulations. In this �gure, the parameter is
highlighted in an example MiniDrugBank molecule showing the reference parameter label, SMIRKS, and the total
number of angles that are assigned that parameter (in parentheses)

Figure ��: Torsions parameters from the MiniDrugBank set that SMIRKY failed to discover. There are �� torsion
parameters which do not receive a ���% partial score during SMIRKY simulations. A molecule for each of these can
be viewed in the supporting information. In this �gure, three example parameters are shown with the reference
parameter label, SMIRKS, and the total number of torsions that are assigned that parameter (in parentheses). The
substructure corresponding to this parameter are highlighted in an example MiniDrugBank molecule.

��



Table �: Fragment types not found in SMIRKY. List of fragment types for which SMIRKY did not achieve a ���%
partial score and their respective SMIRKS string.

Parameter Fragment type name SMIRKS pattern

Bond

b�� [#6X3:1]-[#7X2:2]
b�� [#6X3:1]=[#7X2,#7X3+1:2]
b� [#6X3:1]-[#6X3:2]
b� [#6X3:1]=[#6X3:2]
b�� [#6X3:1]-[#8X2:2]

Angle a�� [*:1]⇠;!@[*;r5:2]⇠;@[*;r5:3]
a� [*:1]⇠;!@[*;r3:2]⇠;!@[*:3]

Torsion

t�� [*:1]=[#7X2,#7X3+1:2]-[#6X3:3]=,:[*:4]
t�� [*:1]-[#6X4:2]-[#6X3:3]=[*:4]
t�� [*:1]-,:[#6X3:2]=[#7X2:3]-[*:4]
t�� [*:1]⇠[#6X3:2]-[#6X3:3]⇠[*:4]
t�� [*:1]⇠[#6X3:2]-[#6X3$(*=[#8,#16,#7]):3]⇠[*:4]
t�� [*:1]=[#7X2,#7X3+1:2]-[#6X3:3]-[*:4]
t�� [*:1]-,:[#6X3:2]=[#6X3:3]-,:[*:4]
t�� [*:1]-[#6X4:2]-[#6X4;r3:3]-[*:4]
t��� [*:1]⇠[*:2]-[*:3]#[*:4]
t�� [*:1]⇠[#7X3,#7X2-1:2]-[#6X3:3] [*:4]
t��� [*:1]-[*:2]#[*:3]-[*:4]
t�� [*:1]⇠[#6X3:2](=[#8,#16,#7])-[#8X2H0:3]-[*:4]
t�� [*:1]-[#6X4;r3:2]-[#6X3:3]⇠[*:4]
t��� [*:1]-[#16X2,#16X3+1:2]-[!#6:3]⇠[*:4]
t�� [*:1]-[#7X3+1:2]=,:[#6X3:3]-,:[*:4]
t��� [#6:1]-[#16X4,#16X3+0:2]-[#6X3:3]⇠[*:4]

Nonbonded n� [#1:1]-[#6X4]⇠[*+1,*+2]

molecular fragments in the same way as the reference
force �eld. Because SMIRKS are not a unique descrip-
tion of a particular fragment, it is possible that an au-
tomated method could succeed without “OR’ing” dec-
orators together. However, it is worth acknowledg-
ing that the ability to combine automatically generated
SMIRKS would make these reference types easier to
�nd and will be required in future chemical perception
sampling tool.
Two torsion parameters we do not �nd with SMIRKY

highlight the importance of the order of discovery
and placement of new SMIRKS. The smirno���Frosst
torsions t157 (“[*:1]-[*:2]#[*:3]-[*:4]”) and
t158 (“[*:1]⇠[*:2]-[*:3]#[*:4]”) both fall at
the end of smirno���Frosst dihedral torsion param-
eters for torsions around and near triple bonds. Un-
like with the angle parameters, these two torsions
do match multiple element numbers since MiniDrug-
Bank has alkyne and nitrile groups. However, ini-
tial torsion parameters for SMIRKY simulations spec-
ify the element numbers on the center bond (i.e.
“[*:1]⇠[#6:2]⇠[#6:3]⇠[*:4]” for a generic tor-

sion around carbon-carbon bonds). Thus, generating
very generic parameters such as t158 and t157 is not
possible. Moving forward a more complex scheme for
ordering automatically generated SMIRKS may be re-
quired; however, handling this speci�c case carefully
may not be needed with a slightly more chemically-
aware sampling engine. As noted, the chemical percep-
tion smirno���Frosst was still generated by a human
expert, and in this particular case there is a physical
reason behind no element being speci�ed. The triple
bonds and neighboring single bonds are linear so there
is no barrier to rotation; any automated force �eld de-
velopment tool should know not to assign torsional
barriers to rotation around linear bonds.
SMIRKY misses other torsions that do not have

“OR’d” atom decorators or triple bonds, due to the size
of the combinatorial search problem. Torsions repre-
sent a very complex chemical space with at least four
atoms and three bonds that could all need decorators,
not mention the potential for additional substituents
or multiple elements “OR’d” together on a single atom
or bond. In the main text, we estimate the di�culty

��



of this problem and how many iterations it might
take to discover a typical torsion considering the ex-
ample torsion t78 (“[*:1]-,:[#6X3:2]=[#7X2:3]-
[*:4]”). For the purpose of this exercise we assumed
we wanted to generate this exact SMIRKS and con-
cluded SMIRKY may require � billion iterations to reach
said goal. If we could increase the probability of pick-
ing good decorators, we could decrease the number
of moves required to sample the requisite chemistry.
Considering the low probability of picking a given dec-
orator, the fact that SMIRKY is able to �nd SMIRKS pat-
terns which match ��� (��%) of the smirno���Frosst
reference torsions is further evidence that we have
been successful in sampling the chemical perception
tree.

Bond parameters. SMIRKY did not �nd a partial score
of ���% for �ve smirno���Frosst bond parameters
(Figure ��). One example, b14
([#6X3:1]=[#7X2,#7X3+1:2]), highlights a similar
combinatorial issue aswith the torsion and nonbonded
parameters. Exactly generating this SMIRKS pattern
would require replacing the parent type as the twopos-
sible nitrogens on atom 2 must be OR’d together. The
other parameters likely have a similar problem to those
discussed around the C* atom type in Section �.�. The
maximum weight graph used for scoring leads to ref-
erence types being matched to the SMIRKS with the
largest population. For most of these bond parame-
ters, there are very similar parameters thatmatchmore
bonds in theMiniDrugBank set, yet represent very sim-
ilar chemical environments. For example, let us con-
sider b5 (“[#6X3:1]-[#6X3:2]”), which matches ���
bonds in MiniDrugBank and is one of �ve parameters
for carbon-carbon single bonds in smirno���Frosst.
The other relevant parameters are assigned to signif-
icantly more bonds in theMiniDrugBank set: b2 (����),
b3 (���), and b4 (���). In order to get a ���% partial
score for b5 we would need to �nd the right level of
chemical complexity for all of these parameters simul-
taneously. This explanation based on the low popula-
tion of the missing parameter is also true for b7, b12,
and b17. As with other parameters, improving the ef-
�ciency of proposed moves would increase our abil-
ity to �nd these types of parameters. Despite miss-
ing �ve bond parameters, SMIRKY was able to gener-
ate SMIRKS that receive a ���% partial score for ��%
of the bond parameters in MiniDrugBank, showing we
are generally successful in sampling chemical percep-
tion tree.
The potential for simplifying bond parameters may

make distinguishing certain e�ects less vital. For ex-

ample, most of the complexity in bond SMIRKS pat-
terns comes from trying to capture conjugation that
would make a single bond shorter than average or a
double bond longer. This leads to ten smirno���Frosst
parameters involving bonds between carbon atoms in
MiniDrugBank. The Open Force Field initiative plans
to incorporate calculated Wiberg bond orders into
SMIRNOFF bond parameters,� potentially capturing
conjugation without additional SMIRKS patterns as in-
formation about the level of conjugation will be incor-
porated in the Wiberg Bond Order instead. This could
simplify future force �elds considerably.

� Electronic Supporting Information

Additional supporting information is available free of
charge online through the University of California Dash
at https://doi.org/10.7280/D1CD4C. It includes
input �les, output �les, and score vs. iteration plots
for all SMARTY and SMIRKY simulations with every
molecule set. This also includes molecule �les that are
human andmachine readable. It contains heat map re-
sults shared here as images and as computer readable
csv�les. This also includes all of the python scripts used
to analyze these results and to create the �gures in this
paper.

References

(�) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.;
Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. J. Am.
Chem. Soc. ����, ���, ���–���.

(�) Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.;
Case, D. A. J. Comput. Chem. ����, �, ���–���.

(�) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.;
Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.;
Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem.
Soc. ����, ���, ����–����.

(�) Mobley, D.; Bannan, C. C.; Rizzi, A.; Bayly, C. I.;
Chodera, J. D.; Lim, V. T.; Lim, N. M.;
Beauchamp, K. A.; Shirts, M. R.; Gilson, M. K.;
Eastman, P. K. bioRxiv ����, ������.

��

https://doi.org/10.7280/D1CD4C


Figure ��: Bond parameters from the MiniDrugBank set that SMIRKY failed to discover. There are �ve bond pa-
rameters which do not receive a ���% partial score during SMIRKY simulations. In this �gure, the parameter is
highlighted in an example MiniDrugBank molecule showing the reference parameter label, SMIRKS, and the total
number of bonds that are assigned that parameter (in parentheses)

��



download fileview on ChemRxivSI.pdf (7.84 MiB)

https://chemrxiv.org/ndownloader/files/12718178
https://chemrxiv.org/articles/Toward_Learned_Chemical_Perception_of_Force_Field_Typing_Rules/6230627/3?file=12718178

	Item information
	smarty_paper_reviews.pdf
	SI.pdf

